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ABSTRACT

Meta-learning algorithms aim to learn a general prior over a set of related tasks
to facilitate generalization to new, unseen tasks. This is achieved by estimating
the optimal posterior using a finite set of support data. However, this estimation is
subject to high variance due to the limited amount of support data for each task,
which often leads to sub-optimal generalization performance. In this paper, we
address the problem of variance reduction in gradient-based meta-learning and
define a class of problems particularly prone to this. Specifically, we propose a
novel approach that reduces the variance of the gradient estimate by weighing
each support point individually by the variance of its posterior over the parameters.
To estimate the posterior, we utilize the Laplace approximation, which allows
us to express the variance in terms of the curvature of the loss landscape of our
meta-learner. Experimental results demonstrate the effectiveness of the proposed
method and highlights the importance of variance reduction in meta-learning.

1 INTRODUCTION

Meta-learning, also known as learning-to-learn, is a field concerned with the development of in-
telligent agents capable of adapting to changing conditions in the environment. The core idea of
meta-learning is to learn a prior over a distribution of similar tasks, enabling fast adaptation to new
environments given a few characterizing data points. This approach has proven successful in many
domains, such as few-shot learning Snell et al. (2017), image completion Garnelo et al. (2018b), and
imitation learning tasks Finn et al. (2017b).

One instantiation of this is Gradient-Based Meta-Learning (GBML), which was introduced in Finn
et al. (2017a). GBML methods employ a bi-level optimization procedure, where the learner first
adapts to a subset of data known as support data, and is then evaluated on a validation set called
query data. The learned prior is then defined through the parameters of the adaptation procedure.
A common issue for these methods is the uncertainty inherent in the adapted parameters given the
support data, which can arise from measurement error, ambiguity between the tasks or limited support
data. This variance can negatively impact the task-adaptation process, which essentially relies on the
learner’s ability to identify the task from the support data. This phenomena has also been referred to
as meta-overfitting Finn et al. (2018); Yang & Kwok (2022); Wang et al. (2021); Charles & Konečnỳ
(2020).

To mitigate this issue, some methods propose to learn an aggregation procedure that directly models
the distribution of the task-adapted parameters, Gordon et al. (2018); Kim et al. (2019). Using a
learned network, these methods have the potential to be highly expressive, but suffer in the case of
distribution-shift or label noise. In contrast, GBML methods are more robust and generally unbiased
but have limited expressiveness when the support points can belong to different tasks.

In this work, we propose Laplace Approximation for Variance-reduced Adaptation (LAVA), a method
that introduces a novel strategy for aggregating the information of the support data in the adaptation
process. The key idea of our method is to recognize each support point as inducing a unique posterior
distribution over the task parameters. The posterior distribution can then be expressed as the joint
posterior over the samples. Thus, our model is a form of Bayesian model-averaging, where each
model is induced by a single point in the support. We approximate the posterior distribution w.r.t each
support point through the Laplace approximation, which constructs a Gaussian distribution where
the variance of the estimator is given by the Hessian of the negative log-likelihood. In turn, the joint
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posterior is again Gaussian, from which the optimal value can be expressed as its mean. In contrast
to other Bayesian GBML methods, the posterior approximation is not built on the full posterior but
rather on the single posteriors induced by every point in the support data. This allows us to optimally
aggregate the information these points share and reduce the variance of this estimate in the case of
ambiguity.

Our contributions include an insight into the adaptation process of GBML methods by identifying a
class of problems where GBML methods are particularly subject to high variance in their adaptation
procedure. We introduce a method for modeling the variance that each data point carries over the
parameters and optimally aggregate these posterior distributions into the task-adapted parameters.
Finally, we demonstrate the performance of our method on synthetic and real-world experiments and
showcase state-of-the-art performance compared to standard GBML methods.

2 PRELIMINARIES

In the meta-learning setting, we assume that there exists a distribution of tasks p(T ) that share a
common generative process. Each task τ ∈ T defines a space of inputs X ⊂ Rd, a space of outputs
Y ⊂ Rm and an unknown map between the two spaces fτ : X → Y . Moreover, for each task, we are
given a finite dataset sampled i.i.d., i.e. Dτ ⊆ X × Y . These points can be further divided into two
sets, the support set DS

τ and the query set DQ
τ such that Dτ = DS

τ ∪DQ
τ . The goal of meta-learning

is to devise a learning algorithm that facilitates few-shot learning i.e. learning a task given only a
limited amount of support data.

To enable this, we introduce the meta-learner fθ which is trained to fast-adapt to the true function
fτ . Meta-learning fast-adaptation consists of finding a parameterized inference process Aθ0 that
maps support data DS to a set of parameters θτ such that fθτ minimize the empirical negative
log-likelihood on the query dataset for each task:

L =
1

T

T∑
τ=1

− log p(DQ
τ |Aθ0(D

S
τ )). (1)

Here, θ0 denotes the meta-parameters which are shared between all tasks and T denotes the finite
number of tasks used to compute the empirical loss. p(D|θ) denotes the likelihood of the data D
given model fθ.

