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ABSTRACT

Deep neural network–based Voice Conversion (VC) and Text-to-Speech (TTS)
models have rapidly advanced, enabling realistic voice cloning with minimal in-
put data. Such capabilities raise serious concerns over unauthorized cloning of
speaker identities and the associated privacy and security risks. Current impercep-
tible adversarial protection methods rely on quality control losses that are highly
sensitive to hyperparameter tuning and computationally expensive due to lengthy
optimization. To address these limitations, we propose a fast yet imperceptible
protection method that injects perturbations in the frequency domain under a psy-
choacoustic masking–based constraint. Our approach strictly enforces percepti-
bility bounds during adversarial training, eliminating the need for iterative qual-
ity balancing and significantly reducing computational cost. Experimental results
on multiple state-of-the-art VC and TTS models show that our method achieves
protection performance comparable to or better than existing baselines, with at
least an order-of-magnitude speedup. These results demonstrate the effective-
ness of frequency-domain perturbations with perceptual constraints as a practical
paradigm for protecting against voice cloning.

1 INTRODUCTION

With the rapid advancement of Deep Neural Networks (DNN), voice cloning models such as Voice
Conversion (VC) and Text-to-Speech (TTS) have reached an unprecedented stage of development.
Recent VC and TTS models require only a few seconds of a target speaker’s audio to generate
synthetic speech with high fidelity, closely resembling the speaker’s vocal characteristics while al-
lowing arbitrary linguistic content (Bargum et al., 2024; Deng et al., 2025). These powerful models
have enabled a wide range of applications, including voice restoration in the film industry, voice
assistants in smartphones and Internet-of-Things devices, and accessibility aids for individuals with
speech-related disabilities. However, highly realistic synthesized speech, commonly referred to as
DeepFake audio, poses serious threats to individuals’ privacy, property, and reputation.

In response to these threats, existing research has explored methods to defend against unauthorized
DeepFake audio (Wu et al., 2025; Nguyen-Le et al., 2025). These approaches can be broadly catego-
rized into two groups: detection and protection. DeepFake audio detection focuses on distinguishing
machine-generated speech from human speech. This can be achieved by examining artifacts present
in synthesized audio (passive detection) (Sun et al., 2023) or by extracting watermarks embedded
in the audio beforehand (active detection)(Roman et al., 2024). However, detection-based strategies
are effective only after an attack has occurred, which limits their protective capacity. In contrast,
protection methods aim to disrupt the speaker identity extraction process, typically carried out by a
speaker encoder, in voice cloning models. This is achieved by introducing imperceptible perturba-
tions, such as Gaussian noise or perturbations generated through adversarial training, into the audio
before publication Gao et al. (2025). By doing so, these methods prevent the replication of the ref-
erence audio’s timbre and safeguard the speaker’s identity. Such source level protection reduces the
risk of voice cloning in advance.

This paper proposes a new methodology that is significantly faster than existing imperceptible white-
box adversarial perturbation based protection methods. Most adversarial perturbation based defense
algorithms incorporate additional audio quality control losses, which are typically based on mea-
sures such as the L2 norm, Signal to Noise Ratio (SNR), spectrogram or Mel spectrogram distances,
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equal loudness contours, and psychoacoustic models. Although these methods can inject effective
adversarial noise while maintaining audio quality to some extent, they face two major challenges:
(i) the outcome of audio quality control is highly sensitive to the relative weighting of the quality
loss in the objective function, meaning that when applying these methods to voice cloning models,
one must carefully balance the weight between the speaker encoder loss and the quality control loss
to achieve satisfactory performance; and (ii) they typically require hundreds or even thousands of
iterations for the model to identify an effective perturbed subspace that simultaneously preserves
acceptable sound quality (Yu et al., 2023; Li et al., 2023a). Such procedures are computationally
expensive and limit their practical applicability.

