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Abstract

Internet memes have emerged as an increas-001
ingly popular means of communication on the002
web. Although memes are typically intended003
to elicit humour, they have been increasingly004
used to spread hatred, trolling, and cyberbul-005
lying, as well as to target specific individuals,006
communities, or society on political, socio-007
cultural, and psychological grounds. While008
previous work has focused on detecting harm-009
ful, hateful, and offensive memes in general,010
identifying whom these memes attack (i.e.,011
the ‘victims’) remains a challenging and un-012
derexplored area. We attempt to address this013
problem in this paper. To this end, we cre-014
ate a dataset in which we annotate each meme015
with its victim(s) such as the name of the tar-016
geted person(s), organization(s), and commu-017
nity(ies). We then propose DISARM (Detect-018
ing vIctimS targeted by hARmful Memes), a019
framework that uses named-entity recognition020
and person identification to detect all entities021
a meme is referring to, and then, incorporates022
a novel contextualized multimodal deep neu-023
ral network to classify whether the meme in-024
tends to harm these entities. We perform sev-025
eral systematic experiments on three differ-026
ent test sets, corresponding to entities that are027
(i) all seen while training, (ii) not seen as a028
harmful target while training, and (iii) not seen029
at all while training. The evaluation shows030
that DISARM significantly outperforms 10 uni-031
modal and multimodal systems. Finally, we032
demonstrate that DISARM is interpretable and033
comparatively more generalizable and that it034
can reduce the relative error rate of harmful035
target identification by up to 9% absolute over036
multimodal baseline systems.037

1 Introduction038

Social media platforms offer the freedom and the039

means to express deeply ingrained sentiments,040

which can be done using diverse and multimodal041

content such as memes. Besides being popu-042

larly used to express benign humour, Internet043

(a) Harmful reference (b) Harmless reference

Figure 1: (a) A meme that targets Justin Trudeau in a harmful
way, with a communal angle. (b) A non-harmful mention of
Justin Trudeau, as a benign humor.

memes are also misused to incite extreme reac- 044

tions, hatred, and to spread disinformation on a 045

massive scale. Numerous recent efforts have at- 046

tempted to characterize harmfulness (Pramanick 047

et al., 2021b), hate speech (Kiela et al., 2020), of- 048

fensiveness (Suryawanshi et al., 2020), etc. within 049

memes. Most of these efforts have been directed 050

towards detecting such malicious influence within 051

memes, but there has been little work on identi- 052

fying whom the memes target. Besides detecting 053

whether a meme is harmful, it is often important 054

to know whether the meme contains an entity that 055

is particularly targeted in a harmful way. This mo- 056

tivates us to address the problem of detecting the 057

entities that meme targets in a harmful way. 058

The harmful targeting in memes is often done 059

using satirical, sarcastic, or humorous elements. 060

This involves either explicit or implicit ways to 061

imply harm. Such stealth techniques are often 062

used to implicate an individual, an organization, 063

a community, or society, in general. For exam- 064

ple, Fig. 1a depicts Justin Trudeau as commu- 065

nally biased – against Canadians – while favor- 066

ing alleged killings by Muslims, whereas Fig. 1b 067

shows a benign meme expressing subtle humour. 068

Essentially, the meme in Fig. 1a harmfully tar- 069

gets Justin Trudeau directly, while causing indi- 070

rect harm to Canadians and to Muslims as well. 071

Also, a large number of memes require some addi- 072
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tional background context for holistic comprehen-073

sion. Hence, some challenges that indicate how in-074

tricate it is for an automated system to accurately075

detect harmful targeting in memes are the follow-076

ing: (i) insufficient background context, (ii) com-077

plexity posed by the implicit harm, and (iii) key-078

word bias in a supervised setting.079

We aim to address the task of harmful target de-080

tection from memes by posing it as an open-ended081

task. The end-to-end solution primarily requires082

(i) identification of the entities mentioned within083

a meme, and (ii) a multimodal framework that084

helps in detecting whether the referenced entity085

is being harmfully targeted in a given meme. Es-086

sentially, we perform systematic contextualization087

of the multimodal information presented within088

memes, by first performing intra-modal fusion be-089

tween external knowledge-based contextualized-090

entity and embedded-harmfulness in memes. This091

is followed by cross-modal fusion of contextual-092

ized textual and visual modalities using low-rank093

bi-linear pooling, as a contextualized-multimodal094

feature. We evaluate using three-level stress test-095

ing towards assessing their generalizability.096

We aim to address the aforementioned require-097

ments, and we make the following contributions1:098

1. We introduce a novel task of detecting harmful099

targets within a meme.100

2. We create a new dataset, by extending Harm-P101

(Pramanick et al., 2021b) via re-annotating the102

memes for the fine-grained entities they target.103

3. We propose DISARM, a novel multimodal104

neural architecture that models contextualized105

multimodal features, towards detecting the106

harmful targeting in memes.107

4. We empirically showcase that DISARM outper-108

forms 10 unimodal and multimodal baselines109

by 4%, 7%, and 13% increment in the macro-110

F1 scores in three different evaluation setups.111

5. We finally discuss DISARM’s generalizability112

and interpretability.113

2 Related Work114

Misconduct on Social Media. The rise in mis-115

conduct on social media has brought a range of116

related studies under active investigation. Some117

forms of online misconduct include rumors (Zhou118

1The source codes and dataset are uploaded in the sup-
plementary.

et al., 2019), fake news (Aldwairi and Alwahedi, 119

2018; Shu et al., 2017), misinformation (Ribeiro 120

et al., 2021), disinformation (Alam et al., 2021), 121

hate speech (MacAvaney et al., 2019a; Zhang 122

and Luo, 2018), trolling (Cook et al., 2018), and 123

cyber-bullying (Kowalski et al., 2014; Kim et al., 124

2021). Some notable work in this direction in- 125

cludes stance (Graells-Garrido et al., 2020) and ru- 126

mour veracity prediction, explored in a multi-task 127

learning framework (Kumar and Carley, 2019), 128

wherein the authors proposed a Tree LSTM for 129

characterizing online conversations. Wu and Liu 130

(2018) explored user and social network feature 131

embeddings towards classifying a message trajec- 132

tory as genuine vs. fake. User’s mood along 133

with the online contextual discourse was studied 134

by Cheng et al. (2017) to demonstrate better mod- 135

elling for trolling behaviour prediction in contrast 136

with using just the user’s behavioural history. Re- 137

lia et al. (2019) studied the synergy between dis- 138

crimination based on race, ethnicity and national 139

origin in the physical and in the virtual space. 140

Studies Focusing on Memes. Recent efforts 141

have shown interest in incorporating extra contex- 142

tual information for meme analysis. Shang et al. 143

(2021a) proposed knowledge-enriched graph neu- 144

ral networks that use common-sense knowledge 145

for offensive memes detection. Pramanick et al. 146

(2021a) focused on detecting COVID-19 related 147

harmful memes and highlighted the challenge of 148

inherent biases within existing multimodal sys- 149

tems. Pramanick et al. (2021b) further released 150

another dataset for US Politics and proposed a 151

multimodal framework for harmful meme detec- 152

tion. The Hateful Memes detection challenge by 153

Facebook (Kiela et al., 2020) introduced the task 154

of classifying a meme as either hateful or non- 155

hateful. Different approaches such as feature aug- 156

mentation, attention mechanism, and multimodal 157

loss re-weighting were attempted (Das et al., 2020; 158

Sandulescu, 2020; Zhou and Chen, 2020; Lippe 159

et al., 2020). Sabat et al. (2019) studied hateful 160

memes by highlighting the importance of visual 161

cues such as structural template, graphic modality, 162

causal depiction, etc. Interesting approaches such 163

as web-entity detection along with fair face clas- 164

sification (Karkkainen and Joo, 2021) and semi- 165

supervised learning-based classification (Zhong, 166

2020) were also used for the hateful meme classi- 167

fication task. Other noteworthy work includes im- 168

plicit models and topic modelling of multimodal 169
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Figure 2: Comparison plots of top-5 harmfully referenced entities, for their harmful/not-harmful referencing in our dataset.

