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Abstract

The ability of learning useful features is one of the major advantages of neural
networks. Although recent works show that neural network can operate in a neu-
ral tangent kernel (NTK) regime that does not allow feature learning, many works
also demonstrate the potential for neural networks to go beyond NTK regime and
perform feature learning. Recently, a line of work highlighted the feature learning
capabilities of the early stages of gradient-based training. In this paper we con-
sider another mechanism for feature learning via gradient descent through a local
convergence analysis. We show that once the loss is below a certain threshold,
gradient descent with a carefully regularized objective will capture ground-truth
directions. Our results demonstrate that feature learning not only happens at the
initial gradient steps, but can also occur towards the end of training.

1 Introduction

The ability of learning useful features based on the data has long been considered to be a major ad-
vantage of neural networks. However, how gradient-based training algorithms can learn useful fea-
tures are not well-understood. In particular, the most widely applied analysis for overparametrized
neural networks is the neural tangent kernel (NTK) [19, 15, 5]. In this setting, the neurons don’t
move far from their initialization and the features are determined by the network architecture and
random initialization.

While there are empirical and theoretical evidences on the limitation of NTK regime [12, 6], extend-
ing the analysis beyond the NTK regime has been challenging. Although for 2-layer networks, an al-
ternative framework for analyzing overparametrized neural networks called mean-field analysis was
introduced, earlier analysis (such as [11, 23]) require either infinite or exponentially many neurons.
Later works (e.g., [20, 17, 10, 22]) can analyze the training dynamics of mildly overparametrized
networks with polynomially many neurons with strong assumptions on the ground-truth function.

Recently, a line of work [14, 13, 1, 2, 27, 8, 24, 9] showed that early stages of gradient training
(either one/a few steps of gradient descent or a small amount of time of gradient flow) can be useful
in feature learning. These works show that after the early stages of gradient training, the first layer in
a 2-layer neural network already captures useful features (usually in the form of a low dimensional
subspace), and continue training the second layer weights will give performance guarantees that are
stronger than any kernel or random feature based models. In this work, we consider the natural
follow-up question:

Does feature learning only happen in the early stages of gradient training?

We show that this is not the case by demonstrating feature learning capability for the final stage of
gradient training – local convergence. In particular, if the data is generated by a 2-layer teacher net-
work, we prove (see Theorem 1) that if the loss is lower than a certain threshold that depends on the
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complexity of the ground-truth function, gradient descent can continue to optimize the loss function
to arbitrarily low test loss. In this process, the weights of first-layer neurons will all converge in
direction to some ground truth directions in the teacher, which is a strong form of feature learning
that guarantees the generalization performance. Analyzing the entire training dynamics is still chal-
lenging so in our algorithm (see Algorithm 1) we use a convex second stage to “fast-forward” to the
local analysis. Our technique for local convergence is similar to the earlier work [28], however we
consider a more complicated setting with ReLU activations and allow second-layer weights to be
both positive or negative. While this change may seem minor, it requires additional regularization
in the form of standard weight-decay and new dual certificate analysis.

2 Preliminary
Teacher-student setup We will consider the teacher-student setup for two-layer network networks
with Gaussian input x ∼ N(0, I). Consider the teacher network

f∗(x) =

m∗∑
i=1

a∗i σ(w
∗⊤
i x) +w∗⊤

0 x+ b∗0,

where σ is ReLU activation, dim(S∗) = r and S∗ = span{w∗
1 , . . . ,w

∗
m∗} is the target subspace.

Without loss of generality, we will assume ∥w∗
i ∥2 = 1 due to the homogeneity of ReLU. We will

make the following non-degenerate assumptions on the teacher neurons:
Assumption 1. Teacher neurons are ∆ separated, that is ∠(w∗

i ,w
∗
j ) ≥ ∆ for all i ̸= j, where

∠(w,v) := arccos(|w⊤v|/ ∥w∥2 ∥v∥2).
Assumption 2. Matrix H :=

∑m∗

i=1 a
∗
iw

∗
iw

∗⊤
i is non degenerate, i.e., κ := λmin(H) > 0.

The first assumption above simply requires all teacher neurons pointing to different directions. Note
that f∗ can have both neurons w∗ and −w∗ by using the identity σ(x) − σ(−x) = x. The second
assumption roughly says the target network contains low-order (second-order) information, which is
related with the notion of information exponent [7]. Many previous works also rely on this or similar
assumption to show neural networks can learn features to perform better than kernels [13, 2, 8].

We will use the following student network with extra linear term (can also view as skip connection):

f(x;θ) =

m∑
i=1

aiσ(w
⊤
i x) + α+ β⊤x, (1)

where a = (a1, . . . , am)⊤ ∈ Rm, W = (w1 · · ·wm)⊤ ∈ Rm×d and θ = (a,W , α,β).

Preprocessing data Give any (x, y) with y = f∗(x), denote α∗ = Ex[y] and β∗ = Ex[yx], let

f̃∗(x) = ỹ = y − α∗ − β⊤
∗ x.

This preprocessing process essentially removes the 0-th and 1-st order term in the Hermite expansion
of σ. See Section I for a brief introduction of Hermite polynomials.

Loss and algorithm Denote the regularized loss function under Gaussian input x ∈ Rd as

Lλ(θ) = Ex∼N(0,Id)[(f(x;θ)− ỹ)2] +
λ

2
∥a∥22 +

λ

2
∥W ∥22 . (2)

We will also use L to denote the square loss for simplicity.

Our algorithm shown in Algorithm 1 is roughly gradient descent (GD) following a given schedule
of weight decay λt and step size ηt. We will use symmetric initialization that ai = −ai+m/2,
wi = wi+m/2 with ai ∼ Unif{−1/

√
m, 1/

√
m}, wi ∼ Unif((1/

√
m)Sd−1), α = 0, β = 0.

Due to the difficulty in analyzing gradient descent training beyond early and final stage, we choose
to only train the norms in Stage 2 as a tractable way to reach the local convergence regime.

Notation Denote [n] as the set {1, 2, . . . , n}. We use ∥w∥2 for 2-norm of vector w, and w =
w/ ∥w∥2 as its normalization. Denote ∥A∥F as Frobenius norm of matrix A. Denote ∠(w,v) =
arccos(|w⊤v|/(∥w∥2 ∥v∥2)] ∈ [0, π/2] as the angle between vectores w and v (up to a sign). We
will use O∗,Ω∗,Θ∗ to hide poly(r,m∗,∆, amin, ∥a∗∥1), which is the polynomial dependency on
relevant parameters of target f∗, and Õ, Ω̃, Θ̃ to hide polylog factors.
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Algorithm 1: Learning regularized 2-layer neural networks

Input: initialization θ(0), schedule of weight decay λt and stepsize ηt
Preprocessing data:
α∗ ← Ex[y], β∗ ← Ex[yx]
ỹ ← y − α∗ − β⊤

∗ x
Stage 1: // first step gradient

θ(1) ← θ(0) − η0∇θLλ0(θ
(0))

Stage 2: // adjust norm

a
(1)
i ← a

(1)
i

∥∥∥w(1)
i

∥∥∥
2
,
∥∥∥w(1)

i

∥∥∥
2
← 1

a(T2), α(T2),β(T2) ← mina minα,β L(θ) + λ ∥a∥1
a
(T2)
i ← a

(T2)
i /

√
|a(T2)

i |, w(T2)
i ← w

(T2)
i

√
|a(T2)

i |
Stage 3: // local convergence
for k ≤ K do

for T3,k ≤ t ≤ T3,(k+1) do
θ(t+1) ← θ(t) − ηt∇θLλt

(θ(t))
end

end
Output: θ(T3.K) = (a(T3,K),W (T3,K), α(T3,K),β(T3,K))

3 Main Results

In this section, we give our main result that shows training student network using Algorithm 1 can
recover the target network within polynomial time. We will focus on the case that d ≥ Ω∗(1) when
the complexity of target function is small.
Theorem 1 (Main result). Under Assumption 1,2, consider Algorithm 1 on loss (2). There exists a
schedule of weight decay λt and step size η0 = 1, ηt = η = O∗(1/max{m, d}) such that given
m ≥ m0 = Õ∗(1) · (1/ε0)O(r) neurons with small enough ε0 = Θ∗(1), with high probability we
will recover the target network L(θ) ≤ ε within time T = O∗(1/η) poly(1/ε).

Note that our results can be extended to only have access to polynomial number of samples by using
standard concentration tools. We omit the sample complexity for simplicity in the current version.
As a corollary of the main result we also show that to minimize the loss the weight vectors in student
network must converge in direction to the teacher network.
Corollary 2. Denote angle δj = ∠(wj ,w

∗
i ) for j ∈ Ti, where Ti := {j : ∠(wj ,w

∗
i ) ≤

∠(wj ,w
∗
k) ∀k ̸= i} forms a partition of the neurons based on the angle to ground-truth direc-

tion. At the end of training the following hold

(i) Far-away neurons are small:
∑

i∈[m∗]

∑
j∈Ti
|aj | ∥wj∥2 δ

2
j = O∗(

√
ε).

(ii) Most neurons are close to ground-truth direction:
∑

j∈Ti:δj≤δcls
aj ∥wj∥2 sign(a

∗
i ) ≥ |a∗i |/2,

where δcls = O∗(ε
1/3).

In particular when ε → 0 or equivalently limλ→0 Lλ(θ) = 0, the above imply that the student
neurons’ directions match the ground-truth directions.

Our result improves the previous works that only train the first layer weight with small number of
gradient steps at the beginning [13, 8, 1, 2]. In these works, neural networks only learn the target
subspace and do random features within it. Intuitively, these random features needs to span the
whole space of the target function class to perform well, which means its number (the width) should
be on the order of the dimension of target function class. For 2-layer networks random features
in the target subspace need (1/ε)O(r) neurons to achieve desired accuracy ε. In contrast, continue
training both layer at the last phase of training allows us to learn not only subspace but also exactly
the ground-truth directions. Moreover, we only use (1/ε0)

O(r) neurons that only depends on the
complexity of target network. This highlights the benefit of continue training first layer weights
instead of fixing them after first step.
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4 Proof Sketch

We analyze the three stages separately. For Stage 1, we use the following lemma to show that the
first step of gradient descent identifies the target subspace, and it has student neurons that are close
to teacher neurons. The key observation here is similar to [13] that w(1)

i ≈ −2η0a(0)i

(
σ̂2
2Hwi

)
so

that given H is non-degenerate we essentially sample w
(1)
i from the target subspace.

Lemma 3 (Stage 1). Under Assumption 1,2, consider Algorithm 1 on loss (2) with λ−1
0 = η0 = 1

and m ≥ m0 = Õ∗(1) · (1/ε0)O(r) with any given ε0 = Θ∗(1). After first iteration, we have with
probability at least 1− δ

(i) for every teacher neuron w∗
i , there exists at least one student neuron wi such that

∠(w∗
i ,wj) ≤ ε0

(ii) Ω∗(
κ√
md

) ≤
∥∥∥w(1)

i

∥∥∥
2
≤ O∗(

1√
md

), |a(1)i | ≤ O∗(
1√
m
) for all i ∈ [m∗], α1 = 0 and β1 = 0.

Given learned features in Stage 1, we now adjust the norms to reach a low loss solution in Stage 2.
Lemma 4 (Stage 2). Under Assumption 1,2, consider Algorithm 1 with λt =

√
ε0 and ηt = η ≤

O∗(ε0/m) to be small enough for t ≤ T2. Given Stage 1 in Lemma 3, we have Stage 2 ends within
time T2 = O∗(1/ηε0) such that the optimality gap ζT2 = Lλ(θ

(T2)) − minµ∈M(Sd−1) Lλ(µ) ≤
O∗(ε0).

After Stage 2 we already in the local convergence regime. The following lemma shows that we
could recover the target network within polynomial time using a multi-epoch gradient descent that
decreasing the weight decay λ at every epoch. Note that this result only requires the initial optimality
gap is small and width m ≥ m∗.
Lemma 5 (Stage 3). Under Assumption 1,2, consider Algorithm 1 on loss (2). Given Stage 2 in
Lemma 4, if the initial optimality gap ζ3,0 ≤ O∗(λ

9/5
3,0 ), weight decay λ follows the schedule of

initial value λ3,0 = O∗(1), and k-th epoch λ3,k = λ3,0/(kλ3,0 + 1) and stepsize η3k = η ≤
O∗(λ

−6
3,kd

−1) for all T3,k ≤ t ≤ T3,k+1 in epoch k, then within K = O∗(ε
−1/2) epochs and total

T3 − T2 = O∗(ε
−5/2η−1) time we recover the ground-truth network L(θ) ≤ ε.

The lemma above relies on the following result that shows the local landscape is benign in the sense
that it satisfies a special case of Łojasiewicz property [21].
Lemma 6 (Gradient lower bound). Suppose the optimality gap ζ = Lλ(θ)−minµ∈M(Sd−1) Lλ(µ).
If Ω∗(λ

2) ≤ ζ ≤ O∗(λ
9/5) and λ ≤ O∗(1), we have

∥∇θLλ∥2F ≥ Ω∗(ζ
4/λ2).

Note that this generalize the previous result in [28] that only focuses on the two-layer networks
with positive second layer weights. The key idea is to construct descent direction that has a large
correlation with the gradient direction to get a gradient lower bound. However, the appearance of
both positive and negative second layer weights introduces more challenges compared to positive
second layer weights, mostly due to the cancellation between neurons with similar directions. We
introduce the standard weight decay to allow us handle the cancellation between neurons, since
reducing their norms simultaneously would decrease the regularization term and keep the square
loss term the same. We use a new dual certificate analysis based on [26] and the idea of residual
decomposition and average neuron [28] to characterize the structure of solution. We show that there
are always neurons close to the teacher neurons and far-away neurons are small. These properties
help us to construct descent directions to get gradient lower bound.

5 Conclusion

In this paper we showed that gradient descent converges in a large local region depending on the
complexity of the teacher network, and the local convergence allows 2-layer networks to perform
a strong notion of feature learning (matching the directions of ground-truth teacher networks). We
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hope our result gives a better understanding of why gradient-based training is important for feature
learning in neural networks. A natural next step is to understand whether the intermediate steps are
also important for feature learning. This is a challenging open problem using the current techniques
as the dynamics is very complicated without very strong assumptions (and this is also the reason
why we need to optimize only the second-layer in Stage 2).
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A Useful facts and proof of Theorem 1

In this section we provide several useful facts and present the proof of Theorem 1.

Claim 1. Denote α̂ = −(1/
√
2π)

∑m
i=1 ai ∥wi∥2, β̂ = −(1/2)

∑m
i=1 aiwi.We have square loss as

L(θ) = |α− α̂|2 +
∥∥∥β − β̂

∥∥∥2
2
+ Ex[(f≥2(x)− f̃∗(x))

2]

where f≥2(x;θ) =
∑

i∈[m] aiσ≥2(w
⊤
i x) and σ≥2(x) = σ(x) − 1/

√
2π − x/2 is the activation

that after removing 0th and 1st order term in Hermite expansion.

Proof. Following Ge et al. [16], we can write the loss L(θ) as a sum of tensor decomposition
problem using Hermite expansion as in Section I (recall ∥w∗

i ∥2 = 1 and preprocessing procedure
removes the 0-th and 1-st order term in the Hermite expansion of σ):

L(θ) =Ex


∑

i∈[m]

ai ∥wi∥2
∑
k≥0

σ̂khk(w
⊤
i x) + α+ h1(β

⊤x)−
∑

i∈[m∗]

a∗i ∥w∗
i ∥2

∑
k≥2

σ̂khk(w
∗⊤
i x)

2


=

∣∣∣∣∣∣α+ σ̂0

∑
i∈[m]

ai ∥wi∥2

∣∣∣∣∣∣
2

+

∥∥∥∥∥∥β + σ̂1

∑
i∈[m]

aiwi

∥∥∥∥∥∥
2

2

+
∑
k≥2

σ̂2
k

∥∥∥∥∥∥
∑
i∈[m]

ai ∥wi∥2 w
⊗k
i −

∑
i∈[m∗]

a∗i ∥w∗
i ∥2 w

∗⊗k
i

∥∥∥∥∥∥
2

F

.

Note that σ̂0 = 1/
√
2π, σ̂1 = 1/2 as in Lemma 37, we get the result.

Corollary 2. Denote angle δj = ∠(wj ,w
∗
i ) for j ∈ Ti, where Ti := {j : ∠(wj ,w

∗
i ) ≤

∠(wj ,w
∗
k) ∀k ̸= i} forms a partition of the neurons based on the angle to ground-truth direc-

tion. At the end of training the following hold

(i) Far-away neurons are small:
∑

i∈[m∗]

∑
j∈Ti
|aj | ∥wj∥2 δ

2
j = O∗(

√
ε).

(ii) Most neurons are close to ground-truth direction:
∑

j∈Ti:δj≤δcls
aj ∥wj∥2 sign(a

∗
i ) ≥ |a∗i |/2,

where δcls = O∗(ε
1/3).

In particular when ε → 0 or equivalently limλ→0 Lλ(θ) = 0, the above imply that the student
neurons’ directions match the ground-truth directions.

Proof. This is a direct corollary from Lemma 20 and Lemma 19.

Theorem 1 (Main result). Under Assumption 1,2, consider Algorithm 1 on loss (2). There exists a
schedule of weight decay λt and step size η0 = 1, ηt = η = O∗(1/max{m, d}) such that given
m ≥ m0 = Õ∗(1) · (1/ε0)O(r) neurons with small enough ε0 = Θ∗(1), with high probability we
will recover the target network L(θ) ≤ ε within time T = O∗(1/η) poly(1/ε).

Proof. Combine Lemma 3 (Stage 1), Lemma 4 (Stage 2) and Lemma 5 (Stage 3) together and follow
the choice of λt and ηt we get the result.

B Stage 1: first gradient step

In this section, we show that after the first gradient update {w1, . . . ,wm} forms a ε0-net for the
target subspace S∗, given m = (1/ε0)

O(r) neurons. The proof is deferred to Section B.1.

Lemma 3 (Stage 1). Under Assumption 1,2, consider Algorithm 1 on loss (2) with λ−1
0 = η0 = 1

and m ≥ m0 = Õ∗(1) · (1/ε0)O(r) with any given ε0 = Θ∗(1). After first iteration, we have with
probability at least 1− δ

(i) for every teacher neuron w∗
i , there exists at least one student neuron wi such that

∠(w∗
i ,wj) ≤ ε0
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(ii) Ω∗(
κ√
md

) ≤
∥∥∥w(1)

i

∥∥∥
2
≤ O∗(

1√
md

), |a(1)i | ≤ O∗(
1√
m
) for all i ∈ [m∗], α1 = 0 and β1 = 0.

The proof relies on the following lemma from [13] that shows after the first step update wi’s are
located at positions as if they are sampled within the target subspace S∗.
Lemma 7 (Lemma 4, [13]). Under Assumption 2, we have with high probability in the ℓ2 norm
sense

w
(1)
i = −η0∇wi

L(a(0),W (0)) = −2η0a(0)i

(
σ̂2
2Hwi + Õ(

√
r

d
)

)
,

where σ̂k := Ex[σ(x)hk(x)] is the k-th Hermite polynomial coefficient.

B.1 Proofs in Section B

Lemma 3 (Stage 1). Under Assumption 1,2, consider Algorithm 1 on loss (2) with λ−1
0 = η0 = 1

and m ≥ m0 = Õ∗(1) · (1/ε0)O(r) with any given ε0 = Θ∗(1). After first iteration, we have with
probability at least 1− δ

(i) for every teacher neuron w∗
i , there exists at least one student neuron wi such that

∠(w∗
i ,wj) ≤ ε0

(ii) Ω∗(
κ√
md

) ≤
∥∥∥w(1)

i

∥∥∥
2
≤ O∗(

1√
md

), |a(1)i | ≤ O∗(
1√
m
) for all i ∈ [m∗], α1 = 0 and β1 = 0.

Proof. We show them one by one.