2.1 GRADIENT-BASED META-LEARNING

In GBML, learning this adaptation process is formulated as a bi-level optimization procedure. Here,
the meta-parameters θ0 are learned such that the inference process Aθ0 corresponds to a single
gradient ascent step on the likelihood computed using the support data and θ0. This leads to an
approximate optimal set of parameters θ̂τ for each task τ :

θ̂τ = θ0 + α∇θ0 log p(D
S
τ |θ0) (2)

where α is a scalar value denoting the learning rate. Gradient-based Meta-Learning does not require
additional parameters for the adaption procedure, as it operates in the same parameter space as the
learner. Moreover, it is proven to be a universal function approximator Finn & Levine (2017), making
it one of the most common models for meta-learning.

GBML can be formulated as a probabilistic inference problem from an empirical Bayes perspective
Grant et al. (2018). The objective of GBML involves inferring a set of meta parameters θ0 that
maximize the likelihood of the data D =

⋃
τ Dτ for all tasks. Keeping the notation above and

marginalizing over the task-adapted parameters, the GBML inference problem can be written as
follows:

θ0 = argmax
θ

p(D|θ) = argmax
θ

∏
τ

∫
p(DQ

τ |θτ )p(θτ |DS
τ , θ)dθτ (3)

where p(DQ
τ |θτ ) corresponds to the likelihood of each task’s data given the adapted parameters and

p(θτ |DS
τ , θ) is the posterior probability of the task-adapted parameters.
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Figure 1: On the left: Three support points of a single task are marked out. These points are shared
between different tasks which are marked out by the opaque curves. On the right: Each support point
induces a distribution in the parameter space. The true function parameters θ∗ lie at the intersection
over the possible function values.

The integral in Equation (3) can be simplified by considering a maximum a posteriori (MAP) estimate
of the posterior:

θ∗τ = argmax
θτ

p(θτ |DS
τ , θ). (4)

This simplifies the intractable integral to the following optimization problem:

θ0 = argmax
θ

∏
τ

p(DQ
τ |θτ = θ∗τ ). (5)

3 POSTERIOR ESTIMATION

The meta-learning objective can be reformulated with Equation 5 using as adapted parameters, θτ ,
the estimate from Equation 4. In GBML, the argmax is approximated through a single gradient step
on the loss function, as in Finn et al. (2017a). If the parameterized function fθ is expressive enough
and the tasks at hand are deterministic, we can make the following assumption:
Assumption 1 (Solvable). For each task τ , there exists an optimal θ∗τ such that

E[θ̂τ ] = θ∗τ . (6)

The assumption above implies that each task has at least one global minimum. The fact that it can
be reached follows from the fact that the gradient is an unbiased estimator (see Appendix A.2) and
that GBML is a universal function approximator Finn & Levine (2017). In practice, the expectation
is approximated through the empirical mean and will be subject to estimation error following the
variance of our estimate. In the following discussion, we fix a task and proceed by removing the
subscript. Given that DS = {xi, yi}Ni=1, we can express the posterior estimate as:

θ̂ =
1

N

N∑
i=1

θ0 + α∇θ log p(yi|θ0, xi) =
1

N

N∑
i=1

θ̂i (7)

where θ̂i denotes the task-adapted parameter for a single point (xi, yi) ∈ DS . Assuming the support
data is i.i.d., the variance of this estimator can be expressed as:

Var[θ̂] =
1

N2

N∑
i=1

Var[θ̂i] (8)

The variance of this estimate is dependent on the variance of the posterior estimate for each data
point. In this paper, we argue that a source of this variance is that a single data point can belong to
multiple tasks, which we denote as task overlap. An example of this can be seen by considering
a sine wave regression problem. Let the distribution of tasks be sinusoidal waves with changing
amplitude and phase, i.e., y = Aτ sin(x+ ϕτ ). In this case, the space of tasks has dimension 2. A
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single (x, y) tuple can identify an infinite number of viable amplitudes and phases for which the sine
would pass through that point, Figure 1 on the left. Thus, there exists a distribution of task-adapted
parameters for which the inner loss function is minimized but only one task-adapted parameter when
considering the intersection of solutions given by three points; see Figure 1 on the right. When using
a single-point estimate, the information about this distribution of possible optimal task parameters is
lost.

We can summarize the above in the following assumption. For ease of notation, let fτ (x) = f(τ, x)
denote the true data-generating process.
Assumption 2 (Task Overlap). We can define task overlap as the condition that ∀x ∈ X the map
f(·, x) : T → Y is non-injective.

An alternative formulation is that the conditional task-distribution p(τ |x, y) will have a non-zero
covariance for all (x, y) ∈ X × Y .

4 METHOD

In this section, we give an account of the source of the variance of the task-adapted parameters and
propose a method to model the posterior more accurately. Given a finite set of support points DS ,
we want to approximate the optimal posterior p(θ|DS). Let p(θ|xi, yi) denote the posterior w.r.t to
one data point. Given the assumption of task overlap (Assumption 2), this induces a distribution in
parameter space. Another way of interpreting this posterior is that each data point provides evidence
over what the possible true function could be. The true p(θ|DS) will thus lie at the intersection over
all marginal posteriors. Given the i.i.d. assumption, this implies that:

p
(
θ|DS

)
∝

N∏
i=1

p(θ|xi, yi). (9)

Since we seek the MAP estimate of this distribution, we can disregard all terms not involving θ, and
assume a uniform prior on p(θ). Let us assume that p(θ|xi, yi) is normally distributed around its
MAP estimate with a variance of Σi, i.e. p(θ|xi, yi) = N (θ; θ̂i,Σi) with θ̂i = argmaxθ p(θ|xi, yi).
From the product of Gaussian densities, the posterior is again proportional to a Gaussian N (µ,Σ)
with

