

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 AIMCoT: ACTIVE INFORMATION-DRIVEN MULTI-MODAL CHAIN-OF-THOUGHT FOR VISION-LANGUAGE REASONING

Anonymous authors

Paper under double-blind review

ABSTRACT

Multimodal Chain-of-Thought (CoT) has emerged as a powerful technique for enhancing the vision-language reasoning with interleaved information. However, existing methods often rely on simplistic heuristics for constructing interleaved CoT, typically depending on attention maps, which our empirical analysis reveals can be unreliable. What's more, the shortcomings of their passive and purposeless selection strategies and their arbitrary triggering mechanisms in capturing the model's cognitive need for information are further amplified. In this paper, we propose **AIMCoT**, an Active Information-driven Multi-modal Chain-of-Thought framework that addresses these fundamental limitations. AIMCoT introduces three synergistic components: (1) **Context-enhanced Attention-map Generation (CAG)**, which mitigates the text-vision granularity imbalance, thereby producing more reliable attention maps as a foundation. (2) **Active Visual Probing (AVP)**, which replaces passive selection with a proactive, goal-oriented strategy grounded in information theory to select image regions that help answer the questions maximally. (3) **Dynamic Attention-shifting Trigger (DAT)**, which intelligently determines the optimal moments to insert visual information by monitoring the model's text-to-vision attention shifts. Extensive experiments on three challenging benchmarks demonstrate that AIMCoT significantly outperforms state-of-the-art methods across different settings. By actively foraging for information and dynamically structuring its reasoning process, AIMCoT represents a critical step towards more robust, effective, and human-like multimodal reasoning. Our code is available at <https://anonymous.4open.science/r/aimcot>.

1 INTRODUCTION

The advent of Chain-of-Thought (CoT) prompting has marked a significant milestone in the reasoning capabilities of Large Language Models (LLMs) Wei et al. (2022); Wang et al. (2022); Zhang et al. (2022); Suzgun et al. (2022); Li et al. (2025); Yao et al. (2023); Besta et al. (2024), enabling them to deconstruct complex problems into a series of intermediate, interpretable steps. This paradigm has been naturally extended to Vision-Language Models (VLMs), where early efforts Mitra et al. (2024); Zheng et al. (2023); Lei et al. (2024); Zhang et al. (2023) focused on generating text-only rationales to articulate the model's reasoning process over visual inputs. A pivotal advancement in this domain was the introduction of Interleaved-modal Chain-of-Thought Gao et al. (2025), which pioneered the direct integration of visual patches into the reasoning chain. By pairing textual rationales with corresponding image regions, the interleaved CoT demonstrated a superior ability to ground language in visual evidence, setting a new standard for multimodal reasoning.

However, the efficacy of existing research Ge et al. (2025); Gao et al. (2025) is fundamentally predicated on the reliability of their underlying mechanisms for selecting and integrating visual information. These methods typically rely on a passive, attention-driven strategy: they select the Top-K regions with the highest attention scores and insert them at predefined moments, e.g., the appearance of a newline character, a practice with little theoretical or empirical justification for its timing. This reliance exposes critical vulnerabilities that limit their full potential. Our empirical analysis reveals that high-attention regions are often redundant or, more alarmingly, fail to capture the most crucial visual details, especially when a granularity mismatch exists between the textual

query and the visual evidence. This raises three fundamental questions: (1) What information source can reliably identify truly salient visual regions? (2) How can we accurately select useful regions in a proactive and purposeful manner rather than passively relying on potentially unreliable attention scores? (3) When is the optimal moment to insert visual evidence into the reasoning process?

In this work, we postulate that a more robust multimodal reasoning framework requires a shift from passive attention-following to an active, information-seeking paradigm. We propose AIMCoT: Active Information-driven Multi-modal Chain-of-Thought, a novel framework that directly addresses the limitations of prior work, reframing the selection of visual evidence from a passive, attention-based retrieval task to an active, goal-oriented probing process. Inspired by the principles of information foraging Pirolli & Card (1999); Broadbent (2013), AIMCoT operates on the premise that the most valuable visual rationale is one that maximally reduces the model’s uncertainty about the subsequent step in its reasoning chain. Rather than simply asking "Where is the model looking?", we prompt the model to actively ask "Which piece of visual information will be most helpful for me to see *right now*?" This shift is realized through three synergistic components:

1. **Context-enhanced Attention-map Generation (CAG)**, which mitigates the text-vision granularity disparity to improve the reliability of attention map for better identifying salient regions by generating a context-aware description of the image.
2. **Active Visual Probing (AVP)**, which implements a proactive, goal-oriented selection strategy grounded in information theory, selecting a set of visual regions that provide the highest possible information gain for the task at hand.
3. **Dynamic Attention-shifting Trigger (DAT)**, an intelligent triggering mechanism that carefully captures the critical moments when model’s cognitive focus shifts significantly from text to vision, and inserts visual information precisely.

Our contributions are as follows:

- We introduce AIMCoT, a novel training-free framework that reframes the construction of multi-modal CoT as an active information-foraging process, moving beyond the limitations of static, passive, and purposeless region selection.
- We propose a system comprised of three complementary methods (CAG, AVP, DAT) that collectively enable VLMs to proactively forage for informative visual evidence and strategically integrate it into their reasoning process at the detected critical moments.
- We present a comprehensive set of empirically-grounded motivations that inspire the designs within our AIMCoT framework. Furthermore, we provide substantial theoretical analysis and design targeted experiments to explore the properties of these designs, covering key aspects such as the deployability of AIMCoT, the interplay between the CAG and AVP modules, and the necessity of incorporating an exploratory candidate pool.
- Through extensive experiments conducted on two backbones (Chameleon-7B and Qwen2-VL-7B) across challenging benchmarks including M3CoT, ScienceQA, and LLaVA-W, we demonstrate that AIMCoT significantly outperforms state-of-the-art baselines and advances the frontier of vision-language reasoning.

2 RELATED WORK

The success of CoT prompting in LLMs has naturally extended to VLMs, aiming to make their reasoning processes explicit and interpretable. Early efforts focused on generating text-only rationales. MMCOT Zhang et al. (2023) first generates a rationale from the input and then uses this rationale along with the original multimodal data to infer the final answer. CCoT Mitra et al. (2024) prompts the VLM to generate an intermediate scene graph to structure its understanding. DDCoT Zheng et al. (2023) decomposes complex problems into simpler sub-questions and leverages external models to fill information gaps. Alternatively, SCAFFOLD Lei et al. (2024) overlays a coordinate grid on the image, enabling the VLM to reference spatial regions explicitly in its textual reasoning.