Split # Samples Category
Harmful Not-harmful

Train 3618 1206 2412
Validation 216 72 144

Test 612 316 296

Table 1: Summary of Ext-Harm-P

cues for detecting offence analogy (Shang et al.,170

2021b) and hatefully discriminatory (Mittos et al.,171

2020) memes. Wang et al. (2020) argued that on-172

line attention can be garnered immensely via faux-173

tography content, which could eventually evolve174

towards becoming memes that go viral. Several175

datasets including the ones about offence, hate176

speech, harmfulness, etc. have been proposed177

(Suryawanshi et al., 2020; Kiela et al., 2020; Pra-178

manick et al., 2021a,b; Gomez et al., 2019).179

Most of these studies attempt to address classi-180

fication tasks in a constrained setting. However, to181

the best of our knowledge, none of them addressed182

the task of detecting the specific targets of hate,183

offence, harm, etc. We intend to explore precisely184

this task in this work for harmful memes.185

3 Dataset186

The Harm-P dataset (Pramanick et al., 2021b)187

consists of 3, 552 US politics memes. Each meme188

is annotated with its harmful label and the so-189

cial entity that it targets. The target entities are190

coarsely classified into four social groups – in-191

dividual, organization, community, and the gen-192

eral public. While these coarse classes provide an193

overall nature of targets, we feel the need to iden-194

tify the targeted person, organization, or commu-195

nity in a fine-grained fashion. All the memes in196

this dataset are on the same topic, and they target197

well-known personalities or organizations. To this198

end, we manually re-annotated this dataset with199

the name of the persons, the organizations, and the200

communities that the harmful memes target.201

Extending Harm-P (Ext-Harm-P). Towards 202

generalizability, we extend Harm-P by re- 203

formulating existing train/test splits, as shown in 204

Table 1. We call the resulting dataset Ext-Harm- 205

P. For training, we use the harmful memes pro- 206

vided as part of the original annotations in the 207

dataset (Pramanick et al., 2021b) and re-annotate 208

them for the fine-grained entities being targeted 209

harmfully as positive examples (harmful targets). 210

This is matched with twice as many negative ex- 211

amples (not-harmful targets). For negative targets, 212

top-2 entities that have the highest lexical simi- 213

larity with the meme text are selected (Ferreira 214

et al., 2016). This ensures very similarly, if not 215

the same (due to OCR-induced noise) entities ref- 216

erenced within a meme, thereby facilitating a con- 217

founding effect (Kiela et al., 2020) as well. The 218

overall test set is created by considering all enti- 219

ties referenced within memes. Entities are first ex- 220

tracted automatically using names entity recogni- 221

tion (NER) and person identification (PID)2. This 222

is followed by manual annotation of the test set to 223

address noisy assignments. 224

Data Annotation After extracting the entities 225

automatically, we manually annotate the test set 226

memes by refining the noisy entities with the help 227

of detailed annotation guidelines. Additional de- 228

tails about the annotation process are included in 229

Appendix D 230

Analyzing Harmful Targeting in Memes. 231

Since all memes in Ext-Harm-P are about US 232

Politics, a large number of them refer popular 233

entities like Joe Biden and Donald Trump, both 234

harmfully and harmlessly. For such harmful 235

references, the trade-off with their harmless coun- 236

terparts is observed to vary across individuals, 237

organizations, and communities categories, as 238

shown in Fig. 2. The top-5 harmfully referenced 239

2NER using SpaCy & PID using http://github.
com/ageitgey/face_recognition.
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individuals and organizations are observed to be240

