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Abstract

In many real-world applications, test data may
commonly exhibit categorical shifts, character-
ized by the emergence of novel classes, as well
as distribution shifts arising from feature distri-
butions different from the ones the model was
trained on. However, existing methods either dis-
cover novel classes in the open-world setting or as-
sume domain shifts without the ability to discover
novel classes. In this work, we consider a cross-
domain open-world discovery setting, where the
goal is to assign samples to seen classes and dis-
cover unseen classes under a domain shift. To
address this challenging problem, we present
CROW, a prototype-based approach that intro-
duces a cluster-then-match strategy enabled by
a well-structured representation space of founda-
tion models. In this way, CROW discovers novel
classes by robustly matching clusters with previ-
ously seen classes, followed by fine-tuning the
representation space using an objective designed
for cross-domain open-world discovery. Exten-
sive experimental results on image classification
benchmark datasets demonstrate that CROW out-
performs alternative baselines, achieving an 8%
average performance improvement across 75 ex-
perimental settings.

1. Introduction
The rise of deep learning has brought significant advance-
ments, empowering machine learning systems with excep-
tional performance in tasks requiring extensive labeled
data (LeCun et al., 2015; Schmidhuber, 2015; Silver et al.,
2016). However, many models are developed within a
closed-world paradigm, assuming that training and test data
originate from a predetermined set of classes within the
same domain. This assumption is overly restrictive in many
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Figure 1. Illustration of the cross-domain open-world discovery
setting. In the cross-domain open-world discovery setting, the
goal is to assign samples to previously seen classes and discover
new classes under a domain shift. In the example, novel classes
like ‘fish’ and ‘turtle’, exist in unlabeled data. Additionally, the la-
beled samples are from the real-world domain, while the unlabeled
samples are sketches. In this setting, the goal is to assign each
unlabeled sample to either a seen category (‘dog’, ‘cat’, ‘bird’) or
to a novel category that is discovered (‘novel 1’, ‘novel 2’).

real-world scenarios. For example, a model trained to cat-
egorize diseases in medical images from one hospital may
experience domain shifts when applied to images from dif-
ferent hospitals. Moreover, during model deployment, novel
and rare diseases may emerge that the model has never
seen during training. In the open-world scenario, the model
should have the capability to generalize beyond predefined
classes and domains, a departure from the closed-world
scenario often presumed in traditional approaches.

Open-world learning (Bendale & Boult, 2015) extends be-
yond closed-world paradigms by enabling models to recog-
nize unseen classes and scenarios, addressing the dynamic
challenges of real-world environments. In this context, open-
world semi-supervised learning (OW-SSL) (Cao et al., 2022)
defines a setting in which the objective is to annotate seen
classes and discover unseen classes. However, OW-SSL
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assumes that the labeled and unlabeled data belong to the
same domain, which is often not the case. On the other
hand, Universal Domain Adaptation (UniDA) (You et al.,
2019) tackles the problem of domain and categorical shifts
between labeled and unlabeled data. However, the primary
objective of UniDA is to assign samples to seen classes and
reject unseen samples as outliers, rather than discover novel
unseen classes.

In this work, we address this gap by considering a Cross-
Domain Open-World Discovery (CD-OWD) setting. In this
setting, the objective is to assign samples to pre-existing
(seen) classes while simultaneously being able to discover
new (unseen) classes under a domain shift (Figure 1). This
setting operates within a transductive learning framework,
where we have access to both a labeled dataset (source set)
and an unlabeled dataset (target set) during training. In con-
trast to OW-SSL, this setting considers not only categorical
shifts but also domain shifts. In contrast to UniDA, the goal
here is to discover novel classes instead of rejecting all of
them as unknowns. Thus, CD-OWD needs to overcome
the challenges of both open-world semi-supervised learn-
ing and universal domain adaptation. This setting has been
previously considered in (Yu et al., 2022). However, their
evaluation approach is not suitable for the proposed setting
hindering the ability to effectively solve the proposed task.

A straightforward approach to tackle this challenge is to first
apply one of the UniDA methods (Saito et al., 2020; Saito
& Saenko, 2021; Chang et al., 2022; Qu et al., 2023) to
annotate the seen samples and identify the unseen samples.
After that, the detected unseen samples can be clustered to
discover novel classes. We call this approach match-then-
cluster. In practice, this approach encounters two problems.
First, UniDA methods rely on a sensitive threshold to sepa-
rate seen and unseen samples. Finding the optimal threshold
using validation sets is not feasible because the domain
gap between labeled and unlabeled samples prevents the
creation of validation sets that accurately reflect the target
domain. Second, when UniDA methods fail to perfectly
separate seen and unseen samples, the seen samples mis-
classified as unseen introduce noise to the unseen samples,
thereby reducing the quality of the clustering process.

To overcome these challenges, we propose CROW (Cross-
domain Robust Open-World-discovery), a method that em-
ploys a cluster-then-match approach, leveraging the capa-
bilities of foundation models. The key idea in CROW is to
utilize the well-structured latent space of foundation models
(Radford et al., 2021; Oquab et al., 2023; Singh et al., 2022)
to first cluster the data and then use a robust prototype-based
matching strategy. This matching strategy enables CROW
to associate multiple target prototypes with seen classes,
thereby alleviating the issues of over-clustering and under-
clustering. After matching prototypes, CROW combines

cross-entropy loss applied to source samples with entropy
maximization loss applied to target samples to further im-
prove the representation space.

We evaluate CROW across 75 different categorical-shift
and domain-shift scenarios created from four benchmark
domain adaptation datasets for image classification. The re-
sults demonstrate that our approach outperforms open-world
semi-supervised learning and universal domain adaptation
baselines by a large margin. Specifically, CROW outper-
forms the strongest baseline GLC by an average of 8% on
the H-score. Moreover, CROW is robust to different hy-
perparameters, an unknown number of target classes, and
different seen/unseen splits.

2. Related work
The cross-domain open-world discovery setting is closely
related to open-world semi-supervised learning and univer-
sal domain adaptation. It is a harder setting compared to
these two settings as it requires overcoming the challenges
of both settings –– we need to discover novel classes under
a domain shift. CROW builds upon the power of foundation
models, allowing us to adopt the cluster-then-match strategy
proposed in this work.

Open-world learning. Open-world learning (Bendale &
Boult, 2015; 2016; Boult et al., 2019) entails annotating
unlabeled data in the face of categorical shift, where new
classes may arise in the unlabeled data. Open Set Label
Shift (OSLS) (Garg et al., 2022) is a setting that detects the
samples from the seen classes and annotates them. However,
it focuses on seen classes and does not separate different
unseen classes. Novel Class Discovery (NCD) (Hsu et al.,
2018) aims to discover unseen classes. However, NCD as-
sumes that all the unlabeled samples are from novel classes,
so it does not need to detect common classes. Open-world
semi-supervised learning (OW-SSL) (Cao et al., 2022) com-
bines the settings of OSLS and NCD. It aims to annotate
seen classes and discover unseen classes under the assump-
tion that the unlabeled samples are from both seen and novel
classes. However, OW-SSL assumes that labeled and unla-
beled data belong to the same domain, which is not always
true. In this work, we consider the cross-domain open-world
discovery setting which accounts for domain shift.

Unsupervised domain adaptation. Unsupervised domain
adaptation (UDA) (Ganin & Lempitsky, 2015) aims to an-
notate unlabeled data under domain shift between labeled
and unlabeled data. However, it assumes that labeled and
unlabeled data originate from the same classes. Open-Set
Domain Adaptation (OSDA) (Panareda Busto & Gall, 2017)
and Universal Domain Adaptation (UniDA) (You et al.,
2019) extend the setting of UDA by considering unseen
classes in the unlabeled data. They aim to annotate seen
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classes and detect unseen samples. Prior works (Saito et al.,
2018; Ma et al., 2021; Saito & Saenko, 2021; Zhu et al.,
2023; Zang et al., 2023) achieved significant success within
both the OSDA and UniDA setting. However, these works
reject unseen samples without exploring the internal struc-
ture of the unseen part. Recent works (Saito et al., 2020;
Li et al., 2021; Jing et al., 2021; Chang et al., 2022; Lai &
Zhou, 2024) have started paying attention to the internal
structure of the target domain, especially for the unknown
samples. However, most of them explore internal struc-
tures to better detect unseen samples but not to separate
them according to new classes. UniDA methods are appli-
cable to the cross-domain discovery setting by clustering
the samples detected as novel. Yu et al. (2022) consider the
cross-domain discovery setting. However, their evaluation
strategy is not suitable since it does not directly evaluate the
ability to discover novel classes. As a result, the evaluation
does not accurately reflect performance in the context of
the cross-domain discovery setting, leaving its effectiveness
unclear.

