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ABSTRACT

Multimodal Chain-of-Thought (CoT) has emerged as a powerful technique for
enhancing the vision-language reasoning with interleaved information. However,
existing methods often rely on simplistic heuristics for constructing interleaved
CoT, typically depending on attention maps, which our empirical analysis reveals
can be unreliable. What’s more, the shortcomings of their passive and purpose-
less selection strategies and their arbitrary triggering mechanisms in capturing the
model’s cognitive need for information are further amplified. In this paper, we
propose AIMCoT, an Active Information-driven Multi-modal Chain-of-Thought
framework that addresses these fundamental limitations. AIMCoT introduces
three synergistic components: (1) Context-enhanced Attention-map Generation
(CAG), which mitigates the text-vision granularity imbalance, thereby producing
more reliable attention maps as a foundation. (2) Active Visual Probing (AVP),
which replaces passive selection with a proactive, goal-oriented strategy grounded
in information theory to select image regions that help answer the questions maxi-
mally. (3) Dynamic Attention-shifting Trigger (DAT), which intelligently deter-
mines the optimal moments to insert visual information by monitoring the model’s
text-to-vision attention shifts. Extensive experiments on three challenging bench-
marks demonstrate that AIMCoT significantly outperforms state-of-the-art methods
across different settings. By actively foraging for information and dynamically
structuring its reasoning process, AIMCoT represents a critical step towards more
robust, effective, and human-like multimodal reasoning. Our code is available at
https://anonymous.4open.science/r/AIMCoT.

1 INTRODUCTION

The advent of Chain-of-Thought (CoT) prompting has marked a significant milestone in the reasoning
capabilities of Large Language Models (LLMs) Wei et al. (2022); Wang et al. (2022); Zhang et al.
(2022); Suzgun et al. (2022); Li et al. (2025); Yao et al. (2023); Besta et al. (2024), enabling them to
deconstruct complex problems into a series of intermediate, interpretable steps. This paradigm has
been naturally extended to Vision-Language Models (VLMs), where early efforts Mitra et al. (2024);
Zheng et al. (2023); Lei et al. (2024); Zhang et al. (2023) focused on generating text-only rationales
to articulate the model’s reasoning process over visual inputs. A pivotal advancement in this domain
was the introduction of Interleaved-modal Chain-of-Thought Gao et al. (2025), which pioneered
the direct integration of visual patches into the reasoning chain. By pairing textual rationales with
corresponding image regions, the interleaved CoT demonstrated a superior ability to ground language
in visual evidence, setting a new standard for multimodal reasoning.

However, the efficacy of existing research Ge et al. (2025); Gao et al. (2025) is fundamentally
predicated on the reliability of their underlying mechanisms for selecting and integrating visual
information. These methods typically rely on a passive, attention-driven strategy: they select the
Top-K regions with the highest attention scores and insert them at predefined moments, e.g., the
appearance of a newline character, a practice with little theoretical or empirical justification for its
timing. This reliance exposes critical vulnerabilities that limit their full potential. Our empirical
analysis reveals that high-attention regions are often redundant or, more alarmingly, fail to capture
the most crucial visual details, especially when a granularity mismatch exists between the textual
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query and the visual evidence. This raises three fundamental questions: (1) What information source
can reliably identify truly salient visual regions? (2) How can we accurately select useful regions in
a proactive and purposeful manner rather than passively relying on potentially unreliable attention
scores? (3) When is the optimal moment to insert visual evidence into the reasoning process?

In this work, we postulate that a more robust multimodal reasoning framework requires a shift from
passive attention-following to an active, information-seeking paradigm. We propose AIMCoT: Active
Information-driven Multi-modal Chain-of-Thought, a novel framework that directly addresses the
limitations of prior work, reframing the selection of visual evidence from a passive, attention-based
retrieval task to an active, goal-oriented probing process. Inspired by the principles of information
foraging Pirolli & Card (1999); Broadbent (2013), AIMCoT operates on the premise that the most
valuable visual rationale is one that maximally reduces the model’s uncertainty about the subsequent
step in its reasoning chain. Rather than simply asking "Where is the model looking?", we prompt the
model to actively ask "Which piece of visual information will be most helpful for me to see right
now?". This shift is realized through three synergistic components:

1. Context-enhanced Attention-map Generation (CAG), which mitigates the text-vision granularity
disparity to improve the reliability of attention map for better identifying salient regions by
generating a context-aware description of the image.

2. Active Visual Probing (AVP), which implements a proactive, goal-oriented selection strategy
grounded in information theory, selecting a set of visual regions that provide the highest possible
information gain for the task at hand.

3. Dynamic Attention-shifting Trigger (DAT), an intelligent triggering mechanism that carefully
captures the critical moments when model’s cognitive focus shifts significantly from text to vision,
and inserts visual information precisely.

Our contributions are as follows:

• We introduce AIMCoT, a novel training-free framework that reframes the construction of multi-
modal CoT as an active information-foraging process, moving beyond the limitations of static,
passive, and purposeless region selection.

• We propose a system comprised of three complementary methods (CAG, AVP, DAT) that collec-
tively enable VLMs to proactively forage for informative visual evidence and strategically integrate
it into their reasoning process at the detected critical moments.

• We present a comprehensive set of empirically-grounded motivations that inspire the designs within
our AIMCoT framework. Furthermore, we provide substantial theoretical analysis and design
targeted experiments to explore the properties of these designs, covering key aspects such as the
deployability of AIMCoT, the interplay between the CAG and AVP modules, and the necessity of
incorporating an exploratory candidate pool.

• Through extensive experiments conducted on two backbones (Chameleon-7B and Qwen2-VL-7B)
across challenging benchmarks including M3CoT, ScienceQA, and LLaVA-W, we demonstrate
that AIMCoT significantly outperforms state-of-the-art baselines and advances the frontier of
vision-language reasoning.

2 RELATED WORK

The success of CoT prompting in LLMs has naturally extended to VLMs, aiming to make their
reasoning processes explicit and interpretable. Early efforts focused on generating text-only rationales.
MMCoT Zhang et al. (2023) first generates a rationale from the input and then uses this rationale
along with the original multimodal data to infer the final answer. CCoT Mitra et al. (2024) prompts
the VLM to generate an intermediate scene graph to structure its understanding. DDCoT Zheng et al.
(2023) decomposes complex problems into simpler sub-questions and leverages external models to
fill information gaps. Alternatively, SCAFFOLD Lei et al. (2024) overlays a coordinate grid on the
image, enabling the VLM to reference spatial regions explicitly in its textual reasoning.

A pivotal advancement is the introduction of interleaved-modal CoT, which integrates visual evidence
directly into the reasoning chain. The leading approach, ICoT Gao et al. (2025), selects the top-K
regions from the VLM’s attention map and inserts them at predefined moments. MRFD Ge et al.
(2025) meticulously selects the salient visual regions to foster more reliable reasoning, alleviating
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VLM hallucination. However, our analysis reveals that such passive, attention-driven strategies
are fundamentally limited by the unreliability of raw attention maps, especially during text-vision
granularity mismatches, and their arbitrary insertion points fail to capture the model’s dynamic
cognitive needs. Our proposed AIMCoT addresses these critical vulnerabilities by shifting the
paradigm from passive selection to active information foraging, employing goal-oriented visual
probing and dynamic, attention-shift-triggered integration.

3 MOTIVATION

3.1 IDENTIFYING THE RELIABILITY OF THE ATTENTION MAP

The utilization of the attention map in multimodal learning has been explored by recent research Gao
et al. (2025); Ge et al. (2025); Xie et al. (2022); Wang et al. (2023); Liu et al. (2022), inspiring us to
also take it as a source from which the salient visual regions are selected. However, considering their
strong dependence on attention map, we question its reliability by posing two fundamental questions:

(1) Do all significant regions on the attention map help the VLMs answer questions correctly?
(2) Does the attention map comprehensively capture all visual regions that are instrumental to the

VLM’s correct prediction?

Figure 1: The images of the 22nd question on
LLaVA-W benchmark, which is a close-up photo
of a meal at ICHIRAN. The left and right figures
are respectively the original image and the first
three sets of regions selected by the Top-K strategy
(red, purple, and blue, respectively). A detailed
explanation is shown in Appendix C.