Our proposed method addresses these limitations by introducing imperceptible perturbation in the
frequency domain. Specifically, we first convert the speech signal into a spectrogram in the fre-
quency domain using the Short-Time Fourier Transform (STFT), under the Constant Overlap Add
(COLA) condition to ensure lossless inverse STFT (iSTFT) reconstruction. A psychoacoustic model
is then applied to the spectrogram to estimate the masking threshold of each tone in every STFT
frame. This threshold is combined with a predefined tolerance to establish a strictly enforced human
perceptibility constraint, ensuring that the injected perturbations remain within the allowable range.
In this manner, gradient updates are directed solely toward the perturbations, which accelerates ad-
versarial training while preserving strong protection performance.

We conduct extensive experiments on multiple state-of-the-art VC and TTS models and compare
our approach with leading white-box defense baselines. The results demonstrate that the proposed
method achieves comparable or superior protection performance while being at least an order of
magnitude faster than existing baselines.

2 RELATED WORK

Voice Cloning Models Voice cloning refers to generating speech with arbitrary linguistic content
that mimics the vocal characteristics of a specific individual. Recent approaches mainly fall into two
paradigms: VC (Qian et al., 2019; Chou et al., 2019; Wang et al., 2021; Li et al., 2021; 2023b; Guo
et al., 2023; Park et al., 2023) and TTS (Casanova et al., 2024; Liao et al., 2024; Du et al., 2024;
Guo et al., 2024; Chen et al., 2024; RVC-Boss, 2025; Deng et al., 2025). VC models take utterances
from two speakers: one provides linguistic content (what to say), and the other provides speaker
identity (how to say it). The model then combines these inputs to synthesize speech that carries
the content of the former while preserving the vocal traits of the latter. TTS models, on the other
hand, generate acoustic features from input text conditioned on a short reference audio that provides
speaker information. These features are then passed to a vocoder to synthesize speech that preserves
the vocal characteristics of the reference speaker.

Detection-based Protection To mitigate the risks posed by unauthorized voice cloning, researchers
have developed proactive algorithms that embed stealth identifiers into audio files to enable post-
cloning tracking, a technique commonly referred to as audio watermarking (Chen et al., 2023; Liu
et al., 2023; Roman et al., 2024; Liu et al., 2024). Audio watermarking methods typically involve a
generator–detector framework: the generator embeds imperceptible patterns into speech, which tend
to remain intact even after processing or cloning by VC or TTS models, while the detector recovers
or verifies these patterns to trace the audio’s origin and assess its authenticity.

Another approach to detecting DeepFake audio is to analyze intrinsic artifacts in model synthesized
speech (Sun et al., 2023). These passive methods identify acoustic, spectral, or temporal inconsis-
tencies introduced during synthesis and use statistical models or deep neural networks to distinguish
synthetic speech from genuine recordings.

Adversarial Perturbation Protection Another promising defense strategy is to embed impercep-
tible or minimally perceptible noise into speech audio (Huang et al., 2021; Yu et al., 2023; Li et al.,
2023a; Wang et al., 2023; Dong et al., 2024; Yang et al., 2024). Such noise is specifically designed
to disrupt the cloning process, particularly the speaker encoder, thereby preventing voice cloning
models from synthesizing accurate outputs. Adversarial perturbation based defenses can be catego-
rized along two binary dimensions: how the perturbations are generated and where they are applied.
With respect to generation, some methods produce perturbations through adversarial training, while
others employ a pretrained perturbation generator that does not require gradient information dur-
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ing inference. With respect to application, perturbations are either injected directly into the audio
waveform or introduced by biasing latent representations within a vocoder.

3 METHODOLOGY

In this section, we present the proposed protection algorithm, Silence-the-Mimic (STM). Unlike
prior approaches that rely on perceptual loss functions to regulate the audibility of perturbations,
STM employs a psychoacoustic-based soft clamping strategy to enforce strict control over percep-
tual distortion in the frequency domain. This design enables direct control over the perceptual quality
of protected speech while simultaneously accelerating the perturbation process by eliminating the
need for additional audio refinement steps.

We begin this section by formulating the protection problem, followed by a detailed description of
our methodology.

3.1 PROBLEM SETUP

Our problem scenario involves three entities: (i) a victim who publishes publicly available content
containing their speech samples, denoted by the set Xu, (ii) an attacker who seeks to exploit these
samples to generate deepfake audio, and (iii) a verifier that is exclusively authorized to interact with
the victim.