A pivotal advancement is the introduction of interleaved-modal CoT, which integrates visual evidence directly into the reasoning chain. The leading approach, ICoT Gao et al. (2025), selects the top-K regions from the VLM’s attention map and inserts them at predefined moments. MRFD Ge et al. (2025) meticulously selects the salient visual regions to foster more reliable reasoning, alleviating

108 VLM hallucination. However, our analysis reveals that such passive, attention-driven strategies
 109 are fundamentally limited by the unreliability of raw attention maps, especially during text-vision
 110 granularity mismatches, and their arbitrary insertion points fail to capture the model’s dynamic
 111 cognitive needs. Our proposed AIMCoT addresses these critical vulnerabilities by shifting the
 112 paradigm from passive selection to active information foraging, employing goal-oriented visual
 113 probing and dynamic, attention-shift-triggered integration.

115 3 MOTIVATION

117 3.1 IDENTIFYING THE RELIABILITY OF THE ATTENTION MAP

119 The utilization of the attention map in multimodal learning has been explored by recent research Gao
 120 et al. (2025); Ge et al. (2025); Xie et al. (2022); Wang et al. (2023); Liu et al. (2022), inspiring us to
 121 also take it as a source from which the salient visual regions are selected. However, considering their
 122 strong dependence on attention map, we question its reliability by posing two fundamental questions:

123 (1) Do all significant regions on the attention map help the VLMs answer questions correctly?
 124 (2) Does the attention map comprehensively capture all visual regions that are instrumental to the
 125 VLM’s correct prediction?

127 To acquire a holistic comprehension of these
 128 two questions, our empirical analysis is con-
 129 ducted on the popular Visual Question Answer-
 130 ing (VQA) benchmark, LLaVA-W Liu et al.
 131 (2024), employing ICoT Gao et al. (2025) as a
 132 baseline model, which selects the Top-K regions
 133 from the attention map to construct a text-vision
 134 interleaved CoT. Chameleon-7B Team (2024)
 135 serves as the backbone.

136 We quantitatively investigate the role of high-
 137 attention regions by masking the top- K_{mask} re-
 138 gions identified by ICoT (0-shot). On LLaVA-
 139 W, this masking leads to a minor performance
 140 drop of just 3.93% (top 10) and 2.44% (top 20),
 141 as shown in Table 1. Notably, performance in-
 142 creases when the mask is expanded from the top
 143 10 to the top 20 regions. These results strongly
 144 suggest that not all high-attention regions contribute significantly to the model’s prediction: some
 145 have negligible impact or even introduce detrimental signals.

146 In response to the second question, we manually
 147 inspect the content of high-attention regions to
 148 understand their role in VLM’s predictions. In a
 149 challenging LLaVA-W example (Figure 1), the
 150 answer lies in a small area, i.e., the inner rim
 151 of a ramen bowl, among rich visual informa-
 152 tion. The top two most attended image patch
 153 sets entirely miss this crucial detail, with only a
 154 negligible portion appearing in the third set. This
 155 indicates a potential misalignment between high-
 156 attention regions and key visual information, particu-
 157 larly when the text-vision granularity disparity is
 158 significant.

159 3.2 FORAGING FOR THE MOST INFORMATION TO GUIDE REGION SELECTION

160 The analysis in Section 3.1 **empirically** reveals that the efficacy of the attention-driven Top-K strategy
 161 is notably constrained, particularly when faced with significant text-vision granularity disparities.
 Furthermore, **fundamentally**, since attention maps merely reflect token correlations, a static approach
 without an explicit goal like Top-K, which relies solely on attention scores, is inherently suboptimal.
 This insight directly motivates us to explore a selection method that is more proactive and purposeful.

Figure 1: The images of the 22nd question on LLaVA-W benchmark, which is a close-up photo of a meal at ICHIRAN. The left and right figures are respectively the original image and the first three sets of regions selected by the Top-K strategy (red, purple, and blue, respectively). A detailed explanation is shown in Appendix C.

Table 1: Performance degradation of the baseline model (ICoT, 0-shot) when the Top K_{mask} regions on the attention map are masked.

K_{mask}	0	1	5	10	20
Degradation	0%	0.26%	1.43%	3.93%	2.44%

Table 1: Performance degradation of the baseline model (ICoT, 0-shot) when the Top K_{mask} regions on the attention map are masked.

162 Existing recognized research Pirolli & Card (1999); Broadbent (2013); Oaksford & Chater (1994);
 163 Friston (2010) supports that people, when possible, will maximize their rate of gaining valuable
 164 information, as it yields more useful information per unit cost. Inspired by this, we explore providing
 165 the VLM with image regions that yield the highest information gain, thereby maximally reducing
 166 the model’s uncertainty in answering a given question. Intuitively, the model’s uncertainty can be
 167 quantified by the entropy of its probability distribution over the vocabulary given the current context,
 168 while the information gain of an image region is measured based on model’s entropy when the region
 169 is included in the context. The definitions are meticulously detailed in Section 4.3.

170 To continue with the example in Section 3.1, Figure 2 illustrates the top three
 171 regions ranked by the information gain for VLM. Evidently, in contrast to
 172 the regions selected via Top-K shown in Figure 1, the information gain-based
 173 selection accurately guides the VLM to first focus on the inner rim of the
 174 bowl (red), where the critical information is contained. Although the VLM
 175 does not yield the final answer in this region, we note that this indicates a
 176 correct line of reasoning, as the ground truth is situated in a highly similar
 177 area (a nearby location also on the inner wall of the bowl). Subsequently,
 178 the region ranked third (blue) precisely encompasses a large portion of the
 179 restaurant’s name, which is just the answer to the question. This suggests
 180 that even for a challenging case where the text-vision granularity is highly
 181 disparate, information gain serves as a better foundation for region selection.

182 3.3 INSERTING VISUAL INFORMATION AT KEY MOMENTS

184 Although existing research Gao et al. (2025) has attempted to construct interleaved CoT, they
 185 often ignore a reasonable triggering mechanism to capture the critical moment of inserting visual
 186 information. For example, ICoT Gao et al. (2025) simply uses a newline character as a trigger signal.
 187 This motivates an in-depth investigation into reliable indicators for identifying these key moments for
 188 inserting visual content.

189 To this end, we conduct a comparative case study on the LLaVA-W benchmark, with ROUGE-L
 190 as the evaluation metric. We collect all predictions generated by the baseline model (ICoT) and
 191 partition them into high- and low-scoring groups based on ROUGE-L scores. Given that the model’s
 192 attention map has served as an important foundation for existing works Gao et al. (2025); Ge et al.
 193 (2025); Xie et al. (2022); Wang et al. (2023); Liu et al. (2022), which is not only readily accessible
 194 but also effectively reflects the model’s aggregate attention to the textual and visual parts of the
 195 input, we are inspired to monitor the attention shifts between these two modalities throughout the
 196 prediction process. The experiments are detailed in Appendix G, from which two key observations are
 197 revealed: **(1) Correlation analysis:** inserting visual data precisely when the model’s attention pivots
 198 towards the visual modality is strongly correlated with higher scores and **(2) Group analysis:** this
 199 phenomenon further serves as a crucial characteristic that distinguishes high-scoring from low-scoring
 200 outputs.