subjected to a higher amount of harm, as against241

the support they garner. This could be due to242

infrequent reaction from such high profile entities,243

to online targeting. In contrast, the stacked plots244

for the top-5 harmfully targeted communities245

(Fig. 2c) either depict relatively higher support or246

harmless referencing/discussion on social media247

for communities like Mexicans, Black, Muslim,248

Islam, and Russian.249

4 Proposed Approach250

DISARM, as depicted in Fig. 3, models the fu-251

sion of textual and visual modalities, explicitly en-252

riched via contextualised representations by lever-253

aging CLIP Radford et al. (2021). At first, valid254

entities are extracted automatically, are part of255

the train/val set creation. Then for each meme,256

we first obtain the contextualized-entity (CE) rep-257

resentation by fusing the CLIP (Radford et al.,258

2021) encoded context and the entity representa-259

tion. CE is then fused with BERT-based (De-260

vlin et al., 2019) embedded-harmfulness (EH) en-261

coding fine-tuned over OCR-extracted text and262

entities as inputs. We call the fusion output263

contextualized-text (CT) representation. CT is264

then fused with the contextualized-image (CI) rep-265

resentation, obtained using the CLIP encoder for266

image. We, henceforth, refer to the resulting repre-267

sentation as the contextualized multimodal (CMM)268

representation. We slightly modify multimodal269

low-rank bi-linear pooling (Kim et al., 2017), to270

fuse joint embedding space representations of in-271

put features. This approach not only captures272

complex cross-modal features, but also provides273

an efficient fusion mechanism towards obtaining274

context-enriched features. Finally, CMM is used275

to train a classification head for our task. We de-276

scribe each module in more detail below.277

Low-rank Bi-linear Pooling (LRBP). We be-278

gin by revisiting low-rank bi-linear pooling to set279

the necessary background. Due to many param-280

eters in bi-linear models, Pirsiavash et al. (2009)281

suggested a low-rank bi-linear (LRB) approach to282

reduce the rank of the weight matrix Wi. Con-283

sequently parameters, and hence the complexity284

is reduced. The weight matrix Wi is re-written285

as Wi = UiV
T
i , where Ui ∈ RN×d and286

Vi ∈ RM×d, effectively putting an upper bound287

of min(N,M) on the value of d. Therefore, the288

low-rank bi-linear models can be expressed as fol-289

lows: 290

fi = xTWiy = xTUiV
T
i y = 1

T (UT
i x ◦VT

i y) (1) 291

where 1 ∈ Rd: column vector of ones, and ◦: 292

Hadamard product. fi in Equation 1 can be fur- 293

ther re-written to obtain f as follows: 294

f = PT (UTx ◦VTy) + b (2) 295

where f ∈ {fi}, P ∈ Rd×c, b ∈ Rc. d and c: 296

output and LRB hyper-parameters. 297

Following (Kim et al., 2017), we introduce a 298

non-linear activation based formulation for the 299

LRBP. Kim et al. (2017) argued that non-linearity 300

both before and after the Hadamard product com- 301

plicates the gradient computation. This, addition 302

to Equation 2, can be represented as follows: 303

f = PT tanh(UTx ◦VTy) + b (3) 304

We slightly modify multimodal low-rank bi- 305

linear pooling (MMLRBP). Instead of directly 306

projecting the input x ∈ RN and y ∈ RM to 307

a lower dimension d, we first project the input 308

modalities in a joint space (N ). We then per- 309

form LRBP as expressed in Equation 3, by using 310

jointly embedded representations xmm ∈ RN×d 311

and ymm ∈ RN×d to obtain a multimodal fused 312

feature fmm, as expressed below: 313

fmm = PT tanh(UTxmm ◦VTymm) (4) 314

Structured Context. Towards modelling auxil- 315

iary knowledge, we curate contexts for the memes 316

in Ext-Harm-P. First, we use meme text as the 317

search query3 to retrieve relevant contexts. We 318

treat the title and the first paragraph from the 319

top resulting document, towards modelling the re- 320

quired context and represent it as con. 321

Contextualized-entity Representation (CE). 322

Towards modelling the context enriched entity, 323

we first obtain the embedding of a given entity 324

ent. Since we have a finite set of entities refer- 325

enced in the memes in our dataset, we perform 326

a lookup in the embedding matrix (∈ RV×H ) 327

to obtain the corresponding entity embedding 328

ent ∈ RH , with H = 300 being the embedding 329

dimension and V is the vocabulary size. The 330

embedding matrix is jointly trained from scratch, 331

during training. We project the obtained entity 332

3https://pypi.org/project/
googlesearch-python/
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Figure 3: Architecture of DISARM (our proposed approach).
cmm is the multimodal feature used for classification.

representation ent into 512 dimensional space,333

and we call it e. To augment a given entity with334

relevant contextual information, we fuse it with335

contextual representation c ∈ R512, obtained by336

encoding the associated context (con) using CLIP337

text-encoder (Radford et al., 2021). We perform338

this fusion using our adaptation of multimodal339

low-rank bi-linear pooling (Equation 4). This340

gives contextualized-entity (CE) representation341

cent as shown below:342

cent = PT
1 tanh(UT

1 e ◦VT
1 c) + b (5)343

where cent ∈ R512, P1 ∈ R256×512, b ∈ R512,344

U1 ∈ R512×256 and V1 ∈ R512×256.345

Contextualized-Text (CT) Representation.346

Once we obtain the contextualized-entity em-347

bedding cent, we concatenate it with the BERT348

encoding for the combined representation of the349

OCR-extracted text and the entity (oent ∈ R768).350

We call this encoding embedded-harmfulness351

(EH) representation. The concatenated fea-352

ture ∈ R1280 is then projected non-linearly353

into a lower dimension using a dense layer of354

size 512. We term the resultant vector ctxt as355

contextualized-text (CT) representation.356

ctxt = Wi[oent, cent] + bi (6)357

where W ∈ R1280×512.358

Contextualized Multimodal (CMM) Represen-359

tation. Once we obtain the contextualized-text360

representation ctxt ∈ R512, we again per-361

form multimodal low-rank bi-linear pooling us-362

ing Equation 4 to fuse it with the contextualized-363

image representation cimg ∈ R512, obtained using364

CLIP image-encoder (Radford et al., 2021). The365

operation is expressed as366

cmm = PT
2 tanh(UT

2 ctxt ◦VT
2 cimg) (7)367

where cmm ∈ R512, P2 ∈ R256×512, U2 ∈ 368

R512×256 and V2 ∈ R512×256. Notably, we learn 369

two different projection matrices P1 and P2, for 370

the two fusion operations performed as part of 371

Equations 5 and 7, respectively since the fused 372

representations at the respective steps are obtained 373

using different modality-specific interactions. 374

Classification Head. Towards modelling the bi- 375

nary classification for a given meme and a corre- 376

sponding entity as either harmful or non-harmful, 377

we use a shallow multi-layer perceptron with a 378

single dense layer of size 256, which represents 379

a condensed representation for classification. We 380

finally map this layer to a single dimension out- 381

put via a sigmoid activation. We use binary cross- 382

entropy for the back-propagated loss. 383

5 Experiments 384

We train DISARM and all unimodal baselines us- 385

ing PyTorch and multimodal baselines using the 386

MMF framework4 5. We experiment with various 387

state-of-the-art unimodal (image/text-only) and 388

multimodal baseline systems, including the ones 389

that are pre-trained using multimodal datasets 390

such as MS COCO (Lin et al., 2014) and CC 391

(Sharma et al., 2018). For evaluation, we use com- 392

monly used metrics such as accuracy, precision, 393

recall (including their class-wise scores) along 394

with F1 score, and we macro-average them. The 395

harmful class recall is relevant for our study as it 396

characterizes the model performance, towards de- 397

tecting harmfully targeting memes correctly. The 398

results reported are averaged across five indepen- 399

dent runs. 400

Evaluation Strategy. Towards examining a re- 401

alistic setting, we pose our evaluation strategy 402

as an open-class one. We train all the systems 403

with the set having positive (harmful) samples 404

and twice as many negative (not-harmful) sam- 405

ples. We then evaluate using open-class testing, 406

for all referenced entities (some possibly unseen 407

during training) per meme, effectively making the 408

evaluation more realistic. To this end, we formu- 409

late three testing scenarios as follows, with their 410

Harmful (H) and Not-harmful(N) sample counts: 411

(a) Test set A (316H, 296NH) – Includes exam- 412

ples with entities seen during training. 413

4github.com/facebookresearch/mmf
5Additional details along with the hyper-parameters are

reported in Appendix A.
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(b) Test set B (27H, 94NH) – The examples in414

