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Abstract

Despite their wide adoption, the biases and un-001
intended behaviors of language models remain002
poorly understood. In this paper, we identify003
and characterize a phenomenon never discussed004
before, which we call semantic leakage, where005
models leak irrelevant information from the006
prompt into the generation in unexpected ways.007
We propose an evaluation setting to detect se-008
mantic leakage both by humans and automati-009
cally, curate a diverse test suite for diagnosing010
this behavior, and measure significant semantic011
leakage in 13 flagship models. We also show012
that models exhibit semantic leakage in lan-013
guages besides English and across different set-014
tings and generation scenarios. This discovery015
highlights yet another type of bias in language016
models that affects their generation patterns017
and behavior.018

1 Introduction019

As language models (LMs) become more preva-020

lent (Touvron et al., 2023; Anil et al., 2023; Achiam021

et al., 2023; Scao et al., 2022), we are steadily learn-022

ing more about their peculiarities and the unique023

and often unexpected properties of their behavior.024

Phenomena ranging from hallucinations (Ji et al.,025

2023) to sycophancy (Sharma et al., 2024) and026

many types of biases (Navigli et al., 2023) have027

been revealed in these models’ outputs. Each such028

discovery leads to a cycle of in-depth study and029

development of new methods to mitigate these be-030

haviors as much as possible.031

We identify a phenomenon in language models032

never discussed before, which we term semantic033

leakage — these models can generate text with034

strong semantic relationships to unrelated words in035

the prompts. For example, when given the prompt036

“He likes yellow. He works as a”, GPT4O1 generates037

the output “school bus driver” (Figure 1). Here we038

1https://platform.openai.com/docs/models/
gpt-4o

Examples of semantic leakage

Prompt: He likes yellow. He works as a
GPT4O: school bus driver

Prompt: He likes ants. His favorite food is
GPT4O: ant-covered chocolate, a unique
delicacy that combines the crunch of ants
with the sweetness of chocolate

Prompt: It was her turn to speak and she
got cold feet. A day later she stayed at home
because she got hurt in her
GPT4O: ankle

Prompt: He is a doctor. His favorite song is
GPT4O: ’Stayin’ Alive’ by the Bee Gees

Figure 1: Examples of semantic leakage in GPT4O. The
leaking concept is underlined.

say that the word yellow has leaked into the gener- 039

ation in a way that unintentionally influences the 040

generated occupation. Figure 1 shows three addi- 041

tional examples of prompt-generation pairs (using 042

GPT4O). In each example, the leakage from the 043

semantic meaning of the underlined word in the 044

prompt is apparent in the generation. 045

We define semantic leakage in a generation as an 046

undue influence of semantic features from words in 047

the prompt on the generation, “undue” in that the 048

semantic relatedness between the prompt and the 049

generation is stronger than would be expected in 050

natural distributions. Often semantic leaks read as 051

forced, overwrought, even nonsensical generations, 052

like those found in children’s stories. 053

In this paper, we introduce an evaluation met- 054

ric for measuring semantic leakage. We examine 055

semantic leakage with 109 examples of different 056

semantic categories (animals, food, music, etc.) 057

and demonstrate that it exists across 13 models and 058

4 temperature sampling values, as well as in ad- 059

ditional generation settings (e.g., open-ended gen- 060

eration and multilingual settings). Our analysis 061
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shows that finetuned/instruction-tuned models tend062