To acquire a holistic comprehension of these
two questions, our empirical analysis is con-
ducted on the popular Visual Question Answer-
ing (VQA) benchmark, LLaVA-W Liu et al.
(2024), employing ICoT Gao et al. (2025) as a
baseline model, which selects the Top-K regions
from the attention map to construct a text-vision
interleaved CoT. Chameleon-7B Team (2024)
serves as the backbone.

We quantitatively investigate the role of high-
attention regions by masking the top-Kmask re-
gions identified by ICoT (0-shot). On LLaVA-
W, this masking leads to a minor performance
drop of just 3.93% (top 10) and 2.44% (top 20),
as shown in Table 1. Notably, performance in-
creases when the mask is expanded from the top
10 to the top 20 regions. These results strongly
suggest that not all high-attention regions contribute significantly to the model’s prediction: some
have negligible impact or even introduce detrimental signals.

Table 1: Performance degradation of the baseline
model (ICoT, 0-shot) when the Top Kmask regions
on the attention map are masked.

Kmask 0 1 5 10 20

Degradation 0% 0.26% 1.43% 3.93% 2.44%

In response to the second question, we manually
inspect the content of high-attention regions to
understand their role in VLM’s predictions. In a
challenging LLaVA-W example (Figure 1), the
answer lies in a small area, i.e., the inner rim
of a ramen bowl, among rich visual informa-
tion. The top two most attended image patch
sets entirely miss this crucial detail, with only a
negligible portion appearing in the third set. This indicates a potential misalignment between high-
attention regions and key visual information, particularly when the text-vision granularity disparity is
significant.

3.2 FORAGING FOR THE MOST INFORMATION TO GUIDE REGION SELECTION

The analysis in Section 3.1 empirically reveals that the efficacy of the attention-driven Top-K strategy
is notably constrained, particularly when faced with significant text-vision granularity disparities.
Furthermore, fundamentally, since attention maps merely reflect token correlations, a static approach
without an explicit goal like Top-K, which relies solely on attention scores, is inherently suboptimal.
This insight directly motivates us to explore a selection method that is more proactive and purposeful.
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Existing recognized research Pirolli & Card (1999); Broadbent (2013); Oaksford & Chater (1994);
Friston (2010) supports that people, when possible, will maximize their rate of gaining valuable
information, as it yields more useful information per unit cost. Inspired by this, we explore providing
the VLM with image regions that yield the highest information gain, thereby maximally reducing
the model’s uncertainty in answering a given question. Intuitively, the model’s uncertainty can be
quantified by the entropy of its probability distribution over the vocabulary given the current context,
while the information gain of an image region is measured based on model’s entropy when the region
is included in the context. The definitions are meticulously detailed in Section 4.3.

Figure 2: The visual-
ization of regions se-
lected by the informa-
tion gain-guided strat-
egy.

To continue with the example in Section 3.1, Figure 2 illustrates the top three
regions ranked by the information gain for VLM. Evidently, in contrast to
the regions selected via Top-K shown in Figure 1, the information gain-based
selection accurately guides the VLM to first focus on the inner rim of the
bowl (red), where the critical information is contained. Although the VLM
does not yield the final answer in this region, we note that this indicates a
correct line of reasoning, as the ground truth is situated in a highly similar
area (a nearby location also on the inner wall of the bowl). Subsequently,
the region ranked third (blue) precisely encompasses a large portion of the
restaurant’s name, which is just the answer to the question. This suggests
that even for a challenging case where the text-vision granularity is highly
disparate, information gain serves as a better foundation for region selection.

3.3 INSERTING VISUAL INFORMATION AT KEY MOMENTS

Although existing research Gao et al. (2025) has attempted to construct interleaved CoT, they
often ignore a reasonable triggering mechanism to capture the critical moment of inserting visual
information. For example, ICoT Gao et al. (2025) simply uses a newline character as a trigger signal.
This motivates an in-depth investigation into reliable indicators for identifying these key moments for
inserting visual content.

To this end, we conduct a comparative case study on the LLaVA-W benchmark, with ROUGE-L
as the evaluation metric. We collect all predictions generated by the baseline model (ICoT) and
partition them into high- and low-scoring groups based on ROUGE-L scores. Given that the model’s
attention map has served as an important foundation for existing works Gao et al. (2025); Ge et al.
(2025); Xie et al. (2022); Wang et al. (2023); Liu et al. (2022), which is not only readily accessible
but also effectively reflects the model’s aggregate attention to the textual and visual parts of the
input, we are inspired to monitor the attention shifts between these two modalities throughout the
prediction process. The experiments are detailed in Appendix G, from which two key observations are
revealed: (1) Correlation analysis: inserting visual data precisely when the model’s attention pivots
towards the visual modality is strongly correlated with higher scores and (2) Group analysis: this
phenomenon further serves as a crucial characteristic that distinguishes high-scoring from low-scoring
outputs.

4 AIMCOT

In this section, we begin by briefly reviewing the background of multimodal learning. Then, we detail
the proposed methods motivated by the following key insights derived from Section 3:

(1) First, the high-scoring attention regions are not always beneficial for question-answering, and
crucial visual evidence can be missed particularly in cases of text-vision granularity mismatch.

(2) Second, for a given set of candidate regions, selection based on information gain significantly
outperforms the conventional attention-driven Top-K method.

(3) Finally, capturing the critical moments to insert visual information improves the construction of
multimodal CoT, and text-to-vision attention shifts serve as an important indicator.

Accordingly, we propose AIMCoT, which encompasses three key methods: (1) Context-enhanced
Attention-map Generation (CAG), which generates a fine-grained description for the image to
alleviate text-vision disparity. (2) Active Visual Probing (AVP), which proactively and purposefully
selects regions that are most helpful for answering the question. (3) Dynamic Attention-shifting
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Trigger (DAT), which triggers vision insertion into CoT when the model’s cognitive focus is
significantly shifted from text to vision.

4.1 PRELIMINARIES

Vision-Language Model. A VLM typically fuses a vision encoder for preprocessing visual input and
a generative language model, which jointly enable it to respond in a human-like manner as follows:

answer = VLM(I, x), (1)

where I and x are the image and query, respectively.

Multimodal CoT. Compared to the direct response shown in Equation 1, multimodal CoT encourages
the VLM to output the thought process, called rationales, before outputting the final answer. Existing
work Gao et al. (2025) has been devoted to generalizing rationales from pure text to text-vision
interleaved form.

4.2 CONTEXT-ENHANCED ATTENTION-MAP GENERATION (CAG)

In this component, the VLM is prompted to carefully generate an explanatory description of the given
image within the question before the process of VQA, with the explicit goal of helping a potential
respondent correctly answer the question. In this process, the VLM acts as a facilitator who interprets
the image in the context of the given question to guide the respondent’s thought process. Formally, it
is expressed as follows:

DCAG = VLM(I, x,PCAG), (2)

where VLM, I, x are the used VLM, the given image and question, respectively. PCAG is the prompt
provided for the model to generate the description. Then, to compensate for the sparsity of textual
information within the context, the generated description DCAG is concatenated to the question x as
follows:

x′ = concat(x,DCAG). (3)

By enhancing the context to compensate for the sparsity of textual information, the disparity in
text-vision granularity is effectively mitigated, unlocking the potential for the attention map to serve
as a more reliable indicator of task-relevant regions. We provide an example in Appendix H.1 that
details the template of PCAG, the entire process of CAG, and how the final attention map A′ is
generated, which is used in the next stage.

4.3 ACTIVE VISUAL PROBING (AVP)

Built upon the theoretical foundation of information gain, AVP is designed to select the crucial
regions from a set of candidate visual regions. Although AVP consists of three steps elaborated upon
as follows, in terms of complexity, our provided analysis and empirical results in Appendices K
and M suggest that the introduction of AVP still enables AIMCoT to strike a good balance between
deployability and superior performance. A visualization of AVP is shown in Figure 3.

