
Proceedings of the 7th Symposium on Advances in Approximate Bayesian Inference, 2025 1–22

Neural Flow Samplers with Shortcut Models

Wuhao Chen∗ wuhao.chen21@imperial.ac.uk
Zijing Ou∗ z.ou22@imperial.ac.uk
Yingzhen Li yingzhen.li@imperial.ac.uk
Imperial College London

Abstract
Sampling from unnormalized densities is a fundamental task across various domains. Flow-
based samplers generate samples by learning a velocity field that satisfies the continuity
equation, but this requires estimating the intractable time derivative of the partition function.
While importance sampling provides an approximation, it suffers from high variance. To
mitigate this, we introduce a velocity-driven Sequential Monte Carlo method combined
with control variates to reduce variance. Additionally, we incorporate a shortcut model to
improve efficiency by minimizing the number of sampling steps. Empirical results on both
synthetic datasets and n-body system targets validate the effectiveness of our approach.

1. Introduction

We consider the task of sampling from unnormalised densities π = ρ
Z , where Z :=

∫
ρ(x) dx

denotes the partition function. This task is fundamental in probabilistic modelling and scien-
tific simulations, with broad applications in Bayesian inference (Neal, 1993), nuclear physics
(Albergo et al., 2019), drug discovery (Xie et al., 2021), and material design (Komanduri
et al., 2000). However, achieving efficient sampling remains challenging, especially when
dealing with high-dimensional and multi-modal distributions.

Conventional sampling methods rely on Markov Chain Monte Carlo (MCMC) (Neal,
2012), which requires long convergence times and the simulation of extended chains to obtain
uncorrelated samples. Neural samplers address these issues by approximating the target
distribution using generative models, such as normalizing flows (Midgley et al., 2023) and
latent variable models (He et al., 2024). Building on the success of diffusion models, a
diffusion-based sampler (Sadegh et al., 2024) has been introduced to train a score network
that approximates the estimated score through Monte Carlo estimation. Concurrently, Tian
et al. (2024) propose a flow-based sampler that learns a velocity model to satisfy the continuity
equation (Villani et al., 2009). These approaches show strong empirical performance, offering
more efficient and scalable alternatives to MCMC samplers.

In this work, we focus on training flow-based samplers, which present challenges due to
the intractable time derivative of the logarithm of the partition function in the continuity
equation. While Tian et al. (2024) use importance sampling to approximate it, the approach
suffers from high variance, limiting its effectiveness. To address this, we introduce a more
stable and efficient estimation method, improving both the accuracy and efficiency of flow-
based samplers. Specifically, we propose a velocity-driven sequential Monte Carlo (VD-SMC)
(Del Moral et al., 2006) combined with control variates (Geffner and Domke, 2018) to reduce

∗ Equal contribution.

© W. Chen, Z. Ou & Y. Li.

Chen Ou Li

variance. VD-SMC operates in a bootstrap manner, generating high-quality training samples
while producing low-variance estimates of the time derivative. To further enhance sampling
efficiency, we incorporate the shortcut model (Frans et al., 2024), a self-distillation technique
that reduces the number of required sampling steps. Empirical evaluations on both synthetic
and n-body system targets demonstrate the effectiveness of our approach.

2. Background: Continuity Equation

In this section, we introduce the key preliminary: continuity equation. Let pt, t ∈ [0, 1] be
the probability path on Rd, we say the velocity vt : Rd → Rd generates the path pt if the
continuity equation holds: ∂tpt(x) = −∇x · [pt(x)vt(x)], ∀x ∈ Rd, where ∇x· denotes the
divergence operator. Thus sampling from the path pt can be done by solving the integral
xt = x0 +

∫ t
s=0 vs(xs) ds, with x0 ∼ p0. Dividing both sides of the continuity equation by pt

leads to

∂t log pt(x) = −∇x · vt(x)− vt(x) · ∇x log pt(x),∀x ∈ Rd. (1)

This equation further leads to the instantaneous change of variable

∂t[log pt(xt)] = ∂t log pt(xt) +∇xt log pt(xt) · vt(xt) = −∇xt · vt(xt), (2)

where ∂t[log pt(xt)] denotes the total derivative w.r.t. t and we apply the fact that ∂txt =
vt(xt). Thus, Equation (2) can be used to evaluate the log-likelihood of the sample x1 ∼ p1.
Next, we introduce how to employ Equation (1) to learn a model-based velocity for sampling
from the target density π, followed by the further improvement of using shortcut models.

3. Neural Flow Sampler

To learn a model-based velocity vt(x; θ), parametrised by θ, we first define the probability
path pt. Specifically, given a tractable base distribution η, the path is constructed using
annealing interpolation as pt ∝ ρtη1−t =: p̃t. The velocity can then be learned by minimizing
the following loss

L(θ)=Eq(x),w(t)δ
2
t (x; vt(·; θ)), δt(x; vt)≜∂t log pt(x)+∇x · vt(x)+vt(x) · ∇x log pt(x), (3)

where q(x) is any distribution has the same support of the target π and w(t) denotes
the time schedule distribution. This objective, initially proposed by Tian et al. (2024),
poses several challenges. First, computing the divergence ∇x · vt(x) can be prohibitive
in high-dimension; however, this issue can be mitigated using the Hutchinson estimator
(Hutchinson, 1989). More critically, the time derivative introduces additional complexity,
as it involves ∂t log pt(x) = ∂t log p̃t(x)− ∂t logZt with Zt =

∫
p̃t(x) dx, which is intractable.

Tian et al. (2024) estimate it using importance sampling ∂t logZt ≈
∑

k
wk∑
k wk

∂t log p̃t(x
(k)
t),

where x
(k)
t ∼ pt(x; θ) denotes the sample generated by the velocity vt(x; θ) at time t, and

logwt =
∫ t
0 δs(xs; vs(·; θ)) ds (see Appendix A.1 for details). However, importance sampling

can suffer from high variance if the proposal pt(x; θ) differs significantly from the target pt(x),
leading to a low effective sample size. In the following, we propose a velocity-driven method
to estimate the intractable time derivatives ∂t logZt.

2

Neural Flow Samplers with Shortcut Models

3.1. Velocity-Driven Sequential Monte Carlo Estimation

As discussed before, even though importance sampling provides a simple way to approximate
the intractable time derivatives, it often suffers from high variance. To alleviate this
issue, we propose to apply Sequential Monte Carlo (SMC), together with a velocity-driven
transition kernel. Considering discrete-time steps 0 = t0 < · · · < tM = 1, The key
ingredients of SMC are proposals {Ftm(xtm+1 |xtm)}M−1

m=0 and weighting functions {wtm}Mm=0.
At the initial step, one draws K particles of x

(k)
t0
∼ pt0 and set w

(k)
t0

= pt0(x
(k)
t0

), and
sequentially repeats the following steps for m = 1, . . . ,M : i) resample {x(k)tm−1

}Kk=1 ∼
Systematic({x(k)tm−1

}Kk=1; {w
(k)
tm−1
}Kk=1); ii) propose x

(k)
tm ∼ Ftm−1(xtm |xtm−1) for k = 1, . . . ,K;

and iii) weight w
(k)
t = p̃tm(x

(k)
tm)/p̃tm−1(x

(k)
tm) for k = 1, . . . ,K. The time derivatives at time

step t can therefore be estimated via ∂t logZt ≈
∑

k
w

(k)
t∑

k w
(k)
t

∂t log p̃t(x
(k)
t) (see Appendix A.2

for details). This approximation becomes arbitrarily accurate in the limit as much as particles
are used (Chopin et al., 2020, Proposition 11.4).

