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Abstract

We study the problem of marginalization in Bayesian networks: given a Bayesian
network G = (V,E) and nodes S we wish to marginalize, what is the most compact
Bayesian network G′ over nodes V \ S which is faithful to the independencies and
ancestral relationships in the original graph. Efficient solutions to this problem are
crucial for the problem of abstraction in Bayesian networks. Prior approaches based
on Shachter’s topological operations are sensitive to user-chosen node removal and
edge reversal orders, provide no optimality guarantee, and can be prohibitively slow
when searched exhaustively. We present a novel algorithm for marginalization with
the first proof of optimality for algorithms of its kind, with an empirical speedup of
up to several orders of magnitude over the prior state-of-the-art.

1 Introduction

Bayesian networks are a class of probabilistic graphical models which use directed acyclic graphs
(DAGs) to represent multivariate distributions with highly structured interdependencies. In a Bayesian
network, the nodes of a graph are random variables, and the edges of the graph represent conditional
probability distributions. Bayesian networks provide a natural framework for encoding the condi-
tional independencies found in a joint probability distribution, allowing complex distributions to be
represented more compactly (Koller and Friedman, 2009; Russell and Norvig, 2021).

While much work is being done on improving the interpretability of transformer-based models
that dominate today’s large language models, their internal representations remain largely opaque
(Zhao et al., 2024). In contrast, Bayesian networks offer, at least in principle, the potential for more
interpretable representations. Each node corresponds to a specific random variable that can be directly
analyzed, and it is possible for users to trace how observed evidence propagates through the network
and influences the posterior distribution. However, one challenge that Bayesian networks face is that
both exact and approximate probabilistic inference in Bayesian networks are NP-hard (Cooper, 1990;
Dagum and Luby, 1993).

One way to tackle this challenge is to perform abstraction in Bayesian networks, where a large,
intractable Bayesian network is simplified into a smaller one in which inference is tractable. More
specifically, one method of abstraction is marginalization, the practice of removing or ‘marginalizing
out’ a subset of the nodes of the original network (Yet and Marsh, 2014). Marginalization can also
be useful in circumstances where the value of certain random variables are unable to be observed or
irrelevant to the task at hand.

There are several factors to consider when marginalizing a Bayesian network. Firstly, the original
network encodes a particular set of conditional independencies, and so our marginalized Bayesian
network must not encode any independencies that are not present in the original network. If we do
encode spurious independencies, our model will no longer be faithful and may be unable to correctly
represent the true marginal distribution over the remaining random variables.
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On the other hand, we also wish to have as compact a graph as possible. A trivial solution to the
problem of finding a graph that does not encode any spurious conditional independencies is a complete
graph, where there is an edge between every two vertices, and so there are zero encoded conditional
independencies. However, each additional edge in the marginalized graph requires storing larger and
more complex conditional probability distributions, resulting in a less compact representation.

Finally, in practice, Bayesian networks do not only encode a particular set of conditional indepen-
dencies, but are also often designed to reflect an intuitive generative or causal process underlying
the distribution over the variables (Pearl, 2009). So another desirable property we may seek in our
marginalized graph is for the topological ordering implied by the base graph to be preserved.

For this work, we focus on minimizing the number of edges as a proxy for graph compactness,
though our approach can be generalized to other measures of graph complexity. Our problem can
then be stated as follows: given a Bayesian network G = (V,E) and a set of nodes S that we wish to
marginalize, what is the Bayesian network G′ on the nodes V \ S such that G′ does not encode any
conditional independencies that G does not encode, G′ does not contradict the ancestral relationships
established in G, and G′ has the minimum number of edges?

The prior state-of-the-art algorithm for this problem is based on Shachter’s topological operations
introduced in Shachter (1986) and later applied to Bayesian network abstraction by Yet and Marsh
(2014). There are two main limitations of this work. First, the algorithm leaves certain runtime
choices up to the user, particularly node removal order and edge reversal order (which we discuss
later), with the choices impacting the compactness of the marginalized graph. As a result, to find
the optimal graph, the user must conduct a brute-force search over these runtime choices. Secondly,
there is no proof that the algorithm finds the optimal marginalized graph with minimal edges, even
with a brute-force search over the runtime choices.

In response, we present a novel algorithm for Bayesian network marginalization, with, to our
knowledge, the first proof of optimality for such an algorithm. Our method is guaranteed to produce a
marginalized graph with the minimal number of edges while faithfully preserving the independencies
and ancestral relationships of the original graph. Furthermore, by conducting a more structured
search over the space of marginalized graphs, our algorithm empirically attains a substantial speedup
over the prior state-of-the-art across a wide class of Bayesian networks, with speedups in some cases
reaching multiple orders of magnitude.

2 Background

2.1 Definitions

A Bayesian network is comprised of nodes representing random variables and directed edges repre-
senting conditional probabilities, with the restriction that these directed edges cannot form a cycle. If
we have A→ B, then we say that A is a parent of B and B is a child of A, denoted A ∈ Pa(B) and
B ∈ Ch(A), respectively. If we have A→ · · · → B, then we say that A is an ancestor of B and B
is a descendant of A, denoted A ∈ an(B) and B ∈ de(A), respectively. Note that this notation can
be generalized, so an({B,C}) denotes the union of an(B) and an(C).

A path between two vertices A and B is a sequence of vertices π = (A = A1, A2, . . . , An−1, An =
B) such that Ai and Ai+1 are connected by an edge for all i. Given any intermediate node Ai on this
path, we call Ai a collider if we have Ai−1 → Ai ← Ai+1, and a non-collider otherwise.