We compare different problem settings in Table 1.

Table 1. Comparison of different problem settings. UDA stands
for Universal Domain Adaptation; OSLS for Open Set Label Shift;
NCD for Novel Class Discovery; UniDA for Universal Domain
Adaptation; OW-SSL for Open-World Semi-Supervised Learning;
and CD-OWD for Cross-Domain Open-World Discovery.

SETTING DOMAIN SHIFT SEEN DETECTION NOVEL DISCOVERY

UDA
√

- -
OSLS -

√
-

NCD - -
√

UNIDA
√ √

-
OW-SSL -

√ √

CD-OWD
√ √ √

Transfer learning and foundation models. Existing open-
world and domain adaptation methods generally use the stan-
dard pretraining and fine-tuning paradigm of transfer learn-
ing (Torrey & Shavlik, 2010; Weiss et al., 2016; Kolesnikov
et al., 2020). The pretrained feature extractors provide a
well-structured latent space, allowing faster training and
better generalization. Previous works on OW-SSL and
UniDA (Saito et al., 2020; Saito & Saenko, 2021; Chang
et al., 2022; Qu et al., 2023; Cao et al., 2022) directly use
the ImageNet (Deng et al., 2009) supervised pretrained
or SimCLR (Chen et al., 2020) self-supervised pretrained
ResNet50 (He et al., 2016) as their backbone. However, re-
cently developed foundation models (Radford et al., 2021;
Singh et al., 2022; Oquab et al., 2023) provide a better
structured initial latent space, eliminating the necessity for
self-supervised training on target data to achieve reliable
initialization. Previous works (Deng & Jia, 2023; Yu et al.,
2023; Bommasani et al., 2021) show that foundation models
help alleviate domain shifts in their representation space. In
this work, we build our method upon the power of the well-
structured representation space of foundation models. This

allows us to adopt a cluster-then-match strategy in contrast
to the match-then-cluster strategy extended from existing
universal domain adaptation methods.

Cluster-then-match approach. To solve the universal do-
main adaptation problem, DCC (Li et al., 2021) first clusters
the unlabeled target samples and then matches each target
cluster to one seen class for recognizing target seen classes.
This approach corresponds to the strategy we call cluster-
then-match in this work. However, a limitation of this spe-
cific instantiation of the cluster-then-match strategy is that
DCC requires one-to-one matching between seen classes
and target clusters. This requirement cannot be satisfied
in the condition of under-clustering (i.e., assigning multi-
ple seen classes to the same cluster) and over-clustering
(i.e., splitting a single seen class into multiple clusters), as
the relationship between seen classes and target clusters is
no longer one-to-one. Instead, we adopt robust matching,
which mitigates this problem by releasing the constraint of
one-to-one matching, allowing multiple seen classes to be
matched to the same cluster and a single seen class to be
matched to multiple clusters.

3. Method
3.1. Cross-domain open-world discovery setting

In the cross-domain open-world discovery, we assume a
transductive learning setting, where a labeled dataset (i.e.,
source set) Ds = {(xi, yi)}ni=1 and an unlabeled dataset
(i.e., target set) Dt = {xi}mi=1 are given during training.
We denote the set of classes in the source set as Cs and the
set of classes in the target set as Ct. We consider both the
categorical shift and the domain shift. Under the categorical
shift, we assume Cs ∩ Ct ̸= ∅ and Cs ̸= Ct. We consider
Cs as a set of seen classes and Ct \ Cs as a set of novel
classes. Additionally, under the domain shift, we consider
P (x) as the feature distribution of data x. We assume that
P (xs) ̸= P (xt), where xs ∈ Ds and xt ∈ Dt.

The objective is to assign each xi ∈ Dt a label yi. The yi is
either from a seen class in Cs or from a novel class that is
discovered.

3.2. Overview of CROW

To overcome the challenges of cross-domain open-world
discovery, the novel classes need to be well separated in
the representation space. Early incorporation of labels from
seen classes in the training process can lead to a bias towards
seen classes, hindering the ability to differentiate between
samples of novel classes. The key idea in CROW is to
adopt the cluster-then-match strategy, enabled by the well-
structured representation space of foundation models. In
particular, CROW first clusters the target samples in the
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Figure 2. Conceptual overview of CROW. (i) CROW extracts features from a foundation model for both source and target samples. Seen
prototypes are then obtained using labeled source samples, while target prototypes are obtained by clustering target samples. (ii) CROW
matches seen classes to target prototypes using the source samples. Unmatched target prototypes are identified as unseen prototypes. (iii)
CROW combines seen prototypes and unseen prototypes. (iv) Finally, CROW fine-tunes the foundation model to update the representation
space and the prototypes.

representation space of a foundation model, followed by a
robust matching that associates seen classes with the target
clusters. Finally, CROW is fine-tuned using an objective
specially tailored for the open-world discovery setting.

Thus, CROW adopts a three-step procedure approach, in-
cluding: (i) clustering, (ii) matching, and (iii) fine-tuning.

3.3. Clustering step

To obtain clusters of target samples, CROW leverages a
robust representation space of a foundation model (Radford
et al., 2021; Singh et al., 2022; Oquab et al., 2023; Gadetsky
& Brbic, 2023). The goal of the clustering step in CROW is
to obtain the prototypes of target sample clusters (referred to
as target prototypes) and the prototypes of the seen classes
(referred to as seen prototypes).

The foundation model is used as a feature extractor fθ. Let
X be the input space; the feature extractor fθ : X → Rd

maps the input space X to a d-dimensional representation
space. Specifically, given input x ∈ X , fθ extracts the
feature z ∈ Rd by z = fθ(x). Note that we add an
L2-normalized layer at the end, so the feature z is L2-
normalized.

To get the seen prototypes Wseen = [ps1, p
s
2, ..., p

s
|Cs|],

where [·] denotes concatenation, we consider Wseen as a
L2-normalized linear classifier and train it on top of the
representation space of a foundation model fθ. In particular,
we optimize cross-entropy loss on source samples to obtain
seen prototypes Wseen. Specifically, for each source sample
xs, we first extract the feature zs by zs = fθ(x

s). Then, we
obtain the predictions using p(y|xs) = σ(WT

seen ·zs), where
σ is the softmax activation function. Finally, we optimize
Wseen by applying cross-entropy loss on p(y|xs). Note that
we freeze the feature extractor fθ during this process.

To obtain the target prototypes Wt = [pt1, p
t
2, ..., p

t
|Ct|], we

first extract the features of all target samples using zt =
fθ(x

t). Then, we apply a K-means clustering with k = |Ct|
to get the target prototypes Wt = [pt1, p

t
2, ..., p

t
|Ct|]. Here,

we assume the number of target classes |Ct| is given as a
prior.

The clustering step of CROW, which results in seen pro-
totypes Wseen and target prototypes Wt is illustrated in
Figure 2 (i). After obtaining the seen prototypes Wseen,
the goal is to identify the unseen prototypes Wunseen from
target prototypes Wt in the matching step.

3.4. Matching step

In the matching step of CROW, the goal is to identify target
prototypes that belong to unseen classes. This is achieved by
matching seen classes to target prototypes and designating
unmatched target prototypes as the prototypes of unseen
classes. To accomplish this, CROW employs on a robust
matching procedure that allows multiple seen classes to
match a target prototype and multiple target prototypes to
match a seen class.

To match seen classes to target prototypes, we first com-
pute a co-occurrence matrix Γ ∈ R|Ct|×|Cs| between target
prototypes and seen classes. This co-occurrence matrix rep-
resents the number of source samples from a given seen
class assigned to a target prototype. We assign a source
sample to a target prototype if that prototype is its nearest
prototype in the representation space. In essence, the co-
occurrence matrix Γ quantifies the proximity of seen classes
to the target prototypes.