The choice of the proposal in SMC is critical as a poor proposal can lead to trajectories
that quickly collapse onto a single ancestor, reducing particle diversity and effectiveness. To
address this issue, we propose incorporating Markov Chain Monte Carlo (MCMC) steps into
the SMC framework (Van Der Merwe et al., 2000). To further enhance MCMC convergence, we
integrate it with a trainable velocity model. Specifically, the transition kernel Ftm(xtm+1 |xtm)
comprises two steps i) velocity move with an Euler update x̂tm+1←xtm+vtm(xtm ; θ)(tm+1− tm)
to provide a better initialisation; and ii) MCMC move with a HMC (Neal, 2012) refinement
xtm+1 ∼ HMC(x̂tm+1) to ensure consistency with the target distribution. This velocity-
driven MCMC kernel operates in a bootstrap manner, with the velocity move offering an
informed initialisation that improves the efficiency of the subsequent MCMC step. As
training progresses, the velocity model becomes increasingly accurate, generating high-quality
proposals that reduce the corrections required during the MCMC step. This synergy between
the velocity move and the MCMC refinement not only accelerates convergence but also
preserves particle diversity, making the approach robust in high-dimensional or complex
settings.

Further Variance Reduction with Control Variates. To further reduce the variance,
a key observation is that for any given velocity vt, the following identity holds

∂t logZt=argmin
ct

Ept(ξt(x; vt)−ct)2, ξt(x; vt)≜∂t log p̃t(x)+∇x ·vt(x)+vt(x)·∇x log pt(x). (4)

Figure 1: Standard deviation of the
estimation of ∂t logZt.

See Appendix B.1 for proof. Thus, one can cal-
culate the optimal ct via ∂t logZt = Eptξt(x; vt),
which can be approximated using Monte Carlo esti-
mation. Empirically, we observe that Equation (4)
achieves lower variance compared to the approxi-
mation ∂t logZt = Ept∂t log p̃t(x), and it sometimes
leads to better optimisation. We visualize the com-
parison of the standard deviation of the two estima-
tion methods in Figure 1, with the corresponding
loss plots deferred to Figure 5. In Appendix B.2, we

3

Chen Ou Li

Table 1: Comparison of neural samplers on GMM-40, MW-32, and DW-4 energy functions,
with mean and standard deviation based on five evaluations using different random seeds.

Energy → GMM-40 (d = 2) MW-32 (d = 32) DW-4 (d = 8)

Method ↓ E-W2 X -TV E-TV X -W2 E-W2 E-TV D-TV

FAB (Midgley et al., 2023) 8.89±2.20 0.84±0.19 0.25±0.01 5.78±0.02 0.64±0.20 0.22±0.01 0.09±0.01
iDEM (Sadegh et al., 2024) 1.27±0.21 0.83±0.01 0.63±0.15 8.18±0.04 0.19±0.05 0.21±0.01 0.10±0.01
LFIS (Tian et al., 2024) 0.27±0.21 0.84±0.01 ∞ 8.89±0.03 6.06±1.05 0.66±0.02 0.29±0.01

NFS2-128 (ours) 0.46±0.14 0.67±0.00 0.16±0.00 6.17±0.01 0.44±0.03 0.10±0.01 0.07±0.01
NFS2-64 (ours) 1.32±0.29 0.69±0.01 0.18±0.00 6.34±0.01 0.98±0.16 0.13±0.01 0.11±0.01
NFS2-32 (ours) 4.38±1.14 0.72±0.01 0.49±0.01 9.05±0.01 14.97±0.82 0.41±0.01 0.28±0.01

Ground Truth FAB iDEM LFIS NFS2 (ours)
Figure 2: Samples of GMM-40, with contour lines representing the ground truth distribution.

provide a control variate perspective to explain this
observation. Therefore, when combined with SMC, the time derivatives can be estimated as

∂t logZt ≈
∑

k
w

(k)
t∑

k w
(k)
t

ξt(x
(k)
t ; vt). To summarize, the velocity can then be learned by iterat-

ing the following steps i) θ←argminθ
∫ 1
0 Ept(ξt(x; vt(x; θ))−ct)2 dt; ii) ct ← Eptξt(x; vt(x; θ)).

Notably, Máté and Fleuret (2023) propose a similar method, where ct is parametrised as
a neural network and trained using stochastic gradient descent by optimising objective in
Equation (4), rather than using SMC in conjunction with control variates.

3.2. Neural Flow Shortcut Sampler

With the time derivative estimator established in the previous sections, the velocity can be
learned by minimizing the loss defined in Equation (3). However, during sampling, small
step sizes are required to control discretization error, resulting in high computational costs.
To address this, we draw inspiration from the recent success of shortcut models (Frans et al.,
2024) and introduce an additional shortcut regularization to alleviate this issue. The basic
idea is to parameterise a shortcut model st(xt, d; θ) to account for the future curvature, such
that xt+d = xt + st(xt, d; θ)d. To this end, one can regularise the shortcut model to ensure
that st(xt, 2d; θ) = st(xt, d; θ)/2 + st+d(xt+d, d; θ)/2 =: starget,∀d, t, which leads to the final
objective

L(θ) = Eq(x),w(t)

[
δ2t (x; st(·, 0; θ)) + Ep(d)∥st(x, 2d; θ)− starget∥22

]
. (5)

We refer to the proposed methods as neural flow shortcut samplers (NFS2), using 128
sampling steps by default unless specified otherwise. The training and sampling procedures
are summarized in Algorithms 2 and 3, respectively.

4. Experiments

We evaluate our method against baselines on three distinct energy functions: i) a 2-dimensional
Gaussian Mixture Model with 40 components (GMM-40), ii) a 32-dimensional many-well

4

Neural Flow Samplers with Shortcut Models

Ground Truth FAB iDEM LFIS NFS2 (ours)
Figure 3: 2D marginal samples from the 1st and 3rd dimensions of MW-32.

(MW-32) distribution, and iii) an 8-dimensional 4-particle double-well (DW-4) potential.
Experimental details and additional results are provided in Appendices D and E.

Baselines. We compare against three recent methods: Flow Annealed Importance
Sampling Bootstrap (FAB) (Midgley et al., 2023), Iterated Denoising Energy Matching
(iDEM) (Sadegh et al., 2024) with 1000 sampling steps, and Liouville Flow Importance
Sampling (LFIS) (Tian et al., 2024) with 256 sampling steps. We denote the proposed
method with M sampling steps as NFS2-M .

Figure 4: Histogram of interatomic distance and
sample energy on DW-4.