A path π is active given a set Z if all of the non-collider nodes on π are not in Z, and all of the collider
nodes on π are in an(Z). We say that A is independent of B given a set Z, denoted A ⊥ B | Z, if it
is true that there exists no active path from A to B given Z. This is a conditional independence.

In addition to Bayesian networks, another category of probabilistic graphical models is ancestral
graphs (Richardson and Spirtes, 2002). In addition to directed edges, these are allowed to contain
bidirected edges↔ . Ancestral graphs must be acyclic and if we have A↔ B, then we cannot have
A ∈ an(B) or B ∈ an(A). We will call two nodes adjacent if they are connected by an edge of any
type.

A specific subclass of ancestral graphs are maximal ancestral graphs, or MAGs. Every ancestral graph
can be turned into an equivalent MAG (Ali and Richardson, 2002).
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Figure 1: (a) is a starting Bayesian network. If we marginalize out node A, a marginalized Bayesian
network is in (b), but this has strictly less conditional independencies than the MAG in (c).

MAGs have the additional property that if A and B are not adjacent, then there must exist some set
Z such that A ⊥ B | Z. Paths have the same definition for MAGs as Bayesian networks—there
must exist an edge between adjacent nodes in the path. For MAGs, we call Ai a collider if we have
(Ai−1 → Ai or Ai−1 ↔ Ai) and (Ai ← Ai+1 or Ai ↔ Ai+1). For convenience, we will denote
this as having Ai−1

?→ Ai
?← Ai+1, where the question marks denotes that the statement holds

regardless of what the edge endings at Ai−1 and Ai+1 are. As before, all nodes that are not colliders
are non-colliders. Our definition for an active path remains the same, as does the definition for
conditional independence.

A topological ordering is an ordering of the nodes in an ancestral graph (or Bayesian network) such
that if A→ B, then A appears before B in the ordering. Alternatively, this is phrased as A having a
lower topological order than B. It is possible for an ancestral graph to have more than one possible
topological ordering, and each ancestral graph must have at least one topological ordering.

We wish for our marginalized Bayesian network to not contradict the ancestral relationships estab-
lished in the original relationship. Essentially, this means that if A ∈ an(B) in G, we cannot have
B ∈ an(A) in G′, as this would reverse the direction of causality in our network.

2.2 Marginalization

One challenge in finding faithful marginalized Bayesian networks with the minimal number of edges
is that Bayesian networks are not closed under marginalization (Koster, 2002). In other words, for
some choices of Bayesian network G = (V,E) and nodes to remove S, it is impossible to find a
G′ such that the conditional independencies of G′ are the same as the conditional independencies
of G amongst the nodes in V \ S. A classic example of this phenomena occurs with the Bayesian
network shown in Figure 1(a) and marginalization set {A} (Richardson and Spirtes, 2002). It can be
shown that all possible marginalized graphs are missing at least one conditional independency that the
original graph had; this is proven in Lemma A.2. One such example of a marginalized graph is shown
in Figure 1(b). In this G′, we have B ̸⊥ E, but in our original graph, B and E are independent.

On the other hand, MAGs are closed under marginalization (Ali and Richardson, 2002). Continuing
our example, Figure 1 is the GMAG that encodes the same conditional independencies as G amongst
nodes B,C,D,E. This is because any active path in G that included node A can still be taken in
GMAG, as the bidirected edge allows us to have an arrowhead at C and at E.

Because every Bayesian network is also a MAG, we can find a MAG on the nodes V \S that encodes
exactly the conditional independencies as those encoded by G amongst the vertices in V \ S. This
provides the motivation for our method: we first process the graph and obtain an equivalent MAG
after removing our nodes, and then we find our Bayesian network by simplifying from this MAG.

3 Related work

3.1 Abstraction within Bayesian networks

Four abstraction methods for Bayesian networks have been identified in earlier work (Yet and Marsh,
2014): node removal, node merging, state-space collapsing, and edge removal. The latter two methods
involve consultation with experts, and are thus impractical when such resources are unavailable.

In node merging, two nodes A and B are combined to form a merged random variable AB. However,
the state space of AB is simply the Cartesian product of the state spaces of A and B. Therefore,

3



although this reduces the number of nodes, it does not allow for a more compact representation of the
probability distribution, as we now must store the joint distribution of A and B.

Node removal is based on Shachter’s topological operations (Shachter, 1986, 1988). Shachter proved
that the following operations do not introduce new conditional independencies to a graph:

1. Removing barren nodes, or nodes that do not have any children.

2. Reversing covered edges. An edge A→ B is covered if Pa(A) ∪ {A} = Pa(B); we are
allowed to replace A→ B with A← B for such edges.

3. Adding edges.

Using this, one method to remove a node R is that, for each of its children Ci, add edges from the
parents of R to Ci and the parents of Ci to R, and then replace R→ Ci with R← Ci. After doing
this for all of R’s children, it will be barren, and we can remove R.

Therefore, given a set S of nodes to remove, the process of node removal above provides a valid
method of marginalizing the graph that results in a G′ without false conditional independencies.
However, the biggest shortcoming of using this method to perform marginalization is that it does not
guarantee that we will be able to obtain the optimal (most compact) marginalized Bayesian network,
even if we test all possible orders of reversing edges and removing nodes.

3.2 Other probabilistic graphical models

Ancestral graphs were developed with the motivation to generalize Bayesian networks and allow
for faithful representations of marginalized Bayesian networks or Bayesian networks with latent
variables (Richardson and Spirtes, 2002). Other models have also been developed for this purpose
(Koster, 2002; Richardson, 2003), but ancestral graphs, and specifically, MAGs, have received the
most attention in the literature (Richardson and Spirtes, 2002; Ali and Richardson, 2002).