After computing the co-occurrence matrix Γ, we apply a
column-wise softmax to Γ and obtain the distribution matrix
D as follows:

Di,j =
eΓi,j∑|Ct|

k=1 e
Γk,j

. (1)
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Each column of D represents the distribution of the source
samples of a seen class to the target prototypes. Finally, we
obtain the matching matrix M by applying a threshold τ to
D:

Mi,j =

{
1 Di,j ≥ τ
0 Di,j < τ

. (2)

Here, Mi,j = 1 means that the seen class Cj is matched to
target prototype pti. After matching seen classes to target
prototypes, we can easily identify the target prototypes that
have not been matched to any seen class as the prototypes
of unseen classes. This step is illustrated in Figure 2 (ii).

The matching step gives us the unseen prototypes Wunseen,
and we have already obtained the seen prototypes Wseen

from the clustering step. We then combine them to initialize
a linear classifier W = [Wseen,Wunseen] on top of the
feature extractor fθ. This step is illustrated in Figure 2 (iii).

Note that the number of identified unseen prototypes may
not necessarily be equal to (|Ct| − |Cs|). This disparity
arises because the number of matched target prototypes can
differ from the number of seen classes |Cs| due to under-
clustering and over-clustering issues.

We illustrate the matching procedure in Figure 3. In the
example, samples in seen class C1 are over-clustered into
two clusters represented by the target prototypes p1 and
p2, while samples in seen classes C2 and C3 are under-
clustered and represented by only one target prototype p4.
After computing the matching matrix M , we match seen
class C1 to both target prototypes p1 and p2 and match seen
classes C2 and C3 to target prototype p4. Based on the
result of matching, we consider p3 and p5, the unmatched
target prototypes, to be the unseen prototypes.

Figure 3. The process of matching. We first obtain the co-
occurrence matrix Γ between target prototypes and seen classes.
Then, we apply a column-wise softmax to the co-occurrence matrix
Γ to get the distribution matrix D. Finally, we apply a threshold τ
to each Di,j to obtain the matching matrix M . Mi,j = 1 means
the class Cj is matched to the prototype pi.

Threshold parameter τ . τ is the threshold applied to each
element in the distribution matrix D (Equation 2) to deter-
mine if there is a match between a target cluster and a seen
class. We chose the threshold τ by observing the distribution

matrix D. From our observations across all experiment set-
tings, most elements in the distribution matrix D are smaller
than 0.02 (unmatched) or larger than 0.98 (matched), and a
few elements are around 0.5 (matched, but over-clustering
occurs). Based on this observation, we choose τ = 0.3
across all the experiments. Note that the distribution matrix
D is obtained during training, so we do not use the label of
the target samples (test set) to set this threshold.

3.5. Fine-tuning step

After the cluster-then-match procedure, we initialize a linear
classifier W using the seen and unseen prototypes on top
of the feature extractor fθ. In the final step of CROW, we
fine-tune both the feature extractor fθ and the classifier W
to further improve model performance by updating the rep-
resentation space and the prototypes. This step is illustrated
in Figure 2 (iv).

In particular, a cross-entropy loss Ls (Krizhevsky et al.,
2012) is applied to the source samples xs ∈ Xs. This loss
is used to transfer the knowledge of seen classes from the
source samples to the target samples, and it is used to update
the feature extractor and the seen prototypes:

Ls(fθ,Wseen) =
1

Ns

∑
xs∈Xs

−y(xs) log(p(y|xs)), (3)

where Ns is the number of source samples, y(x) is the one-
hot ground truth label of x, and p(y|x) = σ(WT · fθ(x)).

In addition, to balance the predictions of seen and unseen
classes, we apply the regularization loss Lreg (Van Gans-
beke et al., 2020; Cao et al., 2022) to the target samples
xt ∈ Xt. This term maximizes the entropy of the average
of all the predictions:

Lreg(fθ,W ) =
1

Nt

∑
xt∈Xt

p(y|xt) log(
1

Nt

∑
xt∈Xt

p(y|xt)),

(4)

where Nt is the number of target samples.

The final objective function in the fine-tuning step of the
CROW is as follows:

min
θ,W

Ls(fθ,Wseen) + λLreg(fθ,W ), (5)

where λ denotes a regularization hyperparameter.

4. Experiments
4.1. Experimental setup

Datasets. Universal domain adaptation (UniDA) shares
the same assumption on data as cross-domain open-world
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Table 2. Average H-score (%) comparison of different seen/unseen splits on dataset Office, OfficeHome, VisDA, and DomainNet. We
color the best and second-best results in red and blue.

OFFICE OFFICEHOME VISDA DOMAINNET AVERAGE
SEEN/UNSEEN 21/10 16/15 10/21 45/20 33/32 20/45 8/4 6/6 4/8 240/105 173/172 105/240

SIMPLE 64.9 66.8 78.3 62.3 66.0 65.4 55.4 50.8 50.9 53.2 55.9 57.8 60.6
GCD 62.6 58.5 58.0 48.7 47.5 48.1 31.2 32.5 25.2 35.0 41.3 41.3 44.2
ORCA 57.9 63.4 62.3 48.9 48.9 49.9 31.3 33.6 33.9 28.9 31.5 33.7 43.7
DCC 72.8 74.9 75.2 63.6 65.0 64.7 60.7 57.3 56.7 45.5 47.5 47.7 61.0
DANCE 75.4 68.9 69.9 65.7 65.6 67.1 57.2 51.5 48.4 56.3 55.7 58.8 61.7
OVANET 73.2 75.7 75.3 66.4 68.6 68.7 59.9 60.8 60.2 54.2 55.6 58.5 64.7
UNIOT 76.1 79.6 83.4 64.4 64.9 64.8 62.0 62.4 59.8 45.7 51.2 50.8 63.9
NCDDA 80.3 81.2 81.7 63.2 64.3 65.0 57.2 60.7 59.3 50.1 52.6 55.7 64.3
SAN 80.5 80.2 82.0 64.3 65.0 67.2 61.2 63.5 61.5 53.2 54.8 55.0 65.7
GLC 75.7 74.6 77.3 65.2 68.2 69.3 61.2 65.2 62.7 54.9 56.1 55.7 65.8
CROW 84.7 84.9 85.6 69.4 69.6 70.2 70.5 69.2 71.1 57.8 59.0 61.5 71.1

Table 3. Average seen accuracy (%), unseen accuracy (%), and H-score (%) of 50% seen/unseen splits on dataset Office, OfficeHome,
VisDA, and DomainNet. We color the best and second-best results in red and blue.

OFFICE (16/15) OFFICEHOME (33/32) VISDA (6/6) DOMAINNET (173/172)
SEEN UNSEEN H-SCORE SEEN UNSEEN H-SCORE SEEN UNSEEN H-SCORE SEEN UNSEEN H-SCORE

SIMPLE 62.3 72.0 66.8 69.2 63.1 66.0 68.1 40.5 50.8 69.1 47.0 55.9
GCD 54.1 63.8 58.5 46.6 48.5 47.5 43.8 25.8 32.5 42.3 40.3 41.3
ORCA 69.6 58.2 63.4 67.1 38.4 48.9 68.3 22.3 33.6 62.3 21.1 31.5
DCC 78.0 72.1 74.9 70.3 60.5 65.0 75.3 46.2 57.3 50.2 45.1 47.5
DANCE 73.3 65.1 68.9 72.0 60.3 65.6 70.2 40.7 51.5 69.4 46.5 55.7
OVANET 76.7 74.8 75.7 71.8 65.6 68.6 60.4 61.2 60.8 65.1 48.5 55.6
UNIOT 81.7 77.6 79.6 70.5 60.2 64.9 75.7 49.4 59.8 59.2 45.1 51.2
NCDDA 88.9 74.7 81.2 71.2 58.6 64.3 70.4 53.3 60.7 68.9 42.5 52.6
SAN 89.4 72.7 80.2 72.0 59.2 65.0 74.5 55.3 63.5 67.3 46.2 54.8
GLC 87.8 64.8 74.6 73.3 63.8 68.2 73.4 58.7 65.2 62.9 50.6 56.1
CROW 90.0 80.3 84.9 71.9 67.4 69.6 77.0 62.8 69.2 70.3 50.9 59.0

discovery. Thus, we evaluate our method and the base-
lines on the standard UniDA benchmark datasets. The Of-
fice (Saenko et al., 2010) dataset has 31 classes and three
domains: Amazon (A), DSLR (D), and Webcam (W). There
are around 3K images in domain A and 1K in domains D
and W. The OfficeHome (Venkateswara et al., 2017) dataset
comprises 65 classes and four domains: Art (A), Clipart
(C), Product (P), and Real-World (R). There are around 4K
images in domains C, P, and R, and 2K images in domain
A. VisDA (Peng et al., 2017) is a synthetic-to-real (S2R)
dataset with 12 classes. There are around 150K images in
domain S and 50K in domain R. DomainNet (Peng et al.,
2019) is the largest dataset, including 345 classes and six
domains. Following the previous works (Fu et al., 2020;
Saito & Saenko, 2021; Chang et al., 2022), we use three
domains: Painting (P), Real (R), and Sketch (S).