The attacker is modeled as a third-party adversary without the capability to directly capture the
victim’s speech. Instead, the attacker collects publicly available speech samples of the victim. To
generate spoofed speech, the attacker employs a speech synthesis model G(encspk(x), c) : Rdenc ×
C → R∗, which synthesizes an utterance containing linguistic content c while mimicking the vocal
characteristics of the target utterance x ∈ Xu. Here, x ∈ R∗ denotes a variable-length sequence
representing the audio waveform, where the symbol ∗ indicates that the sequence length may vary.
c ∈ C denotes arbitrary content selected by an attacker to facilitate misuse, and encspk : R∗ → Rdenc

denotes the speaker encoder.

The verifier relies on a speaker verification (SV) model SV : R∗ → [0, 1] to assess whether a given
utterance x originates from the victim. Based on the confidence score produced by the SV model,
the verifier accepts or rejects an utterance as authentic, thereby serving as the ultimate gatekeeper in
controlling access to victim-authorized interactions.

To safeguard the victim’s voice identity from replication by an attacker, a protection algorithm per-
turbs every x ∈ Xu prior to publication, thereby altering the audio characteristics such that the SV
model no longer recognizes them as identical to the original. At the same time, the perturbation
is designed to remain as imperceptible as possible, ensuring that the protected utterance remains
intelligible and usable. This process can be formulated as:

min
∆x

SV
(
G
(
encspk(x+∆x), c

))
s.t. H(x+∆x,x) ≤ Hlimit,

(1)

where H : R∗ × R∗ → Rd denotes a human perceptual function that quantifies the dissimilarity
between two inputs, with the output dimensionality d may correspond to a scalar or a high dimen-
sional tensor depending on the granularity of perceptual constraints (e.g., time–frequency bins). The
parameter Hlimit specifies the maximum allowable distortion and enables fine-grained control across
different feature channels. In practice, directly optimizing Equation 1 is often infeasible. Instead, we
modify the speaker identity perceived by the synthesizer to achieve a similar outcome, as discussed
in a later section.

3.2 METHOD FORMULATION

Our proposed method, STM, begins by converting the victim’s speech audio into a frequency-
domain representation, i.e., a spectrogram. A psychoacoustic model is then applied to constrain
the maximum allowable distortion of the protected audio. Finally, the optimization problem in
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Figure 1: Pipeline of STM.

Equation 1 is reformulated into an empirical form suitable for adversarial training, resulting in the
generation of the protected output. The overall STM pipeline is shown in Figure 1.

Frequency-domain Perturbation We perform adversarial protection by introducing perturbations
in the frequency domain. The raw speech waveform is converted into a spectrogram using STFT.
In particular, we employ a Hann window with a 50% overlap between consecutive frames. This
configuration satisfies the COLA condition, ensuring that the sum of overlapping windows remains
constant over time. The COLA property guarantees that the signal can be reliably reconstructed
through iSTFT, which is critical for our framework, as perturbed spectrograms must be transformed
back into time-domain waveforms without introducing additional artifacts.

We denote the STFT and iSTFT operations by STFT : R∗ → R∗×∗ and iSTFT : R∗×∗ → R∗,
respectively, and write the spectrogram of x ∈ Xu as Yspec = STFT (x). For notational simplicity,
we retain only the magnitude component and omit the phase, which remains unchanged throughout
the algorithm. We denote the corresponding frequency-domain perturbation as ∆spec, which shares
the same shape as Yspec.

Approximate Perceptibility Constraint To directly control the audibility of added noise, it
is essential to quantitatively approximate the distortion perceived by humans between the raw
speech audio and its protected version. In STM, we employ a psychoacoustic model, denoted as
Psyac(Yspec) : R∗×∗ → R∗×∗, to estimate the masking threshold. This threshold, combined with
predefined tolerance margins, provides an approximate representation of the human perceptual con-
straint in Equation 1.