Diversified Set of Candidate Regions Construction. Based on the first two insights summarized in
Section 4, an inference can be obtained: relying solely on attention maps as the source may prevent
the optimal region selection. Motivated by this, we propose to diversify the source of the candidate
regions, thereby reducing the model’s dependency on attention maps alone. Specifically, we not only
construct an attention-driven candidate set, Cattn, by selecting N regions with the highest attention
scores (N ∈ R), but also generate an exploratory candidate set, Cexp, by sampling M grid regions
uniformly at random from the input image (M ∈ R). Our empirical analysis in Appendix J shows
that the incorporation of exploratory set Cexp provides substantial salient visual regions for the VLM.
Furthermore, we study the impact of introducing Cexp on the performance of AIMCoT, and further
compare random sampling, selective search Uijlings et al. (2013), and FastSAM Zhao et al. (2023) as
methods for constructing Cexp in Appendix N.

Formally, the process can be expressed as follows:

Cattn = {R1, R2, · · · , RN}, s.t. Ri=Top-i Region from the attention map A′, (4)
Cexp = {RN+1, RN+2, · · · , RN+M}, C = Cattn ∪ Cexp, (5)

5
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Figure 3: An overview of our AVP module, which iteratively selects K most informative regions
from a diversified candidate set C to build an interleaved CoT that fosters vision-language reasoning.

where Cattn, Cexp, and C are the attention-driven, exploratory, and total candidate sets, respectively.
Subsequently, the goal is to select the most informative K regions from C (K < |C| = N +M ).

Quantification of Information Gain. An ideal region of input image is the one that is most
informative and critical for answering the question, i.e., the one that minimizes the model’s predictive
uncertainty. Based on this idea, the region selection problem is transformed into a sequential
information gain maximization task. To formalize this objective, we propose the concept of basic
uncertainty UB defined as follows:

UB = H(Y |I, x, y<t) = −
∑
y∈V

P (y|I, x, y<t)log2P (y|I, x, y<t), (6)

where I, x and y<t are the input image, question and the predicted tokens, respectively. P (y|I, x, y<t)
is model’s probability distribution across the vocabulary V in current context without the introduction
of any region Ri ∈ C. It is seen that UB takes the form of entropy, thereby inherently capturing the
model’s uncertainty when predicting the next token t without incorporating any Ri ∈ C.

Similarly, the conditional uncertainty UC,i, which illustrates the model’s uncertainty when an
arbitrary region Ri ∈ C is included into the context, is proposed and defined as follows:

UC,i = H(Y |I, x, y<t, Ri) = −
∑
y∈V

P (y|I, x, y<t, Ri)log2P (y|I, x, y<t, Ri), (7)

where P (y|I, x, y<t, Ri) is the model’s probability distribution across the vocabulary V in the
context combined with the region Ri. Eventually, the aforementioned conceptual formulation
logically motivates the definition of our final key metric: the information gain of region Ri, which
is formally defined as follows:

IG({Ri}) = UB − UC,i, i = 1, 2, · · · , N +M. (8)

Intuitively, IG({Ri}) quantitatively characterizes how incorporating region Ri reduces the model’s
uncertainty for the subsequent token prediction.

Optimal Region Selection. To achieve the target of region selection, we formalize the problem as
follows:

Maximize F (S) = IG(S), s.t. S ⊂ C, |S| = K, (9)

where S is the optimal set of selected regions and K is the size of S serving as a hyper-parameter.
Motivated by two crucial insights, we propose a greedy algorithm detailed in Algorithm 1 to solve this
problem: (1) According to recognized works Bian et al. (2017); Sener & Savarese (2018); Kim et al.
(2016); Krause et al. (2008); Das & Kempe (2011), the greedy algorithm is a well-established and
widely-used method for maximizing functions, especially for maximizing those that exhibit a tendency
towards submodularity, even if they are not submodular theoretically; (2) Our experiments in
Appendix I suggest that the information gain function F empirically exhibits significant approximate
submodularity.
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Specifically, the selection is an iterative process consisting of K steps. At each step, AVP proactively
selects the most informative and not-yet-chosen region from the candidate set C with the explicit
goal of minimizing the uncertainty of the model’s answer to the question. The chosen region is
then added to an intermediate set R∗. Notably, a key merit of AVP is its ability to bypass regions
that, despite high attention scores, exhibit strong informational overlap with regions that have been
selected. After K rounds, the collection of all selected regions in R∗ constitutes the final optimal
selection S. Substantial results in Appendices K.2 and M suggest that our framework’s average
inference time is no more than 1.36 times that of an efficient baseline ICoT, and the framework scales
efficiently with larger values of K and NC = |C|, respectively.

4.4 DYNAMIC ATTENTION-SHIFTING TRIGGER (DAT)

As motivated by the key observation in Section 3.3, it is vital to appropriately time the insertion
of visual information when constructing a multimodal CoT, and furthermore, the shift of attention
from the textual to the visual context serves as a crucial indicator. Motivated by these insights, we
propose the DAT mechanism, which systematically evaluates the model’s attention scores on the
visual context at every token t generation step formulated as follows:

Avisual(t) =
∑

i∈indices of Cvisual

āt,i, (10)

where Cvisual is the visual information within the context; āt,i is the average attention score of token
t towards the visual token with index i across the last NL VLM layers. Drawing inspiration from the
NLP community Jawahar et al. (2019); Tenney et al. (2019); Vig & Belinkov (2019), we restrict our
focus to the model’s final layers, as they are responsible for capturing high-level semantic information,
including semantic roles and coreference relations, where the shifting signal is presumed to be more
reliable. In our implementation, we use the last 3 layers by default (NL = 3). Then, the shift of
attention is formalized as follows:

∆Avisual(t) = Avisual(t)−Avisual(t− 1), (11)

which quantifies the model’s attention shift towards the visual context between generating the current
token and the preceding one. Eventually, a hyper-parameter δ ∈ R is employed to delineate the point
at which the attention shift ∆Avisual(t) is substantial enough to activate the AVP to insert essential
visual information in the multimodal CoT. We detail a sensitivity analysis of the threshold δ with
an emphasis on its impact on the frequency of triggering AVP and the performance of AIMCoT in
Appendix L.

5 EXPERIMENTS

5.1 BENCHMARKS AND BASELINES

In this study, we evaluate AIMCoT on three popular and challenging VQA benchmarks, including
M3CoT Chen et al. (2024), ScienceQA Saikh et al. (2022), and LLaVA-Bench In-the-Wild (LLaVA-
W) Liu et al. (2024). We provide detailed introductions in Appendix D.

To evaluate the performance of AIMCoT, we introduce the vanilla VLM w/o CoT (No-CoT) and a
range of state-of-the-art methods as baseline models, including DDCoT Zheng et al. (2023), MMCoT
Zhang et al. (2023), CCoT Mitra et al. (2024), and SCAFFOLD Lei et al. (2024), which generate
text-only rationales. Furthermore, ICoT Gao et al. (2025), which constructs interleaved-modal CoT,
is considered as well. The detailed introduction to them is listed in Appendix E. In presenting the
results, we directly cite the performance reported in existing works where applicable.

5.2 IMPLEMENTATION DETAILS

We implement AIMCoT and the baselines on Chameleon-7B Team (2024) and Qwen2-VL-7B-
Instruct Wang et al. (2024) in two settings (both 0- and 1-shot), which aligns with the recent leading
research Gao et al. (2025). The experiments are conducted on A6000 GPUs. The hyper-parameter
settings for AIMCoT and the reproducibility statement are meticulously listed in Appendix H.2 and
Section 7, respectively.
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Table 2: Performance comparison results on three widely-used benchmarks. The best performances
are shown in bold. The metric for experiments on M3CoT and ScienceQA is Accuracy (ACC.), while
on LLaVA-W, the metric ROUGE-L is adopted.