For each experimental setting, we create a pair of domains
from one dataset, designating one domain as the source and
another one as the target. Samples from the source domain
have labels, while those from the target domain remain
unlabeled. Following the previous UniDA works (Saito
et al., 2020; Saito & Saenko, 2021; Chang et al., 2022),
we sort all the classes alphabetically and define the last n
class as unseen classes. Then, we remove samples of the
predefined unseen classes from the source set. We evaluate
CROW and the baselines with different ratios of seen/unseen
classes, including 70%, 50%, and 30%.

Evaluation metric. Open-world semi-supervised learning
(OW-SSL) and cross-domain open-world discovery settings
share the same task of recognizing seen and discovering
unseen classes. Therefore, in line with the evaluation metric
of the OW-SSL setting, we test the accuracy of both seen
and unseen classes, referred to as seen and unseen accu-
racy. To compute unseen accuracy, we use the Hungarian
algorithm (Kuhn, 1955) to match the unseen classes and
subsequently calculate the accuracy.

To evaluate the overall performance, we calculate the H-
score (Fu et al., 2020), as it provides a balanced measure of
the performance of seen and unseen classes:

H score =
2 · accseen · accunseen
accseen + accunseen

Baselines. We compare CROW to UniDA and OW-SSL
baselines as their settings are the closest to cross-domain
open-world discovery. Since UniDA methods cannot dis-
cover novel classes, we extend them by first applying a
UniDA method and then clustering the detected unseen sam-
ples to discover novel classes. OW-SSL methods do not
need to be extended since they perform the same task even
if under different assumptions about the data. We include
as baselines two OW-SSL methods, namely ORCA (Cao
et al., 2022) and GCD (Vaze et al., 2022). We addition-
ally compare to the six UniDA methods, namely DCC (Li
et al., 2021), DANCE (Saito et al., 2020), OVANet (Saito
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& Saenko, 2021), UniOT (Chang et al., 2022), SAN (Zang
et al., 2023) and GLC (Qu et al., 2023). Also, we compare to
NCDDA (Yu et al., 2022), which considers the cross-domain
open-world discovery setting.

In addition, we design a simple baseline using the match-
then-cluster approach, referred to as SIMPLE. SIMPLE first
trains the classifier on the source set with cross-entropy loss.
Then, it predicts the labels and computes the prediction en-
tropy for target samples. Samples with entropy exceeding
a predefined threshold are considered unseen and undergo
clustering. After labeling all the samples from seen and un-
seen classes, we finetune SIMPLE using the same objective
function (5) proposed in CROW. More details are provided
in Appendix A.2.

Implementation details. We use CLIP (Radford et al.,
2021) ViT-L (Dosovitskiy et al., 2021) as the feature ex-
tractor for CROW and all the baselines. When fine-tuning,
we update only the last two blocks in ViT-L and freeze
the other parts following Deng & Jia (2023), which shows
that fine-tuning the whole ViT-L hurts the performance of
the foundation model. More details are provided in the
Appendix A.1. Our code is publicly available1.

UniDA methods are sensitive to the threshold used to sepa-
rate seen and unseen samples. This threshold is crucial to
the balance of seen and unseen accuracy. However, after
changing the backbone from the the ImageNet pretrained
ResNet50 to the CLIP ViT-L, the original threshold τ sug-
gested in their works can lead to accuracy bias towards seen
or unseen classes, resulting in a low H-score. To improve
UniDA baselines and find optimal threshold τ that results
in balanced results, we adapt the threshold using the test set.
This leads to an unrealistic evaluation setting since, in real-
ity, we cannot use the test set to decide on the threshold, but
our goal is to push the limits of the baselines in this setting.
With the CLIP ViT-L backbone, our results substantially
exceed the performance of all the baselines compared to
their respective papers. We show the threshold τ we use for
the baselines in the Appendix A.3. In contrast, CROW uses
the same τ = 0.3 and λ = 0.1 across all the experiments,
and as we later show, it is robust to this threshold.

4.2. Results

Evaluation on benchmark datasets. We report the av-
erage H-score across four benchmark datasets: Office31,
OfficeHome, VisDA, and DomainNet. We compare CROW
to baselines with different ratios of seen and unseen classes,
including 70%, 50%, and 30% seen/unseen splits. Table 2
shows that CROW consistently outperforms all baselines in
terms of H-score. In particular, across all datasets, CROW
achieves an 8% relative improvement in the average H-score

1https://github.com/mlbio-epfl/crow

Figure 4. Confident samples for seen and unseen classes on
VisDA. The synthetic images are from the source, and the real-
world images are from the target.

over the baselines. The detailed results of the 75 different
experimental settings with different pairs of source/target
datasets are shown in Appendix B.7.

We next compare the performance separately on seen and
unseen classes using the 50% seen/unseen split. The results
in Table 3 show that CROW consistently outperforms the
baselines in discovering novel classes, achieving an 8.3%
average improvement over the baselines. On seen classes,
CROW outperforms baselines by a 2.9% average improve-
ment across all datasets. We observe similar results with
70% and 30% seen/unseen splits (Appendix B.7).

In comparison to UniDA methods that adopt the match-
then-cluster strategy (SIMPLE, DANCE, OVANet, UniOT,
SAN, and GLC), CROW outperforms the best baseline by
5.3% in average H-score, highlighting the benefits of our
cluster-then-match strategy. When compared to the DCC,
which also adopts a cluster-then-match strategy but follows
a one-to-one matching procedure, CROW outperforms DCC
by 9.4% in H-score. This underscores the benefits of the
robust matching procedure. Compared to OW-SSL methods
(ORCA and GCD), we observe nearly 30% improvement in
average H-scores, indicating that OW-SSL methods cannot
effectively overcome domain shifts and be applied in this
setting. Furthermore, CROW surpasses NCDDA in H-score
by 6.8%, demonstrating its superior effectiveness in the
cross-domain open-world discovery setting

In addition, we compare CROW to directly applying K-
means to the CLIP features on the target datasets. We also
compare our method to the CLIP zero-shot learning (Rad-
ford et al., 2021). The results show that our method outper-
forms these two methods by a large margin. We present the
results and analysis in the Appendix B.1 and B.2.
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Figure 5. Sensitivity to the threshold. τ is the original threshold provided by our method and the previous works. We modify τ by
scaling it with a multiplication factor.

4.3. Qualitative results

We visually inspect classes discovered by CROW on the
VisDA dataset. Figure 4 shows the top-1 confident sam-
ple for each seen category and the top-3 confident samples
for each novel category. The results reveal that, in addi-
tion to annotating seen classes, CROW successfully discov-
ers seven unseen classes. Notably, CROW accurately dis-
covers the VisDA predefined classes ‘motorcycle’, ‘plant’,
‘skateboard’, and ‘train’, which are absent in the source set.
Additionally, the model recognizes double-decker buses,
old-style cars, and cars with animals as novel classes. De-
spite discrepancies from the ground truth annotations (e.g.,
cars with animals are originally labeled as cars), the classes
discovered by CROW are meaningful. We further look at
the VisDA predefined classes ‘person’ and ‘truck’ that are
not discovered by CROW. We find that confident predic-
tions are people with skateboards that are classified into a
novel class that corresponds to ‘skateboard’, again showing
that the CROW’s predictions are indeed meaningful. Fur-
thermore, ground-truth class ‘truck’ is typically assigned
to ‘car’, which is reasonable given many shared features.
We elaborate more and show examples of failure cases in
Appendix B.3. Overall, this opens interesting research di-
rections for designing proper evaluation strategies in this
challenging setting since disagreement with the ground-truth
annotations may not necessarily mean that the results are
wrong, and even human annotators could disagree in these
failure cases.