Specifically, let Ymask = Psyac(Yspec) denote the masking threshold of the spectrogram Yspec. We
then identify audible and inaudible tones in the original utterance as follows:

1audible = 1≥Ymask
(Yspec),

1inaudible = 1<Ymask
(Yspec),

where 1condition(·) is an element-wise indicator function. We then impose the approximate percep-
tibility constraint on the protected audio as:

Y adv
spec ≤ Yspec + 1audible ⊙ hhead

audible + 1inaudible ⊙ hhead
inaudible := Hhead,

Y adv
spec ≥ Yspec + 1audible ⊙ hfloor

audible + 1inaudible ⊙ hfloor
inaudible := Hfloor,

(2)

where Y adv
spec = Yspec + ∆spec denotes the spectrogram of the protected utterance, ⊙ represents

element-wise multiplication, and h
{head,floor}
{audible,inaudible} correspond to the headroom and floorroom tol-

erances for audible and inaudible tones, respectively. These tolerance values are tunable parameters
of STM that explicitly control the trade-off between audio quality and protection strength. For in-
stance, by setting

hfloor
audible = 0, hhead

audible = 0, hfloor
inaudible = −∞, hhead

inaudible = Ymask − Yspec,

STM enforces perfectly stealthy protection, where audible tones remain unchanged and inaudible
tones are constrained strictly below the masking threshold.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Alternatively, by allowing controlled distortion through:

hfloor
audible = −c, hhead

audible = c, hfloor
inaudible = −∞, hhead

inaudible = Ymask − Yspec + c,

STM relaxes the constraint on audible tones by a margin c > 0, thereby increasing the protection
strength at the cost of a small, controlled reduction in perceptual quality.

Hard Clamping An effective approach used in this study to enforce the perceptibility constraint in
Equation 2 is to hard clamp excessive values of Y adv

spec (and thus of ∆spec) back within the headroom
and floorroom tolerances at the end of each training iteration:

Clamp(Y adv
spec) = min

(
max(Y adv

spec ,H
floor), Hhead

)
,

where min and max are applied element-wise, returning the smaller or larger value of their two
operands, respectively.

Targeted Embedding Shift The ultimate objective of our problem is to reduce the confidence
score produced by the SV model. However, directly optimizing the objective function in Equation 1
is inefficient and, in the case of autoregressive voice cloning models, often infeasible. Instead, we
optimize the perturbation ∆spec to alter the output of the speaker encoder, eventually lower the SV
confidence score.

In prior work on white-box adversarial protection methods, two primary objectives have been
employed to deviate the output of the speaker encoder: threshold-based and target-based. The
threshold-based approach trains the perturbation to push the speaker encoder’s output a sufficient
distance away from the original speaker embedding under a chosen distance metric, with the pro-
tection rate controlled by a predefined threshold. In contrast, the target-based approach forces the
perturbed embedding to resemble that of another speaker selected from an embedding bank. In
STM, we adopt the target-based approach, as guiding perturbations toward a valid subspace of real
speech embeddings consistently yields higher audio quality in the protected outputs. Additional
analysis of this effect is presented in Section 4.6.

Multi-Step Total Variation Loss To further enhance the temporal smoothness of perturbations and
thereby improve audio quality, we incorporate a multi-step one dimensional total variation (TV) loss
into the optimization objective. Rather than penalizing only differences between adjacent samples,
this formulation considers multiple step sizes to capture variations across different temporal scales.
Formally, the multi-step TV loss is defined as:

LossMTV =
∑
k∈K

1

T

T∑
t=1

∣∣∆spec[:, t+ k]−∆spec[:, t]
∣∣,

where K is the set of step sizes, and T denotes the length of ∆spec along the time axis. By enforc-
ing smoothness across both short- and long-range time intervals, this regularization reduces rapid
oscillations and stabilizes the perturbation structure.

The complete STM protection procedure is summarized in Algorithm 1.

4 EXPERIMENTS

4.1 DATASET

We evaluate our proposed protection method and baseline methods on the CSTR VCTK Corpus
(Yamagishi et al., 2019). For preprocessing, we first discard utterances without transcripts, and then
randomly select 100 speakers, with 5 utterances randomly chosen from each, resulting in a total
of 500 utterances. From the remaining utterances, we select the longest one from each speaker to
construct the embedding bank for target-based adversarial training. All audio files are downsampled
to 16 kHz prior to training or inference with any model.