Results and Discussion. Table 1
presents a comparison of our method
with baselines across various metrics,
showing that NFS2 outperforms better
in most cases. Specifically, compared to
LFIS, the method most similar to ours in
learning velocity and estimating ∂t logZt

via importance sampling, NFS2 exhibits
superior performance. This highlights
the effectiveness of our variance reduction techniques through SMC and control variates.
When compared to iDEM, the current SOTA diffusion-based sampler, NFS2 surpasses iDEM
on GMM-40 and MW-32, achieving comparable performance on DW-4. Notably, NFS2

achieves this with significantly fewer sampling steps than iDEM, further emphasizing its
superiority. We visualize the generated GMM-40 samples in Figure 2, where NFS2 is the only
method that captures both the diversity and sharpness of the modes. MW-32 samples are
shown in Figure 3, where LFIS and iDEM fail to accurately model the position and weight
of modes, while FAB and NFS2 excel at both. Moreover, we also visualize histograms for
sample energy and interatomic distance in Figure 4. As shown, NFS2 achieves competitive
performance with both FAB and iDEM, and notably outperforms LFIS. For additional
experimental results, please refer to Appendix E.

5. Related Work

Sampling from given probability distributions has been a longstanding research challenge.
Monte Carlo methods, such as Annealed Importance Sampling (Neal, 2001) and Sequential
Monte Carlo (Del Moral et al., 2006), are considered the gold standards for sampling,
but they tend to be computationally expensive and often suffer from slow convergence
(Roberts and Rosenthal, 2001). Amortised variational methods like normalizing flows
(Rezende and Mohamed, 2015) and latent variable models (He et al., 2024) provide appealing
alternatives to matching the target distribution, offering faster inference but often at the
cost of approximation errors and limited expressiveness. Hybrid approaches (Wu et al., 2020;

5

Chen Ou Li

Zhang et al., 2021; Geffner and Domke, 2021; Matthews et al., 2022; Midgley et al., 2023)
that combine MCMC and variational inference have shown promising potential by leveraging
the strengths of both methods.

Building upon the success of generative modelling, diffusion models (Ho et al., 2020)
and flow matching (Lipman et al., 2022) have been applied to sampling tasks. Specifically,
Vargas et al. (2023); Nusken et al. (2024) exploit diffusion processes for learning to sample.
However, these approaches require simulation to compute the objective. To resolve this
issue, Sadegh et al. (2024) propose to use a bi-level training scheme that iteratively generates
samples and performs score matching with Monte Carlo estimates of the target, resembling
training diffusion models, and does not require simulation. OuYang et al. (2024) introduce a
variant that replaces score matching with direct regression on the energy, which is shown to
reduce variance. Similarly, Woo and Ahn (2024) present another variant that targets on the
MC-estimated vector fields in a flow matching framework. Other approaches also focus on
learning the velocity field; for instance, Tian et al. (2024); Máté and Fleuret (2023) learn the
velocity field to satisfy the continuity equation of the given probability path.

Beyond the above methods, stochastic control (Pavon, 1989; Tzen and Raginsky, 2019)
has also been applied to the sampling. For example, Zhang and Chen (2021) propose path
integral sampler (PIS) based on the connections between sampling and optimal control (Chen
et al., 2016). Berner et al. (2022) also establish the connection between optimal control
and generative modelling based on stochastic differential equations (Kloeden et al., 1992),
which can be applied in sampling. Generative flow networks (GFlowNets) (Lahlou et al.,
2023) are appealing alternatives for sampling from unnormalised densities. Zhang et al.
(2022) establishes a connection between diffusion models and GFlowNets, leveraging this
relationship to enhance learning-based sampling (Zhang et al., 2023), which only requires
simulating partial trajectories, improving the efficiency compared to PIS.

6. Conclusions and Limitations

In this paper, we proposed neural flow shortcut samplers (NFS2), a flow-based sampler that
learns a velocity field to satisfy the continuity equation. To estimate the intractable time
derivative of the log-partition function in the continuity equation, we introduced velocity-
driven Sequential Monte Carlo with control variates, effectively reducing estimation variance.
Our method achieves competitive or superior performance compared to SOTA approaches
like FAB and iDEM, while outperforming flow-based samples like LFIS, which suffers from
high variance due to the utilisation of importance sampling.

A key challenge of flow-based samplers is the computation of the divergence (see Equa-
tion (3)), which becomes prohibitive in high-dimensional settings. While the Hutchinson
estimator (Hutchinson, 1989) can be used in practice, it introduces both variance and bias.
Alternatively, more advanced architectures can be employed where the divergence is computed
analytically (Gerdes et al., 2023). By adopting such architectures, we expect our approach
to be scalable to more complex applications, such as molecular simulation (Frenkel and Smit,
2023), Lennard-Jones potential (Klein et al., 2024), and Bayesian inference (Neal, 1993).
Moreover, while the shortcut model reduces the number of sampling steps required, achieving
exact likelihood estimation within this framework remains unclear, presenting a promising
direction for future research.

6

Neural Flow Samplers with Shortcut Models

References

Michael S Albergo, Gurtej Kanwar, and Phiala E Shanahan. Flow-based generative models
for markov chain monte carlo in lattice field theory. Physical Review D, 100(3):034515,
2019.

Julius Berner, Lorenz Richter, and Karen Ullrich. An optimal control perspective on
diffusion-based generative modeling. arXiv preprint arXiv:2211.01364, 2022.

Yongxin Chen, Tryphon T Georgiou, and Michele Pavon. On the relation between optimal
transport and schrödinger bridges: A stochastic control viewpoint. Journal of Optimization
Theory and Applications, 169:671–691, 2016.

Nicolas Chopin, Omiros Papaspiliopoulos, et al. An introduction to sequential Monte Carlo,
volume 4. Springer, 2020.

Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. Sequential monte carlo samplers. Journal
of the Royal Statistical Society Series B: Statistical Methodology, 68(3):411–436, 2006.

Arnaud Doucet, Nando De Freitas, and Neil Gordon. An introduction to sequential monte
carlo methods. Sequential Monte Carlo methods in practice, pages 3–14, 2001.

Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via
shortcut models. arXiv preprint arXiv:2410.12557, 2024.

Daan Frenkel and Berend Smit. Understanding molecular simulation: from algorithms to
applications. Elsevier, 2023.

Tomas Geffner and Justin Domke. Using large ensembles of control variates for variational
inference. Advances in Neural Information Processing Systems, 31, 2018.

Tomas Geffner and Justin Domke. Mcmc variational inference via uncorrected hamiltonian
annealing. Advances in Neural Information Processing Systems, 34:639–651, 2021.

Mathis Gerdes, Pim de Haan, Corrado Rainone, Roberto Bondesan, and Miranda CN Cheng.
Learning lattice quantum field theories with equivariant continuous flows. SciPost Physics,
15(6):238, 2023.

Jiajun He, Wenlin Chen, Mingtian Zhang, David Barber, and José Miguel Hernández-
Lobato. Training neural samplers with reverse diffusive kl divergence. arXiv preprint
arXiv:2410.12456, 2024.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models.
Advances in neural information processing systems, 33:6840–6851, 2020.

Michael F Hutchinson. A stochastic estimator of the trace of the influence matrix for
laplacian smoothing splines. Communications in Statistics-Simulation and Computation,
18(3):1059–1076, 1989.

Herman Kahn. Random sampling (monte carlo) techniques in neutron attenuation problems.
i. Nucleonics (US) Ceased publication, 6(See also NSA 3-990), 1950.

7

Chen Ou Li

Leon Klein, Andreas Krämer, and Frank Noé. Equivariant flow matching. Advances in
Neural Information Processing Systems, 36, 2024.

Peter E Kloeden, Eckhard Platen, Peter E Kloeden, and Eckhard Platen. Stochastic
differential equations. Springer, 1992.