Backbone Method M3CoT (ACC.) ScienceQA (ACC.) LLaVA-W (ROUGE-L)

0-shot 1-shot 0-shot 1-shot 0-shot 1-shot

Chameleon-7B

No-CoT 29.1 28.4 47.7 48.5 13.1 23.9
DDCoT 28.6 29.8 49.8 49.2 20.2 23.1
MMCoT 28.5 30.6 49.0 50.7 20.4 20.6
CCoT 29.4 31.4 50.2 51.3 22.1 24.5
SCAFFOLD 29.6 31.1 48.5 47.5 21.7 24.7
ICoT 29.8 32.3 51.0 53.4 25.2 27.6
AIMCoT (Ours) 31.4 32.8 53.1 54.5 29.8 32.0
Improvement 5.50% 1.47% 4.08% 2.04% 18.25% 15.94%

Qwen2-VL-7B

No-CoT 43.6 45.4 56.3 64.4 32.7 33.5
MMCoT 40.1 42.5 51.3 58.3 30.7 31.4
CCoT 43.3 44.1 56.4 63.8 29.4 33.9
DDCoT 42.6 45.7 55.2 64.9 31.2 32.8
SCAFFOLD 41.7 44.9 53.7 62.5 31.8 33.1
ICoT 44.1 46.0 56.8 65.4 34.2 35.7
AIMCoT (Ours) 44.7 46.6 57.4 66.3 36.3 37.3
Improvement 1.4% 1.3% 1.1% 1.3% 6.2% 4.5%

5.3 PERFORMANCE COMPARISON

We evaluate the performance of AIMCoT against the state-of-the-art (SOTA) methods. The results
shown in Table 2 clearly demonstrate the superiority of our proposed AIMCoT as it significantly
outperforms all the baseline models under both 0- and 1-shot settings across all the datasets.

Specifically, AIMCoT surpasses all baselines that generate text-only rationales, confirming the efficacy
of integrating salient visual information directly into CoT. When compared to ICoT, which also
produces interleaved text-vision CoT, AIMCoT’s superior performance underscores the importance
of our three key contributions: (1) a more reliable attention map as a foundation, (2) a proactive,
goal-oriented mechanism for image region selection, and (3) an intelligent trigger for inserting visual
information at critical moments.

Crucially, AIMCoT’s advantage is most pronounced on the open-ended LLaVA-W benchmark and in
the 0-shot setting, which better simulate complex, real-world scenarios where the model must rely
solely on its internal knowledge and reasoning. By emulating what can be seen as a more human-like
cognitive process, AIMCoT unlocks the VLM’s foundational reasoning capabilities, enabling robust
performance in novel and challenging situations.

5.4 ABLATION STUDY

In this section, we conduct a series of ablation studies to verify the efficacy of each component within
AIMCoT. The details of settings are as follows:

• In w/o CAG, the VLM is directly prompted with the raw question x and the paired image I;
• In w/o AVP, the AVP is replaced by the attention-driven Top-K strategy by following existing

works Gao et al. (2025); Ge et al. (2025), which selects the regions with Top-K attention scores on
the model’s attention map;

• In w/o DAT, following existing research Gao et al. (2025), the insertion of visual information in
CoT is triggered when the model outputs the signal token, which is a line break by default.

Ablation results in Table 3 validate the contributions of our core components. First, CAG provides
essential context enhancement, proving crucial for generating high-quality CoT, particularly when
text queries are sparse (M3CoT, LLaVA-W). Second, the consistent, significant performance drop
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when replacing AVP with a Top-K baseline underscores the substantial superiority of our proactive,
information-oriented method. Furthermore, the removal of DAT also results in a considerable
performance decline, highlighting the critical importance of the timing of image insertion.

Table 3: Ablation study of AIMCoT conducted on Chameleon-7B
under 0-shot setting.

Dataset AIMCoT w/o CAG w/o AVP w/o DAT

M3CoT (ACC.) 31.4 30.5 (-0.9) 30.6 (-0.8) 30.8 (-0.6)
ScienceQA (ACC.) 53.1 52.8 (-0.3) 52.3 (-0.8) 52.7 (-0.4)
LLaVA-W (ROUGE-L) 29.8 26.8 (-3.0) 26.2 (-3.6) 27.3 (-2.5)

The performance gains
from AIMCoT are most
pronounced on LLaVA-W,
a challenging benchmark
requiring open-ended
generation. This large
improvement starkly
demonstrates our model’s
advanced capability to comprehend intricate multimodal information and tackle demanding,
unconstrained tasks.

5.5 IN-DEPTH ANALYSIS: THE INTERPLAY BETWEEN CAG AND AVP

Table 4: Ablation study of the baseline model (BM) on Chameleon-7B
under 0-shot setting.
Dataset BM BM w/ CAG BM w/ AVP BM w/ CAG, AVP

M3CoT (ACC.) 29.8 30.3 (+0.5) 30.2 (+0.4) 30.8 (+1.0)
ScienceQA (ACC.) 51.0 52.0 (+1.0) 51.9 (+0.9) 52.7 (+1.7)
LLaVA-W (ROUGE-L) 25.2 25.8 (+0.6) 26.4 (+1.2) 27.3 (+2.1)

Our proposed compo-
nents collaborate or-
ganically to foster the
construction of multi-
modal CoT: as a pre-
ceding module, CAG
enriches the context to
benefit the construc-
tion of the candidate set; subsequently, AVP triggered by DAT proactively selects the most salient
regions from the candidate set.

In this section, we investigate the interaction between CAG and AVP via an ablation study. Starting
from the baseline ICoT model (BM), i.e., AIMCoT stripped of all proposed modules, we sequentially
add CAG and then AVP. Table 4 presents the results, from which we derive the following insights:

• The compatibility between CAG and AVP: both CAG and AVP individually provide significant
gains, but their combination synergistically improves the construction of the interleaved CoT.

• The consistent superiority of AVP over Top-K selection: AVP consistently and significantly
outperforms the standard Top-K selection method for choosing image regions, both with and
without the presence of the CAG module.

• The interplay between CAG and AVP: The average performance improvement of AVP over
Top-K selection increases from 2.62% to 2.94% when CAG is introduced. This suggests CAG
enhances the source attention map, providing a more reliable set of candidate regions and thereby
unlocking AVP’s full potential to select the most salient visual evidence.

6 CONCLUSION

In this paper, we propose AIMCoT, a novel framework that reframes the construction of interleaved-
modal CoT as an active, information-foraging process, addressing the limitations in existing methods,
which often rely on passive, heuristic-driven mechanisms for selecting and inserting visual information
at suboptimal moments. Our extensive experiments on three popular and challenging benchmarks
demonstrate that AIMCoT significantly outperforms state-of-the-art methods in both 0- and 1-shot
settings (up to 18%). By dynamically structuring its reasoning and actively seeking the most
informative visual cues, AIMCoT achieves a more proactive, goal-oriented, and human-like approach
to vision-language reasoning.

Despite the strong performance, AIMCoT presents avenues for future exploration. The AVP module,
while highly effective and optimized, introduces a slight computational overhead compared to simpler
attention-based selection. Future work could explore lightweight, learnable policies for region
selection to further enhance its deployability. We also plan to extend our evaluation to a broader
range of VLM architectures and more complex, long-form reasoning tasks to further probe the
generalizability and limits of our active information-seeking paradigm.
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7 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide the complete source code for our AIMCoT
framework and all experiments in the supplementary materials, accessible via an anonymized link:
https://anonymous.4open.science/r/AIMCoT. The architectural details and theoretical underpinnings
of our proposed components, including Context-enhanced Attention-map Generation (CAG), Active
Visual Probing (AVP), and Dynamic Attention-shifting Trigger (DAT), are thoroughly described in
Section 4 of the main paper. The specific greedy algorithm employed by AVP is detailed in Algorithm
1 (Appendix F). All datasets used in our evaluation are publicly available benchmarks, as detailed in
Section 5.1 and Appendix D. We provide a comprehensive list of all hyper-parameter settings used to
achieve the reported results for each benchmark in Appendix H.2 (Table 5). Furthermore, extensive
ablation studies (Section 5.4), and in-depth analyses (Section 5.5, Appendices G,I, J, L, and M), are
provided to allow for a complete replication of our findings.
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A APPENDIX

B LLM USAGE STATEMENT

In the preparation of this manuscript, we utilized a large language model (LLM) as a general-purpose
writing assistance tool. The primary uses of the LLM were twofold:

• Grammatical Correction: The LLM was employed to proofread the manuscript for grammatical
errors, spelling mistakes, and awkward phrasing. This helped improve the overall clarity and
readability of our paper.

• Text Condensation: To adhere to the page limits of the conference, we used the LLM to help
condense and rephrase certain paragraphs and sentences.