to leak more, and that semantic leakage also hap-063

pens across languages.064

Semantic leakage is closely related to different065

types of biases models exhibit, ranging from gen-066

der, racial and cultural biases (Bolukbasi et al.,067

2016; Caliskan et al., 2017; Gonen and Gold-068

berg, 2019; Nadeem et al., 2021) to cognitive and069

psychological biases (Jones and Steinhardt, 2022;070

Macmillan-Scott and Musolesi, 2024; Hagendorff071

et al., 2023), in which associations between differ-072

ent concepts are learned by the model during train-073

ing and exposed as bias during generation (Maud-074

slay et al., 2019; Gonen and Webster, 2020; Schick075

et al., 2021). While still not fully understood, we076

suspect that much documented and discussed gen-077

der bias and other types of previously documented078

biases (Navigli et al., 2023) are instances of asso-079

ciations that get learned and influence in a broader080

way, which is partially reflected as semantic leak-081

age. Specifically, here we are looking at larger082

semantic classes (i.e., compared to gender or race),083

and we seek to quantify and study learned associa-084

tions and their effect on model generation settings.085

Given the nature of models in learning associ-086

ations during training, whether semantic leakage087

is surprising or not is a point of contention. In ad-088

dition, the implications of this behaviour depend089

on the user and application context, and are not090

necessarily either good or bad. At the same time,091

we strongly believe that it is an interesting and092

important behavior to investigate as it may be a093

broad enough umbrella to encompass many other094

associations that are studied as more specific cases.095

Studying the broader family may be easier and096

more beneficial, as the more general class may in-097

clude cases more resistant to mitigation strategies098

and more prevalent in model outputs.099

Our contributions in this paper can be summa-100

rized as follows: (1) we identify and define the phe-101

nomenon of semantic leakage in language model102

generation (Section 2); (2) we build a test suite103

for detecting semantic leakage in language mod-104

els (Section 2); (3) we evaluate 13 models with105

varying sizes using this test suite, uncovering con-106

sistent cross-model trends, and validate this auto-107

matic evaluation with human judgments (Section 4108

and 5); (4) we show that models also exhibit seman-109

tic leakage in languages beyond English (Chinese110

and Hebrew) as well as in crosslingual settings111

(Section 6) and in more open-ended generation112

(Section 7). By characterizing semantic leakage,113

we demonstrate yet another property language mod- 114

els exhibit in text generation, and highlight how 115

choices in prompt construction can inadvertently 116

affect model output. 117

2 Semantic Leakage 118

2.1 Overview and Definitions 119

When producing text, language models can draw 120

on semantic associations with words from the input, 121

or prompt, that are not required or expected, and 122

sometimes even violate rules of logic or common 123

sense. For example, given the prompt “He likes 124

koalas. His favorite food is” GPT4O generates the 125

output “eucalyptus leaves”. Here, we say that the 126

semantic association with “koalas” and the foods 127

they eat “leaks” into the generation, despite the 128

fact that a person’s favorite food and their opinion 129

on koalas are unrelated in the real world. We call 130

this phenomenon semantic leakage. A related phe- 131

nomenon of conceptual leakage has been reported 132

in image generation (Rassin et al., 2022). There, 133

they find that visual properties of one object leak 134

into other objects in the image (for example, the 135

prompt “a zebra and a street” generates an image 136

of a zebra next to a zebra crossing), which resem- 137

bles examples we show (e.g., yellow leaking into 138

the occupation through “school bus driver”, see 139

first example in Figure 1). While this behaviour 140

might be seen as subjective, the cases we consider 141

in this paper are, we believe, beyond debate. 142

Semantic leakage in text generation can also 143

manifest in more subtle ways: for the prompt “He 144

likes green. He works as a”, GPT4O generates 145

“landscape architect” as a response. In other cases, 146

the model may leak semantics that are not even 147

used in the prompt: For example, when prompted 148

with an idiom, a model can leak the literal semantic 149

meaning of that phrase (that is not actually being 150

used): for instance, when prompted with “She gave 151

him the green light for the new project. A day later 152

he sent an invitation to everyone by mail, with an 153

envelope colored”, GPT-3.5 generates the response 154

“bright green to match the theme of the project.” This 155

is similar to another observation made by Rassin 156

et al. (2022) where the authors demonstrate that 157

sense-ambiguous words are hard for the model to 158

isolate, and the generated images often exhibit the 159

unintended sense together with the intended one. 160
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2.2 Operationalizing the Measurement of161

Semantic Leakage162

We define the different elements of semantic leak-163

age as follows. A prompt is input text that primes164

the model to output a corresponding generation.165

We consider two types of prompts: control prompts,166

which do not include any spurious semantic signal167

(“His favorite food is”), and test prompts (“He168

likes koalas. His favorite food is”), which mirror169

the control prompt but add a semantically unre-170

lated concept (“koalas”) to the input, leading to a171

different, test generation. While it is known that172

changing the surface form of the prompt often al-173

ters model output (Gonen et al., 2023; Sclar et al.,174

2024), these new test generations are frequently175

much more semantically similar to the concept than176

the control generations (Section 4).177

We evaluate the prevalence of semantic leakage178

in a given model by comparing the similarity of179

the generations produced by the control and test180

prompts to the concept under consideration. If the181

test generation is more semantically similar to the182

concept than the control generation, we consider183

this an instance of semantic leakage.184

To quantify the prevalence of semantic leakage,185

we design an evaluation setting that is motivated186

by the definition of semantic leakage, as having187

stronger connections of the concept to the test gen-188

eration. The goal is to compare the similarity of189

the generations produced by the control and test190

prompts to the concept, while making sure no other191

factors are taken into consideration. We use the192

following similarities to then derive the evaluation193

metric detailed below:194

simcontrol = similarity(concept, control)195

simtest = similarity(concept, test)196

Evaluation Metric From the above formulation,197

we derive the “Semantic Leakage Rate” metric198

(Leak-Rate), the percentage of instances in which199

the concept is semantically closer to the test gener-200

ation than the control generation. We score Leak-201

Rate by averaging the following function across all202

instances, and converting to the range of 0–100%:203

Leak-Rate(test, control) =


1 simtest > simcontrol

0 simtest < simcontrol

0.5 simtest = simcontrol

(1)