Jonas Köhler, Leon Klein, and Frank Noe. Equivariant flows: Exact likelihood generative
learning for symmetric densities. In Hal Daumé III and Aarti Singh, editors, Proceedings
of the 37th International Conference on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pages 5361–5370. PMLR, 13–18 Jul 2020. URL https:
//proceedings.mlr.press/v119/kohler20a.html.

R Komanduri, N Chandrasekaran, and LM Raff. Md simulation of nanometric cutting of
single crystal aluminum–effect of crystal orientation and direction of cutting. Wear, 242
(1-2):60–88, 2000.

Salem Lahlou, Tristan Deleu, Pablo Lemos, Dinghuai Zhang, Alexandra Volokhova, Alex
Hernández-Garcıa, Léna Néhale Ezzine, Yoshua Bengio, and Nikolay Malkin. A theory of
continuous generative flow networks. In International Conference on Machine Learning,
pages 18269–18300. PMLR, 2023.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow
matching for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Hao Liu, Yihao Feng, Yi Mao, Dengyong Zhou, Jian Peng, and Qiang Liu. Action-depedent
control variates for policy optimization via stein’s identity. arXiv preprint arXiv:1710.11198,
2017.

Bálint Máté and François Fleuret. Learning interpolations between boltzmann densities.
arXiv preprint arXiv:2301.07388, 2023.

Alex Matthews, Michael Arbel, Danilo Jimenez Rezende, and Arnaud Doucet. Continual
repeated annealed flow transport monte carlo. In International Conference on Machine
Learning, pages 15196–15219. PMLR, 2022.

Laurence Illing Midgley, Vincent Stimper, Gregor NC Simm, Bernhard Schölkopf, and
José Miguel Hernández-Lobato. Flow annealed importance sampling bootstrap. Interna-
tional Conference on Learning Representations (ICLR), 2023.

Radford M Neal. Probabilistic inference using markov chain monte carlo methods. 1993.

Radford M Neal. Annealed importance sampling. Statistics and computing, 11:125–139, 2001.

Radford M Neal. Mcmc using hamiltonian dynamics. arXiv preprint arXiv:1206.1901, 2012.

Nikolas Nusken, Francisco Vargas, Shreyas Padhy, and Denis Blessing. Transport meets
variational inference: Controlled monte carlo diffusions. In The Twelfth International
Conference on Learning Representations: ICLR 2024, 2024.

8

https://proceedings.mlr.press/v119/kohler20a.html
https://proceedings.mlr.press/v119/kohler20a.html

Neural Flow Samplers with Shortcut Models

RuiKang OuYang, Bo Qiang, and José Miguel Hernández-Lobato. Bnem: A boltzmann
sampler based on bootstrapped noised energy matching. arXiv preprint arXiv:2409.09787,
2024.

Michele Pavon. Stochastic control and nonequilibrium thermodynamical systems. Applied
Mathematics and Optimization, 19:187–202, 1989.

Rajesh Ranganath, Sean Gerrish, and David Blei. Black box variational inference. In
Artificial intelligence and statistics, pages 814–822. PMLR, 2014.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
International conference on machine learning, pages 1530–1538. PMLR, 2015.

Gareth O Roberts and Jeffrey S Rosenthal. Optimal scaling for various metropolis-hastings
algorithms. Statistical science, 16(4):351–367, 2001.

Tara Akhound Sadegh, Jarrid Rector-Brooks, Avishek Joey Bose, Sarthak Mittal, Pablo
Lemos, Cheng-Hao Liu, Marcin Sendera, Siamak Ravanbakhsh, Gauthier Gidel, Yoshua
Bengio, Nikolay Malkin, and Alexander Tong. Iterated denoising energy matching for
sampling from boltzmann densities. ArXiv, abs/2402.06121, 2024. URL https://api.
semanticscholar.org/CorpusID:267617166.

Charles Stein, Persi Diaconis, Susan Holmes, and Gesine Reinert. Use of exchangeable pairs
in the analysis of simulations. Lecture Notes-Monograph Series, pages 1–26, 2004.

H Jean Thiébaux and Francis W Zwiers. The interpretation and estimation of effective
sample size. Journal of Applied Meteorology and Climatology, 23(5):800–811, 1984.

Yifeng Tian, Nishant Panda, and Yen Ting Lin. Liouville flow importance sampler. arXiv
preprint arXiv:2405.06672, 2024.

Belinda Tzen and Maxim Raginsky. Theoretical guarantees for sampling and inference
in generative models with latent diffusions. In Conference on Learning Theory, pages
3084–3114. PMLR, 2019.

Rudolph Van Der Merwe, Arnaud Doucet, Nando De Freitas, and Eric Wan. The unscented
particle filter. Advances in neural information processing systems, 13, 2000.

Francisco Vargas, Will Grathwohl, and Arnaud Doucet. Denoising diffusion samplers. arXiv
preprint arXiv:2302.13834, 2023.

Cédric Villani et al. Optimal transport: old and new, volume 338. Springer, 2009.

Dongyeop Woo and Sungsoo Ahn. Iterated energy-based flow matching for sampling from
boltzmann densities. arXiv preprint arXiv:2408.16249, 2024.

Hao Wu, Jonas Köhler, and Frank Noé. Stochastic normalizing flows. Advances in Neural
Information Processing Systems, 33:5933–5944, 2020.

9

https://api.semanticscholar.org/CorpusID:267617166
https://api.semanticscholar.org/CorpusID:267617166

Chen Ou Li

Yutong Xie, Chence Shi, Hao Zhou, Yuwei Yang, Weinan Zhang, Yong Yu, and Lei Li.
Mars: Markov molecular sampling for multi-objective drug discovery. arXiv preprint
arXiv:2103.10432, 2021.

Dinghuai Zhang, Ricky TQ Chen, Nikolay Malkin, and Yoshua Bengio. Unifying generative
models with gflownets and beyond. arXiv preprint arXiv:2209.02606, 2022.

Dinghuai Zhang, Ricky TQ Chen, Cheng-Hao Liu, Aaron Courville, and Yoshua Bengio.
Diffusion generative flow samplers: Improving learning signals through partial trajectory
optimization. arXiv preprint arXiv:2310.02679, 2023.

Guodong Zhang, Kyle Hsu, Jianing Li, Chelsea Finn, and Roger B Grosse. Differentiable
annealed importance sampling and the perils of gradient noise. Advances in Neural
Information Processing Systems, 34:19398–19410, 2021.

Qinsheng Zhang and Yongxin Chen. Path integral sampler: a stochastic control approach
for sampling. arXiv preprint arXiv:2111.15141, 2021.

10

Neural Flow Samplers with Shortcut Models

Appendix for “Neural Flow Samplers with
Shortcut Models”

Contents

A Importance Sampling and Sequential Monte Carlo 11
A.1 Importance Sampling . 11
A.2 Sequential Monte Carlo . 13

B Variance Reduction with Control Variates 15
B.1 Proof of Equation (4) . 15
B.2 Stein Control Variates . 16

C Training and Sampling Algorithms 18

D Experimental Details 18
D.1 Datasets . 18
D.2 Metrics . 19
D.3 Training Details . 19

E Additional Experimental Results 20
E.1 Visualisation of MW-32 . 20
E.2 Comparisons with Different Sampling Steps . 22

Appendix A. Importance Sampling and Sequential Monte Carlo

This section reviews the basic Sequential Monte Carlo (SMC) algorithm. We begin by
introducing importance sampling and its application to estimating the intractable time
derivative ∂t logZt, as presented in Tian et al. (2024). We then proceed with an introduction
to Sequential Monte Carlo, which is employed in our methods to estimate ∂t logZt.