4.4. Ablation studies

Benefits of fine-tuning. We evaluate how much fine-
tuning helps to improve the performance of CROW on the
VisDA datataset. We compare CROW in three settings: (i)
without fine-tuning (i.e., only clustering and matching steps),
(ii) with fine-tuning only the linear classifier W , and (iii)
with fine-tuning also the feature extractor of a foundation
model. The results in Table 4 show that fine-tuning both the
feature extractor fθ and the classifier W helps to improve
the performance. However, CROW can still achieve high
performance even without fine-tuning, by adopting only

clustering and matching steps.

Table 4. Seen, unseen accuracy (%) and H-score (%) of our method
with different fine-tuning strategies on the VisDA dataset (6/6).

SEEN UNSEEN H-SCORE

WITHOUT FINE-TUNE 73.8 61.2 66.9
FINE-TUNE ONLY W 75.2 61.8 67.8
FINE-TUNE fθ AND W 77.0 62.8 69.2

Sensitivity to threshold τ . We next evaluate the sensitiv-
ity to the thresholds of CROW and UniDA baselines on the
50% seen/unseen split of the Office31, OfficeHome, and
VisDA datasets. We compare CROW, DANCE, OVANet,
and GLC across different values of their respective threshold.
CROW has a matching threshold τ (Equation 2). DANCE
has a threshold that detects unseen samples using the en-
tropy of the prediction. OVANet and GLC have a threshold
that detects unseen samples using the prediction confidence.
Due to the different scales of the thresholds employed by
each method, we test values from 0.5τ to 1.5τ , where τ de-
notes the default threshold used in these previous works. We
evaluate the effect of changing the threshold on performance
in Figure 5. The results show that CROW is extremely ro-
bust to the threshold variations. However, this is not the
case for baseline methods. For example, DANCE demon-
strates considerable sensitivity to threshold changes, and
the original τ deviates from the optimal value after chang-
ing the backbone. For OVANet and GLC, their original τ
yields good performance in the majority of cases, but these
methods still exhibit sensitivity to the threshold.

Ablation study on the objective function. To investigate
the importance of each part of the objective function in Equa-
tion 5, we conduct an ablation study on the VisDA dataset.
Table 5 shows that the removal of the supervised loss Ls

results in a decrease in seen accuracy, while the absence
of the entropy regularization Lreg causes the accuracy to
bias toward seen classes. The best performance is achieved
when combining the two losses.

CROW with different foundation models. In all exper-
iments, we used CLIP as the feature extractor. We next

8
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Table 5. Ablation study on the objective function. We show the
seen/unseen accuracy, and H-score (%) on the VisDA dataset (6/6).

APPROACH SEEN UNSEEN H-SCORE

W/O Ls 65.6 61.5 63.5
W/O Lreg 77.2 56.9 65.7
CROW 77.0 62.8 69.2

compare the performance of CROW in the space of dif-
ferent foundation models. As foundation models, we use
CLIP (Radford et al., 2021), DINO v2 (Oquab et al., 2023),
and SWAG (Singh et al., 2022) across varying sizes of the
ViT. Table 6 illustrates that CROW achieves better perfor-
mance with stronger feature extractors. This suggests that
CROW can benefit from further advancement in the field by
using stronger foundation models as a feature extractor.

Table 6. Seen, unseen accuracy (%) and H-score (%) of CROW
with different pretrained foundation models on VisDA (6/6).

METHOD BACKBONE SEEN UNSEEN H-SCORE

CLIP VIT-B 74.5 58.9 65.8
VIT-L 77.0 62.8 69.2

DINO V2 VIT-B 74.2 55.5 63.5
VIT-L 76.8 57.6 65.8
VIT-G 78.2 60.4 68.2

SWAG VIT-B 74.8 60.2 66.7
VIT-L 78.4 63.0 69.9
VIT-H 79.0 63.4 70.3

Results of CROW with the estimated number of novel
classes |Ct| and on the UniDA data split are shown in Ap-
pendix B.5 and B.6.

4.5. Pretrained model for unseen classes

A potential problem is that the pretrained feature extractors
might have encountered the unseen classes during pretrain-
ing. Indeed, this is a common issue in the research fields of
novelty detection and category discovery, and it existed even
before the age of foundation models. For example, most
previous works on open-set/universal domain adaptation,
novel class discovery, and general class discovery (Saito
& Saenko, 2021; Saito et al., 2020; Li et al., 2021; Vaze
et al., 2022) use ImageNet pretrained ResNet-50 as their
backbone, and some of the unseen classes are present in the
ImageNet dataset.

To test whether a model that has seen instances of unseen
classes can artificially inflate the results, we perform an
experiment on the Office31 dataset in which we train two
versions of the ResNet-50 feature extractor in a supervised
fashion: (1) trained on the whole ImageNet dataset, and (2)
trained on the ImageNet dataset without the samples of the
unseen classes (e.g., we remove samples of ‘desk’, ‘barber

chair’, ‘folding chair’, ‘rocking chair’ from the ImageNet
dataset for the unseen class ‘desk chair’). Table 7 shows that
whether the model has seen instances of unseen classes only
marginally affects performance. Furthermore, it is impor-
tant to emphasize that the model trained without instances
of unseen classes has also seen fewer different samples and
less data in general, so we cannot fully attribute these small
differences to the fact that the model has seen unseen sam-
ples. However, how to avoid this common problem in the
research fields of novelty detection and category discovery
still needs to be further explored (Rambhatla et al., 2021).

Table 7. Ablation study on different pretrained datasets. We show
the seen, unseen accuracy (%) on the Office dataset.

DATASET SEEN UNSEEN

WHOLE IMAGENET 79.5 56.4
IMAGENET W.O. UNSEEN 79.6 55.8

5. Limitations
In CROW, the ability to discover novel classes heavily re-
lies on clustering within the representation space established
by the foundation models. Consequently, CROW may ex-
hibit worse performance on datasets where the foundation
models lack robustness. For example, we evaluated our
method on DomainNet, from Sketch (source) to Quickdraw
(target). Quickdraw contains images with grey-level lin-
eart, and CLIP is not robust to that image style. Under the
setting of the 50% seen/unseen split and the exact same
training setup as described in the Implementation details
in Section 4.1, CROW achieves only 20.4% seen accuracy
and 24.2% unseen accuracy on this dataset. However, the
strongest baseline GLC achieves even worse results with
20.1% seen accuracy and 18.6% unseen accuracy. These
results indicate that further exploration needs to be done to
deal with challenging datasets like DomainNet Quickdraw.

6. Conclusion
In this work, we address the gap between open-world semi-
supervised learning and universal domain adaptation by
considering a cross-domain open-world discovery setting
that encompasses both categorical and distributional shifts.
To tackle this challenging problem, we propose CROW,
a prototype-based method built upon foundation models.
CROW combines source seen prototypes and target unseen
prototypes through a robust cluster-then-match approach,
simultaneously accomplishing seen class recognition and
unseen class discovery. By conducting experiments across
75 different categorical-shift and domain-shift situations,
we demonstrate that CROW consistently outperforms alter-
native baselines and effectively overcomes the challenges
of the cross-domain open-world discovery setting.
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A. Implementation details
A.1. Training details

Our core algorithm is developed using PyTorch (Paszke
et al., 2019). We use CLIP ViT-L14-336px as the backbone
for all the methods. When fine-tuning, we update only the
last two blocks of CLIP ViT-L14-336px and freeze the other
parts. For the classifier, CROW uses the normalized linear
classifier as described in Section 3.2. For the baselines, we
use the same classifier architecture originally proposed by
their works, and we only change the input dimension of the
classifiers to match the feature dimension.

For optimizing, we use the SGD optimizer for all experi-
ments, and the learning rate is set to 0.001 for the classifier
and 0.0001 for the feature extractor (CLIP ViT-L14-336px).
We set the batch size to 32 and train all the methods for 1K
iterations. Since there is no validation set in our setting, we
report the results of the last iteration.

A.2. Implementation details about baselines

We directly apply the OW-SSL methods GCD and ORCA
and the method NCDDA to our experiment settings. How-
ever, for the other baselines, we adapt them to address our
problem setting. The detailed procedures for adaptation are
outlined below.

SIMPLE. SIMPLE shares the same network architecture
as CROW (a feature extractor fθ and a normalized linear
classifier W ), and it uses the match-then-cluster approach.
Specifically, it first trains the classifier W on the source set
with cross-entropy loss (Equation 3). Importantly, since
SIMPLE trains the model only on the source set, it is likely
to make the predictions biased to the seen classes. To pre-
vent this, we freeze the feature extractor from SIMPLE.