µ =

(
N∑
i=1

Σ−1
i

)−1 N∑
i=1

Σ−1
i θ̂i Σ =

(
N∑
i=1

Σ−1
i

)−1

. (10)

Since the MAP estimate of a normal distribution corresponds to its mean, we find that θ̂ = µ. If we
assume that each marginal posterior p(θ|xi, yi) carries the same covariance matrix Σ, then the MAP
estimate reduces to the empirical mean. By letting θ̂i = θ0 + α∇θ log p(yi|xi, θ0), we recover the
standard GBML update. Thus, one interpretation of GBML methods such as MAML Finn & Levine
(2017) is that the posterior estimation assumes an equal covariance across all marginal posteriors,
which in turn implies that the MAP estimate equals the average of the parameters. This follows from
the fact that we perform a single gradient step to approximate argmaxθ p(θ|DS). Due to linearity of
the gradient operator, argmaxθ p(θ|DS) corresponds to the average of {argmaxθ p(θ|xi, yi)}Ni=1.
However, with the assumption of the joint posterior in Equation (9), this is not the correct estimate
when the posterior is proportional to a product of distinct Gaussians.

4.1 LAPLACE APPROXIMATION

By Assumption 2, each p(θ|xi, yi) has a covariance structure that is dependent on the point (xi, yi).
In other words, each xi, yi implies a different subspace over possible functions. To estimate this
covariance, we appeal to the Laplace Approximation. To this end, we approximate each p(θ|xi, yi) as
a normal distribution centered at θ̂i = argmaxθ p(θ|xi, yi) with covariance Σi = H−1

i where Hi

denotes the Hessian of the negative log-likelihood evaluated at θ̂i. Inserting this in the estimate of µ
in Equation (10), we find our new MAP estimate as:

θ̂ =

(
N∑
i=1

Hi

)−1 N∑
i=1

Hiθ̂i. (11)
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We thus reach a MAP estimate that is weighted by the variance of each individual support point.

It is important to note that referring to it as an "approximation" may not be entirely accurate, as the
flexible nature of parametric neural network models, such as our model fθ, allows for the precise
shaping of probability distributions to meet specific requirements. Consequently, it is possible to
shape the posterior distribution p(θ|x, y) to be normal, in which case the Laplace approximation
would become exact. A parallel approach could involve estimating covariance of posterior p(θ|x, y)
through a learned network hψ : X ×Y → Rd×d. This approach is more akin to model-based methods
of meta-learning, while our approach, through the Laplace approximation, remains model-agnostic.

4.2 VARIANCE REDUCTION

Our estimate in Equation (11) is in fact the variance-reduced distribution of a weighted sum of Gaus-
sians. Consider N random variables Z1, . . . , ZN distributed according to our posterior distributions
p(θ̂i, H

−1
i )Ni=1. Let Z =

∑N
i=1 WiZi. We can define the variance reduction problem as:

min
W

Var

(
N∑
i=1

WiZi

)
subject to

N∑
i=1

Wi = I. (12)

Proposition 1. The solution to Equation (12) equals the variance of our estimate defined in Equation
(11). Consequently, the variance reduced distribution of Z equals the joint posterior defined in
Equation (9).

A proof is given in the Appendix (Section A.3). Consequently, compared to parameter averaging
defined in Equation (7), we achieve a lower variance for any support set DS ∼ p(τ). Thus, on
expectation over all tasks, we achieve a variance-reduced estimate.

4.3 COMPUTING THE HESSIAN

Computing the Hessian amounts to evaluating the second-order derivatives of the negative log-
likelihood loss. This is exceptionally costly for over-parameterized neural networks. To minimize
the computational burden, we consider performing adaptation in a subspace of the parameter space.
We opt for the implementation of CAVIA Zintgraf et al. (2019), which performs adaptation over a
low-dimensional latent space Z . This effectively allows us to compute the Hessian while keeping the
computational cost reasonable and independent of the dimensionality of the input space.

Computing second-order derivatives, however, is known to be numerically unstable for neural
networks, Martens (2016). We found that a simple regularization considerably stabilizes the training.
In fact, following Warton (2008), we take a weighted average between the computed Hessian and
an identity matrix before aggregating the posteriors. For all of our experiments, we substitute each
Hessian Hi in Equation (11) with the following:

H̃i =
1

1 + ϵ
(Hi + ϵI) (13)

where ϵ is a scalar value and I is the identity matrix of the same dimensionality of Hi.

5 RELATED WORK

Gradient-Based Meta-Learning methods were first introduced with MAML Finn et al. (2017a) and
then expanded into many variants. Among these, Meta-SGD Li et al. (2017) includes the learning
rate as a meta parameter to modulate the adaptation process, Reptile Nichol & Schulman (2018) gets
rid of the inner gradient and approximates the gradient descent step to the first-order. In CAVIA
Zintgraf et al. (2019), the adaptation is performed over a set of conditioning parameters of the base
learner rather than on the entire parameter space of the network. Other works instead make use
of a meta-learned preconditioning matrix in various forms to improve the expressivity of the inner
optimization step Lee & Choi (2018); Park & Oliva (2019); Flennerhag et al. (2019).

