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ABSTRACT

In this study, we delve into the generation of novel artificial knotted proteins, lever-
aging state-of-the-art computational techniques such as EvoDiff and RFdiffusion,
in tandem with ProteinMPNN. Our aim is to broaden the spectrum of existing
protein structures with novel knotted configurations, thereby deepening our in-
sight into the intricate phenomenon of protein knotting. Our findings reveal that
the generated artificial proteins closely mimic the natural occurrence of knotted
proteins, with a comparable percentage exhibiting non-trivial topologies. Addi-
tionally, we introduce several knot types previously unobserved in natural pro-
teins. At the heart of our study is the curated dataset of these artificial knotted
proteins, aligned with their natural counterparts for comprehensive comparison.
This dataset can serve as a benchmark, encouraging the development and applica-
tion of new protein generation methodologies.

1 INTRODUCTION

Proteins are essential molecular machines whose functions are deeply intertwined with their unique
three-dimensional (3D) structures. The quest to understand and predict these structures has signifi-
cantly advanced with the advent of deep neural network models such as AlphaFold2 (AF) (Jumper
et al., 2021) or OmegaFold (Wu et al., 2022). These tools have revolutionized the accuracy and
speed of protein structure prediction.

Alongside progress in structure prediction, the field of artificial protein design has also advanced
significantly. A notable method involves the integration of RFdiffusion (Watson et al., 2022) and
ProteinMPNN (Dauparas et al., 2022) tools. This technique leverages the power of diffusion mod-
els, trained on a vast dataset of known protein structures, to generate diverse sequence-independent
backbones. These backbones are then refined by incorporating sequence information to optimize
structure and side-chain placements. Another exciting development is the EvoDiff method (Alam-
dari et al., 2023). Unlike the stepwise approach that typically involves predicting 3D structures
followed by sequence deduction, EvoDiff directly targets the sequence space, bypassing structural
predictions.

Within the vast diversity of protein structures, a particularly intriguing group stands out: the knot-
ted proteins (Takusagawa & Kamitori, 1996). Knots, familiar to us from everyday life, can also
occur within the polypeptide chain of proteins (Mishra & Bhushan, 2012), forming intricate loops
and crossings (see Figure 1). Despite their rarity in nature, knotted proteins are a subject of in-
creasing interest due to their distinct characteristics. The knotted arrangement is believed to confer
enhanced stability and specific functional attributes to these proteins (Dabrowski-Tumanski et al.,
2016), differentiating them from their unknotted counterparts. The presence of knot been shown to
confer resistance to degradation and denaturation (Lim & Jackson, 2015), making knotted proteins
attractive candidates for biotechnological applications (Xu & Zhang, 2018). Moreover, the unique
structural features of knotted proteins have been implicated in specific biological functions, such as
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Figure 1: Human protein 5NFJ with a knotted backbone containing a highlighted 31 knot and a
simplified visualization of the knot.

modulation of enzymatic activity and regulation of ligand binding (Virnau et al., 2006). As a result,
understanding the principles governing the folding and stability of knotted proteins could provide
valuable insights into protein design and engineering, potentially leading to the development of
novel enzymes, drug targets, or biomaterials with enhanced properties (Sulkowska, 2020) .

The limited variety of natural knotted proteins, mostly confined to a few families (Šrámková et al.,
2023), hints at a vast potential for artificial knotted proteins. While studying natural knotted proteins
provides valuable insights, it will always be constrained by the narrow range of protein families
in which they occur. In contrast, the universe of artificial proteins is much wider, offering the
opportunity to explore a far greater diversity of knotted topologies and their associated functions.
Using computational tools, we aim to create unprecedented knotted proteins, thereby expanding our
knowledge and application of protein functionalities.

2 RESULTS

2.1 GENERATED SETS OF ARTIFICIAL PROTEINS

Our generation efforts yielded 212, 681 structures using RFdiffusion, with 2, 814 (1.3%) displaying
non-trivial topologies. Of these, ProteinMPNN successfully designed sequences for 1, 037 struc-
tures (0.47%). EvoDiff produced 433, 992 sequences, with 2, 168 (0.50%) forming knotted struc-
tures, closely aligning with the natural occurrence rate of ∼ 0.35% as estimated in Šrámková et al.
(2023). The predominant knot observed was the simple 31, accounting for 89% of cases. Remark-
ably, we identified three knot types not previously observed in nature (Figure 2). It’s important to
note that given the rarity of knotted proteins in nature, the performance of computational tools like
ProteinMPNN and AlphaFold on these topologies should be validated in future with experimental
structural determination of select designed proteins.