All suggestions provided by the LLM were carefully reviewed, critically evaluated, and manually
edited by the authors to ensure that the scientific integrity and intended meaning of our work were
preserved. Notably, the LLM was not used for core research activities, including the ideation of
the AIMCoT framework, the design of experiments, the analysis of results, or the generation of the
primary scientific claims. The final intellectual content and all contributions presented in this paper
are entirely our own.

C EXPLANATION FOR FIGURE 1

Figure 1 shows the images of the 22nd question on LLaVA-W benchmark. The query for this
question is: "What’s the name of the restaurant serving these dishes?" and the image is a close-up
photo of a meal at ICHIRAN. The left figure is the original image, and the right figure visualizes
the regions selected by the Top-K strategy. The num_selected_patches regions with the highest,
second-highest, and third-highest scores are designated as the first, second, and third sets, colored red,
purple, and blue, respectively. The first set is utilized by the baseline model according to its default
design (num_selected_patches = 72).

D INTRODUCTION TO THE BENCHMARKS

M3CoT Chen et al. (2024) is a novel multimodal CoT benchmark, which introduces complex,
multi-step problems across science, mathematics, and commonsense domains, comprising 11,459
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samples in total. M3CoT is characterized by succinct textual queries (<15 tokens on average) paired
with intricate problems. This inherent text-vision imbalance makes it an ideal platform to validate
the efficacy of our proposed CAG in mitigating this issue and the superiority of AVP in proactively
selecting the salient visual regions.

ScienceQA Saikh et al. (2022) is a popular benchmark for multiple-choice question answering
with explanations on scholarly articles, comprising over 100,000 context-question-answer triples to
address data scarcity in scientific machine reading comprehension.

LLaVA-Bench In-the-Wild (LLaVA-W) Liu et al. (2024) is a challenging open-ended benchmark
designed to evaluate the real-world capabilities of VLMs by mimicking the unpredictability of
real-world scenarios. The answers generated by GPT-4v Achiam et al. (2023) serve as the labels.
LLaVA-W is exceptionally well-suited for evaluating the capability of our proposed framework to
address complex, open-ended problems by generating a multimodal CoT, attending to salient regions
within the image, and meticulously parsing the query.

E INTRODUCTION TO THE BASELINE MODELS

No-CoT prompts the VLM to answer questions directly based on the input query and image. In the
1-shot setting, an example containing the query, image, and corresponding answer is attached.

DDCoT Zheng et al. (2023) deconstructs a multimodal problem into reasoning and recognition sub-
questions, uses negative-space prompting to identify and fill visual information gaps with external
models, and then integrates all information for a final joint reasoning step to generate rationales.

MMCoT Zhang et al. (2023) first generates a rationale from fused language and vision inputs, and
then uses this rationale along with the original multimodal data to infer the final answer.

CCoT Mitra et al. (2024) first prompts the VLM to generate a scene graph from an image and then
uses it as an intermediate reasoning step to produce the final response.

SCAFFOLD Lei et al. (2024) promotes vision-language coordination in the VLM by overlaying a
dot matrix with coordinates onto an image, which then serves as a visual anchor that can be explicitly
referenced in the textual prompt.

ICoT Gao et al. (2025) leverages the attention maps of the VLM to select relevant patches from the
input image and insert them into the reasoning process, thereby generating sequential steps of paired
visual and textual rationales.

F GREEDY ALGORITHM WITHIN AVP MODULE

The complete process of the greedy algorithm within AVP is shown in Algorithm 1.

Algorithm 1: Greedy Algorithm for Optimal Region Selection
Input: total candidate set C, size of optimal selection K
Output: optimal selection S

1 R∗ ← ∅
2 for k ← 1, 2, · · · ,K do
3 UB ← H(Y |I, x, y<t, R

∗)
4 for i← 1, 2, · · · , N +M do
5 UC,i ← H(Y |I, x, y<t, R

∗ ∪ {Ri})
6 IG({Ri})← UB − UC,i

7 Rnext ← argmaxRi∈C\R∗{IG({Ri})}
8 R∗ ← R∗ ∪ {Rnext}
9 S ← R∗

10 return S
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G DETAILED ANALYSIS OF KEY MOMENTS TO INSERT VISUAL INFORMATION

Experimental Setup. We take ICoT Gao et al. (2025) as a baseline model, which is required to answer
all questions from the LLaVA-W benchmark in a 0-shot setting, with ROUGE-L used as the evaluation
metric. The hyper-parameters follow the default settings of the open-source implementation for ICoT,
and all experiments are conducted with the Chameleon-7B backbone.

Formal Definition of Attention Shifts. To analyze attention shifts, we examine the averaged
attention maps across all attention heads in the last three layers of the VLM during the prediction of
each token t. The model’s total attention scores allocated to the visual and text components of the
input are respectively measured as follows:

Avisual(t) =
∑

i∈indices of Cvisual

āt,i, Atext(t) =
∑

j∈indices of Ctext

āt,j , (12)

where Cvisual, Ctext are the visual and text information within the context, respectively. Then, the
shift in attention from the textual to the visual modality while generating token t is defined as follows:

δt = Avisual(t)−Avisual(t− 1). (13)

∆k = [δ1, δ2, · · · , δ|∆k|] encompasses the model’s attention shifts for each token when answering
the arbitrary k-th question, where |∆k| is the number of tokens for answering the k-th question.

Formal Definition of Scores. for the predictions generated by the baseline model, the ROUGE-
L scores are given by List_R = [R1, R2, · · · , R|List_R|], where Rk is the score for the model’s
response to the k-th question, and |List_R| is the number of questions within the benchmark.

Based on these concepts, we design a two-part experiment:

Experiment 1: Correlation Analysis. We investigate the relationship between the proportion of
visual insertions under significant attention shifts and the score of the corresponding generated
prediction.

First, to identify whether a visual insertion is conducted during a significant attention shift, we define
a high attention growth threshold, δ(h)k for the k-th response (δ(h)k is set to the 80% upper quantile
of ∆k by default). An insertion is considered to have been conducted under a significant shift and
referred to as a synchronized insertion if and only if its corresponding attention shift value exceeds
the threshold δ

(h)
k .

Next, since the model can conduct multiple insertions per response for a question, we calculate Pk,
the proportion of synchronized insertions out of the total number of insertions for the k-th question.

Finally, since the proportions of synchronized insertions [P1, P2, · · · , P|List_R|] and the ROUGE-L
scores for all the questions [R1, R2, · · · , R|List_R|] are obtained, the Pearson Correlation coefficient
can be computed. Specifically, the Pearson Correlation is 0.2166 with a p-value of 0.048, which sug-
gests that the proportions of the synchronized insertions and the corresponding score are significantly
positively related to each other.

Experiment 2: Group Analysis. We investigate the relationship between the proportion of synchro-
nized insertions and the quality of the model’s response.

To group the generated predictions according to response quality, we establish high- and low-scoring
groups. All predictions are ranked in descending order by their ROUGE-L scores. The top 30% form
Gh, the high-scoring group (high-quality responses), and Gl, the bottom 30% form the low-scoring
group (low-quality responses).

Then, we calculate the mean proportion of synchronized insertions for groups Gh, Gl, which are
denoted as P̄h, P̄l, respectively.

Finally, the means of the two groups P̄h, P̄l are compared, and a T-test is performed to assess the
statistical significance of the difference. Specifically, we find that P̄h = 0.8889, P̄l = 0.5000,
which suggests that in the high-scoring group, approximately 89% of insertions are the synchronized
insertions with significant attention shift from textual input to visual information; in contrast, in the
low-scoring group, only about half of the insertions are synchronized insertions. Besides, the P-value
of T-test is as low as 0.0019, which demonstrates that the result is highly statistically significant.
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{"Image": "<image>"

"Question": "What is the likely purpose of the troll statue under the bridge?",

"Options": "A. To scare away trespassers, 

B. To bring attention to the city's tourist attractions,

C. To honor a local legend,

D. To discourage people from walking across the bridge"

Input Question

{"Task": "You are required to meticulously generate a detailed description 

for the image within the input question, which will serve as helpful 

information guiding the respondent to answer the question correctly.",

"Description Requirement": "The description should be clear, concise, 

informative and comprehensive and cover all aspects of the image, 

including but not limited to objects, people, actions, settings, and any other 

relevant details that can assist in understanding the context of the 

question."}

𝓟𝑪𝑨𝑮

The image depicts a large concrete bridge spanning across a river, with a 

troll statue positioned under the bridge. The troll statue is made of stone and 

has a large nose, ears, and a menacing expression on its face. It is positioned 

at the bottom of the bridge, with its legs crossed and arms folded across its 

chest. The background of the image includes a hill, a river, and a cloudy sky. 