201 4 AIMCoT

204 In this section, we begin by briefly reviewing the background of multimodal learning. Then, we detail
 205 the proposed methods motivated by the following key insights derived from Section 3:

- 207 (1) First, the high-scoring attention regions are not always beneficial for question-answering, and
 208 crucial visual evidence can be missed particularly in cases of text-vision granularity mismatch.
- 209 (2) Second, for a given set of candidate regions, selection based on information gain significantly
 210 outperforms the conventional attention-driven Top-K method.
- 211 (3) Finally, capturing the critical moments to insert visual information improves the construction of
 212 multimodal CoT, and text-to-vision attention shifts serve as an important indicator.

213 Accordingly, we propose AIMCoT, which encompasses three key methods: **(1) Context-enhanced**
 214 **Attention-map Generation (CAG)**, which generates a fine-grained description for the image to
 215 alleviate text-vision disparity. **(2) Active Visual Probing (AVP)**, which proactively and purposefully
 selects regions that are most helpful for answering the question. **(3) Dynamic Attention-shifting**

Figure 2: The visualization of regions selected by the information gain-guided strategy.

216 **Trigger (DAT)**, which triggers vision insertion into CoT when the model’s cognitive focus is
 217 significantly shifted from text to vision.
 218

219 **4.1 PRELIMINARIES**
 220

221 **Vision-Language Model.** A VLM typically fuses a vision encoder for preprocessing visual input and
 222 a generative language model, which jointly enable it to respond in a human-like manner as follows:
 223

$$answer = \text{VLM}(I, x), \quad (1)$$

224 where I and x are the image and query, respectively.
 225

226 **Multimodal CoT.** Compared to the direct response shown in Equation 1, multimodal CoT encourages
 227 the VLM to output the thought process, called rationales, before outputting the final answer. Existing
 228 work Gao et al. (2025) has been devoted to generalizing rationales from pure text to text-vision
 229 interleaved form.
 230

231 **4.2 CONTEXT-ENHANCED ATTENTION-MAP GENERATION (CAG)**
 232

233 In this component, the VLM is prompted to carefully generate an explanatory description of the given
 234 image within the question before the process of VQA, with the explicit goal of helping a potential
 235 respondent correctly answer the question. In this process, the VLM acts as a facilitator who interprets
 236 the image in the context of the given question to guide the respondent’s thought process. Formally, it
 237 is expressed as follows:
 238

$$\mathcal{D}_{CAG} = \text{VLM}(I, x, \mathcal{P}_{CAG}), \quad (2)$$

239 where VLM , I, x are the used VLM, the given image and question, respectively. \mathcal{P}_{CAG} is the prompt
 240 provided for the model to generate the description. Then, to compensate for the sparsity of textual
 241 information within the context, the generated description \mathcal{D}_{CAG} is concatenated to the question x as
 242 follows:
 243

$$x' = \text{concat}(x, \mathcal{D}_{CAG}). \quad (3)$$

244 By enhancing the context to compensate for the sparsity of textual information, the disparity in
 245 text-vision granularity is effectively mitigated, unlocking the potential for the attention map to serve
 246 as a more reliable indicator of task-relevant regions. We provide an example in Appendix H.1 that
 247 details the template of \mathcal{P}_{CAG} , the entire process of CAG, and how the final attention map A' is
 248 generated, which is used in the next stage.
 249

250 **4.3 ACTIVE VISUAL PROBING (AVP)**
 251

252 Built upon the theoretical foundation of information gain, AVP is designed to select the crucial
 253 regions from a set of candidate visual regions. Although AVP consists of three steps elaborated upon
 254 as follows, in terms of complexity, our provided analysis and empirical results in Appendices K
 255 and M suggest that the introduction of AVP still enables AIMCoT to strike a good balance between
 256 deployability and superior performance. A visualization of AVP is shown in Figure 3.
 257

258 **Diversified Set of Candidate Regions Construction.** Based on the first two insights summarized in
 259 Section 4, an inference can be obtained: relying solely on attention maps as the source may prevent
 260 the optimal region selection. Motivated by this, we propose to diversify the source of the candidate
 261 regions, thereby reducing the model’s dependency on attention maps alone. Specifically, we not only
 262 construct an attention-driven candidate set, C_{attn} , by selecting N regions with the highest attention
 263 scores ($N \in \mathbb{R}$), but also generate an exploratory candidate set, C_{exp} , by sampling M grid regions
 264 uniformly at random from the input image ($M \in \mathbb{R}$). Our empirical analysis in Appendix J shows
 265 that the incorporation of exploratory set C_{exp} provides substantial salient visual regions for the VLM.
 266 Furthermore, we study the impact of introducing C_{exp} on the performance of AIMCoT, and further
 267 compare random sampling, selective search Uijlings et al. (2013), and FastSAM Zhao et al. (2023) as
 268 methods for constructing C_{exp} in Appendix N.
 269

270 Formally, the process can be expressed as follows:

$$C_{attn} = \{R_1, R_2, \dots, R_N\}, \quad \text{s.t. } R_i = \text{Top-}i \text{ Region from the attention map } A', \quad (4)$$

$$C_{exp} = \{R_{N+1}, R_{N+2}, \dots, R_{N+M}\}, \quad C = C_{attn} \cup C_{exp}, \quad (5)$$

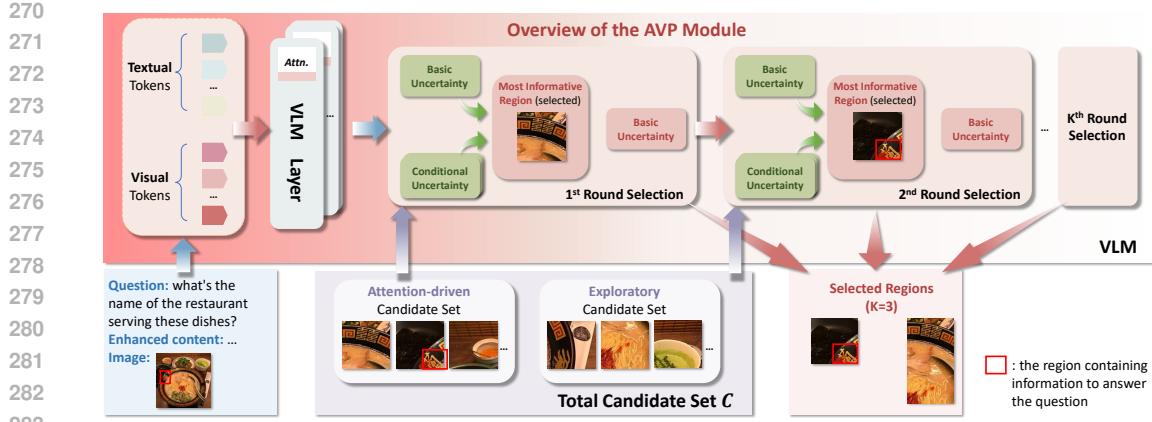


Figure 3: An overview of our AVP module, which iteratively selects K most informative regions from a diversified candidate set C to build an interleaved CoT that fosters vision-language reasoning.