Bayesian Meta-Learning formulates meta-learning as learning a prior over model parameters. Most
of the work in this direction is concerned with the approximation of the intractable integral resulting
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from the marginalization of the task parameters (Equation 3). This has been attempted using a second-
order Laplace approximation of the distribution Grant et al. (2018), variational methods Nguyen
et al. (2020), and MCMC methods Yoon et al. (2018). While these Bayesian models can provide a
better trade-off between the posterior distribution of the task-adapted parameters and the likelihood
of the data Chen & Chen (2022), they require approximating the full posterior and marginalizing
over it. LLAMA Grant et al. (2018) proposes to approximate the integral around the MAP estimate
through the Laplace Approximation on integrals. Given one gradient step, the posterior estimate
is still performed by averaging (Equation 7). As we have shown, the averaging fails to account for
inter-dependencies between the support points arising from task overlap.

Model-based Meta-Learning relies on using another model for learning the adaptation. One such
approach is HyperNetwork Ha et al. (2016), which learns a separate model to directly map the
entire support data to the task-adapted parameters of the base learner. In Gordon et al. (2018),
this is implemented using amortized inference, while in Kirchmeyer et al. (2022), the task-adapted
parameters are context to the base learner. Alternatively, the HyperNetwork can be used to define a
distribution of candidate functions using the few-shot adaptation data Garnelo et al. (2018b;a) and
additionally extend it using an attention module Kim et al. (2019). Lastly, memory modules can be
iteratively used to store information about similar seen tasks Santoro et al. (2016) or to define a new
optimization process for task-adapted parameters Ravi & Larochelle (2017). All of these methods can
potentially solve the aggregation of information problem implicitly as the support data are processed
concurrently. However, the learned model is not model-agnostic and introduces additional parameters.

6 EXPERIMENTS

To begin with, we test the validity of using the Laplace approximation to compute the task-adapted
parameters for a simple sine regression problem. Additionally, we show how LAVA exhibits a much
lower variance in the posterior estimation with respect to standard GBML. In the Appendix A.2, we
demonstrate the unbiasedness of GBML and test the noise robustness of GBML and LAVA against a
model-based approach.

We evaluate our proposed model on polynomial regression and dynamical systems tasks of varying
complexity in regard to the family of functions and dimensionality of the task space. We compare
the results of our model against other GBML models. In particular, our baselines include Model-
Agnostic Meta-Learning (MAML) Finn & Levine (2017), Meta-SGD Li et al. (2017), ANIL Raghu
et al. (2019), CAVIA, Zintgraf et al. (2019) as a context-based GBML method, PLATIPUS Finn et al.
(2018), LLAMA Grant et al. (2018), BMAML Yoon et al. (2018) as Bayesian versions of GBML,
VFML Wang et al. (2021) as a variance-reduced meta-learning method, and MetaMix Chen et al.
(2021) as a meta-data augmented method. Experimental details are given in the Appendix A.1.

6.1 SINE REGRESSION

For the first experiment, we consider a typical sine wave regression problem to test the validity of the
proposed assumptions and claims. Here, tasks are defined to be sine functions with varying amplitude
and phase, i.e. y = Aτ sin(x + ϕτ ). In particular, the task’s parameters Aτ , ϕτ are sampled from
a uniform distribution between [0, 5] and [0, 2π] respectively, while x is defined to be [−5, 5]. We
sample a number of task parameters and generate the corresponding data points for the training and
testing data. We consider 10 support data points for the inner step and 1000 for the query to test the
quality of the adaptation. We use 10000 pre-sampled tasks for both the training and test dataset.

Given a single (x, y) tuple, there exists a 1-dimensional space of sine-waves that pass through that
point. This makes the aggregation challenging and thus allows us to test the benefits of approximating
this subspace with the Laplace Approximation.

Laplace Approximation Assumption The first ablation aims at testing the quality of a Laplace
approximation in modeling the distribution of the task parameters given each single data point. In
the sine experiment, the dimensionality of the true task parameters is 2, allowing us to visualize the
learned parameter space. To this end, we train both LAVA and CAVIA on the sine-wave regression
problem with a context vector of dimensions 2.
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Figure 2: Sum of the logarithm of the loss for 3 support points over different parameters for the sine
experiment. Values increase from white to dark blue. The red cross and the red diamond indicate the
prior and the posterior, orange points are the single task-adapted parameters. Top row: Results for
CAVIA. Bottom row: Results for LAVA, included is also the covariance for each support point.

Figure 3: Variance of the task-adapted parameters given the same task but different support data
points. Left: For CAVIA. Center: For LAVA. Right: Log variance of the distribution of the adapted
parameters during training.

After the models have converged, we visualize the loss landscape induced by different support data
points when using different task-adapted parameters. In particular, we sample a support dataset of 3
(x, y) tuples and compute the logarithm of the mean squared error (MSE) between the prediction of
both models and the true y sampled from a grid of tasks. The idea is that each data point‘s loss is
minimized by a continuous number of parameters. When summing up the losses of these support
points, in fact, very well-defined valleys can be noticed in the loss landscape. Figure 2 shows the
distribution of this sum of losses for a grid of task-adapted parameters as a heat map for CAVIA (top
row) and LAVA (bottom row). Additionally, the prior context (red cross), the single task adapted
parameters (orange dots) and the aggregated final posterior (red diamond) are also shown. For our
method, we provide a visualization of the Hessian matrix for each single task-adapted parameter.