204

This evaluation setting can be implemented as au-205

tomatic evaluation (Section 4) or as human eval-206

uation (Section 5), with no required adjustments. 207

For automatic evaluation, we embed the texts (con- 208

cept, control generation, test generation) with an 209

embedding method (see Section 3.3) and compute 210

similarity measures; for human evaluation, we ask 211

annotators to judge which of the two pairs is more 212

semantically similar. 213

When the model does not exhibit semantic leak- 214

age at all, we expect a Leak-Rate of 50%, i.e., an 215

even split between test vs. control having higher 216

similarity, for those that show a difference. We 217

expect Leak-Rate higher than 50% when the model 218

exhibits semantic leakage. The Leak-Rate scores 219

are comparable across models for a given embed- 220

ding method and test set of prompt pairs. 221

2.3 Building a Test Suite 222

We build a test set of prompts containing categories 223

and concepts with clear semantic associations. We 224

also focus on categories and prompt settings that 225

are likely to allow uncontroversial evaluation (by 226

priming for short model outputs), though later we 227

also consider open-ended generation (Section 7). In 228

addition, a subset of the test suite considers idioms, 229

which have both literal and figurative interpreta- 230

tions, as concepts in the test prompts. 231

We manually create 109 prompts with concepts 232

from categories such as colors, food, animals, 233

songs, occupations and more. A few examples are 234

listed in Table 1.2 Each prompt in our test suite is 235

matched with a control prompt as explained above. 236

3 Experimental Setup 237

We present the experimental setup for automati- 238

cally evaluating semantic leakage in a wide range 239

of models and model sizes. 240

3.1 Experimental Details 241

We evaluate semantic leakage in multiple language 242

models from two families: GPT3 and LLAMA mod- 243

els (Touvron et al., 2023), as detailed below. For 244

all models, we explore several temperature values 245

(0, 0.5, 1, 1.5), and run each prompt 10 times to get 246

variation in the generations, when possible. 247

Before evaluation, for cases where the prompt is 248

repeated in the model generation, we remove the 249

repeated prompt. We also truncate the generations 250

after the first period since the main piece of infor- 251

mation is generated before it, and because LLAMA 252

2The full list is attached to this submission in a separate
file (under “data”).

3https://platform.openai.com/docs/models
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Model Prompt and generation

LLAMA2 John likes dolphins. John’s father is working as a marine biologist
7B-CHAT John likes tigers. John’s father is working as a tiger in a zoo

LLAMA2 His name is Cedar. His friend lives in a treehouse
70B-CHAT His name is Ocean. His friend lives in a houseboat

LLAMA3 He watched a polka concert. For dinner he had a plate of pierogies and a side of sauerkraut
8B-INS He watched a flamenco concert. For dinner he had a delicious paella

GPT4O
She is a music lover. Her nephew was accused of stealing her prized vinyl collection
She is a cinema lover. Her nephew was accused of pirating movies

Table 1: Examples of instances that lead to semantic leakage, taken from different models. The prompt is in green
(italic) and the generation is in blue. Additional examples can be found in Table 4 in the Appendix.

models tend to generate unrelated sentences or253

phrases that might interfere with the evaluation.254

3.2 Models255

We experiment with 13 models of two different256

state-of-the-art model families to explore semantic257

leakage in a diverse inventory of models.258

GPT models We use OpenAI’s API and send259

requests to GPT models by calling GPT-3.5,260

GPT4 (Achiam et al., 2023), and GPT4O.4 With261

GPT models, for sentence completion prompts we262

prepend “Complete the sentence:”, as we find the263

model performs the task better this way.264

LLAMA models We run all LLAMA variations265

using Huggingface (Wolf et al., 2019).5 We cap the266

generation in LLAMA models at 100 tokens (300267

tokens for open generation, Section 7).268

3.3 Embedding Methods269

For automatic evaluation, we aim to use basic em-270

bedding methods that are able to detect and reflect271

semantic similarities, and are ideally detached from272

the models we evaluate to avoid confounding fac-273

tors. We consider the following embedding meth-274

ods. BERT-SCORE directly provides a similarity275

score, for the others we apply cosine-similarity.276

BERT-SCORE (BS) BERT-SCORE (Zhang et al.,277

2020) is an automatic evaluation metric for text gen-278

eration, that computes a similarity score for each279

token in the candidate sentence with each token in280

the reference sentence, where token similarity is281

computed using contextual embeddings. We use282

the distilbert-base-uncased model.283

For the multilingual experiments, where284

we expect generations in non-English lan-285

4gpt-3.5-turbo-0125, gpt-4-turbo-2024-04-09 and
gpt-4o-2024-05-13, respectively.