this set correspond to the entities that are un-415

seen as harmful, during training.416

(c) Test set C (16H, 76NH) – Only entities that417

are unseen as either harmful or not-harmful418

during the training are considered.419

Baseline Models. Our baselines include both420

unimodal and multimodal models as follows:421

– Unimodal Systems: I VGG16, VIT: For the422

unimodal (image-only) systems, we use two423

well-known models: VGG16 (Simonyan and424

Zisserman, 2015) and VIT (Vision Transform-425

ers) that emulate a Transformer based appli-426

cation jointly over textual tokens and image427

patches (Dosovitskiy et al., 2021). I GRU, XL-428

Net: For the unimodal (text-only) systems, we429

use GRU (Cho et al., 2014), which adaptively430

captures temporal dependencies, and XLNet431

(Yang et al., 2020), which implements a gener-432

alized auto-regressive pre-training strategy.433

– Multimodal Systems: I MMF Transformer:434

This is a multimodal Transformer model that435

utilizes visual and language tokens with self-436

attention6. I MMBT: Multimodal Bitrans-437

former (Kiela et al., 2019) captures the intra-438

modal and the inter-modal dynamics of the two439

modalities. I ViLBERT CC: Vision and Lan-440

guage BERT (Lu et al., 2019), pre-trained for441

conceptual captions (Sharma et al., 2018) based442

pretext task, is a strong model with task-agnostic443

joint representation of images and text. I Vi-444

sual BERT COCO: Visual BERT (Li et al.,445

2019), pre-trained on the MS COCO dataset446

(Lin et al., 2014).447

Experimental Results. We compare the perfor-448

mance of several unimodal and multimodal sys-449

tems (pre-trained and otherwise) and DISARM450

along-with its variants. All systems are evalu-451

ated using the 3-way testing strategy described452

above. We then perform ablation studies over453

contextualized-entity, its fusion with embedded-454

harmfulness resulting into contextualized-text and455

the final fusion with contextualized-image, yield-456

ing the contextualized-multimodal modules of457

6http://mmf.sh/docs/notes/model_zoo

DISARM7,8. This is followed by interpretability 458

analysis. Finally, we discuss the limitations of 459

DISARM by performing error analysis9. 460

All Entities Seen During Training: Towards uni- 461

modal text-only baseline evaluation, the GRU- 462

based system yields a relatively lower harmful re- 463

call 0.74 along-with an overall better F1 0.75, 464

in comparison to XLNet’s 0.82 and a lower F1 465

of 0.67, as shown in Table 2. The lower harm- 466

ful precision 0.65 and not-harmful recall of 0.52 467

contribute to the lower F1 score for XLNet. 468

Amongst image-only unimodal systems, VGG- 469

based (image-only) system performs better with 470

not-harmful recall 0.81, but is poor for detecting 471

the harmful memes correctly with a lower harmful 472

recall value of 0.68. On the other hand, VIT has a 473

relatively better harmful class recall 0.74. Overall, 474

the unimodal results (Table 2) indicate the efficacy 475

of self-attention processing of the input modality 476

as compared to that for convolution-based opera- 477

tion for images and RNN (GRU) sequence model- 478

ing for text. 479

Multimodally pre-trained models such as Vi- 480

sualBERT (MS COCO (Lin et al., 2014)) and 481

ViLBERT (Conceptual Captions (Sharma et al., 482

2018)), yield moderate F1 scores of 0.70 and 0.68, 483

and harmful recall values of 0.78 and 0.77, respec- 484

tively (Table 2). Fresh training facilitates more 485

meaningful results in favour of not-harmful preci- 486

sion (0.78 and 0.78 respectively) and harmful re- 487

call (0.84 and 0.82 respectively). Overall, ViL- 488

BERT yields the most balanced performance with 489

0.75 F1 score. It can be inferred from these re- 490

sults (Table 2) that multimodal pre-training could 491

leverage domain relevance. 492

Multimodal low-rank bi-linear pooling is ob- 493

served to distinctly enhance the performance by 494

4% and 6% F1 scores. The improvements can be 495

attributed to the fusion of the CE and EH repre- 496

sentations, respectively with CI, instead of a sim- 497

ple concatenation (Table 2). This is more promi- 498

nent for CE with 0.78 F1, effectively implying the 499

importance of the background context. Finally, 500

DISARM is observed to yield a balanced perfor- 501

mance with 0.78 F1 score, having a reasonable 502

precision of 0.74 for non-harmful and the best 503

7We use abbreviations CE, CT, CI, CMM, EH, and
MMLRBP for contextualized representations of entity, text,
image, multimodal feature, embedded-harmfulness and mul-
timodal low-rank bi-linear pooling, respectively.

8Ablation study is reported in Appendix C
9Error analysis is discussed in Appendix B
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System Modality Approach
Test Set A Test Set B

Acc Prec Rec F1 Not-harmful Harmful Acc Prec Rec F1 Not-harmful Harmful
P R P R P R P R

XLNet Text-only 0.6765 0.69 0.67 0.6663 0.73 0.52 0.65 0.82 0.5041 0.425 0.405 0.4060 0.72 0.59 0.13 0.22
VGG Image-only 0.7451 0.75 0.745 0.7438 0.71 0.81 0.79 0.68 0.5455 0.42 0.405 0.4101 0.73 0.66 0.11 0.15
GRU Text-only 0.7484 0.745 0.75 0.7473 0.73 0.76 0.76 0.74 0.5455 0.43 0.42 0.4210 0.73 0.65 0.13 0.19

U
ni

m
od

al
VIT Image only 0.7647 0.765 0.765 0.7642 0.74 0.79 0.79 0.74 0.5207 0.525 0.535 0.4843 0.8 0.51 0.25 0.56
ViLBERT CC 0.6895 0.69 0.685 0.6835 0.71 0.6 0.67 0.77 0.438 0.535 0.53 0.4302 0.82 0.35 0.25 0.71
MM Transformer 0.6993 0.71 0.695 0.6926 0.75 0.57 0.67 0.82 0.7769 0.53 0.575 0.5032 0.78 0.51 0.28 0.64
VisualBERT 0.7026 0.725 0.69 0.6918 0.78 0.54 0.67 0.84 0.5537 0.545 0.565 0.5108 0.82 0.54 0.27 0.59
VisualBERT – COCO 0.7059 0.71 0.7 0.7014 0.73 0.62 0.69 0.78 0.5785 0.53 0.545 0.5147 0.8 0.61 0.26 0.48
MMBT 0.7157 0.72 0.71 0.7121 0.74 0.64 0.7 0.78 0.6116 0.54 0.55 0.5310 0.81 0.66 0.27 0.44

B
as

el
in

es

ViLBERT 0.7516 0.755 0.75 0.7495 0.78 0.68 0.73 0.82 0.6612 0.58 0.595 0.5782 0.83 0.71 0.33 0.48
CE + CI (concat) 0.7353 0.74 0.735 0.7361 0.71 0.77 0.77 0.7 0.4793 0.46 0.44 0.4230 0.74 0.51 0.18 0.37
CE + CI (MMLRBP) 0.781 0.785 0.78 0.7790 0.74 0.84 0.83 0.72 0.562 0.535 0.545 0.5079 0.81 0.57 0.26 0.52
EH + CI (concat) 0.6634 0.665 0.66 0.6609 0.67 0.6 0.66 0.72 0.5868 0.505 0.51 0.4964 0.78 0.65 0.23 0.37
EH + CI (MMLRBP) 0.7255 0.73 0.725 0.7260 0.74 0.67 0.72 0.78 0.6612 0.545 0.555 0.5470 0.8 0.74 0.29 0.37

Pr
op

.s
ys

te
m

&
va

ri
an

ts M
ul

tim
od

al

DISARM 0.781 0.74 0.835 0.7845 0.74 0.81 0.74 0.86 0.74 0.605 0.74 0.6498 0.83 0.79 0.38 0.69
∆(DISARM −−V iLBERT )×100(%) ↑ 2.94% ↓ 1.5% ↑ 8% ↑ 3.5% ↓ 4% ↑ 13% ↑ 1% ↑ 4% ↑ 7.88% ↑ 2.5% ↑ 14.5% ↑ 7.16% – ↑ 8% ↑ 5% ↑ 21%

Table 2: Performance comparison of unimodal and multimodal baselines vs DISARM (and its variants) on Test Set A and B.

Not-harmful HarmfulSys Approach Acc Prec Rec F1 P R P R
GRU Text-only 0.478 0.45 0.41 0.394 0.78 0.51 0.12 0.31
VIT Image only 0.532 0.435 0.4 0.403 0.78 0.61 0.09 0.19
XLNet Text-only 0.445 0.51 0.515 0.415 0.84 0.41 0.18 0.62

U
ni

m
od

al

VGG Image-only 0.532 0.45 0.42 0.414 0.79 0.59 0.11 0.25
ViLBERT CC 0.358 0.53 0.49 0.350 0.87 0.26 0.19 0.72
VisualBERT 0.478 0.535 0.56 0.442 0.87 0.43 0.2 0.69
MM Transformer 0.510 0.505 0.505 0.448 0.83 0.51 0.18 0.5
ViLBERT 0.608 0.525 0.54 0.505 0.84 0.64 0.21 0.44
VisualBERT – COCO 0.771 0.525 0.515 0.511 0.83 0.91 0.22 0.12

B
as

el
in

es

MMBT 0.587 0.55 0.575 0.514 0.87 0.59 0.23 0.56
CE + CI (concat) 0.456 0.495 0.495 0.412 0.82 0.43 0.17 0.56
CE + CI (MMLRBP) 0.532 0.55 0.595 0.485 0.88 0.5 0.22 0.69
EH + CI (concat) 0.532 0.48 0.475 0.442 0.81 0.57 0.15 0.38
EH + CI (MMLRBP) 0.619 0.5 0.495 0.483 0.83 0.68 0.17 0.31