Variance Estimation For the second ablation, we evaluate the variance of the posterior estimate
for both CAVIA and LAVA using the sine regression framework. The variance of the estimator
describes the difference between the task-adapted parameters from the sampling of different support
sets from the same task. For this experiment, we fix the sine task and sample 100 different support
datasets of 10 (x, y) tuples. For each of these support points, we compute the resulting task-adapted
parameters. Figures 3 left and center show the spread of these distributions for CAVIA and our
method, respectively. Note that the scale of the parameter space as well as the inner learning rate
is the same for the two methods. Figure 3 on the right shows the log variance of the task-adapted
parameters during training. This is computed by evaluating the variance of the estimated posterior
from 100 different support datasets of the same task. As can be seen, at the beginning of training, the
variance increases suddenly as the models learn to use these parameters to solve the meta-learning
problem. However, while CAVIA’s context parameters variance remains high during the rest of the
training, our method learns to reduce it consistently.
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Models n = 2 n = 4 n = 6 n = 8

MAML 0.85± 0.15 1.77± 0.22 2.53± 0.30 3.23± 0.45
Meta-SGD 1.35± 0.21 2.22± 0.28 2.82± 0.42 3.44± 0.42
ANIL 1.84± 0.25 2.86± 0.33 3.69± 0.48 4.44± 0.49
PLATIPUS 0.46± 0.12 1.66± 0.35 2.53± 0.44 3.25± 0.67
CAVIA 0.87± 0.14 1.79± 0.23 2.55± 0.26 3.16± 0.41
LLAMA 0.86± 0.14 1.79± 0.24 2.57± 0.29 3.56± 0.43
BMAML 0.58± 0.21 1.14± 0.17 1.57± 0.21 2.07± 0.34
VFML 1.38± 0.22 2.26± 0.25 2.93± 0.39 3.54± 0.41
MetaMix 0.86± 0.09 1.41± 0.15 1.74± 0.19 2.10± 0.26

LAVA 0.08± 0.05 0.38± 0.12 0.72± 0.18 1.06± 0.32

Table 1: MSE on Polynomial Regression with different degrees. Best results marked in bold, second
underlined.

6.2 POLYNOMIAL REGRESSION

As a second set of experiments, we test if scaling the number of dimensions of the task distribution
affects the relative performances of our method against a number of baselines. Here, the task
distribution is represented by points sampled from polynomials of varying degrees with different
parameters, i.e., y =

∑n
i=0 aix

n
i . By changing the degree of the polynomials, we can efficiently

control the dimensionality of the task distribution and, thus, the complexity of the meta-problem. In
particular, for this experiment, we use n = {2, 4, 6, 8}. Moreover, x ∈ [−5, 5] and every ai ∈ [−1, 1].
We use 10 support points for the inner adaptation step and 1000 query points for the outer loss and
use a total of 1000 pre-sampled training tasks. Regarding the dimensionality of the context, we use a
vector of the same dimensions of the task distributions, i.e., dim(θ) = n+ 1. The loss function used
is the MSE between the predicted y and the true one for each task. Table 1 shows the final MSE mean
and standard deviation for five different seeds. Our model clearly outperforms every other method
independently on the dimensionality of the task distribution.

6.3 DIFFERENTIAL EQUATIONS

To further test more complex regression problems, we experiment with three different types of
systems of ordinary differential equations and measure our performance on a held-out test dataset.
We consider a mass-spring system from which we vary the mass m, a double pendulum where we
vary the mass for each pendulum respectively and finally a multi mass-spring models in which we
vary the spring constants between n particles. Further details are given in the Appendix.

Each differential equation gives a different account of dimensionality and complexity. For the mass-
spring, we predict the 1D position of the object. For the double pendulum, we predict the 2D position
of the tip of the outer pendulum. This system also exhibits chaotic behavior and thus presents a more
complex dynamics prediction problem. For the multi-mass spring, we predict the position of one
particle. For each ODE, we fix the same initial conditions and vary only its parameters. The tasks are
then defined by taking as input time t and predicting the corresponding state at that time. We present
our results in Table 2. For each ODE, we showcase superior performance compared to the baselines.

6.4 OMNIPUSH

In our final experiment, we showcase the performance of our model on a real-world dynamic
prediction task. To this end, we utilize the Omnipush dataset Bauza et al. (2019) which consists
of noisy, real-world data of different object dynamics when pushed by a robotic arm. The dataset
consists of 250 different objects with 250 pushes per object. Each example consists of the pusher’s
relative position to the object and an angle denoting the direction of the push. The target is the change
of the global pose of the object, (∆x,∆y,∆θ). The objects vary in shape and weight, which defines
the task distribution. We report the mean squared error and standard deviation on forward dynamics
prediction for support sizes [10, 20] in Table 2. We use the same architecture as the other experiments.
In this challenging dataset, a greater number of support points is required to accurately learn the task.
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Models Mass-Spring Pendulum Multi Mass-Spring Omnipush
|DS | = 10 |DS | = 20