A more generalized version of MAGs are acyclic directed mixed graphs, or ADMGs (Richardson,
2003). These must still be acyclic, but they are allowed to have multiple edge types between two
nodes, such as A → B and A ↔ B. These are also closed under marginalization. An advantage
of ADMGs is that they are more computationally efficient to obtain from a Bayesian network with
nodes that we wish to marginalize (Koster, 2002), but the structure of MAGs is more similar to that
of Bayesian networks, and thus easier to reduce from.

An alternative to Bayesian networks are undirected graphs, which only have undirected edges between
the nodes. These are closed under marginalization (Richardson and Spirtes, 2002). However, the
drawback of undirected graphs is that they cannot represent the direction of causality, and can thus
only capture correlations.

4 Optimal marginalization in Bayesian networks

We now introduce an optimal algorithm for marginalization in Bayesian networks. Specifically, our
algorithm solves the following problem: Given a Bayesian network G = (V,E) and a set S of nodes
to remove, return a set of Bayesian networks G1, . . . , Gn satisfying the following properties:

(i) Each Gi has nodes V \ S.

(ii) The conditional independencies encoded by Gi are a subset of the conditional independencies
encoded by G.

(iii) The ancestral relationships established in G are preserved.

(iv) There does not exist any Bayesian network G′ satisfying the aforementioned three points which
has less edges than Gi.

First, we will provide an overview for our algorithm given in Algorithm 1. We know that MAGs are
closed under marginalization, so there exists a marginalized graph in the form of a MAG that has the
exact conditional independencies of our original graph on V \ S. Therefore, we will first convert our
Bayesian network to a MAG using an existing algorithm (Hu and Evans, 2020).
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Algorithm 1 Marginalization via MAGs
Input: A Bayesian network G = (V,E), a set of nodes to remove S ⊆ V .
Output: A set of minimal marginalized graphs final_graphs.

1: function FINDMINIMALGRAPHS(G,S)
2: GMAG ← MARGINALIZETOMAG(G,S) ▷ via Hu Evans
3: C ← FINDBIDIRECTEDCOMPONENTS(GMAG) ▷ Sets of nodes connected by↔ paths
4: Gbase ← GMAG with all bidirected (↔) edges removed.
5: component_solutions← []
6: for each component C ∈ C do
7: solutions_by_costC ← dict() ▷ keys are num. edges added, values are list of graphs
8: Π← ALLTOPOLOGICALORDERINGS(C)
9: for each ordering σ = (X1, . . . , Xn) in Π do

10: GC,σ, kC,σ ← GETEDGESFORORDERING(C, σ) ▷ See algorithm 2
11: Append GC,σ to solutions_by_costC .get(kC,σ, [])

12: Append solutions_by_costC to component_solutions
13: final_graphs← []
14: min_cost←∞
15: cost_combinations← COSTCOMBINATIONS(solutions_by_cost) ▷ Uses a heap
16: for each cost tuple ρ = (c1, . . . , ck) in cost_combinations do
17: current_cost←

∑k
i=1 ci

18: if current_cost > min_cost then
19: break
20: for (GC1 , . . . , GCk ), where GCi has cost ci for all i do
21: Gfinal ← Gbase ∪

⋃k
i=1 GCi

22: if not Gfinal has cycles then
23: Append Gfinal to final_graphs
24: min_cost← current_cost
25: return final_graphs

The resulting graph GMAG will have directed and bidirected edges. Let the base graph contain only
the directed edges of GMAG. We know that our final graph G′ must contain all edges in the base
graph, or else G′ will have a conditional independency that GMAG did not have (cf. Lemma A.1).
Therefore, we just need to focus on converting the bidirected edges in GMAG into directed edges.

The crucial structures to identify in GMAG are bidirected connected components, or BCCs. These
are subsets of the nodes of GMAG, such that A and B are in the same BCC if and only if there exists
a path from A to B consisting only of bidirected edges.

The crux of our algorithm is determining the ways in which each BCC can be reduced. This can be
thought of as converting the bidirected edges to directed edges (and adding additional directed edges,
as necessary). If our BCC only had bidirected edges, there would be no inherent topological order
amongst nodes in the same BCC. On the other hands, any directed edges present amongst nodes in a
BCC constrain the set of valid topological orderings over the variables. For each BCC, our algorithm
then searches over all valid topological orderings and computes the directed edges that must be added
in order to have a reduction compatible with that topological ordering.

After performing this for each component, we’ll have a list of valid reductions for each component.
Due to the disjoint manner of the components, the edges added for different components will also
be disjoint. Therefore, given a choice of reduction for each component, the number of edges in our
final graph G′ is just a sum of the the number of edges in each component’s reduction, as well as the
number of edges in the base graph.

After filtering out the final graphs that have the minimum number of edges, we will test for cycles, and
discard the graph if a cycle exists. If necessary, we will continue searching amongst the reductions
that result in the second lowest number of edges in the final graph, and so on, stopping once we can
return a non-empty collection of acyclic Bayesian networks.

In Algorithm 2, we give our procedure for determining which edges must be added given a component
and a topological ordering for that component. For any component C, it is sufficient to add edges
only between nodes in C ∪ Pa(C).

5



Algorithm 2 Generate Edges for a Given Topological Ordering
Input: A bidirected component C and a topological ordering σ = (X1, . . . , Xn) of C.
Output: A faithful Bayesian network for the component GC , the number of added edges k.