Part (i) From Lemma 7 and the fact that w(0)
i samples uniformly from unit sphere, we know the

probability of ∠(w(1)
i ,w) for any given w is at least Ω∗(ε

r
0). Applying union bound we get the

desired result.

Part (ii) We have

w
(1)
i = −η0∇wi

L(a(0),W (0)) = a
(0)
i Ex[f̃∗(x)σ

′(w⊤
i x)x]

For the norm bound, using Lemma 7 we know

Θ(
1√
m
)
∥∥∥Hw

(0)
i

∥∥∥
2
− Õ(

√
r

d
√
m
) ≤ (1/η0)

∥∥∥w(1)
i

∥∥∥
2
≤ Θ(

1√
m
)
∥∥∥Hw

(0)
i

∥∥∥
2
+ Õ(

√
r

d
√
m
).

Since w
(0)
i initializes from Gaussian distribution, we know the desired bound hold. Similarly, one

can bound |a(1)i |.
Since we use a symmetric initialization, it is easy to see α,β remains at 0.

C Stage 2: reaching low loss

In Stage 2, we show that given the features learned in Stage 1 one can adjust the norms on top of
it to reach low loss that enters the local convergence regime in Stage 3. The proof is deferred to
Section C.1.

We first specify the procedure to solve mina minα,β L(θ) + λ ∥a∥1. For a at current point, we first
solve the inner optimization problem, which is a linear regression on α,β. Then given the α,β, the
outer optimization is a convex optimization for a, which can also be solved efficiently.

The following lemma shows that after Stage 2 we reach a low loss solution given the first layer
features learned after first gradient step.
Lemma 4 (Stage 2). Under Assumption 1,2, consider Algorithm 1 with λt =

√
ε0 and ηt = η ≤

O∗(ε0/m) to be small enough for t ≤ T2. Given Stage 1 in Lemma 3, we have Stage 2 ends within
time T2 = O∗(1/ηε0) such that the optimality gap ζT2

= Lλ(θ
(T2)) − minµ∈M(Sd−1) Lλ(µ) ≤

O∗(ε0).
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The lemma below shows that the inner loop ends quickly. In fact the inner optimization problem is
strongly convex in α,β, which can be seen from Claim 1.
Lemma 8 (Descent direction, α and β). We have

|∇αLλ|2 = 4(α− α̂)2, ∥∇βLλ∥22 = 4
∥∥∥β − β̂

∥∥∥2
2
.

The following lemma relates the gradient of a to the ideal loss that as if α,β are perfectly fitted.
This allows us to transfer useful properties of L̃1,λ to L1,λ.

Lemma 9. Let the ideal loss L̃1,λ(a) = Ex[(a
⊤σ≥2(Wx)− ỹ)2] +λ ∥a∥1 that perfectly fits α,β.

Given any ∥a∥1 , ∥ã∥1 = O∗(1/λ) and ∥wi∥2 = 1, we have

|⟨∇aL̃1,λ −∇aL1,λ,a− ã⟩| ≤ O∗(1/λ)(|α− α̂|+
∥∥∥β − β̂

∥∥∥
2
)

L1,λ(a) ≤ L̃1,λ(a) + |α− α̂|2 + ∥β − β∥22
∥∇aL1,λ∥2 = O∗(

√
m)

C.1 Proofs in Section C

Lemma 4 (Stage 2). Under Assumption 1,2, consider Algorithm 1 with λt =
√
ε0 and ηt = η ≤

O∗(ε0/m) to be small enough for t ≤ T2. Given Stage 1 in Lemma 3, we have Stage 2 ends within
time T2 = O∗(1/ηε0) such that the optimality gap ζT2 = Lλ(θ

(T2)) − minµ∈M(Sd−1) Lλ(µ) ≤
O∗(ε0).

Proof. From Lemma 8 we know the inner loop ends within O∗(1) time and (α− α̂)2,
∥∥∥β − β̂

∥∥∥2
2
≤

O∗(λ
2ε20) with small enough hidden factor.

Then for the outer loop, we have∥∥∥a(t+1) − ã∗

∥∥∥2
2
=
∥∥∥a(t) − ã∗

∥∥∥2
2
− 2η⟨∇aL1,λ(a

(t)),a(t) − ã∗⟩+ η2
∥∥∥∇aL1,λ(a

(t))
∥∥∥2
2

(a)
≤
∥∥∥a(t) − ã∗

∥∥∥2
2
− 2η(L̃1,λ(a

(t))− L̃1,λ(ã∗)) + ηε0/4 + η2O∗(m)

=
∥∥∥a(t) − ã∗

∥∥∥2
2
− 2η(L̃1,λ(a

(t))− L̃1,λ(ã∗)) + ηε0/2,

where (a) we use L̃1,λ (defined in Lemma 9) is convex in a and Lemma 9.

Iterating the above inequality over all t we have∥∥∥a(T ) − ã∗

∥∥∥2
2
≤
∥∥∥a(1) − ã∗

∥∥∥2
2
− 2η

∑
t≤T

(L̃1,λ(a
(t))− L̃1,λ(ã∗)) + ηTε0/2,

which means

min
t≤T

L̃1,λ(a
(t))− L̃1,λ(ã∗) ≤

1

T

∑
t≤T

(L̃1,λ(a
(t))− L̃1,λ(ã∗)) ≤

∥∥a(1) − ã∗
∥∥2
2

ηT
+ ε0/2.

It is easy to see ∥ã∗∥1 = O∗(1). Thus, when T ≥ O∗(1/ηε0) we know L̃1,λ(a
(T2))− L̃1,λ(ã∗) ≤

3ε0/4. This suggests the optimality gap

ζT2
=Lλ(θ

(T2))− min
µ∈M(Sd−1)

Lλ(µ)

=Lλ(θ
(T2))− L̃1,λ(θ

(T2)) + L̃1,λ(a
(T2))− L̃1,λ(ã∗) + L̃1,λ(ã∗)− min

µ∈M(Sd−1)
Lλ(µ).

For Lλ(θ
(T2)) − L̃1,λ(θ

(T2)), noting that we have balanced the norm of two layers, so they are the
same.
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For L̃1,λ(a
(T2))− L̃1,λ(ã∗), we just show above that it is less than 3ε0/4.

For L̃1,λ(ã∗)−minµ∈M(Sd−1) Lλ(µ), we have

L̃1,λ(ã∗)− min
µ∈M(Sd−1)

Lλ(µ) ≤ L̃1,λ(a∗)− min
µ∈M(Sd−1)

Lλ(µ) ≤ λ ∥a∗∥1 − λ|µ∗
λ|1 ≤ O∗(λ

2),

where in the last inequality we use Lemma 17 and µ∗
λ = argminµ∈M(Sd−1) Lλ(µ).

Together with above calculations, we have ζT2 ≤ O∗(ε0).

The following lemmas rely on the loss decomposition in Claim 1 that α,β only fits 0-th and 1-st
order term in Hermite expansion.
Lemma 8 (Descent direction, α and β). We have

|∇αLλ|2 = 4(α− α̂)2, ∥∇βLλ∥22 = 4
∥∥∥β − β̂

∥∥∥2
2
.

Proof. Recall Claim 1 that

L(θ) = |α− α̂|2 +
∥∥∥β − β̂

∥∥∥2
2
+
∑
k≥2

σ̂2
k

∥∥∥∥∥∥
∑
i∈[m]

ai ∥wi∥2 w
⊗k
i −

∑
i∈[m∗]

a∗i ∥w∗
i ∥2 w

∗⊗k
i

∥∥∥∥∥∥
2

F

,

where α̂ = (1/
√
2π)

∑m
i=1 ai ∥wi∥2 and β̂ = (1/2)

∑m
i=1 aiwi.

We have
∇αLλ = 2(α− α̂), ∇βLλ = 2(β − β̂),

which means that

|∇αLλ|2 = 4(α− α̂)2, ∥∇βLλ∥22 = 4
∥∥∥β − β̂

∥∥∥2
2
.

Lemma 9. Let the ideal loss L̃1,λ(a) = Ex[(a
⊤σ≥2(Wx)− ỹ)2] +λ ∥a∥1 that perfectly fits α,β.

Given any ∥a∥1 , ∥ã∥1 = O∗(1/λ) and ∥wi∥2 = 1, we have

|⟨∇aL̃1,λ −∇aL1,λ,a− ã⟩| ≤ O∗(1/λ)(|α− α̂|+
∥∥∥β − β̂

∥∥∥
2
)

L1,λ(a) ≤ L̃1,λ(a) + |α− α̂|2 + ∥β − β∥22
∥∇aL1,λ∥2 = O∗(

√
m)

Proof. Using the property of Hermite polynomial in Section I, we have

∇ai
L1,λ = 2Ex[(f(x;θ)− ỹ)σ(w⊤

i x)] + λai

= 2(α− α̂) ∥wi∥2 + 2⟨β − β̂,wi⟩+ 2Ex[(f≥2(x;θ)− ỹ)σ(w⊤
i x)] + λai

= 2(α− α̂) ∥wi∥2 + 2⟨β − β̂,wi⟩+∇aL̃1,λ,

where f≥2(x;θ) =
∑

i∈[m] aiσ≥2(w
⊤
i x) and σ≥2(x) = σ(x)−1/

√
2π−x/2 is the activation that

after removing 0th and 1st order term in Hermite expansion.

We know
|⟨∇aL1,λ −∇aL̃1,λ,a− ã⟩| =|2

∑
i∈[m]

(ai − ãi)((α− α̂) ∥wi∥2 + ⟨β − β̂,wi⟩)|

≤O∗(1/λ)(|α− α̂|+
∥∥∥β − β̂

∥∥∥
2
).

The loss bound directly follows from Claim 1.

The gradient norm bound we have

∥∇aL1,λ∥22 ≤ O(1)
∑
i∈[m]

(α− α̂)2 +
∥∥∥β − β̂

∥∥∥2
2
+O∗(1) + λ|ai| = O∗(m).
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D Stage 3: local convergence for regularized 2-layer neural networks

In this section we show the local convergence that loss eventually goes to 0 with and recovers teacher
neurons’ direction.

The results in this section only need the width m ≥ m∗ as long as its initial loss is small.

Lemma 5 (Stage 3). Under Assumption 1,2, consider Algorithm 1 on loss (2). Given Stage 2 in
Lemma 4, if the initial optimality gap ζ3,0 ≤ O∗(λ

9/5
3,0 ), weight decay λ follows the schedule of

initial value λ3,0 = O∗(1), and k-th epoch λ3,k = λ3,0/(kλ3,0 + 1) and stepsize η3k = η ≤
O∗(λ

−6
3,kd

−1) for all T3,k ≤ t ≤ T3,k+1 in epoch k, then within K = O∗(ε
−1/2) epochs and total

T3 − T2 = O∗(ε
−5/2η−1) time we recover the ground-truth network L(θ) ≤ ε.

The goal of each epoch is to minimize the loss Lλ with a fix λ. The lemma below shows that as
long as the initial optimality gap is O∗(λ

9/5), then at the end of each epoch, Lλ could decrease to
O∗(λ

2). Therefore, using a slow decay of weight decay parameter λ for each epoch we could stay
in the local convergence regime for each epoch and eventually recovers the target network.

Lemma 10 (Loss improve within one epoch). Suppose |a(0)i | ≤
∥∥∥w(0)

i

∥∥∥
2

for all i ∈ [m]. If ζ0 ≤
O∗(λ

9/5) and λ ≤ O∗(1) and η ≤ O∗(λ
−6d−1), then within O∗(λ

−4η−1) time the optimality gap
becomes Lλ − Lλ(µ

∗
λ) = O∗(λ

2).

The above result relies on the following characterization of local landscape of regularized loss. We
show the gradient is large whenever the optimality gap is large. This is the main contribution of this
paper, see Section E for detailed proofs.

Lemma 6 (Gradient lower bound). Suppose the optimality gap ζ = Lλ(θ)−minµ∈M(Sd−1) Lλ(µ).
If Ω∗(λ

2) ≤ ζ ≤ O∗(λ
9/5) and λ ≤ O∗(1), we have

∥∇θLλ∥2F ≥ Ω∗(ζ
4/λ2).

In order to use the above landscape result with standard descent lemma, we also need certain smooth-
ness condition on the loss function. We show below that this regularized loss indeed satisfies certain
smoothness condition (though weaker than standard smoothness condition) to allow the convergence
analysis.

Lemma 11 (Smoothness). Suppose |ai| ≤ ∥wi∥2 and
∥∥∥Ex[R(x)σ′(w

(t)⊤
i x)x]

∥∥∥2
2
= O∗(d) for all

i ∈ [m]. If η = O∗(1/d), then

Lλ(θ − η∇θLλ) ≤ Lλ(θ)− η ∥∇θLλ∥2F +O∗(η
3/2d3/2)

D.1 Proofs in Section D

Lemma 5 (Stage 3). Under Assumption 1,2, consider Algorithm 1 on loss (2). Given Stage 2 in
Lemma 4, if the initial optimality gap ζ3,0 ≤ O∗(λ

9/5
3,0 ), weight decay λ follows the schedule of

initial value λ3,0 = O∗(1), and k-th epoch λ3,k = λ3,0/(kλ3,0 + 1) and stepsize η3k = η ≤
O∗(λ

−6
3,kd

−1) for all T3,k ≤ t ≤ T3,k+1 in epoch k, then within K = O∗(ε
−1/2) epochs and total

T3 − T2 = O∗(ε
−5/2η−1) time we recover the ground-truth network L(θ) ≤ ε.

Proof. Since |a(0)i | ≤
∥∥∥w(0)

i

∥∥∥
2

for all i ∈ [m] at the beginning of Stage 3, from Lemma 12 we know
they will remain hold for all epoch and all time t.

From Lemma 10 we know for epoch k it finishes within O∗(λ
−4
k η−1) time and achieves Lλk

−
Lλk

(µ∗
λk
) = O∗(λ

2
k). To proceed to next epoch k + 1, we only need to show the solution at the end
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of epoch k θ(k) gives the optimality gap ζ = O∗(λ
9/5
k+1) for the next λk+1. We have

Lλk+1
(θ(k))− Lλk+1

(µ∗
λk+1

) =L(θ(k))− L(µ∗
λk+1

) +
λk+1

2

∥∥∥a(k)
∥∥∥2
2
+

λk+1

2

∥∥∥W (k)
∥∥∥2
F
− λk+1|µ∗

λk+1
|1

(a)
≤O∗(λ

2
k) +

λk+1

λk

(
λk

2

∥∥∥a(k)
∥∥∥2
2
+

λk

2

∥∥∥W (k)
∥∥∥2
F
− λk|µ∗

λk+1
|1
)

(b)
≤O∗(λ

2
k) +

λk+1

λk
O∗(λ

2
k) +

λk+1

λk
(L(µ∗

λk
)− L(θ(k)))

(c)
≤O∗(λ

2
k) ≤ O∗(λ

9/5
k+1)

where (a) due to Lemma 18; (b) the optimality gap at the end of epoch k is O∗(λ
2
k); (c) due to

Lemma 17. In this way, we can apply Lemma 10 again for epoch k + 1.

From Lemma 18 we know at the end of epoch k the square loss L(θ(k)) = O∗(λ
2
k). Thus, to reach ε

square loss, we need λk = O∗(ε
1/2), which means we need to take O∗(ε

−1/2) epoch. Since epoch
k it finishes within O∗(λ

−4
k η−1) time, we know the total time is at most O∗(ε

−5/2η−1) time.

Lemma 10 (Loss improve within one epoch). Suppose |a(0)i | ≤
∥∥∥w(0)

i

∥∥∥
2

for all i ∈ [m]. If ζ0 ≤
O∗(λ

9/5) and λ ≤ O∗(1) and η ≤ O∗(λ
−6d−1), then within O∗(λ

−4η−1) time the optimality gap
becomes Lλ − Lλ(µ

∗
λ) = O∗(λ

2).

Proof. Since |a(0)i | ≤
∥∥∥w(0)

i

∥∥∥
2

for all i ∈ [m] at the beginning of current epoch, from Lemma 12
we know they will remain hold for all time t. Then combine Lemma 13 and Lemma 11 we know

Lλ(θ − η∇θLλ) ≤ Lλ(θ)− η ∥∇θLλ∥2F +O∗(η
3/2d3/2).

Recall ζt = Lλ(θ
(t))− Lλ(µ

∗
λ). Using Lemma 6 and consider the time before ζt reach O∗(λ

2) we
have

ζt+1 ≤ ζt − ηΩ∗(ζ
4
t /λ

2) +O∗(η
3/2d3/2) ≤ ζt − Ω∗(ηζ

4
t /λ

2),

where we use η = O∗(λ
−6d−1) to be small enough.

The above recursion implies that

ζt = O∗((t/λ
2 + ζ0)

−1/3).

Thus, within O∗(1/λ
4) the optimality gap ζt reaches O∗(λ

2).

Lemma 12. If we start at |a(0)i | ≤
∥∥∥w(0)

i

∥∥∥
2

and η = O∗(1), then we have |a(t)i |2 ≤
∥∥∥w(t)

i

∥∥∥2
2

for all

i ∈ [m∗] and all time t.
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Proof. Denote R(x) = f(x)− f∗(x). Assume |a(t)i |2 −
∥∥∥w(t)

i

∥∥∥2
2
≤ 0 we have

|a(t+1)
i |2 −

∥∥∥w(t+1)
i

∥∥∥2
2
=|a(t)i − η∇ai

Lλ(θ
(t))|2 −

∥∥∥w(t)
i − η∇wi

Lλ(θ
(t))
∥∥∥2
2

=|a(t)i |
2 −

∥∥∥w(t)
i

∥∥∥2
2
+ η2|∇ai

Lλ(θ
(t))|2 − η2

∥∥∥∇wi
Lλ(θ

(t))
∥∥∥2
2

=|a(t)i |
2 −

∥∥∥w(t)
i

∥∥∥2
2
+ η2|2Ex[R(x)σ(w

(t)⊤
i x)] + λa

(t)
i |

2 − η2
∥∥∥2Ex[R(x)a

(t)
i σ′(w

(t)⊤
i x)x] + λw

(t)
i

∥∥∥2
2

≤|a(t)i |
2 −

∥∥∥w(t)
i

∥∥∥2
2
+ η2

(∥∥∥w(t)
i

∥∥∥2
2
|2Ex[R(x)σ(w

(t)⊤
i x)]|2 − |a(t)i |

2
∥∥∥2Ex[R(x)σ′(w

(t)⊤
i x)x]

∥∥∥2
2

+ λ2|a(t)i |
2 − λ2

∥∥∥w(t)
i

∥∥∥2
2

)
(a)
≤
(
|a(t)i |

2 −
∥∥∥w(t)

i

∥∥∥2
2

)(
1 + η2λ2 − η2

∥∥∥2Ex[R(x)σ′(w
(t)⊤
i x)x]

∥∥∥2
2

)
(b)
≤
(
|a(t)i |

2 −
∥∥∥w(t)

i

∥∥∥2
2

)(
1− η2

∥∥∥2Ex[R(x)σ′(w
(t)⊤
i x)x]

∥∥∥2
2

)
(c)
≤0,

where (a) due to |2Ex[R(x)σ(w
(t)⊤
i x)]|2 ≤

∥∥∥2Ex[R(x)σ′(w
(t)⊤
i x)x]

∥∥∥2
2
; (b) due to |a(t)i |2 −∥∥∥w(t)

i

∥∥∥2
2
≤ 0; (c) we use

∥∥∥2Ex[R(x)σ′(w
(t)⊤
i x)]x

∥∥∥2
2
= O∗(1) from Lemma 13 and η = O∗(1).

Therefore, we can see that |a(t)i |2 −
∥∥∥w(t)

i

∥∥∥2
2
≤ 0 remains for all t.