MAML 1.53± 0.12 0.57± 0.04 3.87± 0.23 10.62± 0.22 9.59± 0.22
Meta-SGD 1.20± 0.08 0.33± 0.05 6.66± 0.34 9.03± 0.32 7.80± 0.24
ANIL 2.35± 0.09 0.84± 0.05 8.53± 0.48 10.36± 0.28 9.54± 0.20
PLATIPUS 10.3± 38.0 0.89± 0.20 4.17± 0.47 11.78± 0.66 9.77± 0.56
CAVIA 1.54± 0.24 0.46± 0.03 3.93± 0.24 9.59± 0.30 8.60± 0.25
LLAMA 2.01± 0.15 0.48± 0.03 4.20± 0.18 9.56± 0.35 8.40± 0.35
BMAML 0.73± 0.09 0.29± 0.04 4.71± 0.33 9.92± 0.35 9.02± 0.25
VFML 1.66± 0.28 0.49± 0.04 7.44± 0.45 9.53± 0.35 8.43± 0.31
MetaMix 1.26± 0.05 3.75± 0.38 7.05± 0.50 12.25± 1.60 12.09± 1.31

LAVA 0.55± 0.10 0.18± 0.01 2.74± 0.19 9.19± 0.31 7.87± 0.31

Table 2: MSE ×10−2 on differential equations of varying complexity and Omnipush with different
support sizes. Best results marked in bold, second underlined.

We achieve competitive performances compared to Meta-SGD, which learns a common update step
across all tasks. In noisy settings with limited data, Meta-SGD could provide a more regularized
model but also less expressive, as seen in the other experiments.

7 DISCUSSION AND CONCLUSION

In this paper, we characterized the problem of task overlap for under-determined inference frame-
works. We have shown how this is a cause of high variance in the posterior parameters estimate for
GBML models. In this regard, we have proposed LAVA, a novel method to address this issue that
generalizes the original formulation of the adaptation step in GBML. In particular, the task-adapted
parameters are reformulated as the average of the gradient step of each single support point weighted
by the inverse of the Hessian of the negative log-likelihood. This formulation follows from the
Laplace approximation of every single posterior given by each support data point, resulting in the
posterior being the mean of a product of Gaussian distributions. Empirically we have shown how our
proposed adaptation process suffers from a much lower variance and overall increased performance
for a number of experiments.

The assumption of task overlap is sensible in the regression setting we have presented. We further
consider a few-shot classification experiment on mini-Imagenet (see Appendix B.3) but achieve only
comparable results to the baselines. Standard classification benchmarks represent adaptation problems
that are inherently discrete and do not suffer from the problem of task overlap to the same extent as
regression-like problems. Nevertheless, the discrete nature of classification problems presents an
avenue for future work in the possibility of incorporating adaptation over a categorical distribution of
parameters. A second limitation of our model is the computational burden of computing the Hessian.
This may constrain the size of the context used, and consequently hinder the performance over more
complex task distributions, in contrast to methods such as MAML or Meta-SGD where adaptation
is done over the complete set of parameters. We compare our method to taking multiple steps in
the inner loop and give an overview of the tradeoff between performance and compute in Appendix
B.4. We show that the time complexity of our model is comparable to 5 inner steps of CAVIA, while
showcasing superior performance.

An interesting extension to the proposed method would be to explore techniques to approximate
the Hessian to speed up the computational time. This could be the Fisher information matrix or the
Kronecker-factored approximate curvature Martens & Grosse (2015) to estimate the covariance of
the Laplace approximation. Alternatively, it might be interesting to explore the direction of fully
learning this covariance by following an approach similar to model-based methods.
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A APPENDIX

A.1 EXPERIMENTAL DETAILS

For all of the experiments and all the baselines, we fix the architecture of the meta-learner fθ to be a
multi-layer perceptron with 3 hidden layers of 64 hidden units together with ReLU activations. We
use a meta batch size of 10 tasks and train all the models with Adam Kingma & Ba (2014) optimizer
with a learning rate of 10−3. We use the inner learning rate α = 0.1 for the adaptation step and
MSE as the adaptation loss. All experiments were run for 5 different seeds to compute mean and
standard deviations. For LLAMA we use η = 10−6, for PLATIPUS we scale the KL loss by 0.1, for
BMAML we use 10 particles and use MSE rather than the chaser loss for a fair comparison. Other
experiment-specific details include:

• Sine and Polynomial regression: models are trained for 105 outer loss steps, and the
dimension of the context used is equal to the task’s dimensionality.

• Mass-Spring: models are trained for 106 outer loss steps, the dimension of the context used
is 6, the ODE dynamics are defined as:

m
d2y

dt2
+ b

dy

dt
+ ky = 1 (14)

where k,m, b are sampled uniformly in [0.5, 2.0].
• Double Pendulum: models are trained for 106 outer loss steps, the dimension of the context

used is 4. The dynamics are described through the canonical Hamiltonian equations as:

α̇1 =
p1l2 − p2l1 cos(α1 − α2)

l21l2[m1 +m2 sin
2(α1 − α2)]

(15)

α̇2 =
p2(m1 +m2)l1 − p1m2l2 cos(α1 − α2)

m2l1l22[m1 +m2 sin
2(α1 − α2)]

(16)

ṗ1 = −(m1 +m2)gl1 sinα1 −A1 +A2 (17)
ṗ2 = −m2gl2 sinα2 +A1 −A2 (18)

with

A1 =
p1p2 sin(α1 − α2)

l1l2[m1 +m2 sin
2(α1 − α2)]

(19)

A2 =
p21m2l

2
2 − 2p1p2m2l1l2 cos(α1 − α2) + p22(m1 +m2)l

2
1

2l21l
2
2[m1 +m2 sin

2(α1 − α2)]2
(20)

for angles α1, α2 between the pendulums and generalized momenta p1, p2. From this, we
find the coordinate (x2, y2) of tip of the pendulum as

x2 = l1 sin(α1) + l2 sin(α2) (21)
y2 = −l1 cos(α1)− l2 cos(α2). (22)

We sample parameters as m1,m2 ∼ U [0.5, 1.5]2 and g ∼ U [5, 15]. The pendulum lengths
l1, l2 are both constants with a value of 2.0.