4.2 TARGET MODELS AND BASELINES

To best resemble a powerful attacker trying to clone the voice identity of the victim, we select
four popular open-source DNN-based voice synthesis models with state-of-the-art zero-shot or few-
shot voice cloning capabilities. The selected models are: GPT-SoVITS (GSV, RVC-Boss (2025)),
FreeVC (Li et al., 2023b), QuickVC (Guo et al., 2023) and TriAAN-VC (Park et al., 2023).
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Algorithm 1: Silence-the-Mimic (STM)
Require: speaker encoder encspk; STFT STFT ; inverse STFT iSTFT ; psychoacoustic

model Psyac; clamp function Clamp; params h{head,floor}
{audible,inaudible}; loss Loss

Input: victim utterance x
Output: protected utterance xadv

1: Yspec ← STFT (x)
2: Ymask ← Psyac(Yspec)

3: emborigspk ← encspk(x)

4: Choose embtrgspk from bank using emborigspk

5: Compute hhead, hfloor via Equation 2
6: Initialize ∆spec; initialize optimizer O
7: for t← 1 to Titer do
8: Y adv

spec ← Yspec +∆spec

9: xadv ← iSTFT (Y adv
spec)

10: emb← encspk(xadv), loss← Loss(emb, embtrgspk), ∇∆spec
← ∂loss/∂∆spec

11: ∆spec ← O-update(∆spec,∇∆spec
)

12: ∆spec ← Clamp(∆spec; Yspec,Ymask, h
head, hfloor)

13: return xadv

We evaluate the defense performance of our proposed method on the models described above, com-
paring it with two baselines: AntiFake (Yu et al., 2023) and VoiceGuard (Li et al., 2023a). Both
methods are widely recognized and continue to serve as baselines in recent studies (Gao et al.,
2025; Fan et al., 2025), underscoring their status as current leading approaches. They operate under
a white-box setting and employ adversarial training to generate perturbations in the time domain,
combined with loss based audio quality control. The key distinction lies in their strategies for qual-
ity control: AntiFake integrates the loss terms directly into the perturbation process, whereas Voice-
Guard performs audio refinement as a separate stage following adversarial training, with the optimal
weight determined via binary search.

4.3 EVALUATION METRICS

We evaluate the protection effectiveness of STM and the baseline methods using three widely
adopted SV models: TitaNet (Koluguri et al., 2022), ECAPA-TDNN (Desplanques et al., 2020),
and Pyannote.audio (Plaquet & Bredin, 2023; Bredin, 2023). For TitaNet and ECAPA-TDNN, we
employ the implementations provided in NVIDIA’s NeMo library, while for Pyannote.audio, we use
the official implementation from its official repository.

Following prior work, we evaluate the audio quality of protected utterances using the Mean Opinion
Score (MOS) and the Noisiness metric. MOS provides an overall measure of perceived speech
quality, while the Noisiness metric quantifies degradation due to additive noise, capturing the extent
to which an audio sample is perceived as “not noisy” (Wältermann, 2013; Mittag et al., 2021). In
addition, we incorporate the Perceptual Evaluation of Speech Quality (PESQ) (Rix et al., 2001)
to assess voice naturalness, and the Short-Time Objective Intelligibility (STOI) (Taal et al., 2010)
to evaluate speech intelligibility. Together, these metrics provide a comprehensive evaluation by
capturing complementary aspects of perceptual quality, ranging from naturalness to intelligibility
and noise robustness. MOS and Noisiness are obtained using NISQA (Mittag et al., 2021), an open-
source DNN-based model for multidimensional speech quality prediction. For PESQ and STOI, we
adopt the pesq1 and pystoi2 libraries, respectively.