A.1. Importance Sampling

Consider a target distribution π(x) = ρ(x)
Z , where ρ(x) ≥ 0 is the unnormalised probability

density and Z =
∫
ρ(x) dx denotes the normalising constant, which is typically intractable.

For a test function ϕ(x) of interest, estimating its expectation under π through direct
sampling can be challenging. Importance sampling (IS) (Kahn, 1950) instead introduces a
proposal distribution q, which is easy to sample from, and proposes an expectation estimator
as follows

Eπ(x)[ϕ(x)] =
1

Z
Eq(x)

[
ρ(x)

q(x)
ϕ(x)

]
=

Eq(x)

[
ρ(x)
q(x)ϕ(x)

]
Eq(x)

[
ρ(x)
q(x)

] . (6)

Thus, the expectation can be estimated via the Monte Carlo method

Eπ(x)[ϕ(x)] ≈
K∑
k=1

w(k)∑N
=1w

(j)
ϕ(x(k)), x(k) ∼ q(x), (7)

11

Chen Ou Li

where w(k) = ρ(x(k))

q(x(k))
denotes the importance weight. While importance sampling yields a

consistent estimator as N →∞, it typically suffers from high variance and low effective sample
size (Thiébaux and Zwiers, 1984) when the proposal deviates from the target distribution. In
theory, a zero-variance estimator can be achieved if q(x) ∝ ρ(x)ϕ(x); however, this condition
is rarely satisfied in practice. This limitation renders importance sampling inefficient in
high-dimensional spaces, as a large number of Monte Carlo samples are required to mitigate
the variance.

Approximating ∂t logZt with Importance Sampling. Tian et al. (2024) pro-
pose approximating ∂t logZt using importance sampling, where they express ∂t logZt ≈∑

k
w

(k)
t∑

k w
(k)
t

∂t log p̃t(x
(k)
t). Here x

(k)
t ∼ pt(x; θ) denotes the sample generated by the veloc-

ity vt(x; θ) at time t, and logw
(k)
t =

∫ t
0 δτ (xτ ; vt(·; θ)) dτ . For completeness, we provide a

step-by-step recall of the proof of the correctness of this estimator from Tian et al. (2024).
First, we show that ∂t logZt is given by the expectation over pt:

∂t logZt = ∂t log

∫
p̃t(x) dx =

1

Zt

∫
p̃t(x)∂t log p̃t(x) dx = Ept(x)[∂t log p̃t(x)]. (8)

∂t logZt therefore can be estimated via importance sampling

∂t logZt ≈
K∑
k=1

w
(k)
t∑

j w
(j)
t

∂t log p̃t(x
(k)), x(k) ∼ pt(x; θ), (9)

where w
(k)
t = pt(x(k))

pt(x(k);θ)
. Next, we show that the weight logw

(k)
t is given by integrating

δt(x; vt(·; θ)) on [0, t], where δt is defined in Equation (3) i.e. log pt(xt)
pt(xt;θ)

=
∫ t
0 δs(x; vs(·; θ)) ds.

We begin by computing the instantaneous rate of change of the log-densities of the model
pt(xt; θ) along the trajectories generated by vt(xt; θ), as in Equation (2)

∂t[log pt(xt; θ)] = ∂t log pt(xt; θ) +∇xt log pt(xt; θ) ·
dxt
dt

= (−∇xt · vt(xt; θ)− vt(xt; θ) · ∇xt log pt(xt; θ)) +∇xt log pt(xt; θ) · vt(xt; θ)
= −∇xt · vt(xt; θ). (10)

Similarly, the instantaneous rate of change of the log-densities of the target pt(xt) along the
trajectories generated by vt(xt; θ) is

∂t[log pt(xt)] = ∂t log pt(xt) +∇xt log pt(xt) ·
dxt
dt

= ∂t log pt(xt) +∇xt log pt(xt) · vt(xt; θ). (11)

Note that the score of the target is tractable ∇x log pt(x) = ∇x log p̃t(x). Therefore, the log
densities along the trajectories can be computed via

log pt(xt; θ) = log p0(x0; θ)−
∫ t

0
∇xs · vs(xs; θ) ds (12)

log pt(xt) = log p0(x0) +

∫ t

0
[∂s log ps(xs) +∇xs log ps(xs) · vs(xs; θ)] ds. (13)

12

Neural Flow Samplers with Shortcut Models

Since p0(x; θ) = p0(x) = η(x) due to the annealing path construction pt ∝ ρtη1−t, we have

log
pt(xt)

pt(xt; θ)
=

∫ t

0
[∇xs · vs(xs; θ) + ∂s log ps(xs) +∇xs log ps(xs) · vs(xs; θ)] ds

=

∫ t

0
δs(x; vs(·; θ)) ds, (14)

which completes the proof.
Remark. Although importance sampling offers an elegant method for estimating the

intractable time derivatives ∂t logZt, it faces two main challenges. First, as previously
discussed, importance sampling typically suffers from high variance and requires large
sample sizes to improve the effective sample size. More critically, the computation of the
weight involves the intractable term ∂t log ps(xt), which in turn depends on ∂t logZt =
Ept(x)[∂t log p̃t(x)]. Tian et al. (2024) approximate this expectation naively by averaging
∂t log p̃t(x) over the mini-batch during training, which introduces both approximation errors
and bias in the importance weights.

In the following section, we introduce Sequential Monte Carlo, which is employed in our
methodology to estimate ∂t logZt, balancing the efficiency of the short-run MCMC driven
by the velocity with the effectiveness of low variance.

A.2. Sequential Monte Carlo

Sequential Monte Carlo (SMC) provides an alternative method to estimate the intractable
expectation Ept(x)[ϕ(x)]. Specifically, SMC decomposes the task into easier subproblems
involving a set of unnormalised intermediate target distributions {p̃tm(xtm)}Mm=0.1 We begin
by introducing sequential importance sampling (SIS):

Eptm (x)[ϕ(x)] =

∫
q(xt0:tm)

p(xt0:tm)

q(xt0:tm)
ϕ(xtm) dxt0:tm

≈ 1

K

K∑
k=1

p(x
(k)
t0:tm

)

q(x
(k)
t0:tm

)
ϕ(x

(k)
tm), where x

(k)
t0:tm

∼ q(x
(k)
t0:tm

). (15)

The importance weights are w
(k)
tm =

p(x
(k)
t0:tm

)

q(x
(k)
t0:tm

)
. The key ingredients of SMC are the proposal

distributions q(xt0:tm) and the target distributions p(xt0:tm). Here we consider a general
form associated with a sequence of forward kernels q(xt0:tm) = q(xt0)

∏m−1
s=0 Fts(xts+1 |xts),

and the target distribution is defined by a sequence of backward kernels p(xt0:tm) =
p(xtm)

∏m−1
s=0 Bts(xts |xts+1). Substituting this into the expression for the importance weights

gives

w
(k)
tm =

p(x
(k)
t0:tm

)

q(x
(k)
t0:tm

)
=

p(xtm)
∏m−1

s=0 Bts(xts |xts+1)

q(xt0)
∏m−1

s=0 Fts(xts+1 |xts)
= w

(k)
tm−1

W
(k)
tm , (16)