• Multi Mass-Spring: models are trained for 106 outer loss steps, the dimension of the
context used equals 8. The dynamics can be simulated by iterating through each of the
particles and summing the forces applied by the other particles:

vi = vi +∆t
Fi
m

(23)

xi = xi +∆tvi (24)
where vi, xi denotes the velocity and position of particle i respectively and m denotes the
mass. Fi denotes the total spring force acted upon particle i:

Fi =

n∑
j=1

Fij (25)

Fij = Kij(1− ∥xi − xj∥)
xi − xj

∥xi − xj∥
. (26)
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Algorithm 1 LAVA Pseudo-Code

Require: p(T ) distribution of tasks
Require: α, η, ϵ hyperparameters.
Ensure: Output results

1: Randomly initialize θ0
2: while not done do
3: Sample batch of tasks T ∼ p(T )
4: for all τ ∈ T do
5: Sample DS

τ , D
Q
τ ∼ τ

6: for all (xi, yi) ∈ DS
τ do

7: Evaluate θ̂i = θ0 − α∇θL(θ0, xi, yi)
8: Evaluate Hi =

d2

dθ2L(θ̂i, xi, yi)
9: Evaluate H̃i =

1
1+ϵ (Hi + ϵI)

10: end for
11: Evaluate H̃ =

∑
i H̃i

12: Evaluate θ̂τ = H̃−1
∑
i H̃iθ̂i

13: end for
14: Update θ0 = θ0 − η∇θ0

∑
τ∈T L(θ̂τ , DQ

τ ) using each DQ
τ

15: end while

where Fij denotes the force acted upoin particle i by particle j. We sample spring constant
Kij = Kji between particle i, j uniformly in [0.5, 2.0]. We let mass m = 1 and use a total
of 4 particles.

• Omnipush: models are trained for 2×105 outer loss steps, and the dimension of the context
used is 8.

A.2 GRADIENT-BASED META-LEARNING IS AN UNBIASED ESTIMATOR

Here, we show that GBML is an unbiased estimator. Define the loss for one task as:

L(θ, τ) = E
x∼p(x|τ)

[L(θ, x)] (27)

Then the gradient w.r.t θ is an unbiased estimator:

E
x∼p(x|τ)

[∇θL(θ, x)] = ∇θ E
x∼p(x|τ)

[L(θ, x)] = ∇θL(θ, τ) (28)

Moreover, we measure empirically the bias of GBML and LAVA estimators. As a comparison, we
include a fully learned network implemented as a HyperNetwork Ha et al. (2016) that takes as input
the entire support dataset and outputs the adapted parameters directly. Both the adaptation and the
aggregation are learned end-to-end together with the downstream task.

We train these three models until convergence on the sine regression dataset. Then, we measure their
performance on each task corrupted by Gaussian noise with a standard deviation of 3 on the support
labels. The experiment is designed to test how the performance changes when increasing the support
size. Figure 4 shows the difference in the loss between adaptation with and without noise for the three
models and for different support sizes. Thus, we are effectively testing the ability of these estimators
to recover the performances of the noiseless adaptation. Ideally, an unbiased estimator converges to
the correct posterior with enough samples as long as the noise has zero mean. As can be seen in the
figure, GBML methods are much more robust to these kinds of perturbations, while learned networks
are not unbiased.
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Figure 4: Scaled MSE when adding noise to the support labels for the sine experiment with increasing
support size.

A.3 VARIANCE REDUCTION

Below we give an account of the proof of Proposition 1. Consider the variance reduction problem
defined in Equation 12

min
W

Var

(
n∑
i=1

WiZi

)
subject to

n∑
i=1

Wi = I (29)

We have that

Var

(
n∑
i=1

WiZi

)
=

n∑
i=1

WiΣiW
T
i (30)

By introducing a Lagrange multiplier λ, we reach the following optimization problem:

min
W

F (Z,W ) (31)

F (Z,W ) =

n∑
i=1

WiΣiW
T
i + λ

(
n∑
i=1

Wi − I

)
(32)

By taking the derivative w.r.t Wi and using the fact that Σi is symmetric we find that

dF

dWi
= 2WiΣi − λ (33)

Setting this equal to 0, we get

Wi =
λ

2
Σ−1
i (34)

From the condition defined in 29, we have

λ

2

n∑
i=1

Σ−1
i = I (35)

λ = 2

(
n∑
i=1

Σ−1
i

)−1

(36)

(37)

Plugging this into Equation 34, it follows that

Wi =

(
n∑
i=1

Σ−1
i

)−1

Σ−1
i (38)