where C_{attn} , C_{exp} , and C are the attention-driven, exploratory, and total candidate sets, respectively. Subsequently, the goal is to select the most informative K regions from C ($K < |C| = N + M$).

Quantification of Information Gain. An ideal region of input image is the one that is most informative and critical for answering the question, i.e., the one that minimizes the model’s predictive uncertainty. Based on this idea, the region selection problem is transformed into a sequential information gain maximization task. To formalize this objective, we propose the concept of **basic uncertainty** U_B defined as follows:

$$U_B = H(Y|I, x, y_{<t}) = - \sum_{y \in V} P(y|I, x, y_{<t}) \log_2 P(y|I, x, y_{<t}), \quad (6)$$

where I , x and $y_{<t}$ are the input image, question and the predicted tokens, respectively. $P(y|I, x, y_{<t})$ is model’s probability distribution across the vocabulary V in current context without the introduction of any region $R_i \in C$. It is seen that U_B takes the form of entropy, thereby inherently capturing the model’s uncertainty when predicting the next token t without incorporating any $R_i \in C$.

Similarly, the **conditional uncertainty** $U_{C,i}$, which illustrates the model’s uncertainty when an arbitrary region $R_i \in C$ is included into the context, is proposed and defined as follows:

$$U_{C,i} = H(Y|I, x, y_{<t}, R_i) = - \sum_{y \in V} P(y|I, x, y_{<t}, R_i) \log_2 P(y|I, x, y_{<t}, R_i), \quad (7)$$

where $P(y|I, x, y_{<t}, R_i)$ is the model’s probability distribution across the vocabulary V in the context combined with the region R_i . Eventually, the aforementioned conceptual formulation logically motivates the definition of our final key metric: **the information gain of region R_i** , which is formally defined as follows:

$$IG(\{R_i\}) = U_B - U_{C,i}, \quad i = 1, 2, \dots, N + M. \quad (8)$$

Intuitively, $IG(\{R_i\})$ quantitatively characterizes how incorporating region R_i reduces the model’s uncertainty for the subsequent token prediction.

Optimal Region Selection. To achieve the target of region selection, we formalize the problem as follows:

$$\text{Maximize } F(S) = IG(S), \quad \text{s.t. } S \subset C, |S| = K, \quad (9)$$

where S is the optimal set of selected regions and K is the size of S serving as a hyper-parameter. Motivated by two crucial insights, we propose a greedy algorithm detailed in Algorithm 1 to solve this problem: (1) According to recognized works Bian et al. (2017); Sener & Savarese (2018); Kim et al. (2016); Krause et al. (2008); Das & Kempe (2011), the greedy algorithm is a well-established and widely-used method for maximizing functions, especially for maximizing those that exhibit a tendency towards submodularity, **even if they are not submodular theoretically**; (2) Our experiments in Appendix I suggest that the information gain function F empirically exhibits significant approximate submodularity.

324 Specifically, the selection is an iterative process consisting of K steps. At each step, AVP proactively
 325 selects the most informative and not-yet-chosen region from the candidate set C with the explicit
 326 goal of minimizing the uncertainty of the model’s answer to the question. The chosen region is
 327 then added to an intermediate set R^* . Notably, a key merit of AVP is its ability to bypass regions
 328 that, despite high attention scores, exhibit strong informational overlap with regions that have been
 329 selected. After K rounds, the collection of all selected regions in R^* constitutes the final optimal
 330 selection S . Substantial results in Appendices K.2 and M suggest that our framework’s average
 331 inference time is no more than 1.36 times that of an efficient baseline ICoT, and the framework scales
 332 efficiently with larger values of K and $N_C = |C|$, respectively.

333 4.4 DYNAMIC ATTENTION-SHIFTING TRIGGER (DAT)

335 As motivated by the key observation in Section 3.3, it is vital to appropriately time the insertion
 336 of visual information when constructing a multimodal CoT, and furthermore, the shift of attention
 337 from the textual to the visual context serves as a crucial indicator. Motivated by these insights, we
 338 propose the DAT mechanism, which systematically evaluates the model’s attention scores on the
 339 visual context at every token t generation step formulated as follows:

$$341 \quad A_{visual}(t) = \sum_{i \in \text{indices of } C_{visual}} \bar{a}_{t,i}, \quad (10)$$

343 where C_{visual} is the visual information within the context; $\bar{a}_{t,i}$ is the average attention score of token
 344 t towards the visual token with index i across the last N_L VLM layers. Drawing inspiration from the
 345 NLP community Jawahar et al. (2019); Tenney et al. (2019); Vig & Belinkov (2019), we restrict our
 346 focus to the model’s final layers, as they are responsible for capturing high-level semantic information,
 347 including semantic roles and coreference relations, where the shifting signal is presumed to be more
 348 reliable. In our implementation, we use the last 3 layers by default ($N_L = 3$). Then, the shift of
 349 attention is formalized as follows:

$$350 \quad \Delta A_{visual}(t) = A_{visual}(t) - A_{visual}(t-1), \quad (11)$$

352 which quantifies the model’s attention shift towards the visual context between generating the current
 353 token and the preceding one. Eventually, a hyper-parameter $\delta \in \mathbb{R}$ is employed to delineate the point
 354 at which the attention shift $\Delta A_{visual}(t)$ is substantial enough to activate the AVP to insert essential
 355 visual information in the multimodal CoT. We detail a sensitivity analysis of the threshold δ with
 356 an emphasis on its impact on the frequency of triggering AVP and the performance of AIMCoT in
 357 Appendix L.

358 5 EXPERIMENTS

361 5.1 BENCHMARKS AND BASELINES

362 In this study, we evaluate AIMCoT on three popular and challenging VQA benchmarks, including
 363 **M3CoT** Chen et al. (2024), **ScienceQA** Saikh et al. (2022), and **LLaVA-Bench In-the-Wild** (LLaVA-
 364 W) Liu et al. (2024). We provide detailed introductions in Appendix D.