1. We consider a discrete-time schedule that satisfies 0 = t0 < t1 < · · · < tm < · · · < tM−1 < tM = 1.

13

Chen Ou Li

where W
(k)
tm , termed the incremental weights, are calculated as,

W
(k)
tm =

ptm(xtm)

ptm−1(xtm−1)

Btm(xtm−1 |xtm)
Ftm(xtm |xtm−1)

. (17)

By defining the backward kernel as Btm(xtm−1 |xtm) =
ptm−1 (xtm−1)Ftm (xtm |xtm−1)

ptm−1 (xtm) , the incre-
mental weight is tractable and becomes

W
(k)
tm =

ptm(xtm)

ptm−1(xtm)
. (18)

Therefore, the expectation can be approximated as

Eptm (x)[ϕ(x)] ≈
∑
k

w̃
(k)
tm ϕ(xtm), w̃

(k)
tm =

w
(k)
tm∑

j w
(j)
tm

, w
(k)
tm = w

(k)
tm−1

W
(k)
tm ∝ w

(k)
tm−1

p̃tm(xt)

p̃tm−1(xtm)
.

Algorithm 1 Velocity-Driven SMC
Input: velocity vt(·; θ); # sample K; time steps {tm}Mm=0

Output: samples and weights {x(k)
tm , w̃

(k)
tm }

K,M
k=1,m=0

1: procedure VD-SMC(vt,K, {tm}Mm=0)

2: for k = 1, . . . ,K do

3: x
(k)
0 ∼ p0(x0), w

(k)
0 = p0(x

(k)
0)

4: end for

5: w̃
(k)
0 = w

(k)
0 /

∑K
i=1 w

(i)
0

6: for m = 1, . . . ,M do

7: for k = 1, . . . ,K do

8: if ESS(w̃1:K
tm−1

) < ESSmin then

9: a
(k)
tm ∼Systematic(w̃1:K

tm−1
), ŵ

(k)
tm−1

=1

10: else

11: a
(k)
tm = k, ŵ

(k)
tm−1

= w
(k)
tm−1

12: end if

13: dt← tm − tm−1

14: x
(k)
tm =HMC(x

(a
(k)
tm

)

tm−1
+vtm−1(x

(a
(k)
tm

)

tm−1
; θ) dt)

15: w
(k)
tm = ŵ

(k)
tm−1

p̃tm (x
(k)
tm

)

p̃tm−1
(x

(k)
tm

)

16: end for

17: w̃tm = w
(k)
tm /

∑K
i=1 w

(i)
tm

18: end for

19: end procedure

The SIS method is elegant, as the
weights can be computed on the fly.
However, with a straightforward ap-
plication of SIS, the distribution of
importance weights typically becomes
increasingly skewed as t progresses,
resulting in many samples having neg-
ligible weights. This imbalance re-
duces the effective sample size and
the overall efficiency of the algorithm.
To alleviate this issue, a common ap-
proach used in SMC is to introduce
a resampling step. At each time step
t, the samples x

(k)
t are resampled us-

ing systematic resampling based on
the normalized weights w̃

(k)
t

2. The re-
sampled particles are then assigned
equal weights to mitigate the bias
introduced by the skewness in the
weight distribution. This resampling
trick prevents the sample set from de-
generating, where only a few particles
carry significant weight while others
contribute minimally. By periodically
resampling, the algorithm maintains
diversity in the particle set. It en-
sures that the estimation is focused

2. Rather than resampling at every time step t, a more advanced resampling method involves making the
resampling decision adaptively, based on criteria such as the Effective Sample Size (Doucet et al., 2001).

14

Neural Flow Samplers with Shortcut Models

on regions of high probability density, leading to less skewed importance weight distri-
butions. To encourage the convergence of MCMC transition kernels, we also introduce
a velocity-driven step. The implementation of the proposed velocity-driven sequential
Monte Carlo (VD-SMC) is given by Algorithm 1. Given the sample size K and the
time schedule {tm}Mm=1 with t0 = 0, tM = 1, the algorithm VD-SMC returns the sam-
ples and importance weights {x(k)tm , w̃

(k)
tm }

K,M
k=1,m=0. Therefore, the intractable time deriva-

tive can be approximated as ∂t logZt = Ept∂t log p̃t(x) ≈
∑

k w̃
(k)
t ∂t log p̃t(x

(k)
t). However,

as illustrated in Figure 1, the estimation of Ept∂t log p̃t(x) exhibits higher variance com-
pared to using Eptξt(x; vt). Therefore, in practice, we approximate the time derivative as
∂t logZt = Eptξt(x; vt(·; θsg)) ≈

∑
k w̃

(k)
t ξt(x

(k)
t ; vt(·; θsg)), where θsg denotes the parameters

with gradients detached.

Appendix B. Variance Reduction with Control Variates

B.1. Proof of Equation (4)

Recall that in Equation (4), we show that the following equation holds:

∂t logZt=argmin
ct

Ept(ξt(x; vt)−ct)2, ξt(x; vt)≜∂t log p̃t(x)+∇x ·vt(x)+vt(x)·∇x log pt(x).

We provide a detailed proof of this result here. First, we have the following Lemmas.

Lemma 1 (Stein’s Identity (Stein et al., 2004)) Assuming that the target density pt
vanishes at infinity, i.e., pt(x) = 0, whenever ∃d such that x[d] =∞, where x[d] denotes the
d-th element of the vector x. Under this assumption, we have the result:

∫
[∇x ·vt(x)+vt(x)·

∇x log pt(x)]p̃t(x) dx = 0.

Proof To prove the result, notice that∫
[∇x ·vt(x)+vt(x)·∇x log pt(x)]p̃t(x) dx =

∫
p̃t(x)∇x ·vt(x)+vt(x)·∇xp̃t(x) dx

=

∫
∇x · [vt(x)p̃t(x)] dx

=
∑
d

∫
d

dxd
[vt(x)p̃t(x)][d] dxd

=
∑
d

[vt(x)p̃t(x)][d]|xd=+∞
xd=−infty = 0,

where the last row applies the divergence theorem
∫ b
a f ′(t) dt = f(b)− f(a).

Lemma 2 Let c∗t = argminct Ept(ξt(x; vt)−ct)2, then c∗t = Eptξt(x; vt).

Proof To see this, we can expand the objective

L(ct) = Ept(ξt(x; vt)−ct)2 = c2t − 2ctEptξt(x; vt) + c = (ct − Eptξt(x; vt))
2 + c′,

15

Chen Ou Li

where c, c′ are constants w.r.t. ct. Therefore c∗t =argminctEpt(ξt(x; vt)−ct)2=Eptξt(x; vt).

Now, it is ready to prove Equation (4). Specifically,

c∗t = Eptξt(x; vt)

=
1∫

p̃t(x) dx

∫
p̃t(x)[∂t log p̃t(x)+∇x ·vt(x)+vt(x)·∇x log pt(x)] dx

=
1∫

p̃t(x) dx

∫
∂tp̃t(x) + [∇x ·vt(x)+vt(x)·∇x log pt(x)]p̃t(x) dx

=
1∫

p̃t(x) dx

∫
∂tp̃t(x) dx

= ∂t logZt,

where the first and fourth equations follow Theorems 1 and 2, respectively, which completes
the proof.