Pr
op

.s
ys

te
m

&
va

ri
an

ts

M
ul

tim
od

al

DISARM 0.739 0.61 0.73 0.641 0.86 0.76 0.36 0.7
∆(DISARM −−MMBT )×100(%) ↑ 15.21% ↑ 6% ↑ 15.5% ↑ 12.66% ↓ 1% ↑ 17% ↑ 13% 14%

Table 3: Performance comparison of unimodal and multi-
modal baselines vs DISARM (and its variants) on Test Set C.

recall of 0.86 for the harmful categories, respec-504

tively.505

All Entities Unseen as Harmful Targets During506

Training: With Test Set B, the evaluation is made507

slightly more challenging (Table 2) in terms of the508

entities to be assessed, as these were never seen as509

part of the training process as harmful. Unimodal510

systems mostly perform poorly in terms of both511

precision and recall for harmful class, with the ex-512

ception of XLNet (Table 2) with harmful class re-513

call as 0.56. For the multimodal baselines, the per-514

formance of the systems that are pre-trained using515

COCO (VisualBERT) and CC (ViLBERT) yields516

moderate recall of 0.64 and 0.71 for the harmful517

class in contrast to what we saw for Test Set A in518

Table 2. This could be due to additional common-519

sense reasoning facilitated by such systems, on a520

test set that is more open-ended compared to Test521

Set A. Their non-pre-trained versions along with522

MM Transformer and MMBT achieve better F1523

scores, but with low harmful class recall.524

Multimodal fusion using MMLRBP is observed525

(Table 2) to obtain an improved harmful class526

recall for CE (0.52) and lower values for EH527

(0.37) based fusion with CI, respectively. This528

reconfirms the utility of context. In comparison,529

DISARM yields a balanced F1 score of 0.6498530

with the best precision values 0.83 and 0.38, along 531

with decent recall values of 0.79 and 0.69 for not- 532

harmful and harmful memes, respectively. 533

All Entities Unseen During Training: The results 534

decline in this scenario (similarly to Test Set B), 535

except for the harmful class recall score for XL- 536

Net (0.62), as shown in Table 3. In the current 537

scenario (Test Set C), none of the entities being 538

assessed during testing is seen during the training 539

phase. For multimodal baselines, we see a simi- 540

lar trend for VisualBERT (COCO) and ViLBERT 541

(CC), with the harmful class recall of 0.72 for ViL- 542

BERT (CC) being significantly better than 0.12 543

for VisualBERT (COCO). This again emphasizes 544

the need for the affinity between the pre-training 545

dataset and the downstream task at hand. In gen- 546

eral, the precision for the harmful class is very low. 547

We observe (Table 3) significant increase in the 548

harmful class recall for MMLRBP-based multi- 549

modal fusion of CI with CE (0.69%), as against 550

a decrease in the same with EH (0.31%). In com- 551

parison to all other systems, DISARM yields a low, 552

yet the best harmful precision value of 0.36 and a 553

moderate recall value of 0.70, as can be observed 554

in Table 3. Also, besides yielding reasonable pre- 555

cision and recall values of 0.86 and 0.76, respec- 556

tively, for the not-harmful class, DISARM exhibits 557

better average precision, recall, and F1 scores of 558

0.61, 0.73 and 0.64, respectively. 559

Generalizability of DISARM. The generaliz- 560

ability of DISARM follows from the characteris- 561

tic modelling and context-based fusion. Although 562

there is still scope for improvement in terms of the 563

performance and generalizability beyond US Pol- 564

itics, DISARM demonstrates the potential for de- 565

tecting harmful targeting for a diverse set of en- 566

tities. Specifically, the three-way testing setup in- 567

herently captures the efficacy with which DISARM 568
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(a) L-AT (b) MM-AT-CLIP (c) V-AT-DISARM (d) V-AT-ViLBERT

Target Candidate→democratic party

Context→Politics tears families apart during bruising political season, when many Americans drop
friends and family members who have different political views.

Figure 4: Comparison of the attention-maps for DISARM [(a), (b) & (c)] and ViLBERT [(d)] using BertViz and Grad-CAM.

can detect unseen harmful targets. Prediction for569

entities completely unseen during training is ob-570

served to be better as compared to when they are571

not seen as just harmful targets (Table 2 and 3),572

which could be due to the induced bias and limited573

training data. This could be addressed by training574

with a balanced dataset at scale. Overall, we ar-575

gue that DISARM reveals encouraging generaliz-576

ability with its performance on unseen entities by577

performing best with 0.6498 and 0.6412 macro-578

F1 scores, as compared to ViLBERT’s 0.5782 and579

MMBT’s 0.5146, for Test Sets B and C, respec-580

tively.581

Comparative Diagnosis. Despite marginally582

better harmful recall of ViLBERT (CC) for Test583

Sets B (Table 2) and C (Table 3), the overall bal-584

anced performance of DISARM appears to be rea-585

sonably justified based on the comparative inter-586

pretability analysis between the attention maps for587

both the systems. Fig. 4 shows attention maps for588

an example meme. It depicts a meme that is cor-589

rectly predicted for harmfully targeting democratic590

party by DISARM and incorrectly by ViLBERT.591

As visualised in Fig. 4a, harmfully-inclined word592

killing effectively attends not only to baby, but593

also to democrats and racist. The relevance is de-594

picted via different color schemes and intensities,595

respectively. Interestingly, killing also attends to596

democratic party, both as part of OCR-extracted597

text and the target-candidate, jointly encoded by598

BERT. Multimodal attention being leveraged by599

DISARM depicted (via CLIP encoder) in Fig. 4b,600

demonstrates the utility of contextualised attention601

over male figure depicted, who represents insinu-602

ation of democratic party. Also, DISARM has a603

relatively focused field of vision, shown in Fig. 4c 604

as compared to a relatively scattered one for ViL- 605

BERT (Fig. 4d). This demonstrates a better mul- 606

timodal modelling capacity of DISARM as com- 607

pared to that of ViLBERT. 608

6 Conclusion and Future Work 609

In this work, we introduced a novel task of de- 610

tecting victimized entities within harmful memes 611

and highlighted the inherent challenges involved. 612

Towards addressing this open-ended task, we ex- 613

tended Harm-P with target entities for each harm- 614

ful meme. We then proposed a novel multimodal 615

deep neural framework, called DISARM that em- 616

ploys an adaptation of multimodal low-rank bi- 617

linear pooling-based fusion strategy at different 618

levels of feature abstraction. We showed that 619

DISARM outperforms various uni/multi-modal 620

baselines in three different scenarios by 4%, 7%, 621

and 13% increments in the macro-F1 score, re- 622

spectively. Also, DISARM achieved a relative er- 623

ror rate reduction of 9% over the best baseline. We 624

further emphasized the utility of different compo- 625

nents of DISARM through ablations studies. We 626

also elaborated on the generalizability of DISARM 627

and established its modelling efficacy over that of 628

ViLBERT via. interpretability analysis. We finally 629

analysed the shortcomings in DISARM that lead to 630

incorrect harmful target predictions. Through this 631

work, we made an attempt towards eliciting a few 632

inherent challenges pertaining to the task at hand 633

– augmenting relevant context, effectively fusing 634

multiple modalities, and pre-training. This rein- 635

states the required motivation and leaves scope for 636

future investigations in this direction. 637
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Ethics and Broader Impact638