After training the classifier, we predict the labels and com-
pute the entropy for all the samples. Specifically, given input
x, we first extract the feature by z = fθ(x). Then, we cal-
culate the output vector p(y|x) using p(y|x) = σ(WT · z),
where σ is the softmax activate function. We predict the
label using c = argmaxi p

i. Then, we calculate the entropy
H for the output vector p(y|x). If H is larger than a pre-
defined threshold τ , we assign this sample to be an unseen
sample. Note that since DANCE also applies a threshold to
the entropy of prediction, we use the ρ in DANCE as the τ
here. After predicting labels for all samples, we cluster de-
tected unseen samples using K-means with K = |Ct|−|Cs|
to discover novel classes. We assume the number of target
classes |Ct| is given as a prior. After labeling all the samples
from seen and unseen classes, we finetune SIMPLE using
the same objective function 5 as in CROW.

UniDA methods (except DCC). For all the UniDA meth-
ods except DCC (DANCE, OVANet, UniOT, SAN, GLC),
we use them as the match-then-cluster approach. Specif-
ically, we first apply the methods to predict the labels of
the target samples. Then, each target sample is labeled as
a seen class or the class unseen. After labeling, we cluster
all the samples labeled as class unseen using K-means with
K = |Ct| − |Cs| to discover novel classes. We assume the
number of target classes |Ct| is given as a prior.

DCC. Different from the other UniDA methods, we use
DCC as a cluster-then-match approach. Thus, we follow the
original steps of DCC. We change only one thing: in the
original work, DCC estimates the number of target classes
|Ct|, but we directly use |Ct| as a prior in DCC for a fair
comparison.

A.3. Threshold adaptation

As mentioned in Section 4.1, we adapt the threshold τ for
the baselines when needed. Table 8 shows how we change
τ for the baseline methods to obtain balanced seen and
unseen accuracy. τ is the original threshold provided by the
previous works, and we scale it with a multiplication factor.
(τ is the ρ in DANCE and SIMPLE, 0.5 with no name in
OVANet.)

Table 8. Hyper-parameter changing. τ is the original threshold
provided by the previous works.

OFFICE OFFICEHOME VISDA DOMAINNET

SIMPLE 0.3τ 0.5τ 0.3τ 0.7τ
DANCE 0.3τ 0.5τ 0.3τ 0.7τ
OVANET - - 1.5τ -

B. Additional results
B.1. Comparison to the K-means

This section shows the results and analysis of comparing our
method CROW to applying K-means to the CLIP features.

Table 9. H-score (%) comparison between K-means and CROW.

OFFICE OFFICEHOME VISDA DOMAINNET

K-MEANS 77.2 65.9 62.4 52.7
CROW 84.9 69.9 69.2 59.0

Table 9 shows that our method outperforms K-means by
a large margin. Moreover, it is important to note that our
method labels the seen classes while applying K-means to
the CLIP features only separates different classes without
matching the clusters to the seen classes, which means our
H-score is tested on a harder task.
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Figure 6. Failure cases on VisDA (6/6). The samples are the top 4
confident samples (top 1 to 4 from left to right) for class ‘person’
and ‘truck’.

B.2. Comparison to the CLIP zero-shot learning

Another simple way to address cross-domain open-world
discovery is to apply CLIP zero-shot learning with a large
vocabulary list. Here, we show the results and analysis of
comparing our method CROW to CLIP zero-shot learning.

We do two experiments on the Office31 dataset. In the first
experiment, the vocabulary list of CLIP contains only the
names of the 31 classes. In the second experiment, we create
a large vocabulary list for CLIP by combining the names of
the 31 classes from the Office dataset and the 345 classes
from the DomianNet dataset. We remove the names of the
duplicate classes from the vocabulary list. We consider the
first 16 classes from the Office31 dataset seen and the last 15
classes unseen. Table 10 shows the results. The results show
that our method achieves a comparable performance even
if we provide CLIP with an exact ground truth vocabulary
list, and our method outperforms CLIP by a large margin if
CLIP uses a large-enough vocabulary list.

Table 10. H-score (%) comparison between CLIP zero-shot learn-
ing and CROW.

H-SCORE

CLIP ZERO-SHOT + 31 CLASSES VOCABULARY LIST 85.7
CLIP ZERO-SHOT + LARGE VOCABULARY LIST 75.4
CROW 84.9

B.3. Failure cases

In Figure 4, we show that we successfully discover four
predefined classes out of six. Figure 6 shows the possible
reason why we do not manage to discover the other two
predefined classes ‘person’ and ‘truck’. For the predefined
class ‘person’, we can see that the top four confident samples

are all persons with skateboards, and they are classified into
class ‘novel 4’, which is ‘skateboard’ as shown in Figure 4.
For the predefined class ‘truck’, we can see that two of
them are classified into ‘car’, and this might be because they
share lots of common features with cars; one is classified
into ‘bike’, a possible explanation is because of the green
logo ‘Gate’ is close to bike; one is classified into class
‘novel 3, which is ‘plant’, possibly because of the full-of-
tree background.

B.4. Sensitivity to λ

There is a hyper-parameter λ in Equation 5, which stands
for the weight for the regularization term. Table 11 shows
that our method is robust to λ as long as it is not set to be
extremely huge or tiny.

Table 11. Seen accuracy (%), unseen accuracy (%), and H-score
(%) of CROW with different λ on the VisDA (6/6).

λ SEEN UNSEEN H-SCORE

0.1 78.5 62.0 69.3
0.3 78.8 61.3 69.0
0.5 77.8 61.7 68.8
0.7 77.6 62.7 69.4
0.9 77.3 62.6 69.2
1.0 77.0 62.8 69.2

B.5. CROW with the estimated number of clusters

In the clustering step, we assume we know the number of
unseen classes |Ct| following the OW-SSL setting. How-
ever, in practice, we sometimes do not know the real |Ct|.
Under this condition, we need to estimate |Ct|.

We estimate |Ct| using the technique proposed in (Han
et al., 2019). In the original work, it estimates |Ct| by
applying K-means with different K on both source and
target samples. Then, it tests the cluster accuracy using
Hungarian algorithm (Kuhn, 1955) for the labeled samples
and selects the K that leads to the best cluster accuracy.
However, since there is a domain shift between source and
target set in our problem setting, we apply K-means only on
the target data instead of both source and target data. Other
steps remain the same. Table 12 shows the results of using
the real |Ct| and the estimated |Ct|, and we can see that the
results are still good with estimated |Ct|.

Table 12. H-score of using estimated |Ct|. We show 50%
seen/unseen split as an example.

OFFICE OFFICEHOME VISDA DOMAINNET

KNOWN 84.9 69.6 69.2 59.0
ESTIMATED 81.5 67.2 68.0 57.8
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B.6. Evaluation on the UniDA data split.

Since UniDA is the closest setting to CD-OWD, we demon-
strate the efficacy of our method on the UniDA data split.

There are four possible relationships: closed set (Ganin
& Lempitsky, 2015), partial set (Cao et al., 2019), open
set (Panareda Busto & Gall, 2017), and open partial set (You
et al., 2019). The term partial means there are classes that
exist only in the source set. UniDA setting considers all
four possible relationships between source and target sets.
Thus, we test our method on the four conditions of closed
set, partial set, open set, and open partial set on the VisDA
dataset. We use the same evaluation metric as the previous
experiments. Note that we assume we know the number of
classes of the target sets but do not know the relationship
between source and target sets. For example, in the condi-
tion of the closed set, we assume we know that there are 12
classes in the target set. However, we do not know if there
are novel classes, so we will still detect unseen. Table 13
shows that our method achieves comparable performance
with UniDA data split.

Table 13. Results of UniDA data split on VisDA. The numbers
of (shared classes/source private classes/target private classes)
for close-set, partial-set, open-set, and open-partial-set are 12/0/0,
6/6/0, 6/0/6, and 6/3/3. The results are H-score when the number of
target private classes is not zero; otherwise, we show the accuracy
of shared classes.