366 To evaluate the performance of AIMCoT, we introduce the vanilla VLM w/o CoT (No-CoT) and a
 367 range of state-of-the-art methods as baseline models, including DDCoT Zheng et al. (2023), MMCoT
 368 Zhang et al. (2023), CCoT Mitra et al. (2024), and SCAFFOLD Lei et al. (2024), which generate
 369 text-only rationales. Furthermore, ICoT Gao et al. (2025), which constructs interleaved-modal CoT,
 370 is considered as well. The detailed introduction to them is listed in Appendix E. In presenting the
 371 results, we directly cite the performance reported in existing works where applicable.

372 5.2 IMPLEMENTATION DETAILS

374 We implement AIMCoT and the baselines on Chameleon-7B Team (2024) and Qwen2-VL-7B-
 375 Instruct Wang et al. (2024) in two settings (both 0- and 1-shot), which aligns with the recent leading
 376 research Gao et al. (2025). The experiments are conducted on A6000 GPUs. The hyper-parameter
 377 settings for AIMCoT and the reproducibility statement are meticulously listed in Appendix H.2 and
 Section 7, respectively.

378
 379 Table 2: Performance comparison results on three widely-used benchmarks. The best performances
 380 are shown in bold. The metric for experiments on M3CoT and ScienceQA is Accuracy (ACC.), while
 381 on LLaVA-W, the metric ROUGE-L is adopted.

382 Backbone	383 Method	384 M3CoT (ACC.)		385 ScienceQA (ACC.)		386 LLaVA-W (ROUGE-L)	
		387 0-shot	388 1-shot	389 0-shot	390 1-shot	391 0-shot	392 1-shot
393 Chameleon-7B	No-CoT	29.1	28.4	47.7	48.5	13.1	23.9
	DDCoT	28.6	29.8	49.8	49.2	20.2	23.1
	MMCoT	28.5	30.6	49.0	50.7	20.4	20.6
	CCoT	29.4	31.4	50.2	51.3	22.1	24.5
	SCAFFOLD	29.6	31.1	48.5	47.5	21.7	24.7
	ICoT	29.8	32.3	51.0	53.4	25.2	27.6
	AIMCoT (Ours)	31.4	32.8	53.1	54.5	29.8	32.0
395 Qwen2-VL-7B	Improvement	5.50%	1.47%	4.08%	2.04%	18.25%	15.94%
	No-CoT	43.6	45.4	56.3	64.4	32.7	33.5
	MMCoT	40.1	42.5	51.3	58.3	30.7	31.4
	CCoT	43.3	44.1	56.4	63.8	29.4	33.9
	DDCoT	42.6	45.7	55.2	64.9	31.2	32.8
	SCAFFOLD	41.7	44.9	53.7	62.5	31.8	33.1
	ICoT	44.1	46.0	56.8	65.4	34.2	35.7
399	AIMCoT (Ours)	44.7	46.6	57.4	66.3	36.3	37.3
	Improvement	1.4%	1.3%	1.1%	1.3%	6.2%	4.5%

402 5.3 PERFORMANCE COMPARISON

404 We evaluate the performance of AIMCoT against the state-of-the-art (SOTA) methods. The results
 405 shown in Table 2 clearly demonstrate the superiority of our proposed AIMCoT as it significantly
 406 outperforms all the baseline models under both 0- and 1-shot settings across all the datasets.

407 Specifically, AIMCoT surpasses all baselines that generate text-only rationales, confirming the efficacy
 408 of integrating salient visual information directly into CoT. When compared to ICoT, which also
 409 produces interleaved text-vision CoT, AIMCoT’s superior performance underscores the importance
 410 of our three key contributions: (1) a more reliable attention map as a foundation, (2) a proactive,
 411 goal-oriented mechanism for image region selection, and (3) an intelligent trigger for inserting visual
 412 information at critical moments.

413 Crucially, AIMCoT’s advantage is most pronounced on the open-ended LLaVA-W benchmark and in
 414 the 0-shot setting, which better simulate complex, real-world scenarios where the model must rely
 415 solely on its internal knowledge and reasoning. By emulating what can be seen as a more human-like
 416 cognitive process, AIMCoT unlocks the VLM’s foundational reasoning capabilities, enabling robust
 417 performance in novel and challenging situations.

419 5.4 ABLATION STUDY

421 In this section, we conduct a series of ablation studies to verify the efficacy of each component within
 422 AIMCoT. The details of settings are as follows:

- 423 • In **w/o CAG**, the VLM is directly prompted with the **raw** question x and the paired image I ;
- 424 • In **w/o AVP**, the AVP is replaced by the attention-driven Top-K strategy by following existing
 425 works Gao et al. (2025); Ge et al. (2025), which selects the regions with Top-K attention scores on
 426 the model’s attention map;
- 427 • In **w/o DAT**, following existing research Gao et al. (2025), the insertion of visual information in
 428 CoT is triggered when the model outputs the signal token, which is a line break by default.

430 Ablation results in Table 3 validate the contributions of our core components. First, CAG provides
 431 essential context enhancement, proving crucial for generating high-quality CoT, particularly when
 text queries are sparse (M3CoT, LLaVA-W). Second, the consistent, significant performance drop

432 when replacing AVP with a Top-K baseline underscores the substantial superiority of our proactive,
 433 information-oriented method. Furthermore, the removal of DAT also results in a considerable
 434 performance decline, highlighting the critical importance of the timing of image insertion.
 435

436 The performance gains
 437 from AIMCoT are most
 438 pronounced on LLaVA-W,
 439 a challenging benchmark
 440 requiring open-ended
 441 generation. This large
 442 improvement starkly
 443 demonstrates our model’s
 444 advanced capability to comprehend intricate multimodal information and tackle demanding,
 unconstrained tasks.
 445

446 5.5 IN-DEPTH ANALYSIS: THE INTERPLAY BETWEEN CAG AND AVP

447 Our proposed components collaborate organically to foster the construction of multimodal CoT: as a preceding module, CAG enriches the context to benefit the construction of the candidate set; subsequently, AVP triggered by DAT proactively selects the most salient regions from the candidate set.
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472

Table 3: Ablation study of AIMCoT conducted on Chameleon-7B under 0-shot setting.

Dataset	AIMCoT	w/o CAG	w/o AVP	w/o DAT
M3CoT (ACC.)	31.4	30.5 (-0.9)	30.6 (-0.8)	30.8 (-0.6)
ScienceQA (ACC.)	53.1	52.8 (-0.3)	52.3 (-0.8)	52.7 (-0.4)
LLaVA-W (ROUGE-L)	29.8	26.8 (-3.0)	26.2 (-3.6)	27.3 (-2.5)

Table 4: Ablation study of the baseline model (BM) on Chameleon-7B under 0-shot setting.