Lemma 11 (Smoothness). Suppose |ai| ≤ ∥wi∥2 and
∥∥∥Ex[R(x)σ′(w

(t)⊤
i x)x]

∥∥∥2
2
= O∗(d) for all

i ∈ [m]. If η = O∗(1/d), then

Lλ(θ − η∇θLλ) ≤ Lλ(θ)− η ∥∇θLλ∥2F +O∗(η
3/2d3/2)

Proof. Denote Rθ(x) = fθ(x) − f∗(x) to denote the dependency on θ. For simplicity, we will

use ∇̃θ = −η∇θLλ and same for others. Since
∥∥∥Ex[R(x)σ′(w

(t)⊤
i x)x]

∥∥∥2
2
= O∗(d), we know

|∇̃ai
| = O∗(η ∥wi∥2 d) and

∥∥∥∇̃wi

∥∥∥
2
= O∗(η|ai|d)

We have

Lλ(θ − η∇θ)− Lλ(θ) + η ∥∇θ∥2F
=Lλ(θ − η∇θ)− Lλ(θ)− ⟨∇θ,−η∇θ⟩

=Ex[Rθ+∇̃θ
(x)2] +

λ

2

∥∥∥a+ ∇̃a

∥∥∥2
2
+

λ

2

∥∥∥W + ∇̃W

∥∥∥2
F
− Ex[Rθ(x)

2]− λ

2
∥a∥22 −

λ

2
∥W ∥2F

−
∑
i∈[m]

Ex[Rθ(x)σ(w
⊤
i x)∇̃ai ]−

∑
i∈[m]

Ex[Rθ(x)aiσ
′(w⊤

i x)x
⊤∇̃wi ]− Ex[Rθ(x)∇̃α]− Ex[Rθ(x)x

⊤∇̃β]

=Ex[(Rθ+∇̃θ
(x)−Rθ(x))

2]︸ ︷︷ ︸
(I)

+ 2Ex

Rθ(x)

Rθ+∇̃θ
(x)−Rθ(x)−

∑
i∈[m]

σ(w⊤
i x)∇̃ai −

∑
i∈[m]

aiσ
′(w⊤

i x)x
⊤∇̃wi − ∇̃α − x⊤∇̃β


︸ ︷︷ ︸

(II)

.

We are going to bound (I) and (II) one by one.
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For (I), we have

Ex[(Rθ+∇̃θ
(x)−Rθ(x))

2]

=Ex


∑

i∈[m]

(ai + ∇̃ai)σ((wi + ∇̃wi)
⊤x)− aiσ(w

⊤
i x) + ∇̃α + x⊤∇̃β

2


≤2Ex


∑

i∈[m]

(ai + ∇̃ai
)σ((wi + ∇̃wi

)⊤x)− aiσ(w
⊤
i x)

2


︸ ︷︷ ︸
(I.i)

+2Ex

[(
∇̃α + x⊤∇̃β

)2]
︸ ︷︷ ︸

I.ii

For (I.i), we have

Ex


∑

i∈[m]

(ai + ∇̃ai)σ((wi + ∇̃wi)
⊤x)− aiσ(w

⊤
i x)

2


≤2Ex


∑

i∈[m]

∇̃ai
σ((wi + ∇̃wi

)⊤x)

2
+ 2Ex


∑

i∈[m]

aiσ((wi + ∇̃wi
)⊤x)− aiσ(w

⊤
i x)

2


≤2Ex


∑

i∈[m]

|∇̃ai
||(wi + ∇̃wi

)⊤x|

2
+ 2Ex


∑

i∈[m]

|ai||∇̃⊤
wi

x|

2


(a)
≤O(1)

∑
i∈[m]

|∇̃ai
|
∥∥∥wi + ∇̃wi

∥∥∥
2

2

+O(1)

∑
i∈[m]

|ai|
∥∥∥∇̃wi

∥∥∥
2

2

(b)
≤O∗(d

2)

∑
i∈[m]

η ∥wi∥22 + η2|ai| ∥wi∥2 d

2

+O∗(d
2)

∑
i∈[m]

ηa2i

2

(c)
≤O∗(η

2d2),

where (a) we use Lemma 14; (b) recall |∇̃ai
| = O∗(η ∥wi∥2) and

∥∥∥∇̃wi

∥∥∥
2
= O∗(η|ai|); (c)

∥a∥ , ∥W ∥F ,
∑

i∈[m] |ai| ∥wi∥2 = O∗(1) from Lemma 26 and Lemma 18.

For (I.ii), we have

Ex

[(
∇̃α + x⊤∇̃β

)2]
≤ O(|∇̃α|2 +

∥∥∥∇̃β

∥∥∥2
2
) = O∗(η

2),

where we use Lemma 18.

Combine (I.i) and (I.ii) we know (I)=O∗(η
2d2).

For (II), we have

Ex

Rθ(x)

Rθ+∇̃θ
(x)−Rθ(x)−

∑
i∈[m]

σ(w⊤
i x)∇̃ai

−
∑
i∈[m]

aiσ
′(w⊤

i x)x
⊤∇̃wi

− ∇̃α − x⊤∇̃β


=Ex

Rθ(x)

∑
i∈[m]

(ai + ∇̃ai)σ((wi + ∇̃wi)
⊤x)− aiσ(w

⊤
i x)− σ(w⊤

i x)∇̃ai − aiσ
′(w⊤

i x)x
⊤∇̃wi︸ ︷︷ ︸

Ii(x)




≤
∑
i∈[m]

∥Rθ∥ ∥Ii∥

14



For Ii(x), we have

∥Ii∥22 =Ex

[(
(ai + ∇̃ai

)σ((wi + ∇̃wi
)⊤x)− aiσ(w

⊤
i x)− σ(w⊤

i x)∇̃ai
− aiσ

′(w⊤
i x)x

⊤∇̃wi

)2]
≤Ex

[
2
(
∇̃ai(σ((wi + ∇̃wi)

⊤x)− σ(w⊤
i x))

)2
+ 2

(
ai(σ((wi + ∇̃wi)

⊤x)− σ(w⊤
i x)− σ′(w⊤

i x)x
⊤∇̃wi)

)2]
≤2Ex

[
|∇̃ai |2|∇̃⊤

wi
x|2
]

︸ ︷︷ ︸
(II.i)

+2a2i Ex

[
|(wi + ∇̃wi

)⊤x|2(σ′((wi + ∇̃wi
)⊤x)− σ′(w⊤

i x))
2
]

︸ ︷︷ ︸
(II.ii)

For (II.i), recall |∇̃ai
| = O∗(η ∥wi∥2) and

∥∥∥∇̃wi

∥∥∥
2
= O∗(η|ai|) we have

Ex

[
|∇̃ai
|2|∇̃⊤

wi
x|2
]
≤ |∇̃ai

|2
∥∥∥∇̃wi

∥∥∥2 = O∗(η
4|ai|2 ∥wi∥22 d

4).

For (II.ii), we have

Ex

[
|wi + ∇̃⊤

wi
x|2(σ′((wi + ∇̃wi

)⊤x)− σ′(w⊤
i x))

2
]
=Ex

[
|(wi + ∇̃wi

)⊤x|21sign((wi+∇̃wi
)⊤x) ̸=sign(w⊤

i x)

]
≤O(

∥∥∥wi + ∇̃wi

∥∥∥2
2
δ3),

where δ = ∠(wi+∇̃wi
,wi) is the angle between wi+∇̃wi

and wi. Since
∥∥∥∇̃wi

∥∥∥
2
= O∗(η|ai|d) =

O∗(η ∥wi∥2 d), we know δ = O(
∥∥∥∇̃wi

∥∥∥) given η = O∗(1/d) to be small enough.

Combine (II.i) and (II.ii) we have

∥Ii∥22 ≤ O∗(η
4a2i ∥wi∥22 d

4) +O(a2i

∥∥∥wi + ∇̃wi

∥∥∥2
2

∥∥∥∇̃wi

∥∥∥3
2
) ≤ O∗(η

3a2i ∥wi∥22 d
3).

This implies

(II) ≤
∑
i∈[m]

O∗(η
3/2ai ∥wi∥2 d

3/2) = O∗(η
3/2d3/2).

Finally, combing (I) and (II) we have

Lλ(θ − η∇θ)− Lλ(θ) + η ∥∇θ∥2F = O∗(η
3/2d3/2).

D.2 Technical Lemma

Lemma 13. We have
∥∥∥Ex[R(x)σ′(w

(t)⊤
i x)x]

∥∥∥2
2
= O∗(d)

Proof. It is easy to see given ∥R∥ = O∗(1).

Lemma 14 (Lemma D.4 in [28]). Consider αi ∈ Rd for i ∈ [n]. We have

Ex∼N(0,I)

( n∑
i=1

|α⊤
i x|

)2
 ≤ c0

(
n∑

i=1

∥αi∥

)2

,

where c0 is a constant.
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E Local landscape of population loss

In this section, we are going to show Lemma 6 that characterizing the population local landscape
with a fixed λ by giving the lower bound of gradient. We start by identifying the structure of
(approximated) solution of a closely-related problem in Section E.1:

min
µ∈M(Sd−1)

Lλ(µ) := L(µ) + λ|µ|1 := Ex,ỹ[(fµ(x)− ỹ)2] + λ|µ|1 = Ex

[(∫
w

σ≥2(w
⊤x)d µ− µ∗

)2
]
+ λ|µ|1,

(3)

whereM(Sd−1) is the measure space over unit sphere Sd−1 and σ≥2(x) = σ(x) − 1/
√
2π − x/2

is the activation that after removing 0th and 1st order term in Hermite expansion. Note that when µ
represents a finite-wdith network, we have µ =

∑
i∈[m] ai ∥wi∥2 δwi

is a empirical measure over
the neurons.

We call (3) as the ideal loss because the original problem (2) would become the above (3) when we
balance the norms (∥wi∥2 = |ai|), perfectly fit α, β and relax the finite-width constraints to allow
infinite-width. This is why we slightly abused the notation to use Lλ in both (2) and (3).

Then, in Section E.3 we will use the solution structure to construct descent direction that are posi-
tively correlated with gradient and also handle the case when norms are not balanced or α, β are not
fitted well.

Notation Denote the optimality gap between the loss at µ and the optimal distribution µ∗
λ as

ζ(µ) := Lλ(µ)− Lλ(µ
∗
λ),

where µ∗
λ is the optimal measure that minimize (3). For simplicity denote ãi = ai ∥wi∥2 so that

|µ|1 = ∥ã∥1 when µ =
∑

i∈[m] ai ∥wi∥2 δwi . Often we use ζt = ζ(µt) to denote the optimality gap
at time t and just ζ for simplicity. We slightly abuse the notation to also use ζ = Lλ(θ) − Lλ(µ

∗
λ).

Finally denote µ∗ =
∑

i∈[m∗]
a∗i δw∗

i
(assuming ∥w∗

i ∥2 = 1) so that fµ∗(x) = Ew∼µ∗ [σ≥2(w
⊤x)].

We will group the neurons (i.e., partitioning Sd−1) based on their distance to the closest teacher
neurons: denote Ti = {w : ∠(w,w∗

i ) ≤ ∠(w,w∗
j ) for any j ̸= i} so that ∪iTi = Sd−1.

We will use O∗,Ω∗,Θ∗ to hide poly(r,m∗,∆, amin, ∥a∗∥1), the polynomial dependency on rele-
vant parameters of target f∗.

E.1 Structure of the ideal loss solution

In this section, we will focus on the structure of approximated solution for the ℓ1 regularized regres-
sion problem (3).

In the rest of this section, we will first introduce the idea of non-degenerate dual certificate and then
use it as a tool to characterize the structure of the solutions. The proofs are deferred to Section G.

E.1.1 Non-degenerate dual certificate

We first introduce the notion of non-degenerate dual certificate similar as in [26] but slightly adapted
for fit our need. Roughly speaking, η acts as a certificate of the true solution because |η(w)| ≤ 1
and |η(w)| = 1 only if w = w∗

i at some ground-truth direction. The non-degenerate means that
η decays fast around each w∗

i so that one can simply look at η to identify all the ground-truth
directions.
Definition 1 (Non-degenerate dual certificate). η is called a non-degenerate dual certificate if there
exists p(x) such that η(w) = Ex[p(x)σ≥2(w

⊤x)] for w ∈ Sd−1 and

(i) η(w∗
i ) = sign(a∗i ) for i = 1, . . . ,m∗

(ii) |η(w)| ≤ 1− ρηδ(w,w∗
i )

2 if w ∈ Ti, where δ(w,w∗
i ) = ∠(w,w∗

i )

We first show that there exist such non-degenerate dual certificate. More discussion and a detailed
proof are deferred to Section F.
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Lemma 15. There exists a non-degenerate dual certificate η = Ex[p(x)σ≥2(w
⊤x)] with ρη =

Θ(1) and ∥p∥2 ≤ poly(m∗,∆)

The following lemma gives the properties that will be used in the later proofs: the non-degenerate
dual certificate η allows us to capture the gap between the current position µ and the target µ∗.
Lemma 16. Given a non-degenerate dual certificate η, then

(i) For any measure µ ∈M(Sd−1), |⟨η, µ⟩| ≤ |µ|1 − ρη
∑

i∈[m∗]

∫
Ti
δ(w,w∗

i )
2 d|µ|(w).

(ii) ⟨η, µ∗⟩ = |µ∗|1

(iii) ⟨η, µ − µ∗⟩ = ⟨p, fµ − fµ∗⟩, where fµ(x) = Ew∼µ[σ≥2(w
⊤x)]. Thus, |⟨η, µ − µ∗⟩| ≤

∥p∥2
√
L(µ).

E.1.2 Properties of µ∗
λ

Given the non-degenerate dual certificate η, we now are ready to identify several useful properties
of µ∗

λ. The lemma below essentially says that µ∗
λ is similar to µ∗ in the sense that most of the

norm are concentrated in the ground-truth direction and the square loss is small. The proof relies on
comparing µ∗

λ with µ∗ using the optimality conditions.
Lemma 17. We have the following hold

(i) |µ∗|1 − λ ∥p∥22 ≤ |µ∗
λ|1 ≤ |µ∗|1 = ∥a∗∥1

(ii) L(µ∗
λ) ≤ λ2 ∥p∥22 = O∗(λ

2)

(iii)
∑

i∈[m∗]

∫
Ti
δ(w,w∗

i )
2 d|µ∗

λ|(w) ≤ λ ∥p∥22 /ρη = O∗(λ)

E.1.3 Properties of µ with optimality gap ζ

We now characterize the structure of µ when the optimality gap is ζ. The proof mostly relies on
comparing µ with µ∗

λ and the structure of µ∗
λ in previous section.

The following lemma shows the square loss is bounded by the optimality gap and norms are always
bounded. Note that the conditions are true under Lemma 6.
Lemma 18. Recall the optimality gap ζ = Lλ(µ)− Lλ(µ

∗
λ). Then, the following holds:

(i) L(µ) ≤ 5λ2 ∥p∥2 + 4ζ = O∗(λ
2 + ζ).

(ii) if ζ ≤ λ|µ∗|1 and λ ≤ |µ∗|1/ ∥p∥22, then |µ|1 ≤ 3|µ∗|1 = 3 ∥a∗∥1.

The following two lemma characterize the structure of µ using the fact that the square loss is small
in previous lemma. The lemma below says that the total norm of far away neuron is small.
Lemma 19. Recall the optimality gap ζ = Lλ(µ)− Lλ(µ

∗
λ). Then, we have∑

i∈[m∗]

∫
Ti

δ(w,w∗
i )

2 d|µ|(w) ≤ (ζ/λ+ 2λ ∥p∥22)/ρη = O∗(ζ/λ+ λ).

In particular, when µ =
∑

i∈[m] ai ∥wi∥2 δwi represents finite number of neurons, we have∑
i∈[m∗]

∑
j∈Ti

|aj | ∥wj∥2 δ
2
j ≤ (ζ/λ+ 2λ ∥p∥22)/ρη = O∗(ζ/λ+ λ),

where δj = ∠(wj ,w
∗
i ) for j ∈ Ti.

The lemma below shows there are neurons close to the teacher neurons once the gap is small. The
proof idea is similar to Section 5.3 in Zhou et al. [28] that use test function to lower bound the loss.
Lemma 20. Under Lemma 6, if the Hermite coefficient of σ decays as |σ̂k| = Θ(k−cσ ) with some
constant cσ > 0, then the total mass near each target direction is large, i.e., µ(Ti(δ)) sign(a∗i ) ≥
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|a∗i |/2 for all i ∈ [m∗] and any δclose ≥ Ω̃
(
(L(µ)
a2
min

)1/(4cσ−2)
)

with large enough hidden constant.

In particular, for σ is ReLU or absolute function, δclose ≥ Ω̃
(
(L(µ)
a2
min

)1/3
)

.

As a corollary, if the optimality gap ζ = Lλ(µ) − Lλ(µ
∗
λ), then δclose ≥ Ω̃∗

(
(ζ + λ2)1/(4cσ−2)

)
and for ReLU or absolute δclose ≥ Ω̃∗

(
(ζ + λ2)1/3

)
.

E.1.4 Residual decomposition and average neuron

In this section, we introduce the residual decomposition and average neuron as in [28] that will be
used when proving the existence of descent direction.

Denote the decomposition R(x) = fµ(x)−fµ∗(x) = R1(x)+R2(x)+R3(x) (this can be directly
verified noticing that σ≥2(x) = |x|/2− 1/

√
2π),

R1(x) =
1

2

∑
i∈[m∗]

∑
j∈Ti

ajwj −w∗
i

⊤

x sign(w∗⊤
i x),

R2(x) =
1

2

∑
i∈[m∗]

∑
j∈Ti

ajw
⊤
j x(sign(w

⊤
j x)− sign(w∗⊤

i x)),

R3(x) =
1√
2π

 ∑
i∈[m∗]

a∗i ∥w∗
i ∥2 −

∑
i∈[m]

ai ∥wi∥2

 .

(4)

In the following we characterize R1, R2, R3 separately. In Lemma 21 we relate R1 with the average
neuron. In Lemma 22 and Lemma 23 we bound R2 and R3 respectively.

Lemma 21 (Zhou et al. [28], Lemma 11). ∥R1∥22 = Ω(∆3/m3
∗)
∑

i∈[m∗]

∥∥∥∑j∈Ti
ajwj −w∗

i

∥∥∥2
2
.

Lemma 22. Under Lemma 6, recall the optimality gap ζ = Lλ(µ)− Lλ(µ
∗
λ). Then

∥R2∥22 = O∗((ζ/λ+ λ)3/2).

Lemma 23. Under Lemma 6 and recall the optimality gap ζ = Lλ(µ) − Lλ(µ
∗
λ). If σ̂0 = 0 and

σ̂k > 0 with some k = Θ((1/∆2) log(ζ/ ∥a∗∥1)), then

∥R3∥2 =Õ∗((ζ + λ2)1/2/σ̂k + (ζ/λ+ λ) + ζ).

Now we are ready to bound the difference between average neuron with its corresponding ground-
truth neuron.
Lemma 24. Under Lemma 6, recall the optimality gap ζ = Lλ(µ)−Lλ(µ

∗
λ). Then for any i ∈ [m∗],

ζ = Ω(λ2) and ζ, λ ≤ 1/ poly(m∗,∆, ∥a∗∥1)∥∥∥∥∥∥
∑
j∈Ti

ajwj −w∗
i

∥∥∥∥∥∥
2

≤

 ∑
i∈[m∗]

∥∥∥∥∥∥
∑
j∈Ti

ajwj −w∗
i

∥∥∥∥∥∥
2

2


1/2

= O∗((ζ/λ)
3/4).

E.2 From ideal loss solution to real loss solution

In previous section, we consider the ideal loss solution that assumes the norms are perfectly balanced
(|ai| = ∥wi∥2) and α,β are perfectly fitted. However, during the training we are not able to
guarantee achieve these exactly but only approximately. This section is devoted to show that the
results in previous section still hold though the conditions are only approximately satisfied. Recall
that the original loss

Lλ(θ) = L(θ) +
λ

2
∥a∥22 +

λ

2
∥W ∥2F
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so that when norm are balanced and α,β are perfectly fitted, Lλ(θ) = L(θ) + λ
∑

i |ai| ∥wi∥2 =
Lλ(µ).

The lemma below shows that the properties of ideal loss solution in previous section still hold for
the solution of original loss, when α,β are approximately fitted.