5LLAMA2: 7B, 7B-chat, 13B, 13B-chat, 70B, 70B-chat.
LLAMA3: 8B, 8B-Instruct, 70B, 70B-Instruct.

guages (Section 6), we use the respective 286

models: bert-base-chinese for Chinese, and 287

bert-base-multilingual-cased for Hebrew. 288

Crosslingual settings still use the English model as 289

the generations there are mainly in English. 290

SENTENCEBERT EMBEDDINGS (SB) SEN- 291

TENCEBERT (Reimers and Gurevych, 2019) is 292

a modification of BERT (Devlin et al., 2019) that 293

uses Siamese and triplet network structures to de- 294

rive semantically meaningful sentence embeddings 295

that can be compared using cosine-similarity. We 296

use the huggingface implementation. 297

OPENAI EMBEDDINGS (OAI) We use 298

text-embedding-3-large,6 OpenAI’s best 299

performing embeddings. There is no public 300

documentation of the model training. 301

In addition to these metrics, we validate our ex- 302

periments with a manual evaluation of semantic 303

leakage on a subset of the models (Section 5). This 304

also serves as a validation of our automatic metrics. 305

4 Results 306

Significant semantic leakage across various use 307

cases and models. Table 2 depicts the average 308

leakage for each model, across multiple samplings 309

and temperature values, as detailed in Section 3.1. 310

We see that semantic leakage is exhibited by all 311

model variations, and is detected by all embedding 312

models we use. Leak-Rate values are all well above 313

the 50% random mark and statistically significant7 314

with p < 10−100, validating the semantic related- 315

ness of the prompt and the test generation. 316

Table 1 lists a few examples of semantic leakage 317

from the different models (more can be found in 318

Table 4 in the Appendix), showcasing leakage in 319

6https://platform.openai.com/docs/guides/
embeddings/embedding-models

7Using a t-test for the lists of the Leak-Rate values to test
that their mean is significantly greater than 50%.
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Leak-Rate
Model BS SB OAI
GPT3.5 74.3 68.6 85.5
GPT4 70.8 61.2 84.4
GPT4o 76.9 70.4 85.0

2-7b 66.8 64.9 72.8
2-7b-chat 72.6 71.7 77.8
2-13b 70.4 65.1 73.6
2-13b-chat 71.5 65.2 78.4
2-70b 71.9 63.2 75.9
2-70b-chat 75.4 66.8 78.2

3-8b 69.6 65.9 75.5
3-8b-ins 78.1 68.8 81.5
3-70b 71.6 68.1 75.2
3-70b-ins 76.3 71.2 77.3

Table 2: Semantic Leak-Rate averaged across 10 sam-
ples for each of 4 temperature values. No semantic leak-
age would correspond to a Leak-Rate of 50% (random
guessing), with higher values indicating more leakage.
The bottom sections present the LLAMA2 and LLAMA3
models, respectively. The model showing the most leak-
age in each <model family, metric> setting is bolded.

diverse use cases and styles and with respect to320

a variety of leaking concepts. In many cases we321

explore, the generations do not make sense in the322

context, or are very limited and focused on the323

leaking concept from the prompt.324

Leakage is more pronounced in certain model325

variations. The results in Table 2 show that cer-326

tain model variations tend to exhibit more semantic327

leakage than their counterparts. We now analyze328

the differences within the 2 model families.329

GPT models Figure 8 in the Appendix shows330

the leakage estimation in the three different GPT331

models across different temperature values. GPT4O332

consistently leaks more than GPT4 and GPT-3.5.8333

LLAMA models For LLAMA models we consis-334

tently see that the instruction-tuned models (CHAT335

version in LLAMA2 and INSTRUCT version in336

LLAMA3) leak more than their pretrained-only337

counterparts. A detailed comparison is presented338

in Figure 2 where we plot the average leakage of339

each model (averaged across temperature values),340

as measured with Leak-Rate with BERT-score em-341

beddings. All the differences are statistically sig-342

nificant9 with p < 0.002 except for Llama-2-13b.343

We see similar trends with all other metrics as well.344

8This is not true for the OpenAI embedding model, which
may be due to confounding model training factors; however,
how the embeddings are constructed is not publicly available.

9t-tests on the Leak-Rate values show that the mean in
finetuned models is significantly higher than vanilla versions.
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Figure 2: Semantic leakage in LLAMA models, averaged
across temperature values (measured with Leak-Rate
using BERT-score).

Leakage across different temperatures. We 345

now inspect the way sampling temperature affects 346

semantic leakage. For the GPT models, we see no 347

clear trends (Figure 8 in the Appendix).10 348

For LLAMA models, we see that greedy sam- 349

pling (t = 0) leads to the highest semantic leakage 350

measures (see Figure 3). Generally, lower tempera- 351

ture values lead to more leakage—this is consistent 352

for most models and across all metrics. 353
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Figure 3: Semantic leakage in LLAMA at different tem-
peratures (measured with Leak-Rate using BERT-score).