1https://github.com/ludlows/PESQ
2https://github.com/mpariente/pystoi
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4.4 TRAINING DETAILS

For our proposed method, we configure the STFT with 512 FFT size and a hop size of 256 to satisfy
the COLA condition. The resulting spectrograms are subsequently converted into the log scale. The
psychoacoustic model is adopted from Schuller (2020). We extract the speaker encoder components
from GSV, FreeVC, QuickVC, and TriAAN-VC, and employ them as encspk in Algorithm 1. The
target speaker embedding, embtrgspk, is selected as the embedding corresponding to the fifth-largest
distance from the original speaker embedding, emborigspk , in the entire speaker bank. Perceptibility
control parameters are set as follows:

hfloor
audible = −0.15, hhead

audible = 0.15, hfloor
inaudible = −∞, hhead

inaudible = Ymask − Yspec.

We use the Adam optimizer with a learning rate of 1 and parameters β1 = 0.9 and β2 = 0.999. Titer

is set to 80. For loss function, we use a combination of L1 loss and cosine similarity loss as shown
in Equation 3:

Loss(emb, embtrgspk) = ||emb− embtrgspk||1 +
(
1− CosineSimilarity(emb, embtrgspk)

)
. (3)

TV loss is incorporated into Equation 3 for defense against FreeVC and QuickVC.

For the baselines, we evaluate AntiFake under two configurations: 500 and 1000 iterations, with the
latter corresponding to its original setting. We also manually adjust the weight ratio between the
speaker loss and the quality control loss to balance audio fidelity and defense robustness. Additional
evaluations of AntiFake with different quality control loss weights are provided in Section 4.6. For
VoiceGuard, we adopt the configuration from the original paper, consisting of 3000 adversarial
training steps followed by 1500 refinement steps.

For the three SV models, the thresholds of normalized cosine similarity are set to 0.7318, 0.6466, and
0.7507 for ECAPA-TDNN, Pyannote, and TitaNet, respectively. These thresholds are determined
by their Equal Error Rates (EER) on the VCTK dataset.

All methods are evaluated on a single NVIDIA A100 80GB PCIe GPU. Training time is averaged
over the entire sampled dataset, accounting only for perturbation iterations and excluding data I/O.

4.5 MAIN RESULTS

Table 1 reports the comparative SV rejection rates and audio quality metrics. TitaNet, E-TDNN, and
Pyannote denote the rejection rates obtained from the TitaNet, ECAPA-TDNN, and Pyannote.audio
SV systems, respectively. F-VC, Q-VC, and T-VC denote the target models FreeVC, QuickVC, and
TriAAN-VC, respectively. STM denotes our proposed method, AF-500 and AF-1000 correspond
to AntiFake with 500 and 1000 iterations, and VG represents VoiceGuard. Confidence intervals are
reported at the 95% level. The symbol ↑ indicates that higher values are preferable. The best results
are shown in bold, and the second best results are underlined.

Across all VC and TTS models, STM consistently demonstrates state-of-the-art protection perfor-
mance. It achieves the highest or second-highest rejection rates on nearly all SV systems, frequently
surpassing VoiceGuard and AntiFake by large margins. With protection performance equal to or
exceeding that of the baselines, STM preserves superior perceptual quality in the protected au-
dio. It achieves above-average scores in MOS and PESQ, while its STOI and Noisiness results
are consistently higher than those of the baselines, indicating more effective perceptual masking of
perturbations.

Most notably, STM delivers an order-of-magnitude improvement in inference speed compared to
existing baselines. As shown in Table 2, it reduces inference time from tens or even hundreds of
seconds per iteration to only a few seconds, representing at least a 20× speedup across all settings.

4.6 FURTHER EXPERIMENTS

Effect of Quality Control Loss Weight in AntiFake In Table 1, we report the protection per-
formance of AntiFake under varying loss weight ratios between the speaker encoder loss and the
quality control loss. To enable a more comprehensive performance comparison, we further evaluate
AntiFake-500 across a broader range of loss weight ratios, with the corresponding results presented

7
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Table 1: Comparison of SV rejection rates and audio quality metrics between the proposed method
and the baseline methods.