Dataset	BM	BM w/ CAG	BM w/ AVP	BM w/ CAG, AVP
M3CoT (ACC.)	29.8	30.3 (+0.5)	30.2 (+0.4)	30.8 (+1.0)
ScienceQA (ACC.)	51.0	52.0 (+1.0)	51.9 (+0.9)	52.7 (+1.7)
LLaVA-W (ROUGE-L)	25.2	25.8 (+0.6)	26.4 (+1.2)	27.3 (+2.1)

In this section, we investigate the interaction between CAG and AVP via an ablation study. Starting from the baseline ICoT model (BM), i.e., AIMCoT stripped of all proposed modules, we sequentially add CAG and then AVP. Table 4 presents the results, from which we derive the following insights:

- **The compatibility between CAG and AVP:** both CAG and AVP individually provide significant gains, but their combination synergistically improves the construction of the interleaved CoT.
- **The consistent superiority of AVP over Top-K selection:** AVP consistently and significantly outperforms the standard Top-K selection method for choosing image regions, both with and without the presence of the CAG module.
- **The interplay between CAG and AVP:** The average performance improvement of AVP over Top-K selection increases from 2.62% to 2.94% when CAG is introduced. This suggests CAG enhances the source attention map, providing a more reliable set of candidate regions and thereby unlocking AVP’s full potential to select the most salient visual evidence.

6 CONCLUSION

In this paper, we propose AIMCoT, a novel framework that reframes the construction of interleaved-modal CoT as an active, information-foraging process, addressing the limitations in existing methods, which often rely on passive, heuristic-driven mechanisms for selecting and inserting visual information at suboptimal moments. Our extensive experiments on three popular and challenging benchmarks demonstrate that AIMCoT significantly outperforms state-of-the-art methods in both 0- and 1-shot settings (up to 18%). By dynamically structuring its reasoning and actively seeking the most informative visual cues, AIMCoT achieves a more proactive, goal-oriented, and human-like approach to vision-language reasoning.

Despite the strong performance, AIMCoT presents avenues for future exploration. The AVP module, while highly effective and optimized, introduces a slight computational overhead compared to simpler attention-based selection. Future work could explore lightweight, learnable policies for region selection to further enhance its deployability. We also plan to extend our evaluation to a broader range of VLM architectures and more complex, long-form reasoning tasks to further probe the generalizability and limits of our active information-seeking paradigm.

486 7 REPRODUCIBILITY STATEMENT
487

488 To ensure the reproducibility of our work, we provide the complete source code for our AIMCoT
489 framework and all experiments in the supplementary materials, accessible via an anonymized link:
490 <https://anonymous.4open.science/r/AMCoT>. The architectural details and theoretical underpinnings
491 of our proposed components, including Context-enhanced Attention-map Generation (CAG), Active
492 Visual Probing (AVP), and Dynamic Attention-shifting Trigger (DAT), are thoroughly described in
493 Section 4 of the main paper. The specific greedy algorithm employed by AVP is detailed in Algorithm
494 1 (Appendix F). All datasets used in our evaluation are publicly available benchmarks, as detailed in
495 Section 5.1 and Appendix D. We provide a comprehensive list of all hyper-parameter settings used to
496 achieve the reported results for each benchmark in Appendix H.2 (Table 5). Furthermore, extensive
497 ablation studies (Section 5.4), and in-depth analyses (Section 5.5, Appendices G,I, J, L, and M), are
498 provided to allow for a complete replication of our findings.

499 REFERENCES
500

501 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
502 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
503 *arXiv preprint arXiv:2303.08774*, 2023.

504 Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawska, Lukas Gianinazzi,
505 Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczek, et al. Graph of thoughts:
506 Solving elaborate problems with large language models. In *Proceedings of the AAAI conference
507 on artificial intelligence*, volume 38, pp. 17682–17690, 2024.

508 Andrew An Bian, Joachim M Buhmann, Andreas Krause, and Sebastian Tschiatschek. Guarantees for
509 greedy maximization of non-submodular functions with applications. In *International conference
510 on machine learning*, pp. 498–507. PMLR, 2017.

511 Donald Eric Broadbent. *Perception and communication*. Elsevier, 2013.

512 Qiguang Chen, Libo Qin, Jin Zhang, Zhi Chen, Xiao Xu, and Wanxiang Che.
513 *M³cot : Anovelbenchmark for multi – domainmulti – stepmulti – modalchain – of –
514 thought*. *arXiv preprint arXiv:2405.16473*, 2024.

515 Abhimanyu Das and David Kempe. Submodular meets spectral: greedy algorithms for subset selection,
516 sparse approximation and dictionary selection. In *Proceedings of the 28th International Conference
517 on International Conference on Machine Learning*, ICML’11, pp. 1057–1064, Madison, WI, USA,
518 2011. Omnipress. ISBN 9781450306195.

519 Karl Friston. Friston, k.j.: The free-energy principle: a unified brain theory? *nat. rev. neurosci.* 11,
520 127–138. *Nature reviews. Neuroscience*, 11:127–38, 02 2010. doi: 10.1038/nrn2787.

521 Jun Gao, Yongqi Li, Ziqiang Cao, and Wenjie Li. Interleaved-modal chain-of-thought. In *Proceedings
522 of the Computer Vision and Pattern Recognition Conference*, pp. 19520–19529, 2025.

523 Haonan Ge, Yiwei Wang, Ming-Hsuan Yang, and Yujun Cai. Mrfd: Multi-region fusion decoding with
524 self-consistency for mitigating hallucinations in lylms. *arXiv preprint arXiv:2508.10264*, 2025.

525 Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate
526 object detection and semantic segmentation. In *Proceedings of the IEEE conference on computer
527 vision and pattern recognition*, pp. 580–587, 2014.

528 Ganesh Jawahar, Benoît Sagot, and Djamel Seddah. What does bert learn about the structure of language?
529 In *ACL 2019-57th Annual Meeting of the Association for Computational Linguistics*, 2019.

530 Been Kim, Rajiv Khanna, and Oluwasanmi O Koyejo. Examples are not enough, learn to criticize!
531 criticism for interpretability. *Advances in neural information processing systems*, 29, 2016.

532 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao,
533 Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *Proceedings of the
534 IEEE/CVF international conference on computer vision*, pp. 4015–4026, 2023.

540 Andreas Krause, Ajit Singh, and Carlos Guestrin. Near-optimal sensor placements in gaussian processes:
 541 Theory, efficient algorithms and empirical studies. *Journal of Machine Learning Research*, 9:235–284,
 542 02 2008. doi: 10.1145/1390681.1390689.