1: function GETEDGESFORORDERING(C, σ)
2: GC ← Subgraph of GMAG induced by C ∪ Parents(C) initialized with no edges
3: m← 0 ▷ Counter for number of edges
4: for i← 1 to n in decreasing order do
5: for j ← 1 to i− 1 do
6: if exists bidirected path from Xi to Xj along nodes w/ lower top. order than Xi then
7: Add edge Xj → Xi to GC and update m← m+ 1 if Xj → Xi doesn’t exist
8: Add edge V → Xi to GC and update m← m+ 1 for all V ∈ Pa(Xj) if ̸ ∃V → Xi

9: return GC ,m

Given a topological order σ = (X1, . . . , Xn) on the nodes of the BCC, we process the nodes in
reverse, adding edges with an arrowhead at each node for each step. In other words, we add edges to
node Xi, first for i = n, then i = n−1, and so on. Given any other node Xj with j < i, we add edge
Xj → Xi if and only if there exists some bidirected path Xj ↔ Xj2 ↔ · · · ↔ Xjl−1

↔ Xi such
that Xj2 , . . . , Xjl−1

all have lower topological order than Xi. In our algorithm, this is equivalent to
there being no node on the path such that Xj → Xjl ← Xi.

Lastly, if we must add Xj → Xi, our algorithm also adds edges from each of Xj’s parents to Xi.

4.1 Proof of correctness

First, we show that the graphs returned in final_graphs are valid marginalized Bayesian networks.

Theorem 4.1. Take a Bayesian network G = (V,E) and a set of nodes to remove S ⊆ V , and let
final_graphs be the output of running Algorithm 1 on G,S. For each G′ in final_graphs, G′ is a
Bayesian network, and there exists no conditional independency encoded by G′ not encoded by G.

We include a quick proof sketch below. The complete proof is included in the appendix.

Proof Sketch. First, we need to show that G′ is a Bayesian network. Since neither the base graph
nor any of the component graphs contain any bidirected edges, G′ must only contain directed edges.
Additionally, it must be a DAG because of the check we perform before returning final_graphs.

In order to show that G′ encodes no extra conditional independencies, it suffices to show that if
there exists an active path between Xi and Xj given Z in G, then there exists such an active path in
G′. Moreover, since G and GMAG have the same active paths, it suffices to show that we can find
corresponding active paths in G′ for all active paths in GMAG.

Because G′ has the same directed edges as GMAG, it suffices to focus on segments of the path that
intersect with a BCC. For any active path π = (Xj , Xj2 , . . . , Xjm−1

, Xi) from Xj to Xi in GMAG,
we are able to find an active path π′ in G′ because of how we’ve added edges in our algorithm; we
must either have Xj → Xi or Xj → Xjl ← Xi for some Xjl on π (see Lemma A.3). Since we can
always find a corresponding active path, there cannot be new conditional independencies in G′.

4.2 Proof of optimality

Now that we’ve shown that all of the graphs we return in final_graphs are valid marginalized graphs,
we wish to show that our algorithm will return the optimal marginalized Bayesian network.

Theorem 4.2. Take a Bayesian network G = (V,E) and a set of nodes to remove S ⊆ V , and let
final_graphs be the output of running Algorithm 1 on G,S. For any G∗ that satisfies the following
conditions, we must have G∗ in final_graphs:

• G∗ is a marginalized Bayesian network on the nodes V \S.

• The conditional independencies encoded by G∗ are a subset of the conditional independen-
cies encoded by G.

• The ancestral relationships established in G are preserved.
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• G∗ contains the minimum number of edges amongst all Bayesian networks satisfying the
previous 3 conditions.

Again, we include a quick proof sketch below. The complete proof is included in the appendix.

Proof Sketch. First, we will show that G∗ is equal to Gbase ∪
⋃k

i=1 GCi,σi
for some choices of

topological orderings σi for the components Ci. We use Lemma A.1 to argue that G∗ must contain
all of the edges in Gbase.

Then, since G∗ is a Bayesian network, it has a topological ordering, and this ordering will induce
a topological ordering amongst the nodes in each of the BCCs of GMAG. We will show that given
a topological ordering for each component, we must add all of the edges added by our algorithm
for any valid G′ (and thus those edges must exist in G∗), or else we can identify a conditional
independency that exists in that G′ but not GMAG. Because of this, G∗ must have all of the edges in
Gbase ∪

⋃k
i=1 GCi,σi

, and by the minimality of G∗ we know that G∗ is equal to Gbase ∪
⋃k

i=1 GCi,σ

for some σ.

Lastly, we argue that our algorithm is able to identify the correct σ. To do this, we show that we will
never add the same edge when processing two different components. Because our algorithm checks
if an edge exists in the base graph when processing each component, we know that all of the edges in
{Gbase} ∪ {GCi,σi

}ki=1 are disjoint.

In order to identify the correct σ, we must find the graph that minimizes the number of edges added
to Gbase. In our algorithm, we minimize the sum of the number of edges added to each component
graph. However, due to the disjointness of these edges, this is equal to the number of edges added to
Gbase. Therefore, we are indeed able to identify and return the desired graph in final_graphs.

5 Experiments

When compared to the previous method of abstraction described in Section 3.1, our algorithm has the
advantage of having a guarantee that we are able to output all of the optimal graphs. In this section,
we empirically compare the wall clock time of our algorithm with their algorithm.1

Before discussion of the results, let’s describe the algorithm based on the previous method. Recall
that in that algorithm, we have the freedom to remove nodes in any order, and for each node that we
remove, we have the freedom to reverse the edges between it and its children in any order. One useful
heuristic that was previously suggesting for choosing which edges to reverse was to do so in an order
that minimized the number of edges added (Yet and Marsh, 2014). However, greedily choosing to
reverse edges according to this heuristic does not always result in the minimal graph; see section A.3.

Moreover, there is also no proof that the order of node removal would not make a difference. On the
other hand, it is known that there exists optimal node elimination orders for Variable Elimination, a
method that performs exact inference on Bayesian networks; also, finding such an optimal order is
NP-hard, so there is no simple heuristic (Cooper, 1990).