CLOSE PARTIAL OPEN OPEN-PARTIAL

DCC 80.1 79.8 57.3 65.2
OVANET 78.0 73.2 60.8 61.2
GLC 75.6 81.2 65.2 72.2
CROW 79.9 80.4 69.2 73.4

B.7. Detailed experimental results

Table 2 only shows the average H-score on each dataset.
Here, we show the detailed results of each categorical-shift
and domain-shift scenario on different datasets in Table 14
to 22. Each table shows the result of one dataset with one
data split. For example, Office (21/10) shows the result of
the Office dataset with a 21/10 seen/unseen data split. In
each table, we show all the domain-shift scenarios. For
example, there are three domains in the Office dataset, Ama-
zon (A), DSLR (D), and Webcam (W). Then, there are six
pairs: A2D, A2W, D2A, D2W, W2A, and W2d, where A2D
means from Amazon (source set) to DSLR (target set).

Table 3 only shows the average seen accuracy, unseen accu-
racy, and H-score on each dataset of 50% seen/unseen split.
Here, we show the average seen accuracy, unseen accuracy,
and H-score on each dataset of 50% seen/unseen split in
Table 14 to 22.

Table 14. H-score (%) of dataset Office (21/10) on different pairs
of domain. We color the best and second-best results in red and
blue.

A2D A2W D2A D2W W2A W2D AVG.

SIMPLE 62.6 60.8 43.4 86.2 42.3 90.3 64.9
GCD 62.6 58.5 58.0 48.7 47.5 48.1 31.2
ORCA 65.9 52.5 51.5 65.3 54.8 52.1 57.9
DCC 66.3 72.5 69.8 84.5 66.9 76.8 72.8
DANCE 79.4 77.5 61.4 82.9 62.3 87.8 75.4
OVANET 77.4 67.1 59.8 88.0 55.9 90.7 73.2
UNIOT 82.8 70.7 65.3 78.1 66.5 91.5 76.1
NCDDA 81.2 76.4 78.7 80.8 76.0 87.1 80.3
SAN 80.7 76.7 77.8 81.4 80.6 85.2 80.5
GLC 78.5 71.9 73.2 72.6 73.4 81.9 75.5
CROW 87.9 90.3 70.3 93.0 70.2 92.8 84.7

Table 15. H-score (%) of dataset Office (16/15) on different pairs
of domain. We color the best and second-best results in red and
blue.

A2D A2W D2A D2W W2A W2D AVG.

SIMPLE 65.8 57.6 47.6 84.8 47.8 90.6 66.8
GCD 58.8 37.0 50.6 76.6 46.6 69.9 58.5
ORCA 61.4 67.4 54.3 80.3 46.1 65.9 63.4
DCC 68.3 72.5 71.8 85.5 68.9 77.8 74.9
DANCE 65.7 67.3 59.7 83.4 54.1 82.7 68.9
OVANET 81.6 76.3 61.5 91.2 51.2 90.6 75.7
UNIOT 79.6 83.8 72.7 90.9 75.0 85.7 81.5
NCDDA 83.9 76.4 80.0 78.7 81.8 85.5 81.2
SAN 79.5 76.0 78.3 80.3 80.6 85.5 80.2
GLC 85.4 74.2 69.8 79.1 63.2 71.3 74.6
CROW 83.8 85.9 73.9 94.8 78.1 91.2 84.9

Table 16. H-score (%) of dataset Office (10/21) on different pairs
of domain. We color the best and second-best results in red and
blue.

A2D A2W D2A D2W W2A W2D AVG.

SIMPLE 76.7 78.9 71.9 84.1 71.1 85.5 78.3
GCD 53.0 38.2 51.0 77.5 40.9 70.9 58.0
ORCA 61.0 57.3 44.9 75.0 60.2 69.0 62.3
DCC 69.3 76.5 74.8 86.5 69.5 74.8 75.2
DANCE 77.6 73.3 58.2 74.5 56.8 77.3 69.9
OVANET 84.8 78.1 50.7 90.8 48.6 90.0 75.3
UNIOT 84.1 84.5 69.9 90.9 77.2 93.7 83.4
NCDDA 84.1 75.0 80.6 80.3 82.3 87.1 81.7
SAN 80.8 79.7 81.0 83.7 81.3 85.6 82.0
GLC 82.9 77.5 72.6 77.3 73.0 78.5 77.3
CROW 85.8 82.9 77.5 96.0 79.1 91.7 85.6
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Table 17. H-score (%) of dataset DomainNet (240/105) on different
pairs of domain. We color the best and second-best results in red
and blue.

P2R P2S R2P R2S S2P S2R AVG.

SIMPLE 58.0 45.7 52.2 54.8 48.9 58.7 53.2
GCD 39.4 28.7 33.6 36.4 34.1 36.9 35.0
ORCA 32.7 20.4 21.0 33.3 28.4 36.0 28.9
DCC 52.4 42.6 44.5 44.1 41.1 47.3 45.5
DANCE 61.4 52.3 55.6 52.1 54.3 61.5 56.3
OVANET 59.6 49.1 54.0 49.9 51.8 59.2 54.2
UNIOT 49.1 42.6 45.8 43.4 42.8 49.6 45.7
NCDDA 61.4 47.9 41.6 45.8 41.0 61.3 50.1
SAN 62.7 51.2 45.2 52.5 42.8 63.3 53.2
GLC 61.3 51.5 46.4 53.1 48.0 65.6 54.9
CROW 68.0 52.3 51.7 49.2 53.6 69.9 57.8

Table 18. H-score (%) of dataset DomainNet (173/172) on different
pairs of domain. We color the best and second-best results in red
and blue.

P2R P2S R2P R2S S2P S2R AVG.

SIMPLE 59.6 53.4 53.5 56.3 52.5 59.6 55.9
GCD 45.9 33.7 41.1 38.6 39.0 48.5 41.3
ORCA 36.7 30.4 32.1 30.9 27.7 31.1 31.5
DCC 53.6 42.7 45.9 45.6 43.7 50.9 47.5
DANCE 60.2 51.1 54.1 52.5 53.9 61.8 55.7
OVANET 61.3 50.6 53.9 52.6 52.8 61.3 55.6
UNIOT 54.3 45.4 52.3 48.1 50.5 55.1 51.2
NCDDA 61.2 49.1 45.2 50.4 48.8 57.5 52.6
SAN 62.6 53.4 49.1 51.0 47.8 64.2 54.8
GLC 62.1 51.4 53.3 54.4 51.9 60.8 56.1
CROW 67.9 54.2 53.7 51.7 54.8 70.4 59.0

Table 19. H-score (%) of dataset DomainNet (105/240) on different
pairs of domain. We color the best and second-best results in red
and blue.

P2R P2S R2P R2S S2P S2R AVG.

SIMPLE 65.0 55.1 57.0 56.9 52.8 59.9 57.8
GCD 48.0 30.6 40.3 37.2 38.3 52.5 41.3
ORCA 33.2 37.1 29.4 29.2 30.4 42.2 33.7
DCC 57.0 41.4 43.8 42.4 44.8 55.6 47.7
DANCE 64.7 54.5 57.2 54.4 56.2 65.4 58.8
OVANET 64.7 56.0 55.4 53.8 54.5 66.1 58.5
UNIOT 54.5 50.4 48.1 48.6 47.6 55.6 50.8
NCDDA 67.0 54.3 50.7 47.2 49.2 64.1 55.7
SAN 63.7 53.9 49.9 49.9 51.3 60.9 55.0
GLC 62.8 50.7 53.4 50.8 50.8 62.3 55.7
CROW 71.3 56.5 56.6 54.9 58.2 70.8 61.5
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Table 20. H-score (%) of dataset OfficeHome (45/20) on different pairs of domain. We color the best and second-best results in red and
blue.

A2C A2P A2R C2A C2P C2R P2A P2C P2R R2A R2C R2P AVG.