The presence of the troll statue suggests that this may be a tourist attraction 

or a location with local folklore significance. 

𝓓𝑪𝑨𝑮

Image

VLM

Figure 4: An illustration of the entire process of context enhancement by the CAG module, using
problem physical-commonsense-1398 from the M3CoT benchmark as an example. This showcases
both the template and usage of PCAG.

H MODEL SETTINGS

H.1 TEMPLATE OF PCAG

Figure 4 provides an intuitive example showing the template ofPCAG and how it is used to prompt the
VLM to carefully generate a guiding description for the input image. In particular, for multiple-choice
questions, such as those in M3CoT and ScienceQA, we prepend the following brief explanation to
PCAG to aid the VLM in better understanding its designated task: "This is a multiple-choice question.
The question is based on the image provided."

Then, the cross-attention weight matrix based on the enhanced context x′ and I can be obtained as
follows:

A′ = softmax(
(HTW

Q)(HV W
K)T√

dK
), (14)

where HT ∈ RnT×d, HV ∈ RnV ×d are the hidden states of the textual and visual input, respectively.
WQ,WK are the weight matrices of the linear transformation layers for query and key, respectively.

H.2 SETTING OF HYPER-PARAMETERS

The hyper-parameter settings are presented in Table 5. For easier understanding, we provide further
explanation of the hyper-parameters sr and sg as follows: in the AVP module, the input image is first
divided into sg × sg grids according to the set "Grid size" sg. Then, each region finally selected by
AVP consists of sr × sr grids.
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Table 5: Hyper-parameter settings across three datasets.
Parameter M3CoT ScienceQA LLaVA-W

NC 8 8 6
K 3 3 3
N 4 4 2
M 4 4 1

Region size for AVP sr (grid) 1 1 1
Grid size for AVP sg 4 4 4

δ 0.5 0.2 0.2

Temperature 0.7 0.7 0.7
Do sample True True True

Top_p 0.9 0.9 0.9
Repetition_penalty 1.2 1.2 1.2
Min_new_tokens 32 32 32
Max_new_tokens 512 1024 1024

I EMPIRICAL ANALYSIS OF THE APPROXIMATE SUBMODULARITY OF
FUNCTION F

To offer a more comprehensive insight into the motivation for employing a greedy algorithm, this
section provides a thorough analysis. We emphasize that for functions that are not theoretically
submodular, a greedy approach remains one of the conventional methods for addressing their max-
imization, as established in recognized works Bian et al. (2017); Sener & Savarese (2018); Kim
et al. (2016); Krause et al. (2008); Das & Kempe (2011). In this part, we conduct meticulously
designed experiments to investigate the extent to which the information gain function F approximates
submodularity. The experimental results reveal that F empirically exhibits significant submodular
characteristics. This finding motivates us to follow established works Bian et al. (2017); Sener &
Savarese (2018); Kim et al. (2016); Krause et al. (2008); Das & Kempe (2011) to propose a greedy
algorithm to solve the maximization problem for F . The analysis is detailed as follows:

Firstly, we would like to introduce the definition of a submodular function. According to existing
research Nemhauser et al. (1978), a function f is a submodular function if it satisfies

f(A ∪ {Ri})− f(A) ≥ f(B ∪ {Ri})− f(B) (15)

for any sets A ⊆ B ⊂ C and any element that satisfies Ri ∈ C\B. In our scenario, the Inequality 15
is written as

F (A ∪ {Ri})− F (A) ≥ F (B ∪ {Ri})− F (B) (16)

for any A ⊂ B ⊂ C and any Ri ∈ C\B, which means that the information gain from incorporating
a visual region exhibits a diminishing returns property.

To demonstrate this empirically, we design the experiment detailed as follows, aiming to show that for
two sets of regions of different sizes, Ssmall ⊂ Slarge ⊂ C, the information gain from incorporating
a given visual region Rtest ∈ C \ Slarge into the context of a VLM is greater when Rtest is added to
Ssmall than when it is added to Slarge, ceteris paribus.

Experimental Setup. In our experimental design, each time the AVP process is triggered to select
salient regions, we first execute it to select Ksmall regions from the total candidate pool C to form
the set Ssmall. Subsequently, building upon Ssmall, we select an additional Klarge −Ksmall regions
to construct the set Slarge, where Ksmall and Klarge are the respective set sizes. This construction
inherently ensures that Ssmall ⊂ Slarge.

Next, to compute the information gain contributed by a given region, we randomly sample a region
Rtest from C \ Slarge. We then calculate the VLM’s information content, which are denoted as
Us, U

∗
s , Ul, and U∗

l , when the context incorporates (1) Ssmall, (2) Ssmall ∪ {Rtest}, (3) Slarge, and
(4) Slarge ∪ {Rtest}, respectively. We expect to observe in the majority of cases that:

U∗
s − Us ≥ U∗

l − Ul. (17)
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We conduct experiments on the M3CoT and LLaVA-W benchmarks, setting Ksmall ∈ {2, 3, 4, 5}
and Klarge = Ksmall+1 for simplicity. In terms of evaluation, we record the proportion of instances
for which the inequality U∗

s −Us ≥ U∗
l −Ul holds, and further introduce a Binomial Test to rigorously

examine the significance of the results.

Experimental Results. The experimental results are presented in Table 6. As we can see, the
Inequality 15 holds in most instances across all settings and datasets. Furthermore, to confirm the
significance of the obtained results, we introduce the Binomial Test, an exact statistical procedure
for assessing the extent to which experimental outcomes with a binary structure are attributable to
chance alone. The p-values, presented in Table 6, are all substantially below the 0.05 significance
level. This demonstrates that the information gain function F behaves in a manner that is empirically
near-submodular, which motivates us to follow existing research Bian et al. (2017); Sener & Savarese
(2018); Kim et al. (2016); Krause et al. (2008); Das & Kempe (2011) where greedy algorithms are
proposed to solve the problem of maximizing approximately submodular functions.

Table 6: Proportions of instances on M3CoT and LLaVA-W benchmarks for which the approximate
submodularity of information gain function F is manifested. The backbone is Chameleon-7B and the
model is our proposed AIMCoT. Klarge is set to Ksmall + 1 for simplicity. The significance levels
of these results are listed below them.

Ksmall 2 3 4 5

M3CoT (n=2318) 72.00% 62.99% 67.04% 61.09%
P-value <1e-6 <1e-6 <1e-6 <1e-6

LLaVA-W (n=60) 61.67% 68.33% 61.67% 63.33%
P-value 0.0462 0.0031 0.0462 0.0249

J ANALYSIS OF THE SELECTED REGIONS’ SOURCE

In this section, we examine the distribution of sources for the visual regions selected by the AVP
module of AIMCoT. These regions are drawn from two sets, Cattn and Cexp, with their respective
selection proportions denoted as Pattn and Pexp. Intuitively, Pexp reflects the significance of
incorporating the exploratory set Cexp to construct a better multimodal CoT. A larger value of
Pexp indicates that the exploratory set Cexp makes a greater contribution by providing informative
salient regions to AIMCoT, and vice versa.

Experimental Setup The experiments are conducted on the M3CoT and LLaVA-W benchmarks. Our
proposed AIMCoT is implemented with the Chameleon-7B backbone under a default 0-shot setting.
To ensure the reliability of the results, we repeat each experiment three times on both benchmarks.