Reproducibility. We present detailed hyper-639

parameter configurations in Appendix A and Ta-640

ble 4. We commit to releasing the dataset and the641

source code upon the acceptance of this paper.642

User Privacy. The meme content and the asso-643

ciated information doesn’t include any personal644

information. Issues related to copyright are ad-645

dressed as part of the dataset source.646

Annotation. The annotation was conducted by647

experts working in NLP or linguists in India.648

We treated the annotators fairly and with respect.649

They were paid as per the standard local paying650

rate. Before beginning the annotation process,651

we requested every annotator to thoroughly go652

through the annotation guidelines. We further con-653

ducted several discussion sessions to make sure654

all annotators could understand well what harmful655

targeting is and how to differentiate it from not-656

harmful or benign references.657

Biases. Any biases found in the dataset are un-658

intentional, and we do not intend to cause harm to659

any group or individual. We acknowledge that de-660

tecting harmfulness can be subjective, and thus it661

is inevitable that there would be biases in our gold-662

labelled data or the label distribution. This is ad-663

dressed by working on a dataset that is created us-664

ing general keywords about US Politics, and also665

by following a well-defined schema, which sets666

explicit definitions during annotation.667

Misuse Potential. We state that this dataset668

can be potentially used for ill-intended pur-669

poses, like biased targeting of individu-670

als/communities/organizations, etc. that may671

or may not be related to demographics and other672

information within the text. Intervention with673

human moderation would be required to ensure674

that this does not occur.675

Intended Use. We make use of the existing676

dataset in our work in line with the intended usage677

prescribed by its creators and solely for research678

purposes. This applies in its entirety to its further679

usage as well. We commit to releasing our dataset680

aiming to encourage research in studying harmful681

targeting in memes on the web. We distribute the682

dataset for research purposes only, without a li-683

cense for commercial use. We believe that it rep-684

resents a useful resource when used appropriately.685

Environmental Impact. Finally, due to the re- 686

quirement of GPUs/TPUs large-scale Transform- 687

ers require a lot of computations, contributing to 688

global warming (Strubell et al., 2019). However, 689

in our case, we do not train such models from 690

scratch; rather, we fine-tune them on relatively 691

small datasets. Moreover, running on a CPU for 692

inference, once the model has been fine-tuned, is 693

perfectly feasible, and CPUs contribute much less 694

to global warming. 695
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Appendix959

BS #Epochs LR V-Enc T-Enc #Param

UM

GRU 32 25 0.0001 - bert 2M
XLNet 16 20 0.0001 - xlnet 116M
VGG16 32 25 0.0001 VGG16 - 117M
ViT 16 20 0.0001 vit - 86M

MM

MMFT 16 20 0.001 ResNet-152 bert 170M
MMBT 16 20 0.001 ResNet-152 bert 169M
ViLBERT* 16 10 0.001 Faster RCNN bert 112M
V-BERT* 16 10 0.001 Faster RCNN bert 247M
DISARM 16 30 0.0001 vit bert 111M

Table 4: Hyperparameters summary. [BS→Batch
Size; LR→Learning Rate; V/T-Enc→Vision/Text-
Encoder; vit→vit-base-patch16-224-in21k;
bert:→bert-base-uncased;
xlnet→xlnet-base-uncased].

A Implementation Details and960

Hyperparameter Values961

We train all the models using PyTorch on an962

actively dedicated NVIDIA Tesla V100 GPU,963

with 32 GB dedicated memory, CUDA-11.2 and964

cuDNN-8.1.1 installed. For the unimodal mod-965

els, we import all the pre-trained weights from966

the TORCHVISION.MODELS10, a sub-package967

of the PyTorch framework. We initialize the968

remaining weights randomly using a zero-mean969

Gaussian distribution with a standard deviation of970

0.02. We train DISARM in a setup considering971

only harmful class data from Harm-P (Pramanick972

et al., 2021b). We extend it by manually anno-973

tating for harmful targets, followed by including974

not-harmful samples using automated entity ex-975

traction (textual and visual) strategies for train/val976

splits and manual annotation (for both harmful and977

not-harmful) for the test split.978

We train all models we experiment with, us-979

ing the Adam optimizer (Kingma and Ba, 2015)980

with a learning rate of 1e−4, with a weight de-981

cay of 1e−5 and a Binary Cross-Entropy (BCE)982

loss as the objective function. We extensively fine-983

tuned our experimental setups, based upon differ-984

ent architectural requirements to finalise on afore-985

mentioned hyper-parameters. We also use early-986

stopping for saving the best intermediate check-987

points as well. Table 4 gives more detail about the988

hyper-parameters we used for training. On aver-989

age, it took approx. 2:30 hours to train a multi-990

modal neural model.991

(a) L-AT

(b) MM-AT-
CLIP

(c) V-AT-
DISARM

(d) V-AT-
ViLBERT

Target Candidate→person of color

Context→During the evening of the
VP debates, Joe Biden settled
down on his soft couch with
a glass of warm milk to watch
this.

Figure 5: Comparison of attention-maps for a miclassifica-
tion, between DISARM [(a), (b) & (c)] and ViLBERT [(d)]
using BertViz and Grad-CAM.

B Error Analysis 992

It is evident from the results shown in Table 2 and 993

3, that DISARM still has short-comings. Examples 994

like the one shown in Fig. 5 are seemingly harm- 995

less, both textually and visually, but imply serious 996

harm to a person of color in an implicit way. Such 997

complexity can be challenging to model, without 998

providing additional context like people of colour 999

face racial discrimination all over the world. This 1000

is also analogous to a fundamental challenge as- 1001

sociated with detecting implicit hate (MacAvaney 1002

et al., 2019b). Despite modelling contextual in- 1003

formation explicitly in DISARM, it misclassifies 1004

this meme. Although the context obtained for 1005

this meme pertains to its content (Fig. 5), it does 1006

not relate to global racial prejudice, which is key 1007

to ascertaining it as a harmfully targeting meme. 1008

Moreover, besides context, visuals and the mes- 1009

10http://pytorch.org/docs/stable/
torchvision/models.html

12

http://pytorch.org/docs/stable/torchvision/models.html
http://pytorch.org/docs/stable/torchvision/models.html


Test Set A Test Set B Test Set C
Not-harmful Harmful Not-harmful Harmful Not-harmful HarmfulApproach F1 P R P R F1 P R P R F1 P R P R

CE 0.7411 0.71 0.78 0.77 0.71 0.4847 0.78 0.95 0.29 0.07 0.4829 0.83 0.93 0.17 0.06
EH 0.7250 0.75 0.66 0.71 0.79 0.5544 0.81 0.72 0.3 0.41 0.5658 0.88 0.68 0.27 0.56
CI 0.7729 0.74 0.82 0.81 0.73 0.5174 0.79 0.89 0.29 0.15 0.5314 0.84 0.87 0.23 0.19
CE + EH 0.7406 0.71 0.78 0.78 0.7 0.5775 0.82 0.74 0.33 0.44 0.5840 0.89 0.7 0.29 0.57
CE + CI (concat) 0.7361 0.71 0.77 0.77 0.7 0.4230 0.74 0.51 0.18 0.37 0.4125 0.82 0.43 0.17 0.56
CE + CI (MMLRBP) 0.7790 0.74 0.84 0.83 0.72 0.5079 0.81 0.57 0.26 0.52 0.4857 0.88 0.5 0.22 0.69
EH + CI (concat) 0.6609 0.67 0.6 0.66 0.72 0.4964 0.78 0.65 0.23 0.37 0.4421 0.81 0.57 0.15 0.38
EH + CI (MMLRBP) 0.7260 0.74 0.67 0.72 0.78 0.5470 0.8 0.74 0.29 0.37 0.4836 0.83 0.68 0.17 0.31
DISARM 0.7845 0.74 0.81 0.74 0.86 0.6498 0.83 0.79 0.38 0.69 0.6412 0.86 0.76 0.36 0.7