Lemma 25. Given any θ = (a,W , α,β) satisfying |α − α̂|2 = O(ζ),
∥∥∥β − β̂

∥∥∥2
2
= O(ζ), where

α̂ = (1/
√
2π)

∑m
i=1 ai ∥wi∥2 and β̂ = (1/2)

∑m
i=1 aiwi. Let its corresponding balanced version

θbal = (abal,Wbal, αbal,βbal) as abal,i = sign(ai)
√
|ai| ∥wi∥2, wbal,i = wi

√
|ai| ∥wi∥2, αbal =

α̂ and βbal = β̂. Then, we have

Lλ(θ)− Lλ(θbal) = |α− α̂|2 +
∥∥∥β − β̂

∥∥∥2
2
+

λ

2

∑
i∈[m]

(|ai| − ∥wi∥2)
2 ≥ 0.

Moreover, let the optimality gap ζ = Lλ(θ) − Lλ(µ
∗
λ), we have results in Lemma 18, Lemma 19,

Lemma 20, Lemma 21, Lemma 22, Lemma 23 and Lemma 24 still hold for Lλ(θ), with the change
of R3 in (4) as

R3(x) =
1√
2π

 ∑
i∈[m∗]

a∗i ∥w∗
i ∥2 −

∑
i∈[m]

ai ∥wi∥2

+ α− α̂+ (β − β̂)⊤x.

The following lemma shows the norm remains bounded.

Lemma 26. Under Lemma 6, suppose optimality gap ζ = Lλ(θ)−Lλ(µ
∗
λ). Then ∥a∥22+∥W ∥

2
F ≤

3 ∥a∗∥1.

E.3 Descent direction

In this section, we show that there is a descent direction as long as the optimality gap is small until
it reaches O(λ2). We will assume ζ = Ω(λ2) in this section for simplicity.

We first recall the lemma appears previously that shows gradient is always large whenever α,β are
not fitted well.
Lemma 8 (Descent direction, α and β). We have

|∇αLλ|2 = 4(α− α̂)2, ∥∇βLλ∥22 = 4
∥∥∥β − β̂

∥∥∥2
2
.

We then show that if norms are not balanced or norm cancellation happens for neurons with similar
direction, then one can always adjust the norm to decrease the loss due to the regularization term.
Lemma 27 (Descent direction, norm balance). We have∑
i

∑
j∈Ti

∣∣⟨∇aj
Lλ,−aj⟩+ ⟨∇wj

Lλ,wj⟩
∣∣ =λ

∑
i∈[m∗]

∣∣∣a2i − ∥wi∥22
∣∣∣

≥max

λ| ∥a∥22 − ∥W ∥
2
F |, λ

∑
i∈[m∗]

(|ai| − ∥wi∥2)
2


Lemma 28 (Descent direction, norm cancellation). Under Lemma 6, suppose the optimality gap
ζ = Lλ(θ)− Lλ(µ

∗
λ). For any w∗

i , consider δsign such that δclose < δsign = O(λ/ζ1/2) with small
enough hidden constant (δclose defined in Lemma 20), then∑
s∈{+,−}

∑
j∈Ti,s(δsign)

〈
∇ajLλ,

sign(aj)|aj |∑
j∈Ti,s(δsign)

|aj | ∥wj∥2

〉
+

〈
∇wj

Lλ,
wj∑

j∈Ti,s(δsign)
|aj | ∥wj∥2

〉
= Ω(λ).

where Ti,+(δsign) = {j ∈ Ti : δ(wj ,w
∗
i ) ≤ δsign, sign(aj) = sign(a∗i )}, Ti,−(δsign) = {j ∈ Ti :

δ(wj ,w
∗
i ) ≤ δsign, sign(aj) ̸= sign(a∗i )} are the set of neurons that close to w∗

i with/without same
sign of a∗i .

As a result,

∥∇aLλ∥22 + ∥∇WLλ∥2F ≥λ
2

∑
j∈Ti,−(δsign)

|aj | ∥wj∥2
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Now given the above lemmas, it suffices to consider the remaining case that α,β are well fitted,
norms are balanced and no cancellation. In this case, the loss landscape is roughly the same as
the ideal loss (3) from Lemma 25. Thus, we could leverage these detailed characterization of the
solution (far-away neurons are small and average neuron is close to corresponding ground-truth
neuron) to construct descent direction.
Lemma 29 (Descent direction). Under Lemma 6, suppose the optimality gap ζ = Lλ(θ)−Lλ(µ

∗
λ).

Suppose

(i) norms are (almost) balanced: | ∥W ∥2F −∥a∥
2
2 | ≤ ζ/λ,

∑
i∈[m](|aj |−∥wj∥2)

2 = O∗(ζ
2/λ2)

(ii) (almost) no norm cancellation: consider all neurons wj that are δsign-close w.r.t. teacher
neuron w∗

i but has a different sign, i.e., sign(aj) ̸= sign(a∗i ) with δsign = Θ∗(λ/ζ
1/2), we

have
∑

j∈Ti,−(δsign)
|aj | ∥wj∥2 ≤ τ = O∗(ζ

5/6/λ) with small enough hidden constant, where
Ti,−(δ) defined in Lemma 28.

(iii) α,β are well fitted: |α− α̂|2 = O(ζ),
∥∥∥β − β̂

∥∥∥2
2
= O(ζ) with small enough hidden constant.

Then, we can construct the following descent direction

(α+ α∗)∇αLλ + ⟨∇βLλ,β + β∗⟩+
∑

i∈[m∗]

∑
j∈Ti

⟨∇wiLλ,wj − qijw
∗
i ⟩ = Ω(ζ),

where qij satisfy the following conditions with δclose < δsign and δclose = O∗(ζ
1/3): (1)∑

j∈Ti
ajqij = a∗i ; (2) qij ≥ 0; (3) qij = 0 when sign(aj) ̸= sign(a∗i ) or δj > δclose. (4)∑

i∈[m∗]

∑
j∈Ti

q2ij = O∗(1).

E.4 Proof of Lemma 6

Now we are ready to prove the gradient lower bound (Lemma 6) by combining all descent direction
lemma in the previous section together.
Lemma 6 (Gradient lower bound). Suppose the optimality gap ζ = Lλ(θ)−minµ∈M(Sd−1) Lλ(µ).
If Ω∗(λ

2) ≤ ζ ≤ O∗(λ
9/5) and λ ≤ O∗(1), we have

∥∇θLλ∥2F ≥ Ω∗(ζ
4/λ2).

Proof. We check the assumption of Lemma 29 one by one.

For assumption (i) (norm balance) in Lemma 29, whenever
∑

i∈[m∗]

∣∣∣a2i − ∥wi∥22
∣∣∣ = Ω∗(ζ

2/λ2),
by Lemma 27 we know∑

i

∑
j∈Ti

∣∣⟨∇ajLλ,−aj⟩+ ⟨∇wjLλ,wj⟩
∣∣ ≥Ω∗(ζ

2/λ).

With Lemma 26, this implies√
∥∇aLλ∥22 + ∥∇WLλ∥2F ·O(∥a∗∥1) ≥

√
∥∇aLλ∥22 + ∥∇WLλ∥2F

√
∥a∥22 + ∥W ∥

2
F = Ω∗(ζ

2/λ),

which means

∥∇θLλ∥2F ≥ ∥∇aLλ∥22 + ∥∇WLλ∥2F ≥ Ω∗(ζ
4/λ2)

For assumption (ii) (norm cancellation) in Lemma 29, whenever it does not hold, by Lemma 28 we
know

∥∇θLλ∥2F ≥ ∥∇aLλ∥22 + ∥∇WLλ∥2F ≥λ
2

∑
j∈Ti,−(δsign)

|aj | ∥wj∥2 ≥ Ω∗(ζ
5/6λ).

For assumption (iii) (α,β) in Lemma 29, whenever it does not hold, by Lemma 8 we know

|∇αLλ|2 = (α− α̂)2 = Ω(ζ), ∥∇βLλ∥22 = 4
∥∥∥β − β̂

∥∥∥2
2
= Ω(ζ),
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which implies

∥∇θLλ∥2F ≥ |∇αLλ|2 + ∥∇βLλ∥22 = Ω(ζ).

Thus, the remaining case is the one that all assumption (i)-(iii) in Lemma 29 hold and also∑
i∈[m∗]

∣∣∣a2i − ∥wi∥22
∣∣∣ = O∗(ζ

2/λ2), we choose

qij =

{
aja

∗
i∑

j∈Ti,+(δclose) a
2
j

, if j ∈ Ti,+(δclose)

0 , otherwise

so that condition (1)-(4) all hold: condition (1)-(3) are easy to check, Lemma 36 shows condition
(4) holds. Now we know from Lemma 29 that

α∇αLλ + ⟨∇βLλ,β⟩+
∑

i∈[m∗]

∑
j∈Ti

⟨∇wiLλ,wj − qijw
∗
i ⟩ = Ω(ζ).

Note that

(α+ α∗)∇αLλ + ⟨∇βLλ,β + β∗⟩+
∑

i∈[m∗]

∑
j∈Ti

⟨∇wi
Lλ,wj − qijw

∗
i ⟩

≤
√
|∇αLλ|2 + ∥∇βLλ∥22 + ∥∇aLλ∥22 + ∥∇WLλ∥2F

√
(α+ α∗)2 + ∥β + β∗∥22 +

∑
i∈[m∗]

∑
j∈Ti

∥wj − qijw∗
i ∥

2
2

and

|α+ α∗| ≤ |α̂|+ |α∗|+O(ζ1/2)
(a)
≤ O∗(1)

∥β + β∗∥2 ≤
∥∥∥β̂∥∥∥

2
+ ∥β∗∥2 +O(ζ1/2)

(b)
≤ O∗(1)∑

i∈[m∗]

∑
j∈Ti

∥wj − qijw
∗
i ∥

2
2 ≤ 2

∑
i∈[m∗]

∑
j∈Ti

∥wj∥22 + q2ij ∥w∗
i ∥

2
2

(c)
≤ O∗(1),

where (a)(b) by Lemma 18; (c) we use Lemma 26 and condition (4) on qij .

Therefore, we get

∥∇θLλ∥2F = |∇αLλ|2 + ∥∇βLλ∥22 + ∥∇aLλ∥22 + ∥∇WLλ∥2F = Ω∗(ζ
2).

Combine all cases above, we know

∥∇aLλ∥22 + ∥∇WLλ∥2F = Ω∗(min{ζ4/λ2, ζ5/6λ, ζ, ζ2}) = Ω∗(ζ
4/λ2),

as long as ζ = O(λ9/5/poly(r,m∗,∆, ∥a∗∥1 , amin)).

F Non-degenerate dual certificate

In this section, we show that there indeed exists a non-degenerate dual certificate that satisfies Defi-
nition 1 and therefore proving Lemma 15.
Lemma 15. There exists a non-degenerate dual certificate η = Ex[p(x)σ≥2(w

⊤x)] with ρη =
Θ(1) and ∥p∥2 ≤ poly(m∗,∆)

Recall that we want to use the dual certificate η to characterize the (approximate) solution for the
following regression problem:

min
µ∈M(Sd−1)

Lλ(µ) = Ex,ỹ[(fµ(x)− ỹ)2] + λ|µ|1 = Ex

[(∫
w

σ≥2(w
⊤x)d µ− µ∗

)2
]
+ λ|µ|1,

where σ≥2 is the ReLU activation after removing 0th and 1st order (corresponding to α and β terms
in (1)) and µ∗ =

∑
i∈[m∗]

a∗i δw∗
i

is the ground-truth.
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We need to first introduce few notations before proceeding to the proof. Denote the kernel
K≥ℓ(w,u) = Ex∼N(0,I)[σ≥ℓ(w

⊤x)σ≥ℓ(u
⊤x)] as the kernel induced by activation σ≥ℓ(x), where

σ≥ℓ(x) =
∑

k≥ℓ σ̂khk(x)/Zσ , Zσ = ∥σ≥ℓ∥2 =
√∑

k≥ℓ σ̂
2
k = Θ(ℓ−3/4) is the normalizing fac-

tor, hk(x) is the normalized k-th (probabilistic) Hermite polynomial and σ̂k is the corresponding
Hermite coefficient. We will specify the value of ℓ later and use K instead of K≥ℓ for simplicity.

We will construct the dual certificate η following the proof strategy in Poon et al. [26] with the form
below (the difference is that we now only keep high order terms that are at least ℓ):

η(w) =
∑

j∈[m∗]

α1,jK(w∗
j ,w) +

∑
j∈[m∗]

α⊤
2,j∇1K(w∗

j ,w)

such that it satisfies η(w∗
i ) = sign(a∗i ) and ∇η(w∗

i ) = 0 for all i ∈ [m∗]. Here α1 =
(α1, . . . , αm∗)

⊤ ∈ Rm∗ ,α2 = (α⊤
2,1, . . . ,α

⊤
2,m∗

)⊤ ∈ Rm∗d are the parameters that we are go-
ing to solve and∇i means the gradient w.r.t. i-th variable.

One can rewrite the above constraints into the matrix form:

Υ

(
α1

α2

)
= b, (5)

where b = (sign(a∗1), . . . , sign(a
∗
m∗

),0⊤
m∗d)

⊤ ∈ Rm∗(d+1), Υ = Ex[γ(x)γ(x)
⊤] ∈

Rm∗(d+1)×m∗(d+1),

γ(x) = (σ≥ℓ(w
∗⊤
1 x), . . . , σ≥ℓ(w

∗⊤
m∗

x),∇wσ≥ℓ(w
∗⊤
1 x)⊤, . . . ,∇wσ≥ℓ(w

∗⊤
m∗

x)⊤)⊤ ∈ Rm∗(d+1),

∇wσ≥ℓ(w
∗⊤
i x) = Pw∗

i
σ≥ℓ

′(w∗⊤
i x)x ∈ Rd.

Notions on the unit sphere As we could see, the kernel K is invariant under the change of norms,
so it suffices to focus on the input on the unit sphere Sd−1. On the unite sphere, we could compute
the gradient and hessian of a function f(w) on the sphere (e.g., Absil et al. [4])

grad f(w) = Pw∇f(w),

H f(w)[z] = Pw(∇2f(w)−w⊤∇f(w)I)z for all tangent vector z that z⊤w = 0,

where Pw = I −ww⊤ is the projection matrix.

Then, we could define the derivative as in Poon et al. [26], Absil et al. [3]: for tangent vectors z, z′

D0 f(w) := f(w)

D1 f(w)[z] := ⟨z, grad f(w)⟩ = z⊤Pw∇f(w)

D2 f(w)[z, z′] := ⟨H f(w)[z], z′⟩ = z⊤Pw(∇2f(w)−w⊤∇f(w)I)Pwz′,

and their associated norms

∥D1 f(w)∥w := sup
∥z∥w=1

D1 f(w)[z] = ∥Pw∇f(w)∥2 ,

∥D2 f(w)∥w := sup
∥z∥w,∥z′∥w=1

D2 f(w)[z, z′] = ∥Pw H f(w)Pw∥2 ,

where ∥z∥w = ∥Pwz∥2.

For simplicity, we will use K(ij)(w,u) to denote∇i
1∇

j
2K(w,u). One can check that this is in fact

the same as the one defined Poon et al. [26] under our specific kernel K, i+ j ≤ 3 and i, j ≤ 2. Let∥∥∥K(ij)(w,u)
∥∥∥
w,u

:= sup
∥z(p)

w ∥w=∥z(q)
u ∥u=1,

w⊤z(p)
w =u⊤z(q)

u =0 ∀p∈[i],q∈[j]

K(ij)(w,u)[z(1)
w , . . . ,z(j)

u ],

where z
(p)
w applies to the dimension corresponding to w and similarly z

(q)
u for u.

Before solving (5), we first present some useful proprieties of kernel K that will be used later (see
Section H for the proofs). The lemma below shows that kernel K(w,u) is non-degenerate in the
sense that it decays at least quadratic at each ground-truth direction (w ≈ u ≈ w∗

i ) and contributes
almost nothing when w,u are away.
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Lemma 30 (Non-degeneracy of kernel K). For ℓ ≥ Θ(∆−2 log(m∗ℓ/h∆)), kernel K≥ℓ is non-
degenerate in the sense that there exists r = Θ(ℓ−1/2), ρ1 = Θ(1), ρ2 = Θ(ℓ) such that following
hold:

(i) K(w,u) ≤ 1− ρ1 for all δ(w,u) := ∠(w,u) ≥ r.

(ii) K(20)(w,u)[z, z] ≤ −ρ2 ∥z∥2 for tangent vector z that z⊤w = 0 and δ(w,u) ≤ r.

(iii)
∥∥K(ij)(w∗

1 ,w
∗
k)
∥∥
w∗

i ,w
∗
k

≤ h/m2
∗ for (i, j) ∈ {0, 1} × {0, 1, 2}

The following lemma shows that K and its derivatives are bounded.

Lemma 31 (Regularity conditions on kernel K). Let Bij := supw,u

∥∥K(ij)(w,u)
∥∥
w,u

and B0 =

B00+B10+1, B2 = B20+B21+1. We have B00 = O(1), B10 = O(1), B11 = O(ℓ), B20 = O(ℓ),
B21 = O(ℓ3/2), and therefore B0 = O(1), B2 = O(ℓ3/2).

The following lemma from Poon et al. [26] connects the non-degeneracy of kernel K to the dual
certificate η that we are interested in.

Lemma 32 (Lemma 2, Poon et al. [26], adapted in our setting). Let a ∈ {±1}. Suppose that for
some ρ > 0, B > 0 and 0 < r ≤ B−1/2 we have: for all δ(w,w0) and z ∈ Rd with z⊤w = 0, it
holds that−K(02)(w0,w)[z, z] > ρ ∥z∥22 and

∥∥K(02)(w0,w)
∥∥
w
≤ B. Let η be a smooth function.

If η(w0) = a, ∇η(w0) = 0 and
∥∥aD2 η(w)−K(02)(w0,w)

∥∥
w
≤ τ for all δ(w,w0) ≤ r with

τ < ρ/2, then we have |η(w)| ≤ 1− ((ρ− 2τ)/2)δ(w,w0)
2 for all δ(w,w0) ≤ r.

We now are ready to proof the main result in this section Lemma 15 that shows the non-degenerate
dual certificate exists. Roughly speaking, following the same proof as in Poon et al. [26], we can
show that α ≈ sign(a∗) and α2 ≈ 0 and therefore we can transfer the non-degeneracy of kernel K
to the dual certificate η with Lemma 32.

Lemma 15. There exists a non-degenerate dual certificate η = Ex[p(x)σ≥2(w
⊤x)] with ρη =

Θ(1) and ∥p∥2 ≤ poly(m∗,∆)

Proof. Note that Υ = SDΥ̃DS, where

D =


Im∗

Pw∗
1

. . .
Pw∗

m∗

 , S =


Im∗

(Zσ′/Zσ)Im∗

. . .
(Zσ′/Zσ)Im∗


are block diagonal matrices, Υ̃ = Ex[γ̃(x)γ̃(x)

⊤] ∈ Rm∗(d+1)×m∗(d+1),

γ̃(x) = (σ≥ℓ(w
∗⊤
1 x), . . . , σ≥ℓ(w

∗⊤
m∗

x), (Zσ/Zσ′)∇wσ≥ℓ(w
∗⊤
1 x)⊤, . . . , (Zσ/Zσ′)∇wσ≥ℓ(w

∗⊤
m∗

x)⊤)⊤ ∈ Rm∗(d+1),

∇wσ≥ℓ(w
∗⊤
i x) = σ≥ℓ

′(w∗⊤
i x)x and Zσ′ =

√∑
k≥ℓ σ̂

2
kk = Θ(ℓ−1/4) is the normalizing factor

so that the diagonal of Υ̃ are all 1.