5 Human Evaluation 354

We now perform a manual evaluation of semantic 355

leakage, which will also validate our automatic 356

metrics and experiments. 357

10It is unclear whether temperature behaves as expected
in the GPT API. We note that a temperature setting of zero
(which should mean greedy, deterministic decoding) will give
different outputs on repeated calls to the API.
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Human Evaluation Setup Human evaluation is358

based on the same setting as automatic evaluation,359

described in Section 2.2.360

We recruit two native English speakers who are361

not involved with the project. These annotators362

are not provided with the objective of this experi-363

ment, but instead are given the following annota-364

tion guidelines: Consider the word or phrase X.365

Which of the following texts (A or B) is more se-366

mantically related to X? (A/B/Neither). We map367

the annotator’s choice of (A/B/Neither) to (test,368

control, neither) and then score Leak-Rate (Eq. 1).369

Using these guidelines, the annotators are asked370

to label 109 test-control generation pairs from each371

model (ordered randomly). For the human eval-372

uation, we consider the largest model from each373

model family at the temperature t found to leak the374

most by automatic metrics: GPT4O (t = 1) and375

LLAMA3-70B Instruct (t = 0).376

Analysis Figure 4 compares the semantic leak-377

age detected by the human evaluation for GPT4O378

against the automatic metric. The values in the379

human evaluation row are percentages for each cat-380

egory: test is more similar to the concept, control381

is more similar to the concept, or neither.382

We expect humans to have higher tolerance383

for similar scores, i.e., more cases falling under384

simtest = simcontrol in the human evaluation than in385

the automatic evaluation, where it occurs almost386

solely when the test and control generations are387

the same (see Equation 1). To visually account for388

this difference we plot the automatic metric results389

by using colored gradient to depict the difference390

in similarity values simtest − simcontrol, with posi-391

tive values (shades of blue on the right) implying392

semantic leakage. The results account for all ten393

generations sampled from each model. We find394

similar trends on LLAMA3-70B Instruct with an395

average human-annotated Leak-Rate of 66.7 and396

automatic evaluation of Leak-Rate that range from397

71.2 to 77.3 across the different embedding types.398

We also calculate Kendall’s τ on the human an-399

notations. We find high interannotator agreement400

between the human annotators (τ = 0.68), indi-401

cating that humans generally agree on the cases402

that constitute semantic leakage. We also compute403

Kendall’s τ on the human evaluation vs. similarity404

differences calculated using BERTScore embed-405

dings to evaluate how well these methods corre-406

late,11 and get a moderate correlation of τ = 0.39407

11We introduce a slack variable of ϵ = 0.03 to account for

when averaged between the two annotators.12 408

0 20 40 60 80 100
Percentage

Human

BS

SB

OAI

71.8

78.6

70.5

84.9Control
Same
Test

0.1 0.0 0.1
Similarity difference (in automatic metrics)

Figure 4: Human detection of semantic leakage com-
pared to automatic methods. Leak-Rate is reported on
the right for each method.

6 Multilingual and Crosslingual Semantic 409

Leakage 410

In the previous sections we established that seman- 411

tic leakage is exhibited in various scenarios in En- 412

glish, across different models and model sizes. We 413

now inspect semantic leakage in languages outside 414

of English, as well as in crosslingual settings, by 415

focusing on Hebrew and Chinese, Hebrew-English 416

and Chinese-English. As in the previous section, 417

we consider the largest model from each model 418

family at the temperature t found to leak the most: 419

GPT4O (t = 1) and LLAMA3-70B Instruct (t = 0). 420

Since we found that LLAMA is struggling with 421

Hebrew, especially with Hebrew generation, we 422

exclude these results. 423

Multilingual Semantic Leakage We translate all 424

the prompts into Chinese and Hebrew (see exam- 425

ples in Table 5 in the Appendix, rows 1, 3) with the 426

help of native speakers. The translation is mostly 427

straightforward with the exception of idioms and 428

names. For English idioms that do not exist in 429

the target language, we write a new example using 430

an idiom in that language (together with a match- 431

ing context and a control prompt). For names, in 432

Chinese we choose a plausible Chinese name with 433

that meaning (e.g., 小麦, meaning little wheat, for 434

Rye). In Hebrew, we make an attempt to translate 435

to an existing frequent name in Hebrew, or to sub- 436

stitute it with a name with a related meaning (e.g., 437

Lake instead of River). If that is not an option (e.g., 438

the different levels of similarity tolerance between humans
and embedding-based similarity.