Model Method TitaNet ↑ E-TDNN ↑ Pyannote ↑ MOS ↑ Noisiness ↑ PESQ ↑ STOI ↑

GSV

STM 96.00% 95.40% 68.80% 3.26± 0.06 3.65± 0.04 2.54± 0.03 0.91± 0.00
AF-500 83.20% 86.40% 66.80% 2.98± 0.04 1.89± 0.02 1.86± 0.03 0.79± 0.01
AF-1000 80.00% 72.60% 48.40% 3.25± 0.06 2.03± 0.04 2.00± 0.04 0.82± 0.01
VG 94.00% 95.20% 81.40% 2.82± 0.05 1.78± 0.02 1.72± 0.02 0.78± 0.01

F-VC

STM 98.40% 98.80% 94.40% 3.80± 0.07 3.82± 0.05 2.86± 0.03 0.94± 0.00
AF-500 76.80% 77.60% 70.40% 3.22± 0.05 2.12± 0.03 1.95± 0.03 0.81± 0.01
AF-1000 76.20% 77.20% 69.40% 3.26± 0.11 2.30± 0.09 2.04± 0.06 0.80± 0.03
VG 83.20% 84.40% 76.00% 2.99± 0.04 1.93± 0.02 1.79± 0.02 0.78± 0.01

Q-VC

STM 99.60% 99.60% 98.80% 3.64± 0.08 3.67± 0.06 2.59± 0.03 0.95± 0.00
AF-500 57.20% 56.80% 51.60% 3.22± 0.04 2.15± 0.01 2.20± 0.03 0.83± 0.01
AF-1000 51.00% 51.20% 41.20% 3.55± 0.04 2.45± 0.02 2.58± 0.03 0.86± 0.01
VG 97.80% 97.80% 95.40% 2.90± 0.04 1.74± 0.01 1.73± 0.02 0.77± 0.01

T-VC

STM 67.80% 65.60% 43.40% 2.86± 0.06 3.54± 0.03 2.36± 0.03 0.89± 0.01
AF-500 67.40% 68.00% 46.00% 2.86± 0.04 1.81± 0.01 1.87± 0.03 0.79± 0.01
AF-1000 67.40% 67.20% 46.00% 2.98± 0.03 1.91± 0.01 2.03± 0.03 0.80± 0.01
VG 69.20% 67.60% 42.80% 2.89± 0.04 1.92± 0.01 1.97± 0.03 0.83± 0.01

Table 2: Inference speed across models and methods.

Model Speed ↓ (s/it)

STM AF-500 AF-1000 VG

GSV 1.02 18.35 38.34 30.87
F-VC 2.01 20.10 43.38 56.80
Q-VC 1.76 21.02 42.55 79.72
T-VC 3.96 27.85 57.53 156.27

in Table 3. Column QC Weight specifies the applied adjustment to the quality control loss. The
notation ×c indicates that the loss weight is scaled by the factor c, while a value of 1 denotes direct
substitution of the target model’s speaker encoder in AntiFake. For FreeVC, a QC weight of ×0.5
is equivalent to drop-in and is therefore not reported.

Table 3: Effect of varying the quality control loss weight in AntiFake.

Model QC weight TitaNet ↑ E-TDNN ↑ Pyannote ↑ MOS ↑ Noisiness ↑ PESQ ↑ STOI ↑

GSV
×2 68.60% 73.40% 47.80% 2.95± 0.04 1.99± 0.02 2.07± 0.03 0.82± 0.01
×0.5 96.40% 96.60% 89.60% 2.85± 0.04 1.69± 0.02 1.59± 0.02 0.75± 0.01
1 (drop-in) 100.00% 100.00% 99.60% 2.02± 0.03 1.46± 0.01 1.09± 0.00 0.60± 0.01

F-VC

×5 2.76% 3.31% 5.52% 3.80± 0.05 2.86± 0.06 2.99± 0.05 0.89± 0.01
×2 54.60% 55.20% 47.00% 3.32± 0.04 2.41± 0.02 2.30± 0.04 0.84± 0.01
×0.5 — — — — — — —
1 (drop-in) 95.80% 95.00% 90.60% 1.57± 0.03 1.37± 0.01 1.22± 0.01 0.69± 0.01