Figure 2: Novel knot types: (A) 51 (eg. RF 3 251 1), (B) 74 (eg. E ID99324), (C) 819 (eg.
RF 3 153 1)

We created a dataset (available through https://huggingface.co/datasets/
EvaKlimentova/Diffusion-all_knots) of randomly selected 1, 000 knotted pro-
teins from each method together with a random sample of 1, 000 knotted proteins identified in
AlphaFold2 database from Šrámková et al. (2023). As controls, we added 4, 000 unknotted proteins
for each method, so the total number of proteins in the dataset is 3 ∗ (1000 + 4000) = 15000. See
Table 1 for knot type distribution for each group.
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Table 1: Knot type counts
Tool 3 1 3 1#3 1 4 1 5 1 5 2 6 1 6 3 7 4 8 19 N/A
EvoDiff 866 2 44 15 11 1 1 1 0 59
RFdiffusion + MPNN 950 5 7 26 1 0 0 0 3 8

2.2 COMPARISON TO NATURAL PROTEINS

Our analysis aimed to evaluate the resemblance between the generated artificial proteins and their
natural counterparts, focusing on both sequence and structural levels. Using BLAST for sequence
alignment against the nr database, we found that a small but notable percentage of artificial pro-
teins matched known natural proteins, see Figure 3 C. Specifically, the match rates for sequences
generated by both methods and across knot statuses ranged from 7.3% to 10.4%.

Structural alignment, conducted via Foldseek against the AlphaFoldDB, revealed more pronounced
differences, see Figure 3 D. The EvoDiff-generated structures exhibited a lower similarity to known
proteins, with only 27.2% showing significant matches, compared to a much higher match rate of
92.2% for structures generated using RFdiffusion combined with MPNN. This disparity was even
more marked among knotted proteins, where match rates for EvoDiff and RFdiffusion + MPNN
were 18.0% and 96.8%, respectively, against 29.4% and 99.8% for their unknotted counterparts.
These findings suggest that the structural configurations of knotted proteins generated by EvoDiff
are more divergent from known protein structures, whereas RFdiffusion + MPNN tends to produce
structures that more closely resemble existing proteins in databases.

To further assess the viability and fidelity of the generated proteins, we computed two metrics:
average pLDDT and perplexity (see Methods). The pLDDT scores and perplexity values were
plotted to identify trends in protein quality and complexity (Figure 3 A/B). Proteins situated in the
bottom right corners of these subplots are considered most plausible, exhibiting high confidence in
structural prediction and lower sequence complexity. Manual inspection of three such proteins from
the EvoDiff set revealed two with high similarity to known proteins (E ID119285, E ID119291),
and one characterized by repetitive sequences (E ID25027).

2.3 PREDICTIVE MODELS

The T-SNE visualization of ProtBert-BFD embeddings for the sequences in the dataset (Figure 4A)
corroborates our earlier findings, indicating significant differences between proteins generated by
distinct methods. However, focusing on an individual method (Figure 4B-D), the differences be-
tween knotted and unknotted sequences are evident.

Given these observations, an intriguing question emerges: Is it possible to apply insights from ar-
tificially generated proteins to their natural counterparts? To investigate this, we developed two
neural network classifiers, each trained on datasets from EvoDiff and RFdiffusion + MPNN, utiliz-
ing ProtBert-BFD embeddings as features. We allocated 20% of each dataset for validation purposes
and employed a collection of real protein sequences as the test set.

Given the disproportionate number of unknotted proteins relative to knotted ones, we assessed our
classifiers’ performance using the odds-ratio statistic. An odds-ratio significantly above 1 indicates
the model’s proficiency in differentiating between knotted and unknotted proteins, with higher val-
ues reflecting greater discriminative power. The classifiers demonstrated robust performance on their
respective validation sets, achieving odds-ratios of 8.82 for the EvoDiff-trained model and 8.04 for
the RFdiffusion + MPNN-trained model. However, when applied to the test set of real proteins, the
odds-ratios were 1.62 and 1.61, respectively, still statistically significant (z-score test, p < 0.01),
hinting at the potential for knowledge transfer from artificial to real proteins, albeit with limitations.

3 METHODS

We employed two strategies for generating knotted proteins: combining RFdiffusion (Watson et al.,
2022) with ProteinMPNN (Dauparas et al., 2022), and using EvoDiff (Alamdari et al., 2023).
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Figure 3: Viability of the generated proteins and the comparison to their natural counterparts.
(A),(B) pLDDT vs Perplexity for EvoDiff and RFDiffusion+MPNN, respectively. (C) BLAST com-
parison to natural proteins’ sequences. Only e − value < 0.2 counted as mach. (D) FoldSeek
comparison to natural proteins’ structures. Any match score > 0 counted as match.