Table 5: Ablation results for DISARM and its variants for Test Sets A, B and C.

sage embedded within the meme do not convey1010

definite harm when considered in isolation. This1011

error can be inferred clearly from the embedded-1012

harmfulness, contextualised-visuals, and the visu-1013

als being attended by DISARM as depicted in Fig.1014

5a, 5b and 5c respectively. On the other hand, as1015

shown in the visual attention plot for ViLBERT1016

in Fig. 5d, the field of view being attended to1017

encompasses the visuals of Kamala Harris, who1018

is the person of colour being primarily targeted1019

through the meme. Besides the distinct attention1020

on the primary target-candidate within the meme,1021

ViLBERT could have leveraged the pre-training it1022

received from Conceptual Captions (CC) (Sharma1023

et al., 2018), a dataset known for its diverse cov-1024

erage of complex textual descriptions. This essen-1025

tially highlights the importance of multimodal pre-1026

training using the dataset that is not as generic as1027

MS COCO (Lin et al., 2015), but facilitate mod-1028

elling of the complex real-world multimodal in-1029

formation, especially for tasks related to memes.1030

C Ablation Study1031

In this section, we present some ablation studies1032

for CE, EH, CT and CI based sub-modules of1033

DISARM, examined in isolation and combinations,1034

and finally for DISARM using CMM representa-1035

tion.1036

Test Set A: As observed in the comparisons made1037

with the other baseline systems for the Test Set A1038

in Table 2, the overall range of the F1 scores is1039

relatively higher with the least value observed to1040

be 0.66 for XLNet (text-only) model, the results1041

for unimodal systems is satisfactory with values of1042

0.74, 0.73, and 0.77 for CE EH, and CI based uni-1043

modal systems, respectively. For multimodal sys-1044

tems, we can observe distinct lead for the MML-1045

RBP-based fusion strategy, for both CE and EH1046

based systems over the concatenation-based ap-1047

proach, except for EH’s recall drop by 7%. Fi-1048

nally DISARM yields the best overall F1 score of 1049

0.7845. 1050

Test Set B: With context not having any harmful- 1051

ness cues for a given meme, the unimodal CE 1052

based module performs the he worst with 0.48 F1 1053

and 0.07 harmful recall, in the open-ended setting 1054

of Test Set B. In contrast, EH yields an impres- 1055

sive F1 score of 0.55 and a harmful recall of 0.41. 1056

This relative gain of 7% in the F1 score could be 1057

due to the presence of explicit harmfulness cues. 1058

The complementary effect of considering contex- 1059

tual information can be inferred from the joint 1060

modeling of CE and EH, to obtained CT, that en- 1061

hances the F1 and harmful recall by 2% and 3%, 1062

respectively (Table 5). Unimodal assessment of CI 1063

performs moderately with 0.51 F1 score, but with 1064

a poor harmful recall of 0.15. MMLRBP, towards 1065

joint-modeling of CE and CI yields a significant 1066

boost of the harmful recall value 0.52 (Table 5). 1067

On the other hand, MMLRBPbased fusion of EH 1068

and CI yields 0.54 F1 score, which is 1% below 1069

that for the unimodal EH system. This emphasizes 1070

the importance of accurately modeling the embed- 1071

ded harmfulness, besides augmenting with addi- 1072

tional context. The complementary effects of CE, 1073

EH, and CI are observed for DISARM with a bal- 1074

anced F1 score of 0.65 and a competitive harmful 1075

recall value of 0.69. 1076

Test Set C: As observed in the previous scenario 1077

(Test Set B), the unimodal models for CE yield 1078

a low F1 score of 0.48 and the worst harmful re- 1079

call value of 0.06. Much better performance is ob- 1080

served for unimodal setups involving the EH and 1081

its joint modelling with CE with an improved F1 1082

score of 0.56 and 0.58, along with the harmful re- 1083

call score of 0.56 and 0.57, respectively. CI based 1084

unimodal evaluation again yields a moderate F1 1085

score of 0.53 (Table 5), along with a poor harm- 1086

ful recall of 0.19, which shows its insufficiency 1087

for modelling harmful targeting on its own. For 1088
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(a) Harmful analogy (b) Sensitive visuals (c) Political grounds (d) Religious grounds (e) National threat

Figure 6: Examples of memes depicting different types ((a)–(e)) of harmful targeting.

multimodal setups, the joint modelling of CE and1089

CI benefits from MMLRBP based fusion, yield-1090

ing a gain of 7% and 13% in F1 and harmful re-1091

call, respectively. This confirms the importance of1092

contextual multimodal semantic alignment. Cor-1093

respondingly, joint multimodal modelling of EH1094

and CI regresses the unimodal affinity within the1095

EH. Finally, DISARM outperforms all other sys-1096

tems in this category with the best F1 score of1097

0.64, with a decent harmful recall score of 0.7.1098

The results reported in this work are for the1099

comparison and analysis of the most optimal set1100

of design and baseline choices. We have per-1101

formed extensive experiments as part of prelimi-1102

nary investigations, with different contextual mod-1103

elling strategies, attention mechanisms, modelling1104

choices, etc., to reach a conclusive architectural1105

configuration, that indicates promise towards ad-1106

dressing the task of target detection from harmful1107

memes to a certain extent.1108

D Annotation Guidelines1109

Before discussing details about the annotation pro-1110

cess, revisiting the definition of harmful memes1111

would set the pretext towards consideration of1112

harmful targeting and not-harmful referencing.1113

According to Pramanick et al. (2021b), abuse, of-1114

fence, disrespect, insult or insinuation of a targeted1115

entity or any socio-cultural or political ideology,1116

belief, principle, or doctrine associated with that1117

entity amounts to the expression of harm.1118

Another common understanding11,12,13 about1119

the harmful content is that it could be anything1120

online which causes a person distress. It is an1121

extremely subjective phenomenon, wherein what1122

11https://reportharmfulcontent.
com/advice/other/further-advice/
harmful-content-online-an-explainer