12While we use all model generations per example when
obtaining label distributions and computing Leak-Rate, to
calculate τ we use the generations shown to the human anno-
tators, as this requires example-level alignments.
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Rye), we come up with a different name that has a439

clear semantic field.440

Crosslingual Semantic Leakage We create441

mixed prompts with Chinese/Hebrew and English442

(see examples in Table 5 in the Appendix, rows443

2, 4). We use the translations to Chinese and He-444

brew, and mix with English: for the first part of the445

prompt we use the translation to Chinese/Hebrew,446

and for the rest of it we use the original part in447

English. For evaluation purposes, we use the En-448

glish concepts, since we expect the generation to449

be in English. For names or idioms that are used in450

Chinese/Hebrew parts of the prompt, we use their451

literal translations into English.452

Results Figure 5 shows the human evaluation453

results for the multilingual and crosslingual ex-454

periments (with GPT4O). We can see significant455

semantic leakage in multilingual and crosslingual456

settings, with Leak-Rate values that range from457

70.6 to 78.4 for the 4 different settings, similar to458

the Leak-Rate values we got for English.459

The generation quality with the LLAMA model460

is generally much lower, and we get Leak-Rates461

of 66.5 and 61.5 for Chinese and Chinese-English,462

respectively, according to human annotation. As463

noted above, the quality of generation in Hebrew464

and Hebrew-English did not allow for evaluation465

of semantic leakage.466

0 20 40 60 80 100
Percentage

Heb

Heb-En

Zh

Zh-En

74.8

78.4

75.2

70.6Test
Same
Control

Figure 5: Human detection of semantic leakage in mul-
tilingual and crosslingual settings.

Table 3 shows the automatic evaluation of the467

multilingual and crosslingual experiments. The re-468

sults for the multilingual settings are not as reliable469

as in the English setting since we cannot determine470

the quality of the underlying embedding methods471

for Hebrew and Chinese.13 In the crosslingual set-472

ting we mainly compare English generations with473

English concepts, thus the results are more reliable.474

13To the best of our knowledge, the model underlying sen-
tenceBERT was trained (predominantly) on English. This is
why the metric detects more leakage in cross-lingual settings
(with evaluations on English) compared to other languages.

Leak-Rate
Model Language BS SB OAI

GPT4o

Heb 60.6 53.5 67.2
Heb-En 62.1 58.2 74.9
Zh 67.6 48.9 80.8
Zh-En 61.6 60.5 71.3

3-70b-ins
Zh 73.4 54.1 82.8
Zh-En 79.4 81.2 85.6

Table 3: Semantic leakage scores for multilingual and
crosslingual setting, averaged across 10 samplings and
measured by Leak-Rate.

7 Open-Ended Generation 475

We also examine semantic leakage in open-ended 476

scenarios that encourage the model to generate mul- 477

tiple sentences or paragraphs. It is less clear how to 478

quantify the semantic leakage in this setting, as it 479

can manifested in more ways within the longer out- 480

put; we therefore rely on more qualitative analysis 481

in addition to the automatic metrics. This section 482

focuses on generations from GPT4O with t = 1, as 483

this model with this temperature was most prone to 484

leakage in previous experiments (Section 4). 485

Stories A popular setting for open-ended text 486

generation is storytelling: we ask the model to 487

write a story about a child, with the child’s name 488

being the concept we expect to leak. Figure 6 gives 489

the story that GPT4O generates when prompted to 490

create a story about a child named Coral (and also 491

Melody in Figure 9 in the Appendix). These gen- 492

erated stories contain many words and elements 493

directly related to the semantics of each name, and 494

the narrative of each story is tailored to those mean- 495

ings. When measuring semantic leakage in this 496

setting automatically for 23 different names,14 we 497

get Leak-Rates of 78.7, 60.9 and 76.1 with BS, 498

SB and OAI embeddings respectively, suggesting 499

similar rates of leakage to the other examples. 500

Recipes We also consider open-ended recipe gen- 501

eration. In Figure 7, we present GPT4O’s genera- 502

tion when asked to suggest a recipe for use with 503

a blue pan (or a white pan in Figure 10 in the Ap- 504

pendix), where we consider each color to be the 505

potentially leaking concept. The model suggests to 506

make blueberry pancakes and chicken alfredo, re- 507

spectively, with the foods matching the color of the 508

pan. When prompted with a red pan, ingredients 509

like peppers, tomatoes and paprika are far more 510

14We remove any instance of the name from the generation,
even when that instance is used as a common noun.
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Semantic leakage in story generation

Prompt: Tell me a short story about a child named
Coral.
Model: Sure, here is a short story about a child named
Coral: In the bustling coastal town of Seaview, ... and
the waves danced upon the shore, ... Coral spent
most of her days exploring the wonders of the seaside.
... She grabbed her seashell-collecting basket and
marched down to the beach, ... Along the way, she
encountered friendly crabs, playful dolphins ... telling
stories of the ocean’s many secrets. ... From that day
on, Coral became known as the child who brought the
ocean’s magic to the town. She shared the shells, ...
the mysteries of the sea ...