3.1 PROTEIN GENERATION WITH RFDIFFUSION + MPNN

We configured RFdiffusion according to its GitHub repository guidelines, setting
contigmap.contigs=[100-500] and inference.num designs=1 to generate
protein structures ranging from 100 to 500 amino acids. The Topoly Python package, using the
Alexander polynomial, evaluated the topology of these structures. Structures with an unknot
probability below 0.5 and a specific knot probability above 0.4 were deemed knotted and advanced
for sequence design via ProteinMPNN, following the ColabDesign GitHub guidelines. For each
knotted backbone, up to eight sequences were designed with ProteinMPNN, but only the first
sequence that achieved a pLDDT score of 70 or higher and retained the knotted topology in
ColabFold predictions was included in our knotted designs dataset. Unsuccessful designs after eight
attempts were discarded.

Unknotted designs from RFdiffusion underwent a similar process, filtering designs having an unknot
probability above 0.5. They were complemented with ProteinMPNN sequences passing the criterion
of Colabfold-predicted 3D structure being unknotted, having pLDDT greater or equal to 70 and
RMSD of the RFdiffusion designed structure and Colabfold-predicted 3D structure being lower
than 5.

3.2 PROTEIN GENERATION WITH EVODIFF

EvoDiff was configured according to its GitHub instructions to generate sequences of 100-500 amino
acids using the default model (oa dm 640M). Omegafold predicted the 3D structures of these se-
quences, categorizing them into knotted or unknotted sets based on their topology probabilities.
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Figure 4: T-SNE projections of protein ProtBert-BFD embeddings. (A) Projection of EvoDiff-
generated and RFdiffusion+MPNN-generated proteins and selection of real protein sequences. (B)
Projection of EvoDiff-generated proteins coloured by knotting status. (C) RFdiffusion+MPNN-
generated proteins coloured by knotting status. (D) Real protein sequences coloured by knotting
status.

3.3 ANALYSIS OF THE GENERATED PROTEINS

For the further analysis of the artificially generated proteins, 1, 000 knotted and 4, 000 unknotted
proteins from both RFdiffusion + MPNN and EvoDiff datasets were randomly picked, making to-
gether a dataset of 10, 000 proteins.

BLAST search Using NCBIWWW.qblast function from Biopython (v 1.81) (Cock et al., 2009),
we performed BLASTP (Altschul et al., 1990) searches against the NCBI non-redundant protein
database (nr), reporting the top hit for each sequence.

Foldseek search We employed Foldseek (van Kempen et al., 2023) to search against AlphaFoldDB
(Varadi et al., 2021) and PDB (Berman et al., 2000), reporting the top hits and their TM scores.
The search was done through Foldseek’s web page API with the TM-align algorithm and Al-
phaFold/UniProt50 and PDB100 databases.

ProtBert-BFD embeddings and perplexity The generated proteins’ sequences were run through
the ProtBert-BFD model (Elnaggar et al., 2022) and the last layer embeddings of the proteins were
extracted and processed using average pooling to yield a fixed-size vector of 1024 dimensions. To
assess the complexity of the generated sequences, the perplexity (Chen et al., 2008) of each sequence
was computed with the ProtBert-BFD model by masking each amino acid with [MASK] token.

Knot core determination For knotted proteins, we identified the knot core by sequentially trimming
residues and reassessing the topology until the knot was lost or changed, using the Topoly package’s
homfly method (Dabrowski-Tumanski et al., 2020).

Neural Network Classifiers for knot status prediction were trained using the fastai package’s
tabular learner (Howard & Gugger, 2020) with two hidden layers (500 and 200 neurons).
The training involved three epochs with a maximum learning rate of 0.005, leveraging protein em-
beddings as input.
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4 DISCUSSION

In this study, we explored the design of artificial knotted proteins using two methodologies:
EvoDiff and a combination of RFdiffusion with ProteinMPNN. While both methods showed
promise in generating complex structures, they differed significantly in their outputs. The RFd-
iffusion+ProteinMPNN approach produced proteins more akin to known structures, as shown by
structural similarity metrics. In contrast, EvoDiff was better at generating novel sequences, though
these were less likely to resemble existing proteins. While our study demonstrates the potential of
generative models to sample knotted protein topologies, further validation on more diverse test sets
is needed to confirm the robustness of these findings.

To support further research in this area, we’ve made available a dataset of 10,000 gen-
erated proteins and the corresponding analysis code through https://github.com/
ML-Bioinfo-CEITEC/ArtificialKnottedProteinsPaper. Our ongoing goal is to de-
velop methods that not only create novel proteins but also accurately reflect natural protein knotting,
enabling the transfer of insights from artificial to natural proteins. This balance between innova-
tion and biological relevance is crucial for advancing our understanding of protein structures and
their potential applications. We aspire to bridge the gap between the realms of artificial and natural
proteins, fostering a deeper understanding of protein folding and knotting mechanism.
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