Results and Analysis As presented in Table 7, although the value of Pexp fluctuates across different
experimental runs on the same benchmark, it remains consistently around 20% on M3CoT and 30%
on LLaVA-W. This indicates that the influence of stochastic factors on the source distribution of the
selected regions is limited, which validates our rationale of using this metric as a reflection of the
relative importance of Cattn and Cexp. Furthermore, we observe that Pexp is significantly greater
than zero. This demonstrates that the exploratory set Cexp consistently serves as a critical component
of the total candidate set C, contributing a substantial portion of the informative regions for AIMCoT.

Table 7: Proportion of salient regions selected by the AVP module of our proposed AIMCoT from
the exploratory set Cexp.

Experiment Number 1 2 3

M3CoT 17.25% 20.44% 27.27%
LLaVA-W 31.33% 25.77% 26.67%

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

K DEPLOYMENT OF AIMCOT

K.1 ANALYSIS OF THE COMPLEXITY OF AVP MODULE

Overview of the AVP Module The Active Visual Probing (AVP) module’s primary purpose is
to dynamically and intelligently select salient sub-regions of an image during the text generation
process. This is achieved by calculating the “information gain” that each potential sub-region offers,
thereby allowing the model to “zoom in” on relevant visual details and generate more informed and
contextually aware text.

The AVP logic is primarily encapsulated in three key methods:

1. forward: The main entry point where the AVP process is triggered based on changes in visual
attention.

2. _generate_candidate_regions: Generates a diverse set of potential image regions (can-
didates) for evaluation.

3. _calculate_information_gain_iterative: The core of the AVP module. It itera-
tively evaluates candidate regions and selects the combination that maximizes the reduction in
uncertainty (entropy) for the next token prediction.

Definition of the Notations Let’s define the key variables that will be used in the complexity
analysis:

• N : The current sequence length of the input tokens.
• NC : The total number of candidate regions generated (avp_num_candidates).
• K: The number of regions to be selected in each AVP cycle

(avp_num_regions_to_select).
• G: The grid size of the vision model’s feature map (e.g., model_vision_grid_size, which

is 4 by default, making the total number of patches G2 = 16).
• Vsub: The number of visual tokens (“vokens”) generated for a single cropped sub-image region.
• ∆N : The length added per selected region, where ∆N = Vsub + 2 (accounting for the boi and
eoi tokens).

• L: The number of layers in the transformer model.
• H: The hidden size of the model.
• Vvocab: The size of the model’s vocabulary.

AVP Triggering in the forward Method The AVP mechanism is not activated on every forward
pass; instead, it is triggered conditionally based on the change in attention directed towards the visual
tokens. Specific to its operational process, in terms of attention calculation, the code calculates
latest_vattns—which refers to the sum of attention scores from the last token to all visual
patch tokens—and this step requires iterating through the attention matrices. Meanwhile, regard-
ing the trigger condition, the core logic is if delta_vattns > config[’delta’], where
delta_vattns represents the difference between the current and previous visual attention sums.
In conclusion, the cost of this trigger check per token generation is minimal; it primarily involves
retrieving and summing pre-computed attention scores. The complexity is approximately O(L ·N)
to extract and sum the relevant attention weights to the G2 visual patches, but this is dwarfed by the
main model’s complexity.

_generate_candidate_regions Method This method generates NC candidate regions
from the image’s attention map, using a hybrid strategy that combines attention-based and ran-
dom sampling. Specifically, for attention-based candidates, it first flattens the G × G atten-
tion map, then uses torch.topk to find the indices of the avp_num_attention_based
patches with the highest attention—with the complexity of topk on a tensor of size
G2 being O(G2 log(avp_num_attention_based))—and subsequently creates bounding
boxes around these top patches, which is a constant time operation for each of the
avp_num_attention_based candidates; for random candidates, it generates the remain-
ing NC − avp_num_attention_based candidates by randomly selecting coordinates,
an operation with complexity O(NC − avp_num_attention_based). As a result, the
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time complexity in this part is O(G2 log(avp_num_attention_based) + NC), and since
avp_num_attention_based is a small constant and G2 is fixed (e.g., 16), this can be con-
sidered approximately O(NC).

_calculate_information_gain_iterative Method This is the most computationally
intensive part of the AVP module. It employs a greedy, iterative approach to select the K best regions
out of NC candidates. The method consists of an outer loop that runs K times (for each region to
be selected). Inside this loop, it evaluates the remaining candidates to pick the one that provides the
highest immediate information gain.

Let’s analyze a single iteration of this outer loop (e.g., the k-th iteration, where k ranges from 0 to
K − 1):

First, for the initial entropy calculation, it performs one forward pass through the base model
(self.model) with the current sequence of tokens (which includes tokens from k previously
selected regions), where the sequence length at this stage is Nk = N + k ·∆N ; with Key-Value (KV)
caching from previous iterations, the cost can be incremental: O(L ·∆N ·Nk−1 ·H) for updating
the cache with the last selected region’s tokens, rather than a full O(L ·N2

k ·H).

Next, for the batch preparation for lookahead analysis, the code iterates through the remaining
NC − k candidate regions, and for each candidate, it performs cropping and vokenization (cropping
the image pixels and passing them to self.model.get_image_tokens, which involves a
forward pass through the vision encoder with complexity approximately O(G2) per crop, negligible
compared to the transformer) and tensor concatenation (creating a new input sequence by appending
the new vokens, with the length of this new sequence being Nk + ∆N ), with this loop running
NC − k times.

Subsequently, for the batch forward pass (lookahead), the NC − k new input sequences are padded
and batched together, a single batched forward pass is performed on these NC − k sequences, the
maximum sequence length in this batch is Nk +∆N , and since all lookahead sequences share the
same prefix of length Nk, KV caching for the prefix can be reused across the batch; the complexity is
then self-attention among suffix tokens: O(L · (NC − k) ·∆N2 ·H) and cross-attention to prefix:
O(L · (NC − k) ·∆N ·Nk ·H), with the dominant term (when Nk ≫ ∆N ) being O(L · (NC −
k) ·∆N ·Nk ·H), which is the key optimization from batch processing and caching, reducing from
quadratic to linear dependence on Nk.

Additionally, for the information gain calculation, it calculates the entropy for each of the NC − k
outputs from the lookahead pass, which involves a softmax over the vocabulary and is O((NC − k) ·
Vvocab).

Finally, for the selection and state update, torch.argmax finds the best candidate in O(NC − k)
time, and the base input sequence is updated for the next iteration.

Overall Complexity of the Method We must sum the complexity over the K iterations of the
outer loop. The most computationally intensive operation is the batched lookahead forward pass,
which is significantly optimized through batch processing and Key-Value caching. The overall time
complexity can be expressed as follows:

K−1∑
k=0

O (L · (NC − k) ·∆N · (N + k ·∆N) ·H) . (18)

This formula highlights that, thanks to KV caching, the complexity scales linearly with sequence
length N—a substantial improvement over the standard quadratic dependence. While the cost is
also linear with respect to the number of candidates NC and selections K, our framework maintains
strong deployability. This is because the AVP module is highly efficient at extracting crucial visual
information from the candidate set. Our empirical results demonstrate that AIMCoT achieves
exceptional performance (as shown in Table 2) even when these hyper-parameters are kept at low
levels (e.g., K = 3, NC = 6, which is the default setting). In conclusion, we can approximate the
complexity of AVP as follows:

O (K ·NC · L ·∆N · (N +K ·∆N) ·H) . (19)
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This demonstrates that the combination of architectural optimizations (batching and KV caching)
and the high extractive efficiency of AVP ensures the module’s practicality, making it efficient
and readily deployable in practice. As a comparison, the attention-driven selection method within
the baseline model ICoT is with a complexity of O(logK · ∆N + L · N · H), which also scales
linearly with sequence length N. Although this is acknowledged to be lower than the complexity of
AVP shown in Equation 19, our empirical results detailed in Appendix K.2 suggest that AVP’s average
inference time is no more than 1.36 times that of this method, while achieving performance far
superior to it as analyzed in Section 5.5.

K.2 EMPIRICAL ANALYSIS OF THE DEPLOYMENT OF AIMCOT

In this section, we empirically investigate the deployability of the AIMCoT framework and the
temporal overhead introduced by the AVP module. For the experimental setup, we utilized Chameleon-
7B as the backbone in a 0-shot setting to compare the average inference time of AIMCoT against
ICoT Gao et al. (2025). ICoT, as a key baseline model in this study, employs a Top-K strategy to
simultaneously select regions with the highest attention scores for constructing the multimodal CoT,
thereby expected to possess a relatively lower time complexity compared to AIMCoT. Consequently,
the comparison with ICoT serves as a direct indicator of AIMCoT’s deployability.