Figure 6: Example of story generation, exhibiting se-
mantic leakage based on the name in the prompt.

frequent, same as with asparagus in the case of a511

green pan and lemon with a yellow pan.512

We experiment with 5 different colors (10 sam-513

ples each) that are likely to be related to types of514

food (blue, green, red, white, and yellow). Auto-515

matic evaluation in this setting is more challenging516

since the concept might appear in the generation517

in a leaky way (“red pepper”) or just as part of518

the answer, with no attributed leakage (“red pan”)519

and these two cases are difficult to differentiate520

automatically. We decide to remove all occur-521

rences of “<color> pan” from the generations522

when using automatic metrics, and get Leak-Rates523

of 74.0/58.0/74.0 with BS/SB/OAI embeddings,524

again suggesting semantic leakage here as well.525

Semantic leakage in recipe generation

Prompt: I want to use my blue pan, give me a recipe:
Model: Sure! Here’s a recipe for a delicious
Blueberry Pancake that you can prepare using your
blue pan: <recipe>

Figure 7: Example of recipe generation, exhibiting se-
mantic leakage based on the color in the prompt.

8 Related Work526

Rassin et al. (2022) show similar conceptual leak-527

age in image generation with DALLE-2 (Ramesh528

et al., 2022), a text-to-image model by OpenAI.529

They find that sense-ambiguous words are hard530

for the model to isolate—similar to our observa-531

tion that idioms in the prompt can leak the literal532

meaning into the generation. Rassin et al. (2024)533

try to mitigate this issue by encouraging the cross-534

attention maps to agree with the linguistic binding535

reflected by the prompt syntax. Leakage of prop-536

erties in DALLE-2 has also been discussed by537

Ramesh et al. (2022) and Leivada et al. (2023). 538

As models have improved, a related line of re- 539

search has asked whether they match human behav- 540

ior, particularly with respect to cognitive biases and 541

priming. Prior work compares models’ behavior to 542

documented behavior of humans in psychological 543

experiments, highlighting some similarities as well 544

as differences from human response to given in- 545

formation (Jones and Steinhardt, 2022; Macmillan- 546

Scott and Musolesi, 2024; Hagendorff et al., 2023). 547

A known psychological phenomenon that is very 548

related to models’ semantic leakage as we present 549

it here, is that of priming, and specifically semantic 550

priming (Meyer and Schvaneveldt, 1971; Neely, 551

1976; Tulving et al., 1982; Tulving and Schacter, 552

1990), where decisions and reactions about specific 553

words change according to given semantic stim- 554

uli provided before the target word. We plan to 555

investigate this relationship further in future work. 556

9 Conclusion 557

We identified a phenomenon in generative language 558

models never discussed before, which we term se- 559

mantic leakage: language models are prone to gen- 560

erating text that reflects unrelated semantic infor- 561

mation from the prompt, leading to peculiar and 562

sometimes unreasonable outputs. We defined and 563

measured semantic leakage in a range of models, 564

and together with human evaluation show that it 565

is prevalent and consistent across all models we 566

test. We also found that semantic leakage occurs 567

in many different generation settings, including 568

multilingual and crosslingual ones. 569

This leakage reflects associations learned by the 570

model, similar to how different types of biases are 571

learned; therefore, our characterization of seman- 572

tic leakage broadens the scope we should consider 573

with respect to potential ramifications of learned 574

associations. While the implications of semantic 575

leakage are not fully clear, it is a consistent behav- 576

ior pattern in LMs that merits further study. 577

The finding that instruction-tuned models leak 578

more is of special interest, given that they are the 579

most popular and best performing model variations 580

currently used. We hypothesize that semantic leak- 581

age is more dominant in these models because the 582

leaking generations are less generic and seem to 583

provide more information/content, which might 584

be a property that is incentivized under these fine- 585

tuning processes. We plan to explore this hypothe- 586

sis more formally in future work. 587
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Limitations588