543 Xuanyu Lei, Zonghan Yang, Xinrui Chen, Peng Li, and Yang Liu. Scaffolding coordinates to promote
 544 vision-language coordination in large multi-modal models. *arXiv preprint arXiv:2402.12058*, 2024.

545 Xiping Li, Aier Yang, Jianghong Ma, Kangzhe Liu, Shanshan Feng, Haijun Zhang, and Yi Zhao.
 546 Cpgrec+: A balance-oriented framework for personalized video game recommendations, 03 2025.

547 Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee. Llava-
 548 next: Improved reasoning, ocr, and world knowledge, January 2024. URL <https://llava-vl.github.io/blog/2024-01-30-llava-next/>.

549 Yibing Liu, Yangyang Guo, Jianhua Yin, Xuemeng Song, Weifeng Liu, Liqiang Nie, and Min Zhang.
 550 Answer questions with right image regions: A visual attention regularization approach. *ACM Trans.
 551 Multimedia Comput. Commun. Appl.*, 18(4), March 2022. ISSN 1551-6857. doi: 10.1145/3498340.
 552 URL <https://doi.org/10.1145/3498340>.

553 Chanchalik Mitra, Brandon Huang, Trevor Darrell, and Roei Herzig. Compositional chain-of-thought
 554 prompting for large multimodal models. In *Proceedings of the IEEE/CVF Conference on Computer
 555 Vision and Pattern Recognition*, pp. 14420–14431, 2024.

556 George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approximations for
 557 maximizing submodular set functions—i. *Mathematical programming*, 14(1):265–294, 1978.

558 Mike Oaksford and Nick Chater. A rational analysis of the selection task as optimal data selection.
 559 *Psychological Review*, 101:608–631, 10 1994. doi: 10.1037/0033-295X.101.4.608.

560 Peter Pirolli and Stuart Card. Information foraging. *Psychological review*, 106(4):643, 1999.

561 Tanik Saikh, Tirthankar Ghosal, Amish Mittal, Asif Ekbal, and Pushpak Bhattacharyya. Scienceqa:
 562 A novel resource for question answering on scholarly articles. *International Journal on Digital
 563 Libraries*, 23(3):289–301, 2022.

564 Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set approach.
 565 In *International Conference on Learning Representations*, 2018.

566 Mirac Suzgun, Nathan Scales, Nathanael Schäli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
 567 Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks and
 568 whether chain-of-thought can solve them. *arXiv preprint arXiv:2210.09261*, 2022.

569 Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. *arXiv preprint
 570 arXiv:2405.09818*, 2024.

571 Ian Tenney, Dipanjan Das, and Ellie Pavlick. Bert rediscovers the classical nlp pipeline. *arXiv preprint
 572 arXiv:1905.05950*, 2019.

573 Jasper RR Uijlings, Koen EA Van De Sande, Theo Gevers, and Arnold WM Smeulders. Selective
 574 search for object recognition. *International journal of computer vision*, 104(2):154–171, 2013.

575 Jesse Vig and Yonatan Belinkov. Analyzing the structure of attention in a transformer language model.
 576 *arXiv preprint arXiv:1906.04284*, 2019.

577 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin
 578 Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the world at
 579 any resolution. *arXiv preprint arXiv:2409.12191*, 2024.

580 Xiaohan Wang, Wenguan Wang, Jiayi Shao, and Yi Yang. Lana: A language-capable navigator for
 581 instruction following and generation. In *Proceedings of the IEEE/CVF conference on computer vision
 582 and pattern recognition*, pp. 19048–19058, 2023.

583 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery,
 584 and Denny Zhou. Self-consistency improves chain of thought reasoning in language models. *arXiv
 585 preprint arXiv:2203.11171*, 2022.

594 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 595 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 596 *neural information processing systems*, 35:24824–24837, 2022.

597 Jinheng Xie, Xianxu Hou, Kai Ye, and Linlin Shen. Clims: Cross language image matching for weakly
 598 supervised semantic segmentation. In *Proceedings of the IEEE/CVF conference on computer vision*
 599 *and pattern recognition*, pp. 4483–4492, 2022.

600 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
 601 Tree of thoughts: Deliberate problem solving with large language models. *Advances in neural*
 602 *information processing systems*, 36:11809–11822, 2023.

603 Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in
 604 large language models. *arXiv preprint arXiv:2210.03493*, 2022.

605 Zhuosheng Zhang, Aston Zhang, Mu Li, Hai Zhao, George Karypis, and Alex Smola. Multimodal
 606 chain-of-thought reasoning in language models. *arXiv preprint arXiv:2302.00923*, 2023.

607 Xu Zhao, Wenchao Ding, Yongqi An, Yinglong Du, Tao Yu, Min Li, Ming Tang, and Jinqiao Wang.
 608 Fast segment anything. *arXiv preprint arXiv:2306.12156*, 2023.

609 Ge Zheng, Bin Yang, Jiajin Tang, Hong-Yu Zhou, and Sibei Yang. Ddcot: Duty-distinct chain-of-
 610 thought prompting for multimodal reasoning in language models. *Advances in Neural Information*
 611 *Processing Systems*, 36:5168–5191, 2023.

612 **A APPENDIX**

613 **B LLM USAGE STATEMENT**

614 In the preparation of this manuscript, we utilized a large language model (LLM) as a general-purpose
 615 writing assistance tool. The primary uses of the LLM were twofold:

616 • Grammatical Correction: The LLM was employed to proofread the manuscript for grammatical
 617 errors, spelling mistakes, and awkward phrasing. This helped improve the overall clarity and
 618 readability of our paper.

619 • Text Condensation: To adhere to the page limits of the conference, we used the LLM to help
 620 condense and rephrase certain paragraphs and sentences.

621 All suggestions provided by the LLM were carefully reviewed, critically evaluated, and manually
 622 edited by the authors to ensure that the scientific integrity and intended meaning of our work were
 623 preserved. Notably, the LLM was not used for core research activities, including the ideation of
 624 the AIMCoT framework, the design of experiments, the analysis of results, or the generation of the
 625 primary scientific claims. The final intellectual content and all contributions presented in this paper
 626 are entirely our own.

627 **C EXPLANATION FOR FIGURE 1**

628 Figure 1 shows the images of the 22nd question on LLaVA-W benchmark. The query for this
 629 question is: *“What’s the name of the restaurant serving these dishes?”* and the image is a close-up
 630 photo of a meal at ICHIRAN. The left figure is the original image, and the right figure visualizes
 631 the regions selected by the Top-K strategy. The *num_selected_patches* regions with the highest,
 632 second-highest, and third-highest scores are designated as the first, second, and third sets, colored red,
 633 purple, and blue, respectively. The first set is utilized by the baseline model according to its default
 634 design (*num_selected_patches* = 72).