12https://swgfl.org.uk/services/
report-harmful-content

13https://saferinternet.org.uk/
report-harmful-content

maybe be harmful to some, might not be consid- 1123

ered an issue by someone else. This makes it sig- 1124

nificantly challenging to characterize and hence 1125

study it via the computational lens. 1126

Based on a survey of 52 participants, Scheuer- 1127

man et al. (2021) defines online harm to be any 1128

violating content that results in any (or a combi- 1129

nation) of four categories: (i) physical harm, (ii) 1130

emotional harm, (iii) relational harm and (iv) fi- 1131

nancial harm. 1132

With this pretext, we define below 2 types of 1133

referencing that we have investigated in our work, 1134

within the context of internet memes: (i) harmful 1135

(ii) not-harmful 1136

D.1 Reference types 1137

Harmful. The understanding about harmful ref- 1138

erencing (targeting) in memes, can be sourced 1139

back to the definition of harmful memes by Pra- 1140

manick et al. (2021b), wherein a social entity is 1141

subjected to some form of ill-treatment like men- 1142

tal abuse, psycho-physiological injury, proprietary 1143

damage, emotional disturbance, or public image 1144

damage, based on their background (bias, social 1145

background, educational background, etc.) by a 1146

meme author. 1147

Not-harmful. Not-harmful referencing in 1148

memes is any benign mention (or depiction) of a 1149

social entity via humour, limerick, harmless pun 1150

or any content that does not cause distress. Any 1151

reference that is not harmful, comes under this 1152

category. 1153

D.2 Characteristics of harmful targeting 1154

There are several factors that collectively facilitate 1155

characterisation of harmful targeting in memes. 1156

Few are enlisted below: 1157

1. A prominent way of harmfully targeting an en- 1158

tity in a meme is by leveraging sarcastically 1159
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Harmful meme Not-harmful meme
Individual Organization Community Individual Organization Community

joe biden (333) democratic party (184) mexicans (11) donald trump (106) green party (189) trump supporters (86)
donald trump (285) republican party (130) black (7) republican voter (102) biden camp (162) white (50)
barack obama (142) libertarian party (44) muslim (7) barack obama (94) communist party (114) african american (47)
hillary clinton (35) cnn (6) islam (6) joe biden (47) america (64) democrat officials (45)

mike pence (13) government (5) russian (5) alexandria ocasio cortez (44) trump administration (52) republican (44)

Table 6: The top-5 most frequently referenced entities in each harmfulness class and target categories. The total count for each
word is shown in parentheses.

harmful analogies, framed via either textual or1160

visual instruments (Fig. 6a).1161

2. There could be multiple entities being harm-1162

fully targeted within a meme as depicted in Fig.1163

7. Hence, annotators were asked to provide all1164

targets as harmful, without exception.1165

3. Harmful targeting within a meme could have1166

visual depictions, that are either gory, violent,1167

graphically sensitive or pornographic (Fig. 6b).1168

4. Any meme that insinuates an entity on ei-1169

ther social, political, professional, religious1170

grounds, can cause harm (Fig. 6c and 6d).1171

5. Any meme that implies an explicit/implicit1172

threat to an individual, community, national or1173

international entity is harmful (Fig. 6d and 6e).1174

6. Whenever there is any ambiguity regarding the1175

harmfulness of any reference being made, we1176

request authors to proceed with the best of their1177

understanding.1178

D.3 Annotation process1179

Annotators were requested to follow 4 standard1180

steps towards annotating each meme as enlisted1181

below, to ensure consistency in the approach1182

adopted. We consider an example, depicted in Fig.1183

7 to demonstrate the steps taken while annotating.1184

Annotators were requested to:1185

1. Understand a meme and its background context1186

clearly. The argument being made in the exam-1187

ple meme, depicted in Fig. 7a is reasonably1188

self-explanatory, due to its descriptiveness.1189

2. Enlist all the valid entities that are referenced1190

within a given meme. For the sample meme1191

(Fig. 7), valid entities are bill clinton, hillary1192

clinton, white house, donald trump and demo-1193

crat.1194

3. Assign the suitable entities from the list, the1195

label harmful, annotating a positive case for1196

harmful targeting. bill clinton, hillary clinton1197

and democrat are being framed in the meme1198

argument, for exhibiting hypocrisy over the ap-1199

pointment of close relatives for a high profile1200

(a) A meme referencing harmful & not-harmful entities.

Candidates→bill clinton, hillary
clinton, white house, donald
trump, democrat

Harmful→bill clinton, hillary
clinton, democrat

Not-harmful→white house, donald
trump

Figure 7: A sample meme, along with the candidate entities,
harmful targets and not-harmful references.

role. 1201

4. Finally, assign harmless references under not- 1202

harmful category. donald trump and white 1203

house would be annotated as a harmless refer- 1204

ence, as they aren’t the subject of implied in- 1205

sinuation. 1206

E Ext-Harm-P Characteristics 1207

E.1 Lexical Analysis 1208

Interestingly, a significant number of memes are 1209

disseminated making references to popular indi- 1210

viduals like Joe Biden, Donald Trump, etc., as can 1211
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(a) Trump (b) Republican Party (c) Mexican

(d) Biden (e) Democratic Party (f) Black

Figure 8: Distributions of the OCR’s length for the memes of top-5 harmful references. Harmful (Blue) and Not-harmful
(Orange). The depiction is for Individual: (a) and (d), Organization: (b) and (e) and Community: (c) and (f).

be observed for individual sub-category (for both1212

harmful and not-harmful categories), in Table 6. It1213

can be noticed for harmful–organization in Table1214

6, top-5 harmfully targeted organizations include1215

top-2 leading political organizations (democratic1216

and republican party), which are of significant1217

political relevance, followed by libertarian party,1218

a media house (CNN) and finally government.1219

Whereas, non-harmfully referenced organizations1220

includes biden camp and trump administration,1221

that are mostly leveraged for harmfully targeting1222

(or otherwise) the associated public figure. Fi-1223

nally, communities like mexicans, black, muslim,1224

islam and russian are often immensely prejudiced1225

online. Whereas, non-harmfully targeted commu-1226

nities like trump supporters and african american1227

are not targeted as often as the aforementioned1228

ones Table 6.1229

This largely emphasizes the inherent bias that1230

multimodal content like memes implies, which has1231

a direct influence on the efficacy of machine/deep1232

learning-based systems. The reasons for this bias1233

are mostly linked to societal behaviour at the or-1234

ganic level, and the limitations posed by current1235

techniques to process such data. Distinct mutual1236

exclusion for harmful vs. not-harmful categories1237

for community shows the inherent bias that could1238

pose a challenge, even for the best multimodal1239

deep neural systems. The high pervasiveness of a1240

few prominent keywords could effectively lead to1241

increasing bias towards them for specific eventual-1242

ities. Whereas, the significant overlap observed in1243

Table 6 for the enlisted entities, between harmful1244

and not-harmful individuals, highlight the need for 1245

sophisticated multimodal systems that can effec- 1246

tively reason towards making a complex decision 1247

like detecting harmful targeting within memes. 1248

E.2 Meme-message Length Analysis 1249

Most of the harmful memes are observed to be 1250

created using texts of length 16 − 18 (Fig. 8). 1251

Whereas, not-harmful meme-text lengths are have 1252

a relatively higher std.-dev., possibly due to di- 1253

versity of not-harmful messages. Trump and Re- 1254

public party have meme-text length distributions 1255

similar for not-harmful category; skewing left, but 1256

gradually decreasing towards the right. This sug- 1257

gests varying content generation pattern amongst 1258

meme creators (Fig. 8). Meme-text length dis- 1259

tribution for Biden closely approximates a nor- 1260

mal distribution with the low std.-dev. Both the 1261

categories would pre-dominantly entail creating 1262

memes with shorter text lengths, due to the pop- 1263

ularity of Biden amongst humorous content cre- 1264

ators. A similar trend could be seen for the demo- 1265

cratic party as well, where most of the samples 1266

are observed to be falling within 50 − 75 meme- 1267

text length range. The overall harmful and not- 1268

harmful meme-text length distribution is observed 1269

to be fairly distributed across different meme-text 1270

lengths for mexican. Whereas, the amount of harm 1271

intended towards black community is observed 1272

to be significantly more, as compared to moder- 1273

ately distributed not-harmful memes depicted by 1274

the corresponding meme-text length distribution 1275

in Fig. 8. 1276
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