Table 8: Comparison of the average time to process each instance between AIMCoT and the baseline
model (ICoT).

Dataset AIMCoT ICoT

M3CoT 13.37s 11.62s
LLaVA-W 11.65s 8.58s

The experimental results are presented in Table 8. Two key observations can be drawn. First,
the AVP module does not introduce significant temporal costs to the AIMCoT framework, an
efficiency attributable to batch processing and the KV Cache mechanism. Second, AIMCoT achieves
substantially superior performance as shown in Table 2, at a time cost comparable to that of the
efficient baseline, which is less than 1.36 times that of ICoT (specifically, 1.15 and 1.36 times on
M3CoT and LLaVA-W benchmarks, respectively). This suggests that our proposed AIMCoT
framework achieves a favorable trade-off between performance and deployability.

L SENSITIVITY ANALYSIS OF δ

The hyper-parameter δ within the DAT module serves as a crucial threshold to trigger the AVP
module, which inserts salient visual regions to improve the construction of the multimodal
CoT. In this section, we detail a sensitivity analysis of δ by adjusting δ across the range of
[0.1, 0.125, 0.15, 0.175, 0.2, 0.225] and examining not only (1) the performance of AIMCoT, but also
(2) the number of times the AVP is triggered. The experiments are conducted under 0-shot setting on
Chameleon-7B backbone and LLaVA-W benchmark. The experimental results are shown in Figure 5.

The left figure illustrates that AIMCoT exhibits limited performance when the threshold, δ, is set too
low. This underscores the importance of inserting visual information at critical moments: excessively
frequent or inopportune visual insertions can disrupt the VLM’s reasoning process, leading to
suboptimal performance. As δ increases, the model’s performance progressively improves, reaching
its peak at δ = 0.2 (our default setting), which corresponds to a ROUGE-L score of 0.2983. However,
a further increase in δ results in a slight performance degradation. This highlights the criticality of
visual information insertion for constructing an interleaved Chain of Thought: an overly stringent
threshold excessively impedes the incorporation of visual data, preventing the AVP from supplying
the model with necessary visual supplementation in a timely manner.

Conversely, the right figure demonstrates a consistent decrease in the number of times the AVP is
triggered as δ is raised. This showcases the efficacy of δ as a threshold for modulating the activation
frequency of the AVP.
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Figure 5: Experimental results of the sensitivity analysis of the hyper-parameter δ. The left figure
illustrates the performance of AIMCoT when δ takes different values, while the right one shows the
number of times the AVP module within AIMCoT is triggered.

Table 9: Experimental results of sensitivity analysis of hyper-parameters NC ,K on M3CoT bench-
mark, which illustrate the average time of AIMCoT to process an instance under different settings.
Since NC ,K inherently satisfies NC ≥ K, any entry corresponding to a setting that satisfies
NC < K is filled with the symbol "-".

NC 1 2 3 4 5 6 7

K=1 12.78s 12.80s 12.83s 12.87s 12.90s 12.93s 12.97s
K=3 - - 13.18s 13.23s 13.30s 13.37s 13.42s
K=5 - - - - 13.41s 13.49s 13.56s
K=7 - - - - - - 13.66s

Table 10: Experimental results of sensitivity analysis of hyper-parameters NC ,K on LLaVA-W
benchmark, which illustrate the average time of AIMCoT to process an instance under different
settings. Since NC ,K inherently satisfies NC ≥ K, any entry corresponding to a setting that satisfies
NC < K is filled with the symbol "-".

NC 1 2 3 4 5 6 7

K=1 10.61s 10.70s 10.75s 10.84s 10.92s 11.00s 11.08s
K=3 - - 11.21s 11.36s 11.51s 11.65s 11.80s
K=5 - - - - 11.79s 11.96s 12.14s
K=7 - - - - - - 12.38s
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Table 11: Performance comparison AIMCoT variants on the basis of different constructions of the
candidate set C.

Construction of C M3CoT (ACC.) LLaVA-W (ROUGE-L)

Cattn ∪ Crand (Cexp = Crand) 31.4 29.8
Cattn ∪ Css (Cexp = Css) 31.2 29.5

Cattn ∪ Cfsam (Cexp = Cfsam) 31.0 29.6

Cattn 30.8 28.9
Crand 30.4 28.6
Css 30.3 28.7

Cfsam 29.9 27.7

M SENSITIVITY ANALYSIS OF K,NC

Our proposed AIMCoT incorporates the design of AVP module. In contrast to existing research,
AIMCoT, benefiting from the AVP module, does not simply select the top-K regions with the highest
attention scores from the attention map. Instead, it meticulously selects K regions from a total
set C of NC candidate regions to construct the multimodal CoT (NC = N +M ). However, this
approach may inevitably raise concerns regarding the deployability of AIMCoT, particularly as the
hyper-parameters NC and K increase.

To investigate this, we conduct experiments to explore the average processing time per instance for
AIMCoT with larger values of NC and K. For the experimental setup, we implement AIMCoT with
the Chameleon-7B backbone on the M3CoT and LLaVA-W datasets under various combinations of
NC and K. The results are presented in Tables 9 and 10, from which we derive two key insights:

• Insensitivity to the growth of the candidate set size NC : observing any row with a fixed K
(e.g., K = 3 on Table 9), as NC increases from 3 to 7, the total processing time rises from 13.18s
to 13.42s, a marginal increase of only 0.24s. This implies that each additional candidate region
introduces an average overhead of less than 0.06s. This strongly demonstrates that the performance
of the AVP module does not degrade sharply with a moderate expansion of the candidate pool,
indicating excellent scalability.

• Diminishing marginal cost with the increase in the number of selections K: considering a
fixed column for NC (e.g., NC = 7 on Table 10), as K increases from 1→ 3, 3→ 5, and 5→ 7,
the processing time increases by 0.72s, 0.34s, and 0.24s, respectively, which shows a notable
decrease in incremental cost. This suggests that the primary computational overhead of the AVP
algorithm lies in the initiation of the iterative search (the jump from K = 1 to K = 3). Once the
iteration begins, the cost of subsequent selection steps is remarkably low, benefiting from efficient
mechanisms such as the batch processing and KV Cache.

Based on these key insights, our proposed AVP module demonstrates high computational efficiency
and robustness when faced with increased computational complexity (i.e., larger NC and K values).

N ABLATION STUDY ON THE CONSTRUCTION OF CANDIDATE SET C

In this section, we investigate the influence of different compositions of the total set C on the
performance of our proposed AIMCoT. We specifically examine two primary configurations:

Constructing C using only Cattn or Cexp. For the latter, we evaluate four distinct construction
methodologies for Cexp: (a) Crand: uniform random sampling; (b) Css: the selective search algorithm
Uijlings et al. (2013), which is the seminal region proposal method utilized in R-CNN Girshick
et al. (2014); (c) Cfsam: FastSAM Zhao et al. (2023), a computationally efficient variant of the
foundational vision segmentation model, SAM Kirillov et al. (2023).

Constructing C using both Cattn and Cexp. Similarly, as for Cexp, we also consider its diversified
construction, including Crand, Css, and Cfsam.
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It is worth noting that although the construction is diverse, the size of C remains consistent. When C
is composed of Cattn and Cexp, the two each account for half. The experimental results are shown in
Table 11.

As observed, the combination of the two sets (i.e., C = Cattn ∪ Cexp) invariably yields superior
performance for AIMCoT compared to configurations where either C = Cattn or C = Cexp is used
exclusively. This highlights the importance of diversifying the sources of candidate visual regions.

When comparing the different construction methods for Cexp, the performance gap among models is
marginal when used in conjunction with Cattn. Specifically, despite its simplicity, random sampling
achieves highly competitive results, which motivates our choice to adopt it as the default method for
constructing Cexp. Intuitively, the advantage of random sampling lies in its ability to provide regions
across different parts of the image unbiasedly with maximal spatial diversity.
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