Therefore, in our algorithm for this method, we test all possible edge reversal and node removal
orders. To compare the previous method with our method, we ran simulations where we randomly
generated our initial Bayesian networks (where edges had a specifiable probability for being added),
and randomly selected a subset of nodes to remove.

We had three parameters that we could change: the number of nodes in the initial graph, the probability
that an edge was added, and the number of nodes that we were removing. For each of these parameters,
we would vary it while keeping the values of the other two parameters fixed at default values. These
default values were 10 nodes in the initial graph, an edge probability of 0.4, and 4 nodes removed.
For each choice of parameters, we randomly generated 30 graphs, and compared the wall clock time
of our method and the previous method.

In our plots, we’ve graphed the speedup that our method provides, or the ratio of the time of the
previous method to that of our method. The average is plotted and labeled, the 95% confidence
interval is annotated, and the gray points allow outliers to be visible.

1Our experiment code is available at https://doi.org/10.5281/zenodo.17197254.
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Figure 2: Wall-clock speedup of our proposed algorithm over the prior method as a function of (i) the
number of nodes |V | in the original graph, (ii) the edge-inclusion probability p used to generate the
original Bayesian network, and (iii) the number of removed nodes |S|.

To summarize the results, our method provides a speedup in all cases except that of one node being
removed. In many cases, our method is many orders of magnitude faster than the existing method.

5.1 Limitations and future work

In the future, we hope to test if the trends demonstrated above still hold up when we increase the
number of nodes in our original graph; we were restricted to studying smaller graphs for this paper
due to time constraints. Additionally, although our method is substantially faster than the previous
method, it can still be cumbersome for very large graphs, and we have not shown that the runtime is
sub-exponential. Despite this, marginalization can still be helpful in instances when we wish to ask
many inference queries for a marginalized graph. Although there is an upfront cost of creating the
marginalized graph, we can reuse the marginalized graph for many rapid, subsequent calculations.
For example, we may have a large Bayesian network for stocks, marginalize it to create a smaller
network, and run it for predictions under many different circumstances.

Further work is also needed to assess whether converting to a MAG is necessary, or if a similar
algorithm can be used to reduce to a Bayesian network from a (non-maximal) ancestral graph or an
ADMG, for which the cost of marginalization from a Bayesian network might be cheaper.

6 Conclusion

In this work, we proposed a solution for the problem of optimal marginalization in Bayesian net-
works. This is the first algorithm that has a proof for optimality. Prior to this, the best method for
marginalization in Bayesian networks was based on Shachter’s topological operations. However,
there is no optimality guarantee for this method, and due to its reliance on exhaustive search, it can
become computationally intensive.

Instead, our method takes advantage of the closure of MAGs under marginalization. We use this
to find a MAG that has the exact conditional independencies from our original graph that we wish
to encode. The structure of the MAG allows us to have a more systematic method of searching for
the optimal graph. We are able to decompose our problem into the subproblems of reducing the
bidirected connected components of the MAG.
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Additionally, the structure of the MAG allows us to present the first proof of optimality for an
algorithm of this purpose. Moreover, empirical results verify the advantages of our approach,
exhibiting speedups of up to several orders of magnitude over the baseline.
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A Appendix

Lemma A.1. Given a Bayesian network with two nodes Xi and Xj such that Xi ̸∈ an(Xj) and
Xi and Xj are not adjacent. If we have any subset of the nodes Z such that Pa(Xi) ⊆ Z and the
topological order of each node in Z is lower than that of Xi, then

Xi ⊥ Xj | Z.

Proof. Consider any path from Xj to Xi. We wish to show that this path is blocked.

Since Xj and Xi are not neighbors, any such path must contain at least one intermediate node.
Consider the node along the path that immediately precedes Xi. If this node, say W , is a parent of
Xi, then we have W → Xi and W must be a non-collider along this path. Thus, the path is blocked
at W , as W ∈ Pa(Xi) ⊆ Z.

Let’s say the node adjacent to Xi along the path is instead a child, so we have · · · ← Xi. Since we
cannot have Xj ← · · · ← Xi due to the constraint that Xi ̸∈ an(Xj), we must have a collider on
this path.

Consider the first collider that we encounter as we traverse from Xi to Xj , say C. We will have
→ C ← · · · ← Xi, and so C has a higher topological order than Xi.

Since all of the elements of Z have a lower topological order than Xi, it is impossible for C to be an
ancestor of any of the elements of Z. Thus, C ̸∈ an(Z), and so the path is blocked at C.

Since all possible paths from Xi to Xj are blocked, we indeed have Xi ⊥ Xj | Z.

Corollary A.1.1. Given a Bayesian network with two nodes Xi and Xj such that Xi and Xj are not
adjacent, there must exist some conditioning set Z such that Xi ⊥ Xj | Z.

Proof. We know that we cannot have Xi ∈ an(Xj) and Xj ∈ an(Xi). Either the first is false, in
which case we have Xi ⊥ Xj | Pa(Xi), or the second is false, in which case we have Xi ⊥ Xj |
Pa(Xj).

Lemma A.2. Consider the graph G depicted in Figure 1(a). After marginalizing node A, there exists
no Bayesian network G′ on nodes B,C,D, and E that has the same conditional independencies as
G on nodes B,C,D, and E.

Proof. First, we claim that G′ must also have B → C and D → E.

If we do not also have B → C and D → E in G′, then there will exist Z1 and Z2 such that
B ⊥ C | Z1 and D ⊥ E | Z2 by Corollary A.1.1. However, since B → C and D → E in G, these
are conditional independencies that do not hold in G. We cannot have conditional independencies in
G′ but not G, so we must have B → C and D → E.