While our experimental setup spans 13 models589

of different types and sizes, and explores differ-590

ent sampling temperature values, the scale of the591

prompts in our test suite remains limited due to592

the difficulty of manually creating prompts that are593

likely to leak in a way that we can detect and eval-594

uate. This is also often the case when measuring595

other language model biases. In addition, though596

the results are consistent across all models and lan-597

guages we experiment with, the trends might be598

different with other models or languages we have599

not tested.600

Finally, we cannot guarantee that the automatic601

evaluations do not include noise: in some cases,602

even after our automatic post-processing of the603

generations, our automatic metrics might consider604

non-leaking instance as leaking (e.g., in cases of605

occurrences of the concept in the generation due606

to a partial repetition of the prompt). However, the607

human evaluation we conduct generally agrees with608

the findings we get with the automatic detection,609

supporting their reliability.610

Ethical Considerations611

Semantic leakage is a broad umbrella that may612

encompass many types of biases, and it broadens613

our perception and understanding about associa-614

tion biases that are being learned by models and615

then exhibited in generation. As such, semantic616

leakage might manifest at times as a concrete type617

of bias, e.g., cultural, gender or racial biases. This618

depends on the specific setting and the chosen con-619

cept that leaks; while our prompts and concepts are620

fairly general, these biases and stereotypes could621

potentially surface in our evaluation.15622

However, our main goal in this paper is not to623

focus on specific types of biases (or biases that624

are particularly harmful) but to characterize and625

quantify the broader class of semantic leakage. We626

believe that a better understanding of the greater627

picture will in turn arm us with better tools to com-628

bat the subset of biases and behaviors that do have629

harmful consequences in practice.630

Apart from that, in this paper the annotations631

and translations were done by several volunteers632

that were willing to help for the project. The load633

of this work was very low.634

15For example, some concepts in the evaluation involve
food and music associated with specific countries or ethnici-
ties.
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A Additional Examples791

Table 4 lists additional examples of semantic leak-792

age from the different models, showcasing leakage793

in diverse use cases and styles and with respect to794

a variety of leaking concepts.795

Model Prompt and generation

LLAMA2 He likes pandas. His favorite food is bam-
boo

13B-CHAT He likes mice. His favorite food is cheese

LLAMA3 Mercedes has a friend. The friend’s hobby
is collecting Mercedes cars because he
loves the Mercedes brand

70B-INS Forest has a friend. The friend’s hobby is
gardening, to her home in a way which

makes it a forest

GPT3.5 He is a firefighter. His favorite song is
“Ring of Fire” by Johnny Cash
He is a postman. His favorite song is
“Signed, Sealed, Delivered” by Stevie Won-
der

GPT4

The woman was as cold as ice. Afterwards,
I went to the library and read about the
fascinating science of cryogenics, which
explores the process of freezing and pre-
serving organic matter at extremely low
temperatures
It was her turn to speak and she
got cold feet. A day later she stayed at
home because she got hurt in her ankle
during a morning jog

Table 4: Additional examples of instances that lead to
semantic leakage, taken from different models. The
prompt is in green (italic) and the generation is in blue.

B Semantic Leakage in GPT Models796

Figure 8 shows the leakage estimation in the three797

different GPT models across different temperature798

values. GPT4O consistently leaks more than GPT4799

and GPT-3.5.800

C Open-Ended Generation801

Figure 9 gives the story that GPT4O generates when802

prompted to create a story about a child named803

Melody. The generated story contains many words804

and elements directly related to the semantics of805

the name, and the narrative of the story is tailored806

to that meaning.807

In Figure 10, we present GPT4O’s generation808

when asked to suggest a recipe for use with a white809

pan, where we consider the color to be the poten-810

tially leaking concept. The model suggests to make811

chicken alfredo, matching the color of the pan.812
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Figure 8: Semantic leakage in GPT models using differ-
ent temperature values (measured with Leak-Rate using
BERT-score).

Semantic leakage in story generation

Prompt: Tell me a short story about a child named
Melody.
Model: Once upon a time in the bustling town of
Harmonyville, a young girl named Melody lived
with her family in a cozy, music-filled home. Melody
... talent for playing the violin. ... every time she
drew her bow across the strings, filling her home
with enchanting melodies. ... often brought her violin
with her. ... sorrowful tune ... Melody followed
the sound ... bird sang its heart out. ... decided
to play her violin for the bird. ... the instrument,
crafting a tune ... The bird listened intently, its spirits
lifting with every note. ... as the bird sang, ... her
enchanting performances ... awaited her melody ...
always remembering that the true power of music ...

Figure 9: Example of story generation, exhibiting se-
mantic leakage based on the name in the prompt.

Semantic leakage in recipe generation

Prompt: I want to use my white pan, give me a recipe:
Model: Sure, I’d be happy to help you with a recipe
that makes use of your white pan! Let’s try a classic
Chicken Alfredo. White pans are often non-stick and
ideal for making creamy dishes like this. Here’s a
simple recipe: <recipe>

Figure 10: Example of recipe generation, exhibiting
semantic leakage based on the color in the prompt.

D Multilingual and Crosslingual 813

Semantic Leakage 814

Table 5 shows example multilingual and crosslin- 815

gual prompts and generations. 816

11



Language Prompt Generation

Heb הוא עליו האהוב האוכל קואלה. דובי אוהב הוא אקליפטוס

Heb-En His favorite food is קואלה. דובי אוהב הוא eucalyptus leaves

Zh 他喜欢考拉。他最喜欢吃 桉树叶

Zh-En 他喜欢考拉。 His favorite food is eucalyptus leaves

Table 5: Example prompts and generations in Hebrew, Hebrew-English, Chinese and Chinese-English, by this order.
All are translations of the prompt: “He likes koalas. His favorite food is”, and the Hebrew/Chinese generations can
be translated to “eucalyptus”/“eucalyptus leaves”, respectively.
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