Thus, to solve (5), it is sufficient to solve the following: denote K̃ = DΥ̃D

K̃

(
α̃1

α̃2

)
= b, (6)

and let α1 = α̃1, α2,i = (Zσ/Zσ′)α̃2,i to get the solution of (5).
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In the following, we are going to first show that K̃ ≈ DD because all the off-diagonal terms of Υ̃
are small due to Lemma 30 (iii). Specifically, we have∥∥∥K̃ −DD

∥∥∥
2
= sup

∥z∥2=1

|z⊤(K̃ −DD)z|

= sup
∥z∥2=1

∣∣∣∣∣∣
∑
i,j

z1,iK(w∗
i ,w

∗
j )z1,j + 2(Zσ/Zσ′)

∑
i,j

z1,i∇1K(w∗
i ,w

∗
j )

⊤z2,j + (Zσ/Zσ′)2
∑
i,j

z⊤
1,i∇1∇2K(w∗

i ,w
∗
j )

⊤z2,j

∣∣∣∣∣∣
≤
√∑

i,j

K(w∗
i ,w

∗
j )

2 +Θ(ℓ−1)
∥∥K(10)(w∗

i ,w
∗
j )
∥∥2
w∗

i

+Θ(ℓ−2)
∥∥K(11)(w∗

i ,w
∗
j )
∥∥2
w∗

i ,w
∗
j

≤ 2h,

where z = (z⊤
1 , z⊤

2 )⊤, z1 = (z1,1, . . . ,z1,m∗)
⊤ and z2 = (z⊤

2,1, . . . ,z
⊤
2,m∗

)⊤ has the same block
structure as (α1,α2) and we use Lemma 30 in the last line.

Note that DD has exactly m∗d eigenvalues of 1 and m∗ eigenvalues of 0, and K̃ also
has m∗ eigenvalues of 0. By Weyl’s inequality, we know |γi − 1| ≤ 2h where K̃ =∑

i∈[m∗d]
γiviv

⊤
i is its eigendecomposition. Here v⊤

i v⊥ = 0 for all v⊥ ∈ V⊥ =

span{(0,w∗
1 ,0, . . . ,0)

⊤, . . . (0, . . . ,0,w∗
m∗

)⊤} in the null space of D. Since b⊤v⊥ = 0 for all
v⊥ ∈ V⊥, we have(
α̃1

α̃2

)
= K̃†b =

∑
i∈[m∗d]

γ−1
i viv

⊤
i b =

∑
i∈[m∗d]

(γ−1
i − 1)viv

⊤
i b+

∑
i∈[m∗d]

viv
⊤
i b =

∑
i∈[m∗d]

(γ−1
i − 1)viv

⊤
i b+ b.

Therefore,∥∥∥∥(α̃1

α̃2

)
− b

∥∥∥∥
2

≤

∥∥∥∥∥∥
∑

i∈[m∗d]

(γ−1
i − 1)viv

⊤
i b

∥∥∥∥∥∥
2

≤ max
i
|γ−1

i − 1|
√
m∗ = O(h

√
m∗) =: h′.

This implies ∥α1 − sign(a∗)∥∞ = ∥α̃1 − sign(a∗)∥∞ ≤ h′, ∥α1∥∞ = ∥α̃1∥∞ ≤ 1 + h′ and
∥α2∥2 = (Zσ/Zσ′) ∥α̃2,i∥2 ≤ Θ(h′ℓ−1/2).

Now, given the α1, α2, we can show the corresponding η is non-degenerate. Choosing h =

O(m
−1/2
∗ ) and ℓ = Θ(∆−2 log(m∗/∆)) so that the condition in Lemma 30 holds.

Consider w ∈ Ti, when δ(w,w∗
i ) ≥ r = Θ(ℓ−1/2), using Lemma 30 and Lemma 31 we have

|η(w)| =

∣∣∣∣∣∣
∑

j∈[m∗]

α1,jK(w∗
j ,w) +

∑
j∈[m∗]

α⊤
2,j∇1K(w∗

j ,w)

∣∣∣∣∣∣
≤
∑

j∈[m∗]

|α1,j ||K(w∗
j ,w)|+

∑
j∈[m∗]

∥α2,j∥w∗
j

∥∥∇1K(w∗
j ,w)

∥∥
w∗

j

≤(1 + h′)(1− ρ1 + h) + Θ(h′ℓ−1/2)(B10 + h) ≤ 1− ρ1/2 ≤ 1−Θ(ρ1)δ(w,w∗
i )

2,

where we choose h = O(m
−1/2
∗ ) to be small enough.

When δ(w,w∗
i ) ≤ r = Θ(ℓ−1/2), again using Lemma 30 and Lemma 31 we have∥∥∥a∗i D2 η(w)−K(02)(w∗

i ,w)
∥∥∥
w
≤
∥∥∥α1,iK

(02)(w∗
i ,w)−K(02)(w∗

i ,w)
∥∥∥
w
+
∑
j ̸=i

∥∥∥α1,jK
(02)(w∗

j ,w)
∥∥∥
w

+
∑

j∈[m∗]

∥α2,j∥w∗
j

∥∥∥K(12)(w∗
j ,w)

∥∥∥
w∗

j ,w

≤h′B02 + (1 + h′)h+Θ(h′ℓ−1/2)(B21 + h) ≤ ρ2/16,

where again due to our choice of small h. Using Lemma 32 we know that |η(w)| ≤ 1 −
(ρ2/4)δ(w,w∗

i )
2.
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Combine the above two cases, we have |η(w)| ≤ 1 − Θ(1)δ(w,w∗
i )

2 and η(w) =
Ex[p(x)σ(w

⊤x)] with

p(x) =
1

Z2
σ

 ∑
j∈[m∗]

α1,jσ≥ℓ(w
∗⊤
j x) +

∑
j∈[m∗]

α⊤
2,j(I −w∗

iw
∗⊤
i )xσ′

≥ℓ(w
∗⊤
i x)

 .

We have ∥p∥ = O(ℓ3/4m∗ +m∗h
′ℓ−1/2ℓ5/4) = Õ(∆−3/2m∗).

G Proofs in Section E

In this section, we give the omitted proofs in Section E.

G.1 Omitted proofs in Section E.1

We give the proofs for these results that characterize the structure of ideal loss solution.

The following proof follows from the definition of non-degenerate dual certificate η.
Lemma 16. Given a non-degenerate dual certificate η, then

(i) For any measure µ ∈M(Sd−1), |⟨η, µ⟩| ≤ |µ|1 − ρη
∑

i∈[m∗]

∫
Ti
δ(w,w∗

i )
2 d|µ|(w).

(ii) ⟨η, µ∗⟩ = |µ∗|1

(iii) ⟨η, µ − µ∗⟩ = ⟨p, fµ − fµ∗⟩, where fµ(x) = Ew∼µ[σ≥2(w
⊤x)]. Thus, |⟨η, µ − µ∗⟩| ≤

∥p∥2
√
L(µ).

Proof. We show the results one by one.

Part (i)(ii) We have

|⟨η, µ⟩| ≤
∫
Sd−1

|η(w)|d|µ|(w) =
∑

i∈[m∗]

∫
Ti

|η(w)|d|µ|(w) ≤ |µ|1 − ρη
∑

i∈[m∗]

∫
Ti

δ(w,w∗
i )

2 d|µ|(w).

where the last inequality follows the property of non-degenerate dual certificate (Definition 1). The
second part then follows directly by the definition of µ∗.

Part (iii) We have

⟨η, µ− µ∗⟩ =
∫
Sd−1

η(w) d(µ− µ∗)(w) =

∫
Sd−1

Ex[p(x)σ≥2(w
⊤x)] d(µ− µ∗)(w)

=Ex

[
p(x)

∫
Sd−1

σ≥2(w
⊤x) d(µ− µ∗)(w)

]
=Ex[p(x)(fµ(x)− fµ∗(x))].

Note that L(µ) = ∥fµ − fµ∗∥22, this leads to |⟨η, µ− µ∗⟩| ≤ ∥p∥2
√
L(µ).

Given the above lemma and the optimality of µ∗
λ, we are able to characterize the structure of µ∗

λ as
below: norm is bounded, square loss is small and far-away neurons are small.
Lemma 17. We have the following hold

(i) |µ∗|1 − λ ∥p∥22 ≤ |µ∗
λ|1 ≤ |µ∗|1 = ∥a∗∥1

(ii) L(µ∗
λ) ≤ λ2 ∥p∥22 = O∗(λ

2)

(iii)
∑

i∈[m∗]

∫
Ti
δ(w,w∗

i )
2 d|µ∗

λ|(w) ≤ λ ∥p∥22 /ρη = O∗(λ)

Proof. We show the results one by one.
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Part (i) Due to the optimality of µ∗
λ, we have

L(µ∗
λ) + λ|µ∗

λ|1 = Lλ(µ
∗
λ) ≤ Lλ(µ

∗) = L(µ∗) + λ|µ∗|1.
Rearranging the terms, we have

λ|µ∗
λ|1 − λ|µ∗|1 ≤ L(µ∗)− L(µ∗

λ) = −L(µ∗
λ) ≤ 0.

For the lower bound, with Lemma 16 we have

0 ≤ |µ∗
λ|1 − |µ∗|1 − ⟨η, µ∗

λ − µ∗⟩ ≤ |µ∗
λ|1 − |µ∗|1 + ∥p∥2

√
L(µ∗

λ).

Using part (ii) we get the desired lower bound.

Part (ii) We first have the following inequality due to the optimality of µ∗
λ and adding λ⟨η, µ∗

λ−µ∗⟩
on both side:

L(µ∗
λ) + λ(|µ∗

λ|1 − |µ∗|1)− λ⟨η, µ∗
λ − µ∗⟩︸ ︷︷ ︸

(I)

≤ L(µ∗)− λ⟨η, µ∗
λ − µ∗⟩.

For (I), we have

(I) = λ(|µ∗
λ|1 − ⟨η, µ∗

λ⟩) + λ(⟨η, µ∗⟩ − |µ∗|1) ≥ 0,

where we use Lemma 16 in the last inequality.

Therefore, the above inequality leads to

L(µ∗
λ) ≤ L(µ∗)− λ⟨η, µ∗

λ − µ∗⟩ ≤ λ ∥p∥2
√

L(µ∗
λ),

where we again use Lemma 16. This further leads to L(µ∗
λ) ≤ λ2 ∥p∥22.

Part (iii) Using part (i) we have

|µ∗
λ|1 − |µ∗|1 − ⟨η, µ∗

λ − µ∗⟩ ≤ −⟨η, µ∗
λ − µ∗⟩.

With Lemma 16, LHS and RHS become

LHS =|µ∗
λ|1 − ⟨η, µ∗

λ⟩ ≥ ρη
∑

i∈[m∗]

∫
Ti

δ(w,w∗
i )

2 d|µ∗
λ|(w)

RHS ≤∥p∥2
√
L(µ∗

λ).

Then using part (ii) we have the desired result.

We are now ready to characterize the approximated solution by comparing µ and µ∗
λ.

Lemma 18. Recall the optimality gap ζ = Lλ(µ)− Lλ(µ
∗
λ). Then, the following holds:

(i) L(µ) ≤ 5λ2 ∥p∥2 + 4ζ = O∗(λ
2 + ζ).

(ii) if ζ ≤ λ|µ∗|1 and λ ≤ |µ∗|1/ ∥p∥22, then |µ|1 ≤ 3|µ∗|1 = 3 ∥a∗∥1.

Proof. We show the results one by one.

Part (i) By the definition of the optimality gap ζ and adding −λ⟨η, µ− µ∗⟩ on both side, we have

L(µ) + λ(|µ|1 − |µ∗
λ|1)− λ⟨η, µ− µ∗⟩ ≤ L(µ∗

λ) + ζ − λ⟨η, µ− µ∗⟩.
Note that on LHS,

λ(|µ|1 − |µ∗
λ|1)− λ⟨η, µ− µ∗⟩ = λ(|µ|1 − ⟨η, µ⟩) + λ(|µ∗|1 − |µ∗

λ|1) ≥ 0,

where we use Lemma 16 and Lemma 17.

Therefore, with Lemma 16 and Lemma 17 we get

L(µ) ≤ L(µ∗
λ) + ζ − λ⟨η, µ− µ∗⟩ ≤ λ2 ∥p∥22 + ζ + λ ∥p∥2

√
L(µ).

Solving the above inequality on L(µ) gives L(µ) ≤ 5λ2 ∥p∥22 + 4ζ.
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Part (ii) Again from the definition of the optimality gap ζ, we have

λ|µ|1 ≤ L(µ∗
λ) + λ|µ∗

λ|1 + ζ − L(µ) ≤ λ2 ∥p∥22 + λ|µ∗|1 + ζ,

where we use Lemma 17. Thus, |µ|1 ≤ λ ∥p∥22 + |µ∗|1 + ζ/λ ≤ 3|µ∗|1.

The lemma below shows that far-away neurons are still small even for the approximated solution.
Intutively, we use the non-degenerate dual certificate to certify the gap between µ and µ∗

λ and give a
bound for it.
Lemma 19. Recall the optimality gap ζ = Lλ(µ)− Lλ(µ

∗
λ). Then, we have∑

i∈[m∗]

∫
Ti

δ(w,w∗
i )

2 d|µ|(w) ≤ (ζ/λ+ 2λ ∥p∥22)/ρη = O∗(ζ/λ+ λ).

In particular, when µ =
∑

i∈[m] ai ∥wi∥2 δwi represents finite number of neurons, we have∑
i∈[m∗]

∑
j∈Ti

|aj | ∥wj∥2 δ
2
j ≤ (ζ/λ+ 2λ ∥p∥22)/ρη = O∗(ζ/λ+ λ),

where δj = ∠(wj ,w
∗
i ) for j ∈ Ti.

Proof. By the definition of the optimality gap ζ, we have

L(µ) + λ|µ|1 = L(µ∗
λ) + λ|µ∗

λ|1 + ζ.

Rearranging the terms and adding −⟨η, µ− µ∗⟩ on both side, we get

|µ|1 − |µ∗
λ|1 − ⟨η, µ− µ∗⟩ = 1

λ
(L(µ∗

λ)− L(µ) + ζ)− ⟨η, µ− µ∗⟩.

For LHS, with Lemma 16 and Lemma 17 we have

LHS = |µ|1 − ⟨η, µ⟩ − |µ∗
λ|1 + |µ∗|1 ≥ ρη

∑
i∈[m∗]

∫
Ti

δ(w,w∗
i )

2 d|µ|(w).

For RHS, with Lemma 16 and Lemma 17 we have

RHS ≤ 1

λ
(λ2 ∥p∥22 − L(µ) + ζ) + ∥p∥2

√
L(µ) =

ζ

λ
+ λ ∥p∥22 −

L(µ)

λ
+ ∥p∥2

√
L(µ).

When L(µ) ≥ λ2 ∥p∥22, we have RHS ≤ ζ/λ + λ ∥p∥22. When L(µ) ≤ λ2 ∥p∥22, we have RHS ≤
ζ/λ+ 2λ ∥p∥22. Thus, in summary RHS ≤ ζ/λ+ 2λ ∥p∥22.

Combine the bounds on LHS and RHS we have

ρη
∑

i∈[m∗]

∫
Ti

δ(w,w∗
i )

2 d|µ|(w) ≤ ζ/λ+ 2λ ∥p∥22 .

The following lemma shows that every teacher neuron must have at least one close-by student neuron
within angle O∗(ζ

1/3). This generalize and greatly simplify the previous results Lemma 9 in [28].
In particular, we design a new test function using the Hermite expansion to achieve this.
Lemma 20. Under Lemma 6, if the Hermite coefficient of σ decays as |σ̂k| = Θ(k−cσ ) with some
constant cσ > 0, then the total mass near each target direction is large, i.e., µ(Ti(δ)) sign(a∗i ) ≥
|a∗i |/2 for all i ∈ [m∗] and any δclose ≥ Ω̃

(
(L(µ)
a2
min

)1/(4cσ−2)
)

with large enough hidden constant.

In particular, for σ is ReLU or absolute function, δclose ≥ Ω̃
(
(L(µ)
a2
min

)1/3
)

.

As a corollary, if the optimality gap ζ = Lλ(µ) − Lλ(µ
∗
λ), then δclose ≥ Ω̃∗

(
(ζ + λ2)1/(4cσ−2)

)
and for ReLU or absolute δclose ≥ Ω̃∗

(
(ζ + λ2)1/3

)
.
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Proof. Assume towards contradiction that there exists some i ∈ [m∗] with some δclose ≥
Ω̃
(
(L(µ)
a2
min

)1/(4cσ−2)
)

with large enough hidden constant such that µ(Ti(δ)) sign(a∗i ) ≤ |a∗i |/2. For
simplicity, we will use δ for δclose in the following.

Let g(x) =
∑

ℓ≤k<2ℓ sign(a
∗
i ) sign(σ̂k)hk(w

∗⊤
i x) be a test function, where hk(x) is the k-th nor-

malized probabilistic Hermite polynomial and ℓ will be chosen later.

Denote R(x) = fµ(x)− fµ∗(x) so that ∥R∥22 = L(µ). We have√
L(µ) ∥g∥2 ≥⟨−R, g⟩

=Ex

[(
a∗i σ(w

∗⊤
i x)−

∫
Ti(δ)

σ(w⊤x) dµ(w)

)
g(x)

]

+ Ex

∑
j ̸=i

a∗jσ(w
∗⊤
j x)−

∫
Sd−1\Ti(δ)

σ(w⊤x) dµ(w)

 g(x)

 .

Recall the Hermite expansion of σ(x) =
∑

k≥0 σ̂khk(x) and its property in Claim 2. For the first
term, it becomes∑

ℓ≤k<2ℓ

(
|a∗i ||σ̂k| −

∫
Ti(δ)

|σ̂k| sign(a∗i )(w⊤w∗
i )

k dµ(w)

)
≥ 1

2
|a∗i |

∑
ℓ≤k<2ℓ

|σ̂k|.

For the second term, it becomes∑
ℓ≤k<2ℓ

∑
j ̸=i

a∗j |σ̂k| sign(a∗i )(w∗⊤
j w∗

i )
k −

∫
Sd−1\Ti(δ)

|σ̂k| sign(a∗i )(w⊤w∗
i )

k dµ(w)


≤(∥a∗∥1 + |µ|1)

∑
ℓ≤k≤2ℓ

|σ̂k| max
∠(w,w∗

i )≥δ
(w⊤w∗

i )
k

≤(∥a∗∥1 + |µ|1)
∑

ℓ≤k<2ℓ

|σ̂k|(1− δ2/5)ℓ

≤4 ∥a∗∥1 (1− δ2/5)ℓ
∑

ℓ≤k<2ℓ

|σ̂k| ≤
1

4
|a∗i |

∑
ℓ≤k<2ℓ

|σ̂k|,

where (i) in the third line we use cos δ ≤ 1 − δ2/5 for δ ∈ [0, π/2] and (ii) in the last line we use
Lemma 18 and choose ℓ = ⌈(5/δ2) log(16 ∥a∗∥1 /|a∗i |)⌉.

Thus, given |σ̂k| = Θ(k−cσ ) we have√
L(µ)

√
ℓ =

√
L(µ) ∥g∥2 ≥

1

4
|a∗i |

∑
ℓ≤k<2ℓ

|σ̂k| =
1

4
|a∗i |

∑
ℓ≤k<2ℓ

Θ(k−cσ ) = |a∗i |Θ(ℓ1−cσ ).

With the choice of ℓ = Θ̃(1/δ2), we have δ = Õ

((
L(µ)
|a∗

i |2

)1/(4cσ−2)
)

. Since δ ≥

Ω̃
(
(L(µ)
a2
min

)1/(4cσ−2)
)

with a large enough hidden constant, we know this is a contradiction.

As a corollary, with Lemma 18 that L(µ) = 4ζ + 5λ2 ∥p∥22, we have δ ≥
Ω̃
(
(
4ζ+5λ2∥p∥2

2

a2
min

)1/(4cσ−2)
)

.

For the activation σ is ReLU or absolute function, by Lemma 37 we know cσ = 5/4, which gives
the desired result.