Figure 5: Training loss of using different
estimators of ∂t logZt.

Remark. Equation (4) provides an alternative
approach to estimate ∂t logZt. As illustrated in
Figure 1, this estimation exhibits lower variance
compared to using Ept∂t log p̃t(x). This reduction
in variance can potentially lead to better optimisa-
tion. To evaluate this, we conducted experiments
on GMM datasets by minimizing the loss in Equa-
tion (3), employing two different methods to esti-
mate ∂t logZt: Ept∂t log p̃t(x) and Eptξt(x; vt). The
loss values during training are plotted against the
training steps in Figure 5. The results show that
the estimator of Eptξt(x; vt) achieves lower loss values, highlighting the superior training
effects achieved with the lower variance estimation of ∂t logZt.

B.2. Stein Control Variates

In this section, we provide a perspective from control variates to explain the observation of
variance reduction in Figure 1. In particular, consider a Monte Carlo integration problem
µ = Eπ[f(x)], which can be estimated as µ̂ = 1

K

∑K
k=1 f(x

(k)), x(k) ∼ π. Assuming another
function exists with a known mean γ = Eπ[g(x)], we call g the control variate. We then
can construct another estimator µ̌ = 1

K

∑K
k=1(f(x

(k))− βg(x(k))) + βγ, where β is a scalar
coefficient and controls the scale of the control variate. It is obvious that E[µ̌] = E[µ̂] =
µ,∀β ∈ R. Moreover, we can choose a β to minimize the variance of µ̌. To obtain it, we first
derive the variance of µ̌

V[µ̌] =
1

K
(V[f]− 2βCov(f, g) + β2V[g]). (19)

Since V[µ̌] is convex w.r.t. β, by differentiating it w.r.t. β and zeroing it, we find the optimal
value, β∗ = Cov(f, g)/V[g]. Substituting it into Equation (19), we get the minimal variance

V[µ̌] =
1

K
V[µ̂](1− Corr(f, g)2). (20)

16

Neural Flow Samplers with Shortcut Models

Algorithm 2 Training Procedure of NFS2 (one training epoch only for illustration)
Input: initial shortcut model st(·, ·; θ), time spans {tm}Mm=0, shortcut distances {2−e}Ee=0

Output: trained shortcut model st(·, ·; θ)
1: t̃0 ← 0, t̃m ∼ U([tm−1, tm]),m = 1, . . . ,M ▷ Sample time steps
2: {x(k)

t̃m
, w̃

(k)

t̃m
}K,M
k=1,m=0←VD− SMC(st(·, 0; θ),K, {t̃m}Mm=0) ▷ Generate samples using Alg. 1

3: for t, {xt, w̃t} ∼ {x(k)t̃m
, w̃

(k)

t̃m
}K,M
k=1,m=0 do ▷ Executed with mini-batch in parallel

4: ξt←∂t log p̃t(xt)+∇x ·st(xt, 0; θ)+st(xt, 0; θ)·∇x log pt(xt)

5: ct←
∑

kw̃
(k)
t

[
∂t log p̃t(x

(k)
t)+∇x ·st(x(k)t , 0; θsg)+st(x

(k)
t , 0; θsg)·∇x log pt(x

(k)
t)

]
▷ ∂t logZt

6: d ∼ U({2−e}Ee=0) ▷ Sample shortcut distance
7: starget ← st(xt, d; θ)/2 + st+d(xt+d, d; θ)/2 ▷ Compute shortcut target
8: L(θ)← (ξt − ct)

2 + ∥st(xt.2d; θ)− starget∥22 ▷ Compute training loss
9: θ ← θ − η∇θL(θ) ▷ Perform gradient update

10: end for

Algorithm 3 Sampling Procedure of NFS2

Input: trained shortcut model st(·, ·; θ), initial density p0, # steps M
Output: generated samples x

1: x0 ∼ p0, d← 1
M , t← 0 ▷ Initialisation

2: for m = 0, . . . ,M − 1 do
3: x← x+ st(x, d; θ)d
4: t← t+ d
5: end for

This shows that, given the optimal value β∗, any function g that correlates to f , whether
positively or negatively, reduces the variance of the estimator, i.e., V[µ̌] < V[µ̂]. In practice,
the optimal β∗ can be estimated from a small number of samples (Ranganath et al., 2014).
However, the primary challenge lies in finding an appropriate function g. For a detailed
discussion on control variates, see Geffner and Domke (2018).

Fortunately, Theorem 1 offers a systematic way to construct a control variate for
Ept [f(x)] ≜ Ept [∂t log p̃t(x)] ≈ 1

K

∑K
k=1 ∂t log p̃t(x

(k)), where x(k) ∼ pt. Specifically, we
define g(x) = ∇x · vt(x; θ) + vt(x; θ) · ∇x log pt(x), from which we have γ = Ept [g(x)] = 0.
Using this, we construct a new estimator:

µ̌=
1

K

K∑
k=1

∂t log p̃t(x
(k))+β∗(∇x · vt(x(k); θ)+vt(x

(k); θ) · ∇x log pt(x
(k))), x(k)∼pt. (21)

Moreover, when θ is optimal, Equation (3) equals zero, implying g(x) = −f(x) + c, where c
is a constant independent of the sample x. In this case, Corr(f, g) = −1, and µ̌ becomes a
zero-variance estimator. As an additional clarification, Stein’s identity from Theorem 1 is
also employed as a control variate in Liu et al. (2017), where it is utilized to optimise the
policy in reinforcement learning.

17

Chen Ou Li

Appendix C. Training and Sampling Algorithms

The training and sampling algorithms are detailed in Algorithms 2 and 3, respectively. For
clarity, Algorithm 2 illustrates a single training epoch. In particular, we parameterise the
model with a single neural network st(x, d; θ) that takes the sample x, time step t, and
shortcut distance d as input to anticipate the shortcut direction. This design enables NFS2 to
model in continuous time, unlike the baseline LFIS (Tian et al., 2024), which trains separate
neural networks for each time step — a memory-intensive and inefficient approach. To train
the model, we define time spans {tm}Mm=0 that are evenly distributed over [0, 1], satisfying
0 = t0 < · · · < tM = 1 and 2tm = tm+1 + tm−1, ∀m. In each epoch, we uniformly sample
time steps from the time spans t̃m ∼ U([tm−1, tm]) and ensure that t̃0 = 0.3 Subsequently,
Algorithm 1 is invoked to generate training samples, which resembles distribution q as defined
in Equation (3). Notably, any q distribution can be used to generate training samples. The
choice of the proposed velocity-driven SMC is motivated by two key reasons:

i) At the beginning of training, the generated samples are far from the mode, encouraging
the model to focus on mode-covering. As training progresses, the generated samples
become more accurate, gradually shifting toward mode-seeking, ultimately balancing
exploration and exploitation for improved learning efficiency.

ii) Improved ∂t logZt estimation efficiency. SMC returns the samples and importance
weights for each time step simultaneously, streamlining the estimation of ∂t logZt.

After generating training samples, we compute the loss in Equation (5) and update the model
using gradient descent, as outlined in steps 4–9 of Algorithm 2.