Secondly, we claim that G′ must also have either C → E or E → C. If E and C were not adjacent
in G′, Corollary A.1.1 implies that there exists Z3 ⊆ G′ such that E ⊥ C | Z3. However, for any Z3

that does not include A, we have E ̸⊥ C | Z3 in G, as C ← A→ E is an active path. Therefore, we
know that C and E must be adjacent.

Case 1: we have C → E. In this case, note that we cannot have B ← E in G′, as this would
introduce cycle B → C → E → B. Thus, the only two possibilities are B → E or B and E not
being adjacent. We claim that the latter is impossible. Assume for the sake of contradiction that it
were true. Then, we would have B ⊥ E | C,D in G′ by Lemma A.1. However, this is not true in G,
as B → C ← A→ E is an active path. Therefore, we must have B → E in G′.
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Because B and E are adjacent in G′, we know that B ̸⊥ E in G′. However, B ⊥ E in G. Thus, G′

has strictly fewer conditional independencies than G.

Case 2: we have C ← E. Note that we cannot have C → D in G′, as then we would have cycle
C → D → E → C. Therefore, we must either have C ← D or C,D cannot be adjacent. We claim
that the latter is impossible. Assume for the sake of contradiction that it were true. Then, by Lemma
A.1, we know that C ⊥ D | B,E. However, this is not true in G′, as the path C ← A→ E ← D is
active. Therefore, we must have C ← D in G′.

But, since C and D are adjacent in G′, we know that C ̸⊥ D in G′. Yet, we have C ⊥ D in G. Thus,
G′ again has strictly fewer conditional independencies than G.

Lemma A.3. Take nodes Xi and Xj in the same BCC in GMAG, such that in our topological
ordering, σ, the topological order of Xi is higher than that of Xj . In Algorithm 2, we will add edge
Xj → Xi if and only if there exists a bidirected path from Xj to Xi in GMAG with no intermediate
node on that path, Xk, having edges Xi → Xk and Xk ← Xj in GC .

Proof. In Algorithm 2, we will add edge Xj → Xi if and only if there exists a bidirected path from
Xj to Xi in GMAG such that all of the intermediate nodes in this path have lower topological order
than Xj . Thus, it suffices to show that the following two statements are equivalent:

1. There exists a bidirected path from Xj to Xi such that, in σ, all of the intermediate nodes in
this path have lower topological order than Xi.

2. There exists a bidirected path from Xj to Xi in GMAG with no intermediate node Xk,
having edges Xi → Xk ← Xj in GC .

This is equivalent to showing that the logical opposites of these statements are equivalent:

1. For every bidirected path between Xj and Xi in GMAG, there exists some intermediate
node Xk on the path such that σ(Xk) > σ(Xi).

2. For every bidirected path in GMAG, there exists some intermediate node Xk such that
Xj → Xk ← Xi in GC .

First, we will show that 1 =⇒ 2. Take any arbitrary bidirected path π between Xj and Xi, and take
the node on π with maximal topological order. Call this node Xk. Note that by the assumption of
statement 1, σ(Xk) > σ(Xi).

In Algorithm 2, we would have processed node Xk before Xi, because it has a higher topological
order, and we process nodes in reverse topological order. Then, when processing Xk, we would
have added Xk ← Xi to GC . This is because along the subset of πk:i between Xk and Xi, all of
the intermediate nodes have lower topological order than Xk, by our assumption that σ(Xk) was
maximal amongst the nodes in π ⊃ πk:i.

Similarly, note that σ(Xj) < σ(Xi) < σ(Xk), and so all of the intermediate nodes on the path
πj:k ⊂ π have a lower topological order than Xk. Therefore, we will also add edge Xj → Xk in GC .

Thus, we have found intermediate node Xk such that Xj → Xk ← Xi in GC for π. Since our choice
of π was arbitrary, this holds for all π.

Now, let’s show that 2 =⇒ 1. If there exists Xk on every bidirected path between Xj and Xi in
GMAG, then we know that this Xk must have σ(Xk) > σ(Xi), σ(Xj). Therefore, 1 is satisfied.

A.1 Proof of theorem 4.1

Theorem 4.1. Take a Bayesian network G = (V,E) and a set of nodes to remove S ⊆ V , and let
final_graphs be the output of running Algorithm 1 on G,S. For each G′ in final_graphs, G′ is a
Bayesian network, and there exists no conditional independency encoded by G′ not encoded by G.
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Proof. We claim that all of the final graphs are valid. First, since neither the base graph nor any of the
component graphs contain any bidirected edges, G′ must only contain directed edges. Additionally,
it must be a DAG because of the check we perform before returning final_graphs. Thus, G′ is indeed
a Bayesian network.

Next, we wish to show that it has no conditional independencies that GMAG does not have. It suffices
to show that if there exists an active path π between A and B given Z in GMAG, then there exists
an active path π′ between A and B given Z in G′; this ensures that if A ̸⊥ B | Z in GMAG, then
A ̸⊥ B | Z in G′.

To find such an active path, it suffices to find a path π′ that uses a subset of the nodes that π used,
with the restriction that collider nodes on π′ were also colliders on π, and non-collider nodes on π′

were also non-colliders on π. In other words, we wish to ensure that the collider status of the nodes
on π′ matches the collider status of these nodes on π.

Consider the active path between A and B given Z of π = (A = X0, X1, . . . , Xn = B) in GMAG.
For π′, we will take a path that uses a subset of these nodes. For the parts of path π that are directed
edges, we will take the exact same path in π′. This is possible because G′ contains all of the directed
edges that GMAG contains.