Given these weights, Wi, the distribution of
∑n
i=1 WiZi follows a normal distribution which is

equivalent to Equation 10.
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Models |DS | = 5 |DS | = 10 |DS | = 20

MAML 0.834± 0.129 0.518± 0.071 0.316± 0.042
meta-SGD 0.63± 0.08 0.35± 0.05 0.20± 0.02
ANIL 0.72± 0.09 0.41± 0.05 0.23± 0.03
PLATIPUS 0.921± 0.165 0.386± 0.064 0.134± 0.024
CAVIA 0.651± 0.105 0.372± 0.059 0.199± 0.029
LLAMA 0.647± 0.112 0.371± 0.058 0.199± 0.028
BMAML 0.599± 0.120 0.349± 0.075 0.190± 0.035
VFML 0.64± 0.08 0.38± 0.05 0.21± 0.02
MetaMix 0.76± 0.10 0.67± 0.09 0.58± 0.09

LAVA 0.047± 0.020 0.016± 0.003 0.010± 0.002

Table 3: Test MSE on sine regression with different support sizes.

B ADDITIONAL EXPERIMENTS

B.1 ADDITIONAL SINE RESULTS

Here we provide additional results for the sine regression experiment. Using the same experimental
settings described in Section 6.1 and Appendix A.1, we present MSE and standard deviations for 5
seeds for LAVA and baselines in Table 3. Additional qualitative results are shown in Figure 5

B.2 ADDITIONAL COMPUTATIONAL TIME EXPERIMENTS

We present additional results on computational times for the polynomial experiment in Figure 6 for
different number of degrees and size of support.

B.3 MINI-IMAGENET

We further experiment with classification on the Mini-Imagenet dataset Vinyals et al. (2016). We use
the training-set split as used in Ravi & Larochelle (2017) which leaves 64 classes for training, 16
for validation and 20 for test. We experiment with 5-way classification in either a 1-shot or 5-shot
setting. We train the models for 1000 epochs and perform model selection by choosing the one with
the best performance on the validation set. We present results on the test set in Table 4. In the 1-shot
setting, we achieve results comparable to Meta-SGD and ANIL, outperforming Bayesian alternatives
such as BMAML. In the 5-shot classification, we find that our model outperforms BMAML while
being within the error bars of standard GBML methods such as CAVIA, MAML and Meta-SGD.

Standard classification benchmarks such as Mini-Imagenet test the capability of the model to incorpo-
rate high-dimensional data in the form of images. Some of the methods, such as the best-performing
method BOIL, are optimized towards image data and attempt to efficiently learn a well-structured
representation space of images, such that the adaptation reduces to modifying decision boundaries.
In particular, few-shot image classification problems in this form are inherently discrete problems
that do not suffer as extensively from the task overlap assumption as outlined in 2.

B.4 A NOTE ON COMPUTATIONAL COMPLEXITY

A limitation of the described method lies in an increased time complexity. Computing the Hessian
on each single support point can, in fact, severely affect the training time of methods that already
require complex second-order calculations like in GBML. As a first consideration, we point out that
the Hessian is computed on the contextual parameters only, leading to a more efficient computation
rather than the full model parameters. When the network is expressive enough, this should lead to no
difference in performance over the full adaptation framework.

Nevertheless, the Hessian computation can result in a sensible increase in computational time and
LAVA is, in fact, more expensive than the standard GBML model. However, this computational
complexity increase is paired with stronger performances. LAVA provides a more effective adaptation
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Figure 5: Qualitative results for the sine experiment for CAVIA and LAVA with 5 and 10 support size

Model 5-ways 1-shot 5-ways 5-shot

ANIL 45.94± 0.94 62.86± 0.26
BMAML 42.43± 7.44 59.76± 0.43
BOIL 50.12± 0.33 64.72± 0.40
CAVIA 47.84± 0.41 63.09± 0.51
LLAMA 40.19± 0.85 56.50± 0.15
MAML 48.60± 0.80 63.19± 1.57
Meta-SGD 46.18± 0.45 62.82± 0.36
PLATIPUS 34.71± 0.68 42.84± 0.99

LAVA 46.69± 1.45 61.51± 0.97

Table 4: Results Mini-Imagenet with support sizes 1 and 5

technique as one of its main features is the efficient use of the limited information given by the
support. In this regard, LAVA provides a better trade-off between performances and computational
complexity. To better analyze this trade-off we compared LAVA’s performances against CAVIA in
the Polynomial regression experiment by varying the number of inner loop adaptation steps. Figure 7
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Figure 6: Computational times for the polynomial experiment of various degrees.
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Figure 7: Computational times for third-degree polynomials with different sizes of support. The blue
line represents results for CAVIA over a different number of adaptation steps. In comparison, LAVA
achieves a computational time comparable to 6 inner-steps of CAVIA, while showcasing superior
performance.

shows how LAVA has a computation complexity comparable to CAVIA with between 5 and 6 inner
loop gradient steps. However, the performances of LAVA are consistently lower. A more extensive
analysis is given in the Appendix in Figure 6.

There exists an inherent trade-off between computational complexity and model performance. Recent
work exemplifies how deep learning modules benefit from more computational complexity, an
example being the shift to Transformers from CNNs in computer vision tasks. LAVA represents
another step in this direction as one of its main features is the efficient use of the limited information
given by the support size at the expense of complex computations.
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