Q-VC
×2 53.00% 54.00% 46.40% 3.22± 0.04 2.17± 0.01 2.23± 0.03 0.83± 0.01
×0.5 63.00% 62.40% 55.20% 3.26± 0.04 2.10± 0.01 2.15± 0.03 0.83± 0.01
1 (drop-in) 97.00% 97.20% 93.20% 2.02± 0.03 1.46± 0.01 1.09± 0.00 0.60± 0.01

T-VC
×2 99.60% 99.80% 98.00% 1.49± 0.02 1.42± 0.01 1.13± 0.01 0.66± 0.01
×0.5 90.20% 90.60% 76.60% 2.60± 0.04 1.72± 0.01 1.70± 0.02 0.76± 0.01
1 (drop-in) 100.00% 99.80% 100.00% 1.12± 0.01 1.47± 0.01 1.07± 0.00 0.58± 0.01

As shown in the table, for GSV, FreeVC, and QuickVC, when the protection rate approaches STM,
their audio quality degrades substantially compared to our proposed method. Moreover, as the
weight of the quality control loss increases, the protection rate decreases even further relative to
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STM, underscoring the effectiveness of our approach. For TriAAN-VC, however, adjusting the
quality control weight has inverse effect. This may be attributed to the distinct nature of the TriAAN-
VC speaker encoder, which produces variable-length speaker embeddings. Such representations
make loss-based quality control less effective, thereby highlighting STM’s superiority in enforcing
audio distortion tolerance.

Effect of Targeted Embedding Shift To examine the effect of targeted embedding shift on audio
quality and model performance, we modify the loss function in Equation 3 by replacing embtrgspk

with emborigspk and reversing the sign of each term. Table 4 reports the STM evaluation results with
the modified loss function, showing a substantial degradation in audio quality for GSV, FreeVC,
and QuickVC compared with the targeted embedding shift. This demonstrates that under our per-
ceptibility control method, guiding perturbations toward a valid subspace of speaker embeddings
improves the quality of the generated audio.

Table 4: Evaluation of STM without directed embedding shift.

Model TitaNet ↑ E-TDNN ↑ Pyannote ↑ MOS ↑ Noisiness ↑ PESQ ↑ STOI ↑
GSV 97.40% 97.80% 67.20% 2.68± 0.06 3.50± 0.04 2.22± 0.03 0.88± 0.00
F-VC 99.80% 99.20% 97.40% 3.38± 0.06 2.72± 0.06 2.22± 0.02 0.91± 0.00
Q-VC 99.40% 99.00% 97.40% 3.42± 0.06 2.88± 0.07 2.22± 0.02 0.93± 0.00
T-VC 51.60% 51.60% 20.40% 2.84± 0.06 3.54± 0.04 2.52± 0.03 0.86± 0.01

Effect of Multi-Step TV Loss We remove the multi-step TV losses from the objective function,
and the corresponding evaluation results are reported in Table 5. As shown, without TV loss the pro-
tected utterances contain abruptly varying noise. These ineffective perturbations produce noticeable
artifacts in the audio, thereby reducing the practicality of the protection.

Table 5: Evaluation of STM without TV loss.

Model TitaNet ↑ E-TDNN ↑ Pyannote ↑ MOS ↑ Noisiness ↑ PESQ ↑ STOI ↑
F-VC 99.40% 99.60% 95.80% 2.74± 0.07 3.04± 0.07 2.34± 0.02 0.92± 0.00
Q-VC 99.80% 99.60% 98.20% 2.83± 0.07 3.00± 0.07 2.24± 0.02 0.93± 0.00

5 CONCLUSION

In this paper, we introduced a fast and effective method for protecting speech from voice cloning
attacks. By perturbing audio in the frequency domain under the guidance of a psychoacoustic model,
our approach enforces strict perceptual limits while greatly accelerating adversarial perturbation
generation. Experiments on state-of-the-art voice cloning models show that our method delivers
competitive protection with higher audio quality and substantially reduced processing time.
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clusions were independently conducted by the authors without LLM involvement. The use of the
LLM did not extend to ideation, experimental design, data analysis, or result interpretation.
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