635 **D INTRODUCTION TO THE BENCHMARKS**

636 **M3CoT** Chen et al. (2024) is a novel multimodal CoT benchmark, which introduces complex,
 637 multi-step problems across science, mathematics, and commonsense domains, comprising 11,459

648 samples in total. M3CoT is characterized by succinct textual queries (<15 tokens on average) paired
 649 with intricate problems. This inherent text-vision imbalance makes it an ideal platform to validate
 650 the efficacy of our proposed CAG in mitigating this issue and the superiority of AVP in proactively
 651 selecting the salient visual regions.

652 **ScienceQA** Saikh et al. (2022) is a popular benchmark for multiple-choice question answering
 653 with explanations on scholarly articles, comprising over 100,000 context-question-answer triples to
 654 address data scarcity in scientific machine reading comprehension.

655 **LLaVA-Bench In-the-Wild (LLaVA-W)** Liu et al. (2024) is a challenging open-ended benchmark
 656 designed to evaluate the real-world capabilities of VLMs by mimicking the unpredictability of
 657 real-world scenarios. The answers generated by GPT-4v Achiam et al. (2023) serve as the labels.
 658 LLaVA-W is exceptionally well-suited for evaluating the capability of our proposed framework to
 659 address complex, open-ended problems by generating a multimodal CoT, attending to salient regions
 660 within the image, and meticulously parsing the query.

663 E INTRODUCTION TO THE BASELINE MODELS

664
 665 **No-CoT** prompts the VLM to answer questions directly based on the input query and image. In the
 666 1-shot setting, an example containing the query, image, and corresponding answer is attached.

667 **DDCoT** Zheng et al. (2023) deconstructs a multimodal problem into reasoning and recognition sub-
 668 questions, uses negative-space prompting to identify and fill visual information gaps with external
 669 models, and then integrates all information for a final joint reasoning step to generate rationales.

670 **MMCOT** Zhang et al. (2023) first generates a rationale from fused language and vision inputs, and
 671 then uses this rationale along with the original multimodal data to infer the final answer.

672 **CCoT** Mitra et al. (2024) first prompts the VLM to generate a scene graph from an image and then
 673 uses it as an intermediate reasoning step to produce the final response.

674 **SCAFFOLD** Lei et al. (2024) promotes vision-language coordination in the VLM by overlaying a
 675 dot matrix with coordinates onto an image, which then serves as a visual anchor that can be explicitly
 676 referenced in the textual prompt.

677 **ICoT** Gao et al. (2025) leverages the attention maps of the VLM to select relevant patches from the
 678 input image and insert them into the reasoning process, thereby generating sequential steps of paired
 679 visual and textual rationales.

683 F GREEDY ALGORITHM WITHIN AVP MODULE

684 The complete process of the greedy algorithm within AVP is shown in Algorithm 1.

688 **Algorithm 1:** Greedy Algorithm for Optimal Region Selection

689 **Input:** total candidate set C , size of optimal selection K

690 **Output:** optimal selection S

```

691 1  $R^* \leftarrow \emptyset$ 
692 2 for  $k \leftarrow 1, 2, \dots, K$  do
693 3    $U_B \leftarrow H(Y|I, x, y_{<t}, R^*)$ 
694 4   for  $i \leftarrow 1, 2, \dots, N + M$  do
695 5      $U_{C,i} \leftarrow H(Y|I, x, y_{<t}, R^* \cup \{R_i\})$ 
696 6      $IG(\{R_i\}) \leftarrow U_B - U_{C,i}$ 
697 7      $R_{next} \leftarrow \text{argmax}_{R_i \in C \setminus R^*} \{IG(\{R_i\})\}$ 
698 8      $R^* \leftarrow R^* \cup \{R_{next}\}$ 
699 9    $S \leftarrow R^*$ 
700 10 return  $S$ 

```

702 G DETAILED ANALYSIS OF KEY MOMENTS TO INSERT VISUAL INFORMATION 703

704 **Experimental Setup.** We take ICoT Gao et al. (2025) as a baseline model, which is required to answer
705 all questions from the LLaVA-W benchmark in a 0-shot setting, with ROUGE-L used as the evaluation
706 metric. The hyper-parameters follow the default settings of the open-source implementation for ICoT,
707 and all experiments are conducted with the Chameleon-7B backbone.

708 **Formal Definition of Attention Shifts.** To analyze attention shifts, we examine the averaged
709 attention maps across all attention heads in the last three layers of the VLM during the prediction of
710 each token t . The model’s total attention scores allocated to the visual and text components of the
711 input are respectively measured as follows:

$$713 A_{visual}(t) = \sum_{i \in \text{indices of } C_{visual}} \bar{a}_{t,i}, \quad A_{text}(t) = \sum_{j \in \text{indices of } C_{text}} \bar{a}_{t,j}, \quad (12)$$

715 where C_{visual}, C_{text} are the visual and text information within the context, respectively. Then, the
716 shift in attention from the textual to the visual modality while generating token t is defined as follows:

$$717 \delta_t = A_{visual}(t) - A_{visual}(t-1). \quad (13)$$

719 $\Delta_k = [\delta_1, \delta_2, \dots, \delta_{|\Delta_k|}]$ encompasses the model’s attention shifts for each token when answering
720 the arbitrary k -th question, where $|\Delta_k|$ is the number of tokens for answering the k -th question.

721 **Formal Definition of Scores.** for the predictions generated by the baseline model, the ROUGE-
722 L scores are given by $List_R = [R_1, R_2, \dots, R_{|List_R|}]$, where R_k is the score for the model’s
723 response to the k -th question, and $|List_R|$ is the number of questions within the benchmark.

724 Based on these concepts, we design a two-part experiment:

726 **Experiment 1: Correlation Analysis.** We investigate the relationship between the proportion of
727 visual insertions under significant attention shifts and the score of the corresponding generated
728 prediction.

729 First, to identify whether a visual insertion is conducted during a significant attention shift, we define
730 a high attention growth threshold, $\delta_k^{(h)}$ for the k -th response ($\delta_k^{(h)}$ is set to the 80% upper quantile
731 of Δ_k by default). An insertion is considered to have been conducted under a significant shift and
732 referred to as a *synchronized insertion* if and only if its corresponding attention shift value exceeds
733 the threshold $\delta_k^{(h)}$.

735 Next, since the model can conduct multiple insertions per response for a question, we calculate P_k ,
736 the proportion of synchronized insertions out of the total number of insertions for the k -th question.