SIMPLE 55.4 68.2 74.9 58.7 69.4 63.1 47.8 47.1 69.6 59.6 55.6 72.9 62.3
GCD 39.4 56.1 64.4 37.0 45.8 47.3 39.4 32.2 60.8 34.2 43.2 62.0 48.7
ORCA 44.7 60.8 50.9 43.6 53.9 44.4 44.4 42.5 61.4 43.1 43.2 45.5 48.9
DCC 60.2 69.3 68.2 46.3 74.7 69.9 48.5 61.9 69.3 52.6 64.2 76.0 63.6
DANCE 56.6 72.5 78.0 65.7 70.4 68.5 59.5 55.8 70.2 65.1 57.7 65.4 65.7
OVANET 57.2 71.1 78.2 63.5 67.6 73.7 55.0 48.4 73.7 66.9 59.6 77.2 66.4
UNIOT 58.1 70.4 72.9 57.3 69.3 65.6 54.3 55.1 59.3 67.5 63.1 76.9 64.4
NCDDA 64.4 76.3 64.5 53.5 73.4 55.4 48.7 54.6 60.1 60.2 59.0 81.5 63.2
SAN 57.8 69.8 71.8 53.9 72.1 71.0 52.0 55.9 63.3 61.7 61.9 76.9 64.3
GLC 59.3 71.9 61.9 57.7 73.3 61.7 54.3 58.7 66.6 64.0 56.7 73.5 65.2
CROW 63.1 82.5 79.5 48.3 83.1 75.6 51.8 64.7 75.2 54.8 67.8 84.5 69.4

Table 21. H-score (%) of dataset OfficeHome (33/32) on different pairs of domain. We color the best and second-best results in red and
blue.

A2C A2P A2R C2A C2P C2R P2A P2C P2R R2A R2C R2P AVG.

SIMPLE 59.9 72.2 77.8 64.3 73.5 65.1 57.0 55.8 70.1 63.4 58.3 72.9 66.0
GCD 44.2 46.7 59.6 40.8 46.6 50.1 30.7 28.2 55.1 39.3 45.5 62.0 47.5
ORCA 47.4 62.5 44.9 44.0 52.3 46.7 38.4 29.3 52.5 52.2 48.5 63.3 48.9
DCC 64.1 74.9 71.1 48.5 78.1 70.6 51.1 58.6 68.0 48.8 60.5 82.9 65.0
DANCE 52.9 70.8 74.3 66.9 69.3 73.4 59.5 54.2 70.9 67.0 52.8 72.0 65.6
OVANET 57.9 72.5 78.4 67.6 69.6 73.8 57.8 53.2 74.9 69.4 61.1 82.2 68.6
UNIOT 59.5 72.1 71.0 57.1 74.2 63.2 52.4 56.8 67.5 65.8 58.9 76.9 64.9
NCDDA 64.9 76.8 64.8 56.7 78.1 55.7 49.7 55.2 60.1 61.2 59.8 82.4 64.3
SAN 60.5 70.8 72.2 56.3 71.6 69.4 54.7 59.0 63.3 61.5 59.5 77.4 65.0
GLC 64.4 71.8 78.9 51.3 76.0 76.6 48.2 63.5 80.4 55.9 60.0 75.4 68.2
CROW 66.5 83.4 77.7 50.3 82.2 75.4 53.2 62.6 74.0 56.2 66.2 84.2 69.6

Table 22. H-score (%) of dataset OfficeHome (20/45) on different pairs of domain. We color the best and second-best results in red and
blue.

A2C A2P A2R C2A C2P C2R P2A P2C P2R R2A R2C R2P AVG.

SIMPLE 58.7 70.5 76.6 63.8 72.9 64.6 57.0 56.5 69.1 63.4 57.7 72.9 65.4
GCD 37.8 51.8 59.3 46.6 46.3 49.4 26.0 18.3 54.3 49.9 45.2 69.4 48.1
ORCA 42.4 55.4 57.0 60.2 36.7 62.2 40.7 44.1 55.9 47.3 22.2 58.0 49.9
DCC 63.9 74.4 71.0 47.6 78.4 70.1 50.9 58.5 67.7 50.2 59.8 81.3 64.7
DANCE 55.7 72.0 76.4 66.7 69.5 71.4 60.7 51.4 73.5 71.3 56.9 72.9 67.1
OVANET 58.7 72.2 76.7 66.9 70.3 73.5 58.4 56.3 77.5 69.5 62.4 74.6 68.7
UNIOT 58.0 72.2 68.1 57.1 75.6 63.6 49.4 59.2 67.5 66.0 59.1 77.7 64.8
NCDDA 65.9 78.3 66.0 58.4 76.6 57.3 51.5 59.1 60.1 61.2 61.9 78.9 65.0
SAN 63.4 78.3 74.1 56.9 76.0 73.0 57.8 56.5 67.9 61.8 59.4 78.9 67.2
GLC 69.2 85.8 83.7 64.0 75.2 77.8 55.2 52.9 74.5 62.3 57.2 72.2 69.3
CROW 69.2 79.0 78.0 52.6 81.7 73.7 53.1 68.1 76.8 56.6 69.6 82.6 70.2
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Table 23. Average seen accuracy (%), unseen accuracy (%), and H-score (%) of 70% seen/unseen splits on dataset Office, OfficeHome,
VisDA, and DomainNet. We color the best and second-best results in red and blue.

OFFICE (21/10) OFFICEHOME (45/20) VISDA (8/4) DOMAINNET (240/105)
SEEN UNSEEN H-SCORE SEEN UNSEEN H-SCORE SEEN UNSEEN H-SCORE SEEN UNSEEN H-SCORE

SIMPLE 64.6 65.3 64.9 65.3 59.5 62.3 57.3 53.7 55.4 69.1 43.2 53.2
GCD 67.6 58.4 62.6 50.9 46.7 48.7 31.8 30.6 31.2 39.9 31.2 35.0
ORCA 74.0 47.6 57.9 69.8 37.6 48.9 65.2 20.6 31.3 58.1 19.3 28.9
DCC 74.6 71.1 72.8 66.1 61.3 63.6 73.9 51.5 60.7 45.7 45.4 45.5
DANCE 79.2 71.9 75.4 74.2 58.9 65.7 64.9 51.2 57.2 67.9 48.1 56.3
OVANET 78.7 68.5 73.2 67.9 65.1 66.4 56.5 63.7 59.9 60.2 49.2 54.2
UNIOT 81.7 71.2 76.1 70.6 59.3 64.4 72.3 54.2 62.0 49.1 42.7 45.7
NCDDA 91.6 71.5 80.3 66.9 59.8 63.2 67.3 49.8 57.2 58.1 44.1 50.1
SAN 93.1 71.0 80.5 68.8 60.4 64.3 69.3 54.8 61.2 67.3 44.0 53.2
GLC 89.4 65.4 75.5 73.8 58.4 65.2 58.6 64.1 61.2 61.9 49.3 54.9
CROW 90.9 79.2 84.7 68.6 70.3 69.4 76.8 65.1 70.5 69.8 49.3 57.8

Table 24. Average seen accuracy (%), unseen accuracy (%), and H-score (%) of 30% seen/unseen splits on dataset Office, OfficeHome,
VisDA, and DomainNet. We color the best and second-best results in red and blue.

OFFICE (10/21) OFFICEHOME (20/45) VISDA (4/8) DOMAINNET (105/240)
SEEN UNSEEN H-SCORE SEEN UNSEEN H-SCORE SEEN UNSEEN H-SCORE SEEN UNSEEN H-SCORE

SIMPLE 86.3 71.8 78.3 72.0 59.9 65.4 58.4 45.1 50.9 76.6 46.4 57.8
GCD 49.7 69.6 58.0 42.1 56.1 48.1 29.6 21.9 25.2 40.4 42.3 41.3
ORCA 71.2 55.4 62.3 67.1 39.7 49.9 69.3 22.4 33.9 68.7 22.3 33.7
DCC 73.8 76.6 75.2 72.1 58.9 64.7 65.8 49.8 56.7 57.5 40.7 47.7
DANCE 83.5 60.1 69.9 69.1 65.3 67.1 75.2 35.7 48.4 71.3 50.1 58.8
OVANET 74.7 75.9 75.3 72.7 65.2 68.7 62.3 58.2 60.2 70.3 50.1 58.5
UNIOT 90.3 77.5 83.4 73.9 57.6 64.8 75.7 49.4 59.8 61.6 43.3 50.8
NCDDA 93.4 72.5 81.7 71.8 59.4 65.0 70.8 51.0 59.3 70.1 46.2 55.7
SAN 95.7 71.8 82.0 77.1 59.5 67.2 74.3 52.4 61.5 68.7 45.8 55.0
GLC 91.7 66.9 77.3 77.7 62.6 69.3 76.3 53.2 62.7 65.7 48.3 55.7
CROW 88.8 82.6 85.6 70.4 70.0 70.2 68.9 73.4 71.1 72.5 53.5 61.5
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