The lemma below bounds R2 using the fact that it is spiky (has small non-zero support).
Lemma 22. Under Lemma 6, recall the optimality gap ζ = Lλ(µ)− Lλ(µ

∗
λ). Then

∥R2∥22 = O∗((ζ/λ+ λ)3/2).
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Proof. Using the same calculation as in Lemma 12 in Zhou et al. [28], we have

∥R2∥22 ≤O(m∗)
∑

i∈[m∗]

∑
j∈Ti

|aj | ∥wj∥2

1/2∑
j∈Ti

|aj | ∥wj∥2 δ
2
j

3/2

With Lemma 18 and Lemma 19, we have ∥R2∥22 = O(m2
∗|µ∗|1/2(ζ/λ+ λ)3/2).

The following lemma bounds R3. In fact, in the view of expanding the loss as a sum of tensor
decomposition problem, R3 corresponds to the 0-th order term in the expansion. It would become
small when high-order terms become small, as shown in the proof below.
Lemma 23. Under Lemma 6 and recall the optimality gap ζ = Lλ(µ) − Lλ(µ

∗
λ). If σ̂0 = 0 and

σ̂k > 0 with some k = Θ((1/∆2) log(ζ/ ∥a∗∥1)), then

∥R3∥2 =Õ∗((ζ + λ2)1/2/σ̂k + (ζ/λ+ λ) + ζ).

Proof. As shown in Ge et al. [16], Li et al. [20], we can write the loss L(µ) as sum of tensor
decomposition problem (recall ∥w∗

i ∥2 = 1):

L(µ) =
∑
k≥0

σ̂2
k

∥∥∥∥∥∥
∫
w∈Sd−1

w⊗k dµ(w)−
∑

i∈[m∗]

a∗i ∥w∗
i ∥2 w

∗⊗k
i

∥∥∥∥∥∥
2

F

.

Thus, we know for any k ≥ 1,∥∥∥∥∥∥
∫
w∈Sd−1

w⊗k dµ(w)−
∑

i∈[m∗]

a∗i ∥w∗
i ∥2 w

∗⊗k
i

∥∥∥∥∥∥
2

F

≤ L(µ)/σ̂2
k.

Given any w∗
j , we have∥∥∥∥∥∥

∫
w∈Sd−1

w⊗k dµ(w)−
∑

i∈[m∗]

a∗i ∥w∗
i ∥2 w

∗⊗k
i

∥∥∥∥∥∥
F

≥

∣∣∣∣∣∣
〈 ∑

i∈[m∗]

a∗i ∥w∗
i ∥2 w

∗⊗k
i −

∫
w∈Sd−1

w⊗k dµ(w),w∗⊗k
j

〉∣∣∣∣∣∣ (7)

≥

∣∣∣∣∣a∗j ∥∥w∗
j

∥∥
2
−
∫
Tj

⟨w,w∗
j ⟩k dµ(w)

∣∣∣∣∣−
∣∣∣∣∣∣
∑
i ̸=j

a∗i ∥w∗
i ∥2 ⟨w

∗
i ,w

∗
j ⟩k −

∫
Sd−1\Tj

⟨w,w∗
j ⟩k dµ(w)

∣∣∣∣∣∣
≥

∣∣∣∣∣a∗j ∥∥w∗
j

∥∥
2
−
∫
Tj

dµ(w)

∣∣∣∣∣−
∣∣∣∣∣
∫
Tj

dµ(w)−
∫
Tj

⟨w,w∗
j ⟩k dµ(w)

∣∣∣∣∣−
∣∣∣∣∣∣
∑
i̸=j

a∗i ∥w∗
i ∥2 ⟨w

∗
i ,w

∗
j ⟩k −

∫
Sd−1\Tj

⟨w,w∗
j ⟩k dµ(w)

∣∣∣∣∣∣
For the second term on RHS, we have∣∣∣∣∣
∫
Tj

dµ(w)−
∫
Tj

⟨w,w∗
j ⟩k dµ(w)

∣∣∣∣∣ ≤
∫
Tj

(
1− ⟨w,w∗

j ⟩k
)
d|µ|(w)

(a)
≤
∫
Tj

1− (1− δ(w,w∗
j )

2/2)k d|µ|(w)

(b)
≤
∫
Tj ,δ(w,w∗

j )
2≤1

O(k) · δ(w,w∗
j )

2 d|µ|(w) +

∫
Tj ,δ(w,w∗

j )
2>1

d|µ|(w)

≤O(k)

∫
Tj

δ(w,w∗
j )

2 d|µ|(w),

where (a) cos δ ≥ 1− δ2/2 for δ ∈ [0, π/2]; (b) (1− x)k ≥ 1− kx for x ∈ [0, 1].

29



For the third term on RHS, we have∣∣∣∣∣∣
∑
i̸=j

a∗i ∥w∗
i ∥2 ⟨w

∗
i ,w

∗
j ⟩k −

∫
Sd−1\Tj

⟨w,w∗
j ⟩k dµ(w)

∣∣∣∣∣∣ ≤(∥a∗∥1 + |µ|1) max
∠(w,w∗

j )≥∆/2
(w⊤w∗

j )
k

(a)
≤(∥a∗∥1 + |µ|1)(1−∆2/10)k

(b)
≤O(ζ),

where (a) cos δ ≤ 1 − δ2/5 for δ ∈ [0, π/2]; (b) we choose k = Θ((1/∆2) log(ζ/ ∥a∗∥1)) and
Lemma 18.

Therefore, we have∥∥∥∥∥∥
∫
w∈Sd−1

w⊗kµ(w)−
∑

i∈[m∗]

a∗i ∥w∗
i ∥2 w

∗⊗k
i

∥∥∥∥∥∥
F

≥

∣∣∣∣∣a∗j ∥∥w∗
j

∥∥
2
−
∫
Tj

µ(w)

∣∣∣∣∣−O(k)

∫
Tj

δ(w,w∗
j )

2|µ|(w)−O(ζ).

This implies that

m∗
√

L(µ)/σ̂k ≥
∑

j∈[m∗]

∣∣∣∣∣a∗j ∥∥w∗
j

∥∥
2
−
∫
Tj

µ(w)

∣∣∣∣∣−O(k)
∑

j∈[m∗]

∫
Tj

δ(w,w∗
j )

2|µ|(w)−O(m∗ζ)

≥

∣∣∣∣∣∣
∑

i∈[m∗]

a∗i ∥w∗
i ∥2 −

∫
Sd−1

µ(w)

∣∣∣∣∣∣− Õ∗(ζ/λ+ λ)−O(m∗ζ),

where we use Lemma 19. Rearranging the terms and recalling L(µ) = O∗(ζ+λ2) from Lemma 18,
we get the bound.

The following lemma gives the bound on the average neuron to its corresponding teacher neuron. It
follows directly from the residual decomposition and previous lemmas that characterize R1, R2, R3

respectively.

Lemma 24. Under Lemma 6, recall the optimality gap ζ = Lλ(µ)−Lλ(µ
∗
λ). Then for any i ∈ [m∗],

ζ = Ω(λ2) and ζ, λ ≤ 1/ poly(m∗,∆, ∥a∗∥1)∥∥∥∥∥∥
∑
j∈Ti

ajwj −w∗
i

∥∥∥∥∥∥
2

≤

 ∑
i∈[m∗]

∥∥∥∥∥∥
∑
j∈Ti

ajwj −w∗
i

∥∥∥∥∥∥
2

2


1/2

= O∗((ζ/λ)
3/4).

Proof. With the relation of residual decomposition, Lemma 21, Lemma 22 and Lemma 23, we have
for any i ∈ [m∗]

Ω(∆3/2/m
3/2
∗ )

 ∑
i∈[m∗]

∥∥∥∥∥∥
∑
j∈Ti

ajwj −w∗
i

∥∥∥∥∥∥
2

2


1/2

≤ ∥R1∥2 ≤ ∥R∥2 + ∥R2∥2 + ∥R3∥2

=O∗((ζ + λ2)1/2 + (ζ/λ+ λ)3/4) + Õ∗((ζ + λ2)1/2 + (ζ/λ+ λ) + ζ).

Rearranging the terms, we get the result.

G.2 Omitted proofs in Section E.2

In this section, we give the omitted proofs in Section E.2. The key observation used in the proofs is
that balancing the norm and setting α,β perfectly to their target values only decrease the loss.
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Lemma 25. Given any θ = (a,W , α,β) satisfying |α − α̂|2 = O(ζ),
∥∥∥β − β̂

∥∥∥2
2
= O(ζ), where

α̂ = (1/
√
2π)

∑m
i=1 ai ∥wi∥2 and β̂ = (1/2)

∑m
i=1 aiwi. Let its corresponding balanced version

θbal = (abal,Wbal, αbal,βbal) as abal,i = sign(ai)
√
|ai| ∥wi∥2, wbal,i = wi

√
|ai| ∥wi∥2, αbal =

α̂ and βbal = β̂. Then, we have

Lλ(θ)− Lλ(θbal) = |α− α̂|2 +
∥∥∥β − β̂

∥∥∥2
2
+

λ

2

∑
i∈[m]

(|ai| − ∥wi∥2)
2 ≥ 0.

Moreover, let the optimality gap ζ = Lλ(θ) − Lλ(µ
∗
λ), we have results in Lemma 18, Lemma 19,

Lemma 20, Lemma 21, Lemma 22, Lemma 23 and Lemma 24 still hold for Lλ(θ), with the change
of R3 in (4) as

R3(x) =
1√
2π

 ∑
i∈[m∗]

a∗i ∥w∗
i ∥2 −

∑
i∈[m]

ai ∥wi∥2

+ α− α̂+ (β − β̂)⊤x.

Proof. Recall in Claim 1 we have

L(θ) = |α− α̂|2 +
∥∥∥β − β̂

∥∥∥2
2
+
∑
k≥2

σ̂2
k

∥∥∥∥∥∥
∑
i∈[m]

ai ∥wi∥2 w
⊗k
i −

∑
i∈[m∗]

a∗i ∥w∗
i ∥2 w

∗⊗k
i

∥∥∥∥∥∥
2

F

.

Note that |ai| ∥wi∥2 = |abal,i| ∥wbal,i∥2 so that L(θ) = L(θbal) + |α− α̂|2 +
∥∥∥β − β̂

∥∥∥2
2
. We then

have

Lλ(θ)− Lλ(θbal) =|α− α̂|2 +
∥∥∥β − β̂

∥∥∥2
2
+

λ

2
∥a∥22 +

λ

2
∥W ∥22 −

λ

2
∥abal∥22 −

λ

2
∥Wbal∥22

=|α− α̂|2 +
∥∥∥β − β̂

∥∥∥2
2
+

λ

2

∑
i∈[m]

(|ai| − ∥wi∥2)
2.

Therefore, we have the optimality gap ζ = Lλ(θ) − Lλ(µ
∗
λ) ≥ Lλ(θbal) − Lλ(µ

∗
λ) = ζbal. Note

that θbal corresponds to a network that has perfect balanced norms and fitted α,β, thus all results
in Lemma 18, Lemma 19, Lemma 20, Lemma 21, Lemma 22, Lemma 23 and Lemma 24 hold for
θbal. Since ζ ≥ ζbal, |ai| ∥wi∥2 = |abal,i| ∥wbal,i∥2 and L(θ) = L(θbal) + O(ζ), we can easily
check that all of them also hold for θ. For the bound on R3, note that

∥R3∥2 ≤
1√
2π

∣∣∣∣∣∣
∑

i∈[m∗]

a∗i ∥w∗
i ∥2 −

∑
i∈[m]

ai ∥wi∥2

∣∣∣∣∣∣+ |α− α̂|+
∥∥∥β − β̂

∥∥∥
2

so that the same bound still hold for R3.

Lemma 26. Under Lemma 6, suppose optimality gap ζ = Lλ(θ)−Lλ(µ
∗
λ). Then ∥a∥22+∥W ∥

2
F ≤

3 ∥a∗∥1.

Proof. We have

λ

2
∥a∥22 +

λ

2
∥W ∥2F = ζ + L(µ∗

λ) + λ|µ∗
λ|1 − L(θ) ≤ ζ + λ2 ∥p∥22 + λ|µ∗

λ|1,

where we use Lemma 17. Rearranging the terms, we get the result by noting that |µ∗
λ|1 ≤ ∥a∗∥1.

G.3 Omitted proofs in Section E.3

In this section, we give the omitted proofs in Section E.3. We will consider them case by case.

The lemma below says that one can always decrease the loss if norms are not balanced.
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Lemma 27 (Descent direction, norm balance). We have∑
i

∑
j∈Ti

∣∣⟨∇ajLλ,−aj⟩+ ⟨∇wjLλ,wj⟩
∣∣ =λ

∑
i∈[m∗]

∣∣∣a2i − ∥wi∥22
∣∣∣

≥max

λ| ∥a∥22 − ∥W ∥
2
F |, λ

∑
i∈[m∗]

(|ai| − ∥wi∥2)
2


Proof. We have∑

i∈[m]

∣∣⟨∇aj
Lλ,−aj⟩+ ⟨∇wj

Lλ,wj⟩
∣∣

=
∑
i∈[m]

∣∣∣−2Ex[(f(x)− f∗(x))ajσ(w
⊤
j x)]− λa2j + 2Ex[(f(x)− f∗(x))ajσ(w

⊤
j x)] + λ ∥wi∥22

∣∣∣
=λ

∑
i∈[m]

∣∣∣a2i − ∥wi∥22
∣∣∣

Note that |ai|+ ∥wi∥2 ≥ ||ai| − ∥wi∥2 |, we get the result.

The following lemma shows that one can always decrease the loss if there are close-by neurons that
cancels with others. Intuitively, reducing such norm cancellation decrease the regularization term
while keep the square loss term, which decreasing the total loss as a whole.

Lemma 28 (Descent direction, norm cancellation). Under Lemma 6, suppose the optimality gap
ζ = Lλ(θ)− Lλ(µ

∗
λ). For any w∗

i , consider δsign such that δclose < δsign = O(λ/ζ1/2) with small
enough hidden constant (δclose defined in Lemma 20), then

∑
s∈{+,−}

∑
j∈Ti,s(δsign)

〈
∇ajLλ,

sign(aj)|aj |∑
j∈Ti,s(δsign)

|aj | ∥wj∥2

〉
+

〈
∇wjLλ,

wj∑
j∈Ti,s(δsign)

|aj | ∥wj∥2

〉
= Ω(λ).

where Ti,+(δsign) = {j ∈ Ti : δ(wj ,w
∗
i ) ≤ δsign, sign(aj) = sign(a∗i )}, Ti,−(δsign) = {j ∈ Ti :

δ(wj ,w
∗
i ) ≤ δsign, sign(aj) ̸= sign(a∗i )} are the set of neurons that close to w∗

i with/without same
sign of a∗i .

As a result,

∥∇aLλ∥22 + ∥∇WLλ∥2F ≥λ
2

∑
j∈Ti,−(δsign)

|aj | ∥wj∥2

Proof. Denote R(x) = f(x)− f∗(x). We have

∑
s∈{+,−}

∑
j∈Ti,s(δsign)

〈
∇aj

Lλ,
sign(aj)|aj |∑

j∈Ti,s(δsign)
|aj | ∥wj∥2

〉
+

〈
∇wj

Lλ,
wj∑

j∈Ti,s(δsign)
|aj | ∥wj∥2

〉

=
∑

s∈{+,−}

∑
j∈Ti,s(δsign)

sign(aj)|aj | ∥wj∥2∑
j∈Ti,s(δsign)

|aj | ∥wj∥2
· 2Ex[R(x)σ(w⊤

j x)] +
λa2j∑

j∈Ti,s(δsign)
|aj | ∥wj∥2

+
∑

s∈{+,−}

∑
j∈Ti,s(δsign)

sign(aj)|aj | ∥wj∥2∑
j∈Ti,s(δsign)

|aj | ∥wj∥2
· 2Ex[R(x)σ(w⊤

j x)] +
λ ∥wj∥22∑

j∈Ti,s(δsign)
|aj | ∥wj∥2

32



We split the above into two terms. WLOG, assume sign(a∗i ) = 1. For the first term,

(I) =4
∑

s∈{+,−}

∑
j∈Ti,s(δsign)

sign(aj)|aj | ∥wj∥2∑
j∈Ti,s(δsign)

|aj | ∥wj∥2
· Ex[R(x)σ(w⊤

j x)]

=4
∑

j∈Ti,+(δsign)

|aj | ∥wj∥2∑
j∈Ti,+(δsign)

|aj | ∥wj∥2
Ex[R(x)σ(w⊤

j x)]

− 4
∑

j∈Ti,−(δsign)

|aj | ∥wj∥2∑
j∈Ti,−(δsign)

|aj | ∥wj∥2
Ex[R(x)σ(w⊤

j x)]

=4
∑

j∈Ti,+(δsign)

|aj | ∥wj∥2∑
j∈Ti,+(δsign)

|aj | ∥wj∥2
Ex[R(x)(σ(w⊤

j x)− σ(w∗⊤
i x))]

− 4
∑

j∈Ti,−(δsign)

|aj | ∥wj∥2∑
j∈Ti,−(δsign)

|aj | ∥wj∥2
Ex[R(x)(σ(w⊤

j x)− σ(w∗⊤
i x))]

Since wj is δsign-close to w∗
i and ∥R∥22 = L(θ), we have

|(I)| ≤ O(δsign) ∥R∥2 = O∗(δsignζ
1/2),

where we use Lemma 25 that L(θ) = O∗(ζ).

For the second term, we have

(II) =λ
∑

s∈{+,−}

∑
j∈Ti,s(δsign)

a2j + ∥wj∥22∑
j∈Ti,s(δsign)

|aj | ∥wj∥2
≥ 2λ+ 2λ = 4λ.

Therefore, when (I) ≤ 2λ, i.e., δsign = O∗(λ/ζ
1/2), we have

∑
s∈{+,−}

∑
j∈Ti,s(δsign)

〈
∇aj

Lλ,
sign(aj)|aj |∑

j∈Ti,s(δsign)
|aj | ∥wj∥2

〉
+

〈
∇wj

Lλ,
wj∑

j∈Ti,s(δsign)
|aj | ∥wj∥2

〉

≥λ

2

∑
s∈{+,−}

∑
j∈Ti,s(δsign)

a2j + ∥wj∥22∑
j∈Ti,s(δsign)

|aj | ∥wj∥2
.

We compute a upper bound for LHS. Note that

∑
s∈{+,−}

∑
j∈Ti,s(δsign)

〈
∇aj

Lλ,
sign(aj)|aj |∑

j∈Ti,s(δsign)
|aj | ∥wj∥2

〉
+

〈
∇wj

Lλ,
wj∑

j∈Ti,s(δsign)
|aj | ∥wj∥2

〉

≤
√ ∑

s∈{+,−}

∑
j∈Ti,s(δsign)

(∇ajLλ)2 +
∥∥∇wjLλ

∥∥2
2

√√√√ ∑
s∈{+,−}

∑
j∈Ti,s(δsign)

a2j + ∥wj∥22
(
∑

j∈Ti,s(δsign)
|aj | ∥wj∥2)2

≤
√
∥∇aLλ∥22 + ∥∇WLλ∥2F

√√√√ ∑
s∈{+,−}

∑
j∈Ti,s(δsign)

a2j + ∥wj∥22
(
∑

j∈Ti,s(δsign)
|aj | ∥wj∥2)2

≤
√
∥∇aLλ∥22 + ∥∇WLλ∥2F

√√√√ ∑
s∈{+,−}

∑
j∈Ti,s(δsign)

a2j + ∥wj∥22∑
j∈Ti,s(δsign)

|aj | ∥wj∥2
1√∑

j∈Ti,−(δsign)
|aj | ∥wj∥2

,

where the last line we use Lemma 20:
∑

j∈Ti,−(δsign)
|aj | ∥wj∥2 <

∑
j∈Ti,+(δsign)

|aj | ∥wj∥2 be-
cause µ(Ti(δ)) =

∑
j∈Ti(δsign)

aj ∥wj∥2 > 0.
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Combine with the above descent direction, we have

√
∥∇aLλ∥22 + ∥∇WLλ∥2F

√√√√ ∑
s∈{+,−}

∑
j∈Ti,s(δsign)

a2j + ∥wj∥22∑
j∈Ti,s(δsign)

|aj | ∥wj∥2
1√∑

j∈Ti,−(δsign)
|aj | ∥wj∥2

≥λ

2

∑
s∈{+,−}

∑
j∈Ti,s(δsign)

a2j + ∥wj∥22∑
j∈Ti,s(δsign)

|aj | ∥wj∥2
,

which implies

∥∇aLλ∥22 + ∥∇WLλ∥2F ≥λ
2

∑
j∈Ti,−(δsign)

|aj | ∥wj∥2

The lemma below shows that when all previous cases are not hold, then there is a descent direction
that move all close-by neurons towards their corresponding teacher neuron. The proof relies on
calculations that generalize Lemma 8 in [28].