Appendix D. Experimental Details

D.1. Datasets

Gaussian Mixture Model (GMM-40). We use a 40 Gaussian mixture density in 2
dimensions as proposed by Midgley et al. (2023). This density consists of a mixture of 40
evenly weighted Gaussians with identical covariances

Σ =

[
40 0
0 40

]
and µi are uniformly distributed over the [−40, 40] box, i.e., µi ∼ U(−40, 40)2.

p(x) =
1

40

40∑
i=1

N (x;µi,Σ)

Many Well 32 (MW-32). We use a 32-dimensional Many Well density, as proposed
by Midgley et al. (2023). This density consists of a mixture of nwells = 16 independent
double-well potentials:

E(x) =

nwells∑
i=1

EDW(xi)

3. More advanced schedule beyond uniform sampling remain important future works.

18

Neural Flow Samplers with Shortcut Models

where each xi corresponds to a pair of variables in a 2-dimensional space. The unnormalized
log density for a single 2D Double Well is:

log pDW(x1, x2) = −x41 + 6x21 +
1

2
x1 −

1

2
x22

Here, the wells are symmetrically distributed across a grid in the 32-dimensional space,
where each pair of dimensions corresponds to a well, and µi is uniformly distributed over
the space. The total log probability is proportional to the sum of energies from all wells:
log p(x) ∝ E(x) =

∑nwells
i=1 EDW(xi).

Double Well 4. The energy function for the DW-4 dataset was introduced in Köhler
et al. (2020) and corresponds to a system of 4 particles in a 2-dimensional space. The system
is governed by a double-well potential based on the pairwise distances of the particles. For a
system of 4 particles, x = {x1, . . . , x4}, the energy is given by:

E(x) =
1

2τ

∑
i,j

[
a(dij − d0) + b(dij − d0)

2 + c(dij − d0)
4
]

where dij = ∥xi−xj∥2 is the Euclidean distance between particles i and j. Following previous
work, we set a = 0, b = −4, c = 0.9, and the temperature parameter τ = 1. To evaluate the
efficacy of our samples, we use a validation and test set from the MCMC samples in Klein
et al. (2024) as the ground truth samples following the practice of previous works (Sadegh
et al., 2024).

D.2. Metrics

We evaluate the methods using the Wasserstein-2 (W2) distance and the Total Variation
(TV), both computed with 1,000 ground truth and generated samples. To compute TV,
the support is divided into 200 bins along each dimension, and the empirical distribution
over 1,000 samples is used. For GMM-40, we report the metricsW2 on energy space E and
TV on the data space X . For MW-32, we find that E − W2 is unstable and thus report
E-TV instead. Given the 32-dimensional nature of MW-32, computing TV is impractical;
therefore, we report the W2 metric on the data space rather than TV. For the n-body system
DW-4, we do not report any metrics in the data space due to its equivariance. Instead, we
assess performance using metrics in the energy space (E-W2 and E-TV) and the interatomic
coordinates D (D-TV) to account for invariance.

D.3. Training Details

Gaussian Mixture Model (GMM-40). We evaluate our method on a 40-mode Gaussian
mixture in R2 to test multi-modal exploration. The velocity field is parameterized by a
4-layer MLP (128-dimensional hidden layers, Layer Norm, and GeLU activations) trained
using velocity-guided sequential Monte Carlo with Hamiltonian kernels (3 HMC steps, 5
leapfrog steps, step size η = 0.1). Initial particles are sampled from N (0, 25I), optimized via
AdamW (β1 = 0.9, β2 = 0.999) with learning rate 4× 10−4, weight decay 10−4, and gradient
clipping at ℓ2-norm 1.0. Training uses 128-particle batches for 104 epochs (500 steps/epoch)
with early stopping, converging significantly before the epoch limit.

19

Chen Ou Li

Ground Truth FAB iDEM LFIS NFS (ours)

Figure 6: Samples on MW-32. First row: 2D marginal samples from the 1st and 4th
dimensions; Second row: 2D marginal samples from the 2rd and 3rd dimensions.

Many Well 32 (MW-32). We assess scalability in high dimensions using a 232-mode
Many Well potential on R32, exhibiting exponential mode growth with dimension. The
velocity field employs a 4-layer MLP (128-dimensional hidden layers, Layer Norm, and GeLU
activations) trained via velocity-guided SMC with enhanced Hamiltonian kernels (6 HMC
steps, 10 leapfrog steps, step size η = 0.1). Initialized from N (0, 2I), optimization uses
AdamW (β1 = 0.9, β2 = 0.999) with learning rate 1e−3, weight decay 10−4, and ℓ2-gradient
clipping at 1.0. Training maintains 128-particle batches across 104 epochs (500 steps/epoch)
with early stopping.

Double Well 4 (DW-4). We assess performance in particle-like system using a DW-4
potential on euclidean space. The velocity field employs a 4-layer MLP (512-dimensional
hidden layers, Layer Norm, and GeLU activations) trained via velocity-guided SMC with
enhanced Hamiltonian kernels (10 HMC steps, 10 leapfrog steps, step size η = 0.01).
Initialized from N (0, 2I), optimization uses AdamW (β1 = 0.9, β2 = 0.999) with learning
rate 4e−3, weight decay 10−4, and ℓ2-gradient clipping at 1.0. Training maintains 128-particle
batches across 104 epochs (500 steps/epoch) with early stopping.

Appendix E. Additional Experimental Results

E.1. Visualisation of MW-32

Figure 7: Histogram of sample energy on MW-32.

This section presents additional vi-
sualizations of generated samples on
MW-32. As shown in Figure 6, only
FAB and NFS2 accurately capture
the modes. While iDEM locates the
modes, it struggles to identify their
correct weights. Additionally, LFIS,
another flow-based sampler similar to
NFS2, produces noisy samples, high-

20

Neural Flow Samplers with Shortcut Models

iD
E

M
LF

IS
N

F
S2

Figure 8: Illustration of the generated samples using different sampling steps on GMM-40.

iD
E

M
LF

IS
N

F
S2

Figure 9: Illustration of the generated samples using different sampling steps on MW-32.

lighting the high variance issue associated with importance sampling. We further illustrate
the histogram of sample energy on MW-32, where we draw the empirical energy distribution
using 5,000 samples. It shows that NFS2 achieves competitive performance with FAB, and
notably outperforms iDEM and LFIS.

21

Chen Ou Li

E.2. Comparisons with Different Sampling Steps

One key advantage of NFS2 is its ability to achieve high-quality results with fewer sampling
steps. In this section, we compare NFS2 to the SOTA diffusion-based sampler iDEM and
the flow-based sampler LFIS, using varying numbers of sampling steps. As demonstrated in
Figures 8 and 9, NFS2 produces better samples compared to both iDEM and LFIS, when
using fewer sampling steps.

22

	Introduction
	Background: Continuity Equation
	Neural Flow Sampler
	Velocity-Driven Sequential Monte Carlo Estimation
	Neural Flow Shortcut Sampler

	Experiments
	Related Work
	Conclusions and Limitations
	Importance Sampling and Sequential Monte Carlo
	Importance Sampling
	Sequential Monte Carlo

	Variance Reduction with Control Variates
	Proof of eq:partiallogZfpi
	Stein Control Variates

	Training and Sampling Algorithms
	Experimental Details
	Datasets
	Metrics
	Training Details

	Additional Experimental Results
	Visualisation of MW-32
	Comparisons with Different Sampling Steps