For parts of π that go through a BCC, say Y1 ↔ Y2 ↔ · · · ↔ Ym ⊆ π, we claim that there exists
a path in G′ that goes through a subset of (Y1, . . . Ym) and ensures that the collider status of these
nodes is preserved in π′.

Before we begin, consider any intermediate node Yk on our path. We will refer to the “incoming edge
for Yk" as the edge between Yk−1 and Yk, and the “outgoing edge" is the edge between Yk and Yk+1.

If the incoming edge for Yk has an arrowhead at Yk, that means we have Yk−1
?→ Yk.

We will do casework on the edges between (Y0, Y1) and (Ym, Ym+1), as we wish to preserve if there
is an arrowhead or not on the incoming (outgoing) edge for Y1 (Ym) in π′. Note that if Y0 or Ym+1

do not exist (Y1 = A or Ym = B), then they are an endpoint and do not have a collider status. Thus,
we do not care about the arrowhead on the outgoing (incoming) edge for Y1 (Ym), and we can just
follow the same steps as case 1 below, but omit the Y0 (Ym+1).

Case 1: We have Y0 ← Y1 ↔ · · · and · · · ↔ Ym → Ym+1. Then, we have to preserve non-collider
status of Y1 and Ym.

As seen in Lemma A.3, our algorithm will add an edge between any two nodes in the same BCC unless
there exists some node V on every bidirected path between Y1 and Ym such that Y1 → V ← Ym,
Hence, we either have

• Y1 ← Ym,

• Y1 → Ym, or

• Y1 → Yr ← Ym, for some Yr between Y1 and Ym in G′.

Thus, we can take the path

• Y0 ← Y1 ← Ym → Ym+1,

• Y0 ← Y1 → Ym → Ym+1, or

• Y0 ← Y1 → Yr ← Ym → Ym+1.

for π′, respectively. We claim that this will still be an active path. Note that the nodes Y1 and Ym are
still non-colliders (as they were in π) and the node Yr is still a collider (as it was in π). If we initially
had← Y0 ← Y1 in GMAG, then Y0 is still a non-collider in G′, and if we initially had ?→ Y0 ← Y1

in GMAG, then Y0 is still a collider in G′. Fundamentally, this is because there is still an arrowhead
at Y0 on the outgoing edge of Y0. Similarly, the collider status of Ym+1 will be preserved because
there is still an arrowhead at Ym+1 on the incoming edge of Ym+1.

Case 2: We have Y0 ← Y1 ↔ · · · and · · · ↔ Ym ← Ym+1. Again, we either have
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• Y1 ← Ym, so we must also have Y1 ← Ym+1 since Ym+1 ∈ Pa(Ym),

• Y1 → Ym, or

• Y1 → Yr ← Ym, and Yr ← Ym+1, for some Yr.

Therefore, in π′, we can take the paths

• Y0 ← Y1 ← Ym+1,

• Y0 ← Y1 → Ym ← Ym+1,

• Y0 ← Y1 → Yr ← Ym+1

for π′. Again, we have that Y1 is still a non-collider, Ym and Yr are still a colliders, and there is still
an arrowhead at Y0 on its outgoing edge while there is not an arrowhead at Ym+1 on its incoming
edge.

Case 3: We have Y0 → Y1 ↔ · · · and · · · ↔ Ym → Ym+1. This is symmetric to the previous case.

Case 4: We have Y0 → Y1 ↔ · · · and · · · ↔ Ym ← Ym+1. We can have:

• Y1 ← Ym, so we must also have Y1 ← Ym+1,

• Y1 → Ym, so we must also have Y0 → Ym, or

• Y1 → Yr ← Ym, as well as Y0 → Yr ← Ym+1, for some Yr.

In π′, we can take the paths

• Y0 → Y1 ← Ym+1,

• Y0 → Ym ← Ym+1,

• Y0 → Yr ← Ym+1

for π′. we see that Y1, Ym, and Yr are still colliders, while there is no arrowhead at Y0 (Ym+1) on its
outgoing (incoming) edge.

Therefore, if we go back to our original path π, for each section of π that goes through a BCC, we
can take a corresponding path according to the procedure above to get a π′ that is still active.

Since we are able to show that if there exists an active path between A and B given Z in GMAG,
then there exists an active path between i and j given Z in G′, we know that G′ does not contain any
conditional independencies that GMAG does not contain, and so G′ satisfies the conditions of our
theorem.

A.2 Proof of theorem 4.2

Theorem 4.2. Take a Bayesian network G = (V,E) and a set of nodes to remove S ⊆ V , and let
final_graphs be the output of running Algorithm 1 on G,S. For any G∗ that satisfies the following
conditions, we must have G∗ in final_graphs:

• G∗ is a marginalized Bayesian network on the nodes V \S.

• The conditional independencies encoded by G∗ are a subset of the conditional independen-
cies encoded by G.

• The ancestral relationships established in G are preserved.

• G∗ contains the minimum number of edges amongst all Bayesian networks satisfying the
previous 3 conditions.
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Proof. Recall that the base graph Gbase, consists of all of the directed edges in GMAG, and that all
of the graphs identified and returned by our algorithm are of the form Gbase ∪

⋃k
i=1 GCi,σi . In order

to show that G∗ is also of this form, we aim to show that all of these edges are necessary for some
choice of σi.

Lemma A.4. G∗ must include all of the edges in the base graph.

Proof. Recall that ancestral graphs are closed under marginalization, so the conditional indepen-
dencies encoded by GMAG are exactly the same as the conditional independencies encoded by G
amongst the nodes V \ S. Therefore, all of the conditional independencies that exist in G∗ must also
exist in GMAG.