Lemma 29 (Descent direction). Under Lemma 6, suppose the optimality gap ζ = Lλ(θ)−Lλ(µ
∗
λ).

Suppose

(i) norms are (almost) balanced: | ∥W ∥2F −∥a∥
2
2 | ≤ ζ/λ,

∑
i∈[m](|aj |−∥wj∥2)

2 = O∗(ζ
2/λ2)

(ii) (almost) no norm cancellation: consider all neurons wj that are δsign-close w.r.t. teacher
neuron w∗

i but has a different sign, i.e., sign(aj) ̸= sign(a∗i ) with δsign = Θ∗(λ/ζ
1/2), we

have
∑

j∈Ti,−(δsign)
|aj | ∥wj∥2 ≤ τ = O∗(ζ

5/6/λ) with small enough hidden constant, where
Ti,−(δ) defined in Lemma 28.

(iii) α,β are well fitted: |α− α̂|2 = O(ζ),
∥∥∥β − β̂

∥∥∥2
2
= O(ζ) with small enough hidden constant.

Then, we can construct the following descent direction

(α+ α∗)∇αLλ + ⟨∇βLλ,β + β∗⟩+
∑

i∈[m∗]

∑
j∈Ti

⟨∇wi
Lλ,wj − qijw

∗
i ⟩ = Ω(ζ),

where qij satisfy the following conditions with δclose < δsign and δclose = O∗(ζ
1/3): (1)∑

j∈Ti
ajqij = a∗i ; (2) qij ≥ 0; (3) qij = 0 when sign(aj) ̸= sign(a∗i ) or δj > δclose. (4)∑

i∈[m∗]

∑
j∈Ti

q2ij = O∗(1).
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Proof. Recall residual R(x) = f(x)− f∗(x). We have

(α+ α∗)∇αLλ + ⟨∇βLλ,β + β∗⟩+
∑

i∈[m∗]

∑
j∈Ti

⟨∇wiLλ,wj − qijw
∗
i ⟩

(a)
=2Ex[R(x)(α+ α∗)] + 2Ex[R(x)(β + β∗)

⊤x] + 2
∑

i∈[m∗]

∑
j∈Ti

Ex[R(x)ajσ(w
⊤
j x)]− 2

∑
i∈[m∗]

∑
j∈Ti

Ex[R(x)ajqijσ(w
∗⊤
i x)]

+ 2
∑

i∈[m∗]

∑
j∈Ti

Ex[R(x)ajqijw
∗⊤
i x(σ′(w∗⊤

i x)− σ′(w⊤
i x))]

+ λ
∑
i∈[m]

∥wj∥22 − λ
∑

i∈[m∗]

∑
j∈Ti

qijw
⊤
j w

∗
i

(b)
=2 ∥R∥22 + λ ∥W ∥2F − λ

∑
i∈[m∗]

∑
j∈Ti

qijw
⊤
j w

∗
i

+ 2
∑

i∈[m∗]

∑
j∈Ti

Ex[R(x)ajqijw
∗⊤
i x(σ′(w∗⊤

i x)− σ′(w⊤
j x))]

(c)
≥Lλ(µ

∗
λ) + ζ +

λ

2
(∥W ∥2F − ∥a∥

2
2)− λ

∑
i∈[m∗]

∑
j∈Ti

qij ∥wj∥2

+ 2
∑

i∈[m∗]

∑
j∈Ti

Ex[R(x)ajqijw
∗⊤
i x(σ′(w∗⊤

i x)− σ′(w⊤
j x))], (8)

where (a) we plug in the gradient expression and add and minus the term
2
∑

i∈[m∗]

∑
j∈Ti

Ex[R(x)ajqijσ(w
∗⊤
i x)]; (b) rearranging the terms; (c) using Lλ(θ) =

∥R∥22 + (λ/2) ∥W ∥2F + (λ/2) ∥a∥22 = Lλ(µ
∗
λ) + ζ.

For the first line on RHS of (8), we have

Lλ(µ
∗
λ) + ζ +

λ

2
(∥W ∥2F − ∥a∥

2
2)− λ

∑
i∈[m∗]

∑
j∈Ti

qij ∥wj∥2

(a)
≥ζ/2 + L(µ∗

λ) + λ|µ∗
λ| − λ

∑
i∈[m∗]

∑
j∈Ti

qij ∥wj∥2

(b)
≥ζ/2 + λ|µ∗

λ| − λ ∥a∗∥1 + λ
∑

i∈[m∗]

∑
j∈Ti

qij(|aj | − ∥wj∥2)

(c)
≥ζ/2−O∗(λ

2)− λ

 ∑
i∈[m∗]

∑
j∈Ti

q2ij

1/2∑
i∈[m]

(|aj | − ∥wj∥2)
2

1/2

(d)
≥ζ/4,

where (a) due to assumption that norms are balanced; (b) we ignore L(µ∗
λ) and add and minus

λ ∥a∗∥1; (c) due to Lemma 17; (d) due to assumption that norms are balanced and the choice of qij .

In the following, we will lower bound the last term of (8) to show it is much smaller than ζ/8. Recall
the residual decomposition (4) that R(x) = R1(x) +R2(x) +R3(x), we have∑

i∈[m∗]

∑
j∈Ti

Ex[R(x)ajqijw
∗⊤
i x(σ′(w⊤

j x)− σ′(w∗⊤
i x))]

=
∑

i∈[m∗]

∑
j∈Ti

Ex[R1(x)ajqijw
∗⊤
i x(σ′(w∗⊤

i x)− σ′(w⊤
j x))]︸ ︷︷ ︸

(I)

+
∑

i∈[m∗]

∑
j∈Ti

Ex[R2(x)ajqijw
∗⊤
i x(σ′(w∗⊤

i x)− σ′(w⊤
j x))]︸ ︷︷ ︸

(II)

+
∑

i∈[m∗]

∑
j∈Ti

Ex[R3(x)ajqijw
∗⊤
i x(σ′(w∗⊤

i x)− σ′(w⊤
j x))]︸ ︷︷ ︸

(III)
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Bound (I) For (I), recall R1(x) = (1/2)
∑

i∈[m∗]
v⊤
i x sign(w∗⊤

i x), where vi =
∑

j∈Ti
ajwj −

w∗
i and (

∑
i∈[m∗]

∥vi∥22)1/2 = O∗((ζ/λ)
3/4) from Lemma 24 and Lemma 25. We have∑

i∈[m∗]

∑
j∈Ti

Ex[R1(x)ajqijw
∗⊤
i x(σ′(w∗⊤

i x)− σ′(w⊤
j x))]

(a)
≥ − 1

2

∑
i∈[m∗]

∑
j∈Ti

∑
k∈[m∗]

Ex[|v⊤
k x||ajqij ||w∗⊤

i x|1sign(w⊤
j x)̸=sign(w∗⊤

i x)]

(b)
= − 1

2

∑
i∈[m∗]

∑
j∈Ti

∑
k∈[m∗]

|ajqij | ∥vk∥2 Ex̃[|v⊤
k x̃||w∗⊤

i x̃|1sign(w⊤
j x̃)̸=sign(w∗⊤

i x̃)]

(c)
≥ − 1

2

∑
i∈[m∗]

∑
j∈Ti

∑
k∈[m∗]

|ajqij | ∥vk∥2 δjEx̃[∥x̃∥22 1sign(w⊤
j x̃)̸=sign(w∗⊤

i x̃)]

(d)
≥ − 1

2

∑
i∈[m∗]

∑
j∈Ti

∑
k∈[m∗]

|ajqij | ∥vk∥2 Θ(δ2j )

(e)
≥ −Θ∗((ζ/λ)

3/4δ2close)
∑

i∈[m∗]

∑
j∈Ti

|ajqij | = −Θ∗((ζ/λ)
3/4δ2close),

where in (a) we plug in the definition of R1 and using the fact that w∗⊤
i x(σ′(w∗⊤

i x)−σ′(w⊤
j x)) =

|w∗⊤
i x|1sign(w⊤

j x)̸=sign(w∗⊤
i x); (b) x̃ is a 3-dimensional Gaussian since the expectation only de-

pends on vk,w
∗
i ,wj ; (c) |w∗⊤

i x̃| ≤ δj ∥x̃∥2 when sign(w⊤
j x̃) ̸= sign(w∗⊤

i x̃); (d) a direct calcu-
lation bound as Lemma 34; (e) definition of qij .

Bound (II) For (II), recall

R2(x) =
1

2

∑
i∈[m∗]

∑
j∈Ti

ajw
⊤
j x(sign(w

⊤
j x)−sign(w∗⊤

i x)) =
∑

i∈[m∗]

∑
j∈Ti

aj |w⊤
j x|1sign(w⊤

j x)̸=sign(w∗⊤
i x)).

For each term in (II) with j ∈ Ti, we can split it into two terms that corresponding to Ti and other
Tk’s

Ex[R2(x)ajqijw
∗⊤
i x(σ′(w∗⊤

i x)− σ′(w⊤
j x))]

=
∑

k∈[m∗]

∑
ℓ∈Tk

Ex[aℓ|w⊤
ℓ x|1sign(w⊤

ℓ x)̸=sign(w∗⊤
k x) · ajqijw∗⊤

i x(σ′(w∗⊤
i x)− σ′(w⊤

j x)]

=
∑

k∈[m∗]

∑
ℓ∈Tk

aℓajqijEx[|w⊤
ℓ x|1sign(w⊤

ℓ x)̸=sign(w∗⊤
k x) · |w∗⊤

i x|1sign(w∗⊤
i x)̸=sign(w⊤

j x)]

=
∑
ℓ∈Ti

aℓajqijEx[|w⊤
ℓ x||w∗⊤

i x|1sign(w⊤
ℓ x)̸=sign(w∗⊤

i x) · 1sign(w∗⊤
i x) ̸=sign(w⊤

j x)]︸ ︷︷ ︸
(II.i)

+
∑
k ̸=i

∑
ℓ∈Tk

aℓajqijEx[|w⊤
ℓ x||w∗⊤

i x|1sign(w⊤
ℓ x) ̸=sign(w∗⊤

k x) · 1sign(w∗⊤
i x)̸=sign(w⊤

j x)]︸ ︷︷ ︸
(II.ii)

. (9)

For (II.i), we further split neurons into Ti(δsign) and others:

(II.i) =
∑

ℓ∈Ti(δsign)

aℓajqijEx[|w⊤
ℓ x||w∗⊤

i x|1sign(w⊤
ℓ x)̸=sign(w∗⊤

i x) · 1sign(w∗⊤
i x) ̸=sign(w⊤

j x)]

+
∑

ℓ∈Ti\Ti(δsign)

aℓajqijEx[|w⊤
ℓ x||w∗⊤

i x|1sign(w⊤
ℓ x)̸=sign(w∗⊤

i x) · 1sign(w∗⊤
i x) ̸=sign(w⊤

j x)]

(10)
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Consider the first line of (10), from the choice of qij we know ajqija
∗
i ≥ 0. For ℓ ∈ Ti,+(δsign), we

know sign(aℓ) = sign(a∗i ), which implies aℓajqij ≥ 0 for these terms. We thus only need to deal
with neurons in Ti,−(δsign), we have the first line is bounded as

∑
ℓ∈Ti(δsign)

aℓajqijEx[|w⊤
ℓ x||w∗⊤

i x|1sign(w⊤
ℓ x)̸=sign(w∗⊤

i x) · 1sign(w∗⊤
i x) ̸=sign(w⊤

j x)]

≥
∑

ℓ∈Ti,−(δsign)

aℓajqijEx[|w⊤
ℓ x||w∗⊤

i x|1sign(w⊤
ℓ x) ̸=sign(w∗⊤

i x) · 1sign(w∗⊤
i x)̸=sign(w⊤

j x)]

(a)
≥ − |ajqij |

∑
ℓ∈Ti,−(δsign)

|aℓ| ∥wℓ∥2 Ex[|w⊤
ℓ x̃||w∗⊤

i x̃|1sign(w⊤
ℓ x̃)̸=sign(w∗⊤

i x̃) · 1sign(w∗⊤
i x̃) ̸=sign(w⊤

j x̃)]

(b)
≥ − |ajqij |

∑
ℓ∈Ti,−(δsign)

|aℓ| ∥wℓ∥2 δℓδjEx[∥x̃∥22 1sign(w⊤
ℓ x̃)̸=sign(w∗⊤

i x̃) · 1sign(w∗⊤
i x̃) ̸=sign(w⊤

j x̃)]

(c)
≥ − |ajqij |

∑
ℓ∈Ti,−(δsign)

|aℓ| ∥wℓ∥2 O(δℓδ
2
j )

(d)
≥ − |ajqij |O(τδsignδ

2
close),

where (a) x̃ is a 3-dimensional Gaussian since the expectation only depends on wℓ,wj ,w
∗
i ; (b)

|w⊤
ℓ x̃| ≤ δℓ ∥x̃∥2 when sign(w∗⊤

i x̃) ̸= sign(w⊤
ℓ x̃) and |w∗⊤

i x̃| ≤ δj ∥x̃∥2 when sign(w∗⊤
i x̃) ̸=

sign(w⊤
j x̃); (c) a direct calculation as in Lemma 34; (d) assumption that norm cancellation is small.

For the second term of (10), similar as above, we have

2
∑

ℓ∈Ti\Ti(δsign)

aℓajqijEx[|w⊤
ℓ x||w∗⊤

i x|1sign(w⊤
ℓ x)̸=sign(w∗⊤

i x) · 1sign(w∗⊤
i x) ̸=sign(w⊤

j x)]

(a)
≥ − 2|ajqij |

∑
ℓ∈Ti\Ti(δsign)

|aℓ| ∥wℓ∥2 Ex̃[|w⊤
ℓ x̃||w∗⊤

i x̃|1sign(w⊤
ℓ x̃) ̸=sign(w∗⊤

i x̃) · 1sign(w∗⊤
i x̃)̸=sign(w⊤

j x̃)]

(b)
≥ − 2|ajqij |

∑
ℓ∈Ti\Ti(δsign)

|aℓ| ∥wℓ∥2 δℓδjEx̃[∥x̃∥22 1sign(w∗⊤
i x̃) ̸=sign(w⊤

j x̃)]

(c)
≥ − 2|ajqij |O(δ2j )

∑
ℓ∈Ti\Ti(δsign)

|aℓ| ∥wℓ∥2 δℓ

(d)
≥ − 2|ajqij |O∗(δ

2
closeζλ

−1δ−1
sign),

where (a) x̃ is 3-dimensional Gaussian vector since the expectation only depends on wℓ,wj ,w
∗
i ; (b)

|w⊤
ℓ x̃| ≤ δℓ ∥x̃∥2 when sign(w∗⊤

i x̃) ̸= sign(w⊤
ℓ x̃) and |w∗⊤

i x̃| ≤ δj ∥x̃∥2 when sign(w∗⊤
i x̃) ̸=

sign(w⊤
j x̃); (c) a direct calculation as in Lemma 34; (d) choice of qij and Lemma 19 and Lemma 25

that far-away neurons are small.

Thus, for (II.i) we have

(II.i) ≥ −2|ajqij |O∗(τδsignδ
2
close + δ2closeζλ

−1δ−1
sign).
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For (II.ii), we have

|(II.ii)| ≤2
∑
k ̸=i

∑
ℓ∈Tk

|aℓ||ajqij |Ex[|w⊤
ℓ x||w∗⊤

i x|1sign(w⊤
ℓ x)̸=sign(w∗⊤

k x) · 1sign(w∗⊤
i x) ̸=sign(w⊤

j x)]

(a)
≤2
∑
k ̸=i

∑
ℓ∈Tk

|aℓ||ajqij | ∥wℓ∥2 δℓδjEx̃[∥x̃∥22 1sign(w⊤
ℓ x̃)̸=sign(w∗⊤

k x̃) · 1sign(w∗⊤
i x̃)̸=sign(w⊤

j x̃)]

(b)
≤2
∑
k ̸=i

∑
ℓ∈Tk

|aℓ||ajqij | ∥wℓ∥2 δℓδjEx̃[∥x̃∥22 1|w∗⊤
k x̃|≤δℓ∥x̃∥2

· 1|w∗⊤
i x̃|≤δj∥x̃∥2

]

(c)
≤2|ajqij |δj

∑
k ̸=i

∑
ℓ∈Tk

|aℓ| ∥wℓ∥2 δℓ ·O(δℓδj/∆)

(d)
=2|ajqij |O∗(δ

2
closeζλ

−1∆−1),

where (a)(b) x̃ is a 4-dimensional Gaussian vector, |w⊤
ℓ x̃| ≤ δℓ ∥x̃∥2 when sign(w∗⊤

i x̃) ̸=
sign(w⊤

ℓ x̃) and |w∗⊤
i x̃| ≤ δj ∥x̃∥2 when sign(w∗⊤

i x̃) ̸= sign(w⊤
j x̃); (c) by Lemma 33; (d)

choice of qij and Lemma 19 and Lemma 25 that far-away neurons are small.

Combine (II.i) (II.ii), we have for (9)

Ex[R2(x)ajqijw
∗⊤
i x(σ′(w∗⊤

i x)− σ′(w⊤
j x))] ≥ −2|ajqij |O(τδsignδ

2
close + δ2closeζλ

−1δ−1
sign).

This further gives the lower bound on (II):∑
i∈[m∗]

∑
j∈Ti

Ex[R2(x)ajqijw
∗⊤
i x(σ′(w∗⊤

i x)− σ′(w⊤
j x))] ≥− 2

∑
i∈[m∗]

∑
j∈Ti

|ajqij |O(τδsignδ
2
close + δ2closeζλ

−1δ−1
sign)

=−O∗(τδsignδ
2
close + δ2closeζλ

−1δ−1
sign)

Bound (III) For (III), recall R3(x) =
1√
2π

(∑
i∈[m∗]

a∗i ∥w∗
i ∥2 −

∑
i∈[m] ai ∥wi∥2

)
+ α− α̂+

(β − β̂)⊤x. We have∑
i∈[m∗]

∑
j∈Ti

Ex[R3(x)ajqijw
∗⊤
i x(σ′(w∗⊤

i x)− σ′(w⊤
j x))]

(a)
≥ −O∗(ζ/λ)

∑
i∈[m∗]

∑
j∈Ti

|ajqij |Ex[|w∗⊤
i x|1sign(w⊤

j x) ̸=sign(w∗⊤
i x)]

−
∑

i∈[m∗]

∑
j∈Ti

|ajqij |Ex[|(β − β̂)⊤x||w∗⊤
i x|1sign(w⊤

j x)̸=sign(w∗⊤
i x)]

(b)
≥ −O∗(ζ/λ)

∑
i∈[m∗]

∑
j∈Ti

|ajqij |O(δ2j )

−O(ζ1/2)
∑

i∈[m∗]

∑
j∈Ti

|ajqij |δjEx[∥x̃∥22 1sign(w⊤
j x̃)̸=sign(w∗⊤

i x̃)]

(c)
≥ −O∗(ζ/λ)

∑
i∈[m∗]

∑
j∈Ti

|ajqij |O(δ2j )

(d)
≥ −O∗(δ

2
closeζ/λ),

where (a) plugging in the expression of R3 and using Lemma 23 and Lemma 25; (b) using Lemma 35
and the fact that x̃ is a 3-dimensional Gaussian vector and |w∗⊤

i x̃| ≤ δj ∥x̃∥2 when sign(w∗⊤
i x̃) ̸=

sign(w⊤
j x̃); (c) Lemma 34; (d) choice of qij .

Combine all bounds Combine (I) (II) (III) we now get the last term of (8)∑
i∈[m∗]

∑
j∈Ti

Ex[R(x)ajqijw
∗⊤
i x(σ′(w⊤

j x)− σ′(w∗⊤
i x))] ≥ −O∗((ζ/λ)

3/4δ2close + τδsignδ
2
close + δ2closeζλ

−1δ−1
sign)
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From Lemma 20 we can choose δclose = O∗(ζ
1/3) and from Lemma 28 we can choose δsign =

Θ∗(λ/ζ
1/2). Also with τ = O(ζ5/6/λ), we finally get∑

i∈[m∗]

∑
j∈Ti

Ex[R(x)ajqijw
∗⊤
i x(σ′(w⊤

j x)− σ′(w∗⊤
i x))] ≥ ζ/8,

as long as ζ = O(λ9/5/ poly(r,m∗,∆, ∥a∗∥1 , amin)) with small enough hidden constant.

Thus, we eventually get the lower bound of (8)

(α+ α∗)∇αLλ + ⟨∇βLλ,β + β∗⟩+
∑

i∈[m∗]

∑
j∈Ti

⟨∇wiLλ,wj − qijw
∗
i ⟩ ≥ ζ/4− ζ/8 = ζ/8.

G.4 Technical Lemma

In this section, we collect several technical lemmas that are useful in the proof.
Lemma 33. Consider α,β ∈ R4 with ϕ = ∠(α,β) ∈ [0, π] and ∥α∥2 = ∥β∥2 = 1 and x ∼
N(0, I). Then, for any 0 < δ1, δ2 ≤ cϕ with a small enough constant c

Ex[∥x∥22 1|α⊤x|≤δ1∥x∥2,|β⊤x|≤δ2∥x∥2
] = O(δ1δ2/ sinϕ).

Proof. WLOG, assume α = (1, 0, 0, 0)⊤, β = (cosϕ, sinϕ, 0, 0) and ϕ ∈ [0, π/2]. Then we have

Ex[∥x∥22 1|α⊤x|≤δ1∥x∥2,|β⊤x|≤δ2∥x∥2
]

=
1

(2π)2

∫ ∞

0

r5e−r2/2 dr

∫
0≤θ1≤π,| cos θ1|≤δ1

sin2 θ1

∫
0≤θ2≤π,| cos θ1 cosϕ+sin θ1 cos θ2 sinϕ|≤δ2

sin θ2 dθ2 dθ1

∫ 2π

0

1 dθ3

=O(1) ·
∫
0≤θ1≤π,| cos θ1|≤δ1

sin2 θ1

∫
0≤θ2≤π,

−δ2−cos θ1 cosϕ
sin θ1 sinϕ ≤cos θ2≤ δ2−cos θ1 cosϕ

sin θ1 sinϕ

sin θ2 dθ2 dθ1

=

∫
0≤θ1≤π,| cos θ1|≤δ1

sin2 θ1 ·O
(

δ2
sin θ1 sinϕ

)
dθ1

=O

(
δ1δ2
sinϕ

)
.

Lemma 34 (Lemma C.9 in [28]). Consider α,β ∈ R3 with ∠(α,β) = ϕ and α⊤β ≥ 0. We have

Ex[∥x∥2 1sign(α⊤x)̸=sign(β⊤x)] = O(ϕ).

Lemma 35. Consider α,β ∈ Rd with ∠(α,β) = ϕ, ∥α∥2 = ∥β∥2 = 1 and α⊤β ≥ 0. We have

Ex[|α⊤x|1sign(α⊤x)̸=sign(β⊤x)] = O(ϕ2).

Proof. It suffices to consider α,β,x ∈ R2. WLOG, assume α = (1, 0)⊤ and β = (cosϕ, sinϕ)⊤

We have

Ex[|α⊤x|1sign(α⊤x)̸=sign(β⊤x)] =
1

2π

∫ ∞

0

re−r2/2 dr

∫ 2π

0

cos θ1sign(cos θ) ̸=sign(cos(θ−ϕ)) dθ = O(ϕ2).

Lemma 36. Under Lemma 6, let

qij =

{
aja

∗
i∑

j∈Ti,+(δclose) a
2
j

, if j ∈ Ti,+(δclose)

0 , otherwise

If
∑

i∈[m∗]

∣∣∣a2i − ∥wi∥22
∣∣∣ ≤ amin/2, then

∑
i∈[m∗]

∑
j∈Ti

q2ij = O(∥a∗∥1).
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Proof. We have

∑
i∈[m∗]

∑
j∈Ti

q2ij =
∑

i∈[m∗]

∑
j∈Ti,+(δclose)

a2ja
∗2
i

(
∑

j∈Ti,+(δclose)
a2j )

2
=
∑

i∈[m∗]

a∗2i∑
j∈Ti,+(δclose)

a2j
.

In the following, we aim to lower bound
∑

j∈Ti,+(δclose)
a2j . Given

∑
j∈Ti,+(δclose)

|a2j −∥wj∥22 | ≤
|a∗i |/2, we have

2
∑

j∈Ti,+(δclose)

a2j ≥
∑

j∈Ti,+(δclose)

a2j + ∥wj∥22 − |a
∗
i |/2 ≥ 2

∑
j∈Ti,+(δclose)

|aj | ∥wj∥2 − |a
∗
i |/2 ≥ |a∗i |/2,

where the last inequality is due to Lemma 20:
∑

j∈Ti,+(δclose)
|aj | ∥wj∥2 ≥

|
∑

j∈Ti(δclose)
aj ∥wj∥2 | ≥ |a

∗
i |/2. Thus, we have

∑
i∈[m∗]

∑
j∈Ti

q2ij = O(∥a∗∥1).

H Proofs in Section F (non-degenerate dual certificate)

In this section, we give the omitted proofs in Section F. The proofs are mostly direct computations
with the properties of Hermite polynomials in Claim 2.

Lemma 30 (Non-degeneracy of kernel K). For ℓ ≥ Θ(∆−2 log(m∗ℓ/h∆)), kernel K≥ℓ is non-
degenerate in the sense that there exists r = Θ(ℓ−1/2), ρ1 = Θ(1), ρ2 = Θ(ℓ) such that following
hold:

(i) K(w,u) ≤ 1− ρ1 for all δ(w,u) := ∠(w,u) ≥ r.

(ii) K(20)(w,u)[z, z] ≤ −ρ2 ∥z∥2 for tangent vector z that z⊤w = 0 and δ(w,u) ≤ r.

(iii)
∥∥K(ij)(w∗

1 ,w
∗
k)
∥∥
w∗

i ,w
∗
k

≤ h/m2
∗ for (i, j) ∈ {0, 1} × {0, 1, 2}
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Proof. With the property of Hermite polynomials in Claim 2, we have

K(w,u) =Ex[σ≥ℓ(w
⊤x)σ≥ℓ(u

⊤x)] =
1

Z2
σ

∑
k≥ℓ

σ̂2
k cos

k θ,

K(10)(w,u) =
1

Z2
σ

∑
k≥ℓ

σ̂2
kk cos

k−1 θ
1

∥w∥2
(I −ww⊤)u,

K(11)(w,u) =
1

Z2
σ

∑
k≥ℓ

σ̂2
kk(k − 1) cosk−2 θ

1

∥w∥2 ∥u∥2
(I −ww⊤)uw⊤(I − uu⊤)

+
1

Z2
σ

∑
k≥ℓ

σ̂2
kk cos

k−1 θ
1

∥w∥2 ∥u∥2
(I −ww⊤)(I − uu⊤)

K(20)(w,u) =
1

Z2
σ

∑
k≥ℓ

σ̂2
kk(k − 1) cosk−2 θ

1

∥w∥22
(I −ww⊤)uu⊤(I −ww⊤)

− 1

Z2
σ

∑
k≥ℓ

σ̂2
kk cos

k−1 θ
1

∥w∥22

(
(I −ww⊤)uw⊤ +wu⊤(I −ww⊤) +w⊤u(I −ww⊤)

)
,

K(21)(w,u)i =∂uiK
(20)(w,u)

=
1

Z2
σ

∑
k≥ℓ

σ̂2
kk(k − 1)(k − 2) cosk−3 θ

1

∥w∥22 ∥u∥2
e⊤i (I − uu⊤)w · (I −ww⊤)uu⊤(I −ww⊤)

+
1

Z2
σ

∑
k≥ℓ

σ̂2
kk(k − 1) cosk−2 θ

1

∥w∥22 ∥u∥2
(I −ww⊤)

(
(I − uu⊤)eiu

⊤ + ue⊤i (I − uu⊤)
)
(I −ww⊤)

− 1

Z2
σ

∑
k≥ℓ

σ̂2
kk(k − 1) cosk−2 θ

1

∥w∥22 ∥u∥2
e⊤i (I − uu⊤)w ·

(
(I −ww⊤)uw⊤

+ wu⊤(I −ww⊤) +w⊤u(I −ww⊤)
)

− 1

Z2
σ

∑
k≥ℓ

σ̂2
kk cos

k−1 θ
1

∥w∥22

(
(I −ww⊤)(I − uu⊤)eiw

⊤ +we⊤i (I − uu⊤)(I −ww⊤)

+ w⊤(I − uu⊤)ei(I −ww⊤)
)
,

(11)
where θ = arccos(w⊤u).

Part (i) Given that r = Θ(1/
√
ℓ) with a small enough hidden constant, we know for δ(w,u) ≥ r

K(w,u) =
1

Z2
σ

∑
k≥ℓ

σ̂2
k cos

k θ ≤ 1

Z2
σ

∑
k≥ℓ

σ̂2
k · (1− r2/5)ℓ = c < 1,

where c is a constant less than 1. Thus, ρ1 = Θ(1).

Part (ii) For tangent vector z that z⊤w = 0, we have (∥w∥2 = ∥u∥2 = 1, δ(w,u) ≤ r)

K(20)(w,u)[z, z] =
1

Z2
σ

∑
k≥ℓ

σ̂2
kk(k − 1) cosk−2 θ · (u⊤z)2 − 1

Z2
σ

∑
k≥ℓ

σ̂2
kk cos

k−1 θ ·w⊤u ∥z∥22

=
∥z∥22
Z2
σ

∑
k≥ℓ

σ̂2
kk(k − 1) cosk−2 θ · (u⊤z)2 −

∑
k≥ℓ

σ̂2
kk cos

k−1 θ ·w⊤u


≤
∥z∥22
Z2
σ

∑
k≥ℓ

σ̂2
kk(k − 1) cosk−2 θ sin2 θ −

∑
ℓ≤k≤2ℓ

σ̂2
kk cos

k θ

 .

41



For the first term, we have

∑
k≥ℓ

σ̂2
kk(k − 1) cosk−2 θ sin2 θ

≤
∑

k≥1/r2

σ̂2
kk(k − 1) ·Θ(1/k) +

∑
ℓ≤k≤1/r2

σ̂2
kk(k − 1)r2

=
∑

k≥1/r2

Θ(k−3/2) +
∑

ℓ≤k≤1/r2

Θ(k−1/2)r2 = Θ(r),

where we use σ̂2
k = Θ(k−5/2) in Lemma 37.

For the second term, we have

∑
ℓ≤k≤2ℓ

σ̂2
kk cos

k θ ≥ Θ(ℓ−1/2)(1− r2)2ℓ.

Given that r = Θ(1/
√
ℓ) with a small enough hidden constant, we know

K(20)(w,u)[z, z] ≤ −
∥z∥22
Z2
σ

Θ(ℓ−1/2) = −Θ(ℓ) ∥z∥22 ,

since Z2
σ = Θ(ℓ−3/2).

Part (iii) Recall that δ(w∗
i ,w

∗
j ) ≥ ∆ for i ̸= j. It suffices to bound

∥∥K(ij)(w,u)
∥∥
2
≤ h/m2

∗ for
θ = δ(w,u) ≥ ∆. Given that ℓ ≥ Θ(∆−2 log(m∗ℓ/h∆)) with large enough hidden constant, from
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(11) we have for ∥w∥ = ∥u∥ = 1

K(w,u) ≤ 1

Z2
σ

∑
k≥ℓ

σ̂2
k(1−∆2/5)ℓ ≤ h/m2

∗,∥∥∥K(10)(w,u)
∥∥∥
w
≤ 1

Z2
σ

∑
k≥ℓ

σ̂2
kk cos

k−1 θ sin θ ≤ Θ(ℓ)(1−∆2/5)ℓ−1 ≤ h/m2
∗,∥∥∥K(11)(w,u)

∥∥∥
w,u

=
1

Z2
σ

sup
z⊤
1 w=z⊤

2 u=0,
∥z1∥2=∥z2∥2=1

∑
k≥ℓ

σ̂2
kk(k − 1) cosk−2 θu⊤z1 ·w⊤z2 +

∑
k≥ℓ

σ̂2
kk cos

k−1 θz⊤
1 z2

≤ 1

Z2
σ

∑
k≥ℓ

σ̂2
kk(k − 1) cosk−2 θ sin2 θ +

1

Z2
σ

∑
k≥ℓ

σ̂2
kk cos

k−1 θ

≤Θ(ℓ3/2)
∑
k≥ℓ

Θ(k−1/2)(1−∆2/5)k−2 +Θ(ℓ)(1−∆2/5)ℓ−1 ≤ h/m2
∗,∥∥∥K(20)(w,u)

∥∥∥
w

=
1

Z2
σ

sup
z⊤
1 w=z⊤

2 w=0,
∥z1∥2=∥z2∥2=1

∑
k≥ℓ

σ̂2
kk(k − 1) cosk−2 θ · u⊤z1 · u⊤z2 −

∑
k≥ℓ

σ̂2
kk cos

k−1 θ ·w⊤u · z⊤
1 z2

≤ 1

Z2
σ

∑
k≥ℓ

σ̂2
kk(k − 1) cosk−2 θ sin2 θ +

1

Z2
σ

∑
k≥ℓ

σ̂2
kk cos

k−1 θ

≤Θ(ℓ3/2)
∑
k≥ℓ

Θ(k−1/2)(1−∆2/5)k−2 +Θ(ℓ)(1−∆2/5)ℓ−1 ≤ h/m2
∗,∥∥∥K(21)(w,u)

∥∥∥
w,u

= sup
z⊤
1 w=z⊤

2 w=q⊤u=0,
∥z1∥2=∥z2∥2=∥q∥2=1

1

Z2
σ

∑
k≥ℓ

σ̂2
kk(k − 1)(k − 2) cosk−3 θ

∑
i

qie
⊤
i (I − uu⊤)w · u⊤z1 · u⊤z2

+
1

Z2
σ

∑
k≥ℓ

σ̂2
kk(k − 1) cosk−2 θ

(∑
i

qiz
⊤
1 (I − uu⊤)ei · u⊤z2 +

∑
i

qiz
⊤
2 (I − uu⊤)ei · u⊤z1

)

− 1

Z2
σ

∑
k≥ℓ

σ̂2
kk(k − 1) cosk−2 θ

∑
i

qie
⊤
i (I − uu⊤)w ·w⊤u · z⊤

1 z2

− 1

Z2
σ

∑
k≥ℓ

σ̂2
kk cos

k−1 θ
∑
i

qiw
⊤(I − uu⊤)ei · z⊤

1 z2

≤ 1

Z2
σ

∑
k≥ℓ

σ̂2
kk(k − 1)(k − 2) cosk−3 θ sin3 θ +

2

Z2
σ

∑
k≥ℓ

σ̂2
kk(k − 1) cosk−2 θ sin θ +

1

Z2
σ

∑
k≥ℓ

σ̂2
kk cos

k−1 θ sin θ

(a)
≤h/m2

∗,

where we use σ̂2
k = Θ(k−5/2) in Lemma 37 and (a) the last two terms bound similarly as in K(20)

and first term 1
Z2

σ

∑
k≥ℓ σ̂

2
kk(k−1)(k−2) cosk−3 θ sin3 θ ≤ Θ(ℓ3/2)

∑
k≥ℓ Θ(k1/2)(1−∆2/5)k ≤

h/3m2
∗.

Lemma 31 (Regularity conditions on kernel K). Let Bij := supw,u

∥∥K(ij)(w,u)
∥∥
w,u

and B0 =

B00+B10+1, B2 = B20+B21+1. We have B00 = O(1), B10 = O(1), B11 = O(ℓ), B20 = O(ℓ),
B21 = O(ℓ3/2), and therefore B0 = O(1), B2 = O(ℓ3/2).
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Proof. We compute Bij one by one from (11) (see part (iii) proof in Lemma 30).

B00 =sup
w,u

∣∣∣∣∣∣ 1Z2
σ

∑
k≥ℓ

σ̂2
k cos

k θ

∣∣∣∣∣∣ ≤ 1,

B10 ≤
1

Z2
σ

∑
k≥ℓ

σ̂2
kk cos

k−1 θ sin θ = O(1),

B11 ≤
1

Z2
σ

∑
k≥ℓ

σ̂2
kk(k − 1) cosk−2 θ sin2 θ +

1

Z2
σ

∑
k≥ℓ

σ̂2
kk cos

k−1 θ = O(ℓ),

B20 ≤
1

Z2
σ

∑
k≥ℓ

σ̂2
kk(k − 1) cosk−2 θ sin2 θ +

1

Z2
σ

∑
k≥ℓ

σ̂2
kk cos

k θ = O(ℓ),

B21 ≤
1

Z2
σ

∑
k≥ℓ

σ̂2
kk(k − 1)(k − 2) cosk−3 θ sin3 θ +

2

Z2
σ

∑
k≥ℓ

σ̂2
kk(k − 1) cosk−1 θ sin θ +

1

Z2
σ

∑
k≥ℓ

σ̂2
kk cos

k−1 θ sin θ

(a)
≤O(ℓ3/2),

where (a) the last two terms follow the same as in B11 and the first term 1
Z2

σ

∑
k≥ℓ σ̂

2
kk(k −

1)(k − 2) cosk−3 θ sin3 θ ≤ Θ(ℓ3/2)
∑

k≥ℓ Θ(k1/2)(1 − θ2/5)k−3θ3 ≤ Θ(ℓ3/2)
∑

k≥ℓ(1 −
θ2/5)(k−3)/2θ3/

√
log(1/(1− θ2)) = Θ(ℓ3/2).

I Some Properties of Hermite Polynomials

In this section, we give several properties of Hermite Polynomials that are useful in our analysis. See
[25] for a more complete discussion on Hermite polynomials. Let Hk be the probabilists’ Hermite
polynomial where

Hk(x) = (−1)kex
2/2 dk

dxk
(e−x2/2)

and hk = 1√
k!
Hk be the normalized Hermite polynomials. Given a function σ, we call σ(x) =∑∞

k=0 σ̂khk(x) as the Hermit expansion of σ and σ̂k = Ex∼N(0,1)[σ(x)hk(x)] as the k-th Hermite
coefficient of σ.

The following is a useful property of Hermite polynomial.
Claim 2 ([25], Section 11.2). Let (x, y) be ρ-correlated standard normal variables (that is, both
x, y have marginal distribution N(0, 1) and E[xy] = ρ). Then, E[hm(x)hn(y)] = ρnδmn.

The following lemma gives the Hermite coefficients for absolute value function and ReLU.
Lemma 37. Let σ̂k = Ex∼N(0,1)[σ(x)hk(x)] be the Hermite coefficient of σ. For σ is ReLU or
absolute function, we have |σ̂k| = Θ(k−5/4).

Proof. From Goel et al. [18], Zhou et al. [28] we have

σ̂abs,k =


0 , k is odd√

2/π , k = 0

(−1) k
2−1
√

2
π

(k−2)!√
k!2k/2−1(k/2−1)!

, k is even and k ≥ 2

σ̂relu,k =


0 , k is odd and k ≥ 3√
1/2π , k = 0

1/2 , k = 1

(−1) k
2−1
√

1
2π

(k−2)!√
k!2k/2−1(k/2−1)!

, k is even and k ≥ 2

Using Stirling’s formula, we get |σ̂abs,k|, |σ̂relu,k| = Θ(k−5/4).
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