Assume for the sake of contradiction that there exists A,B such that A → B in GMAG but there
exists no edge between A and B in G∗. Since G∗ is a Bayesian network and B ̸∈ an(A), Lemma
A.1 tells us that A ⊥ B | Pa(B). However, this conditional independency does not hold in GMAG,
as A → B is an active path given any conditioning set. Since A ⊥ B | Pa(B) is in G∗ but not
GMAG, we know that G∗ is not a valid marginalized graph. This is our desired contradiction.

Next, since G∗ is a Bayesian network, it must be possible to assign a topological ordering σ to its
nodes. Then, we can obtain an induced topological ordering on the nodes of each BCC in GMAG, by
taking the topological ordering on the entire graph, and simply deleting the nodes that are not in the
BCC.

Lemma A.5. Given any component C and the topological ordering induced by the topological
ordering in G∗, all of the edges added in Algorithm 2 to GC , a subgraph with nodes C ∪ Pa(C),
must exist in G∗ as well.

Proof. Without loss of generality, given our induced topological ordering, label the nodes in a given
BCC as X1, . . . , Xn, where node Xi has topological order i. Consider two arbitrary nodes Xi and
Xj with i ̸= j, and suppose without loss of generality that i > j, i.e., that Xi has a higher topological
order than Xj .

In our algorithm, we add edges Xj → Xi and V → Xi for V ∈ Pa(Xj) if and only if there exists a
bidirected path Xj ↔ Xj1 ↔ · · · ↔ Xjm ↔ Xi such that Xjk has lower topological order than Xi

for each k ∈ {1, . . . ,m}.
Assume for the sake of contradiction that the condition above holds, but we do not have V → Xi in
G∗ for some V ∈ {Xj} ∪Pa(Xj). We aim to show that there exists a conditional independency that
is true in G∗ but not in GMAG to complete our proof by contradiction. Letting PaG∗(Xi) denote the
parents of Xi in G∗, take

Z =

{
PaG∗(Xi) ∪ {Xj1 , . . . , Xjm} if V = Xj

PaG∗(Xi) ∪ {Xj , Xj1 , . . . , Xjm} otherwise
.

Since, by hypothesis, the topological ordering of the BCC is induced from that of G∗, we know that
Xj , Xj1 , . . . , Xjm must also have a lower topological order than Xi in G∗, and that Xi ̸∈ an(V ). By
definition, we also have that PaG∗(Xi) ⊆ Z. Therefore, by Lemma A.1, we have that Xi ⊥ V | Z
in G∗.

On the other hand, consider the path from V to Xi through Xj ↔ Xj1 ↔ · · · ↔ Xjm ↔ Xi in
GMAG. Given our conditioning set Z, this path is active, because all of the intermediate nodes are
colliders and they are all in Z ⊆ an(Z). Thus, Xi ̸⊥ V | Z in GMAG.

This is our desired contradiction, as we cannot have a conditional independency that exists in G∗ but
not GMAG. Thus, we must actually have V → Xi in G∗, and since i, j were arbitrary, every edge
added by our algorithm to GC must also exist in G∗.

Let’s put together Lemma A.4 and Lemma A.5. These tell us that all of the edges in our base graph
are in G∗, and if we run our algorithm on the topological order induced by G∗ for each component,
we will not add any edges to each GC that do not exist in G∗. Since G∗ is minimal, we must have
that G∗ is equal to Gbase ∪

⋃k
i=1 GCi

. Since our algorithm iterates through all possible topological
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orderings for each BCC, it will necessarily test the orderings that are induced by G∗, and thus
identifies G∗ = Gbase ∪

⋃k
i=1 GCi as a valid marginalized Bayesian network.

It remains to show that our algorithm correctly adds G∗ to its final_edges. After getting the resulting
GC graphs for each of the components, the algorithm proposes final graphs that minimize the sum
of the number of edges added to each component. We claim that this is an equivalent heuristic to
minimizing the number of edges in the final graph.

The number of edges in the final graph is the number of edges in Gbase ∪
⋃k

i=1 GCi
amongst all

choices of GC . This is equivalent to minimizing the number of edges in
⋃k

i=1 GCi
, as recall that we

only add edges to component graphs if they do not already exist in the base graph. Thus, it suffices to
show that no edge is added to two different GCi

component graphs, as then we will have∣∣∣∣∣
k⋃

i=1

GCi

∣∣∣∣∣ =
k∑

i=1

|GCi | .

When we add edges to GC , we only add edges that have arrowheads at some nodes in the bidirected
component itself (although edges may originate from nodes in the bidirected component or its parents).
Each node is part of at most one bidirected component, as if there exists a bidirected path from A to
B and A to C, then there also exists a bidirected path from A to C. Therefore, since the nodes in the
bidirected components are disjoint, the edges added to different components must be disjoint as well.

In conclusion, this implies that it suffices to minimize the sum of the number of edges in each
component. Therefore, our algorithm is able to identify G∗ = Gbase ∪

⋃k
i=1 GCi

as a graph with
minimal edges, and it is added to final_graphs.

A.3 Sub-optimality of greedily reversing edges

As an illustrative example, consider the graph in Figure 3. Reversing R → A would add 6 edges
({D,E, F} to {B,C}), while reversing R→ B would only add 5 edges (G→ C and {G,H, I, J}
to A). If we greedily chose R→ B, we would either add 3 more edges (if we then reversed R→ A)
or 4 more edges (if we then reversed R→ C), for a total of at least 8 edges. On the other hand, if we
reversed R→ A first initially, we would only have to add 1 more edge when reversing R→ B (the
edge G→ C), for a total of 7 edges.

R

A B C

G H I JD E F K L M N

Figure 3: An example of a Bayesian network where greedily choosing to reverse edges when
marginalizing out node R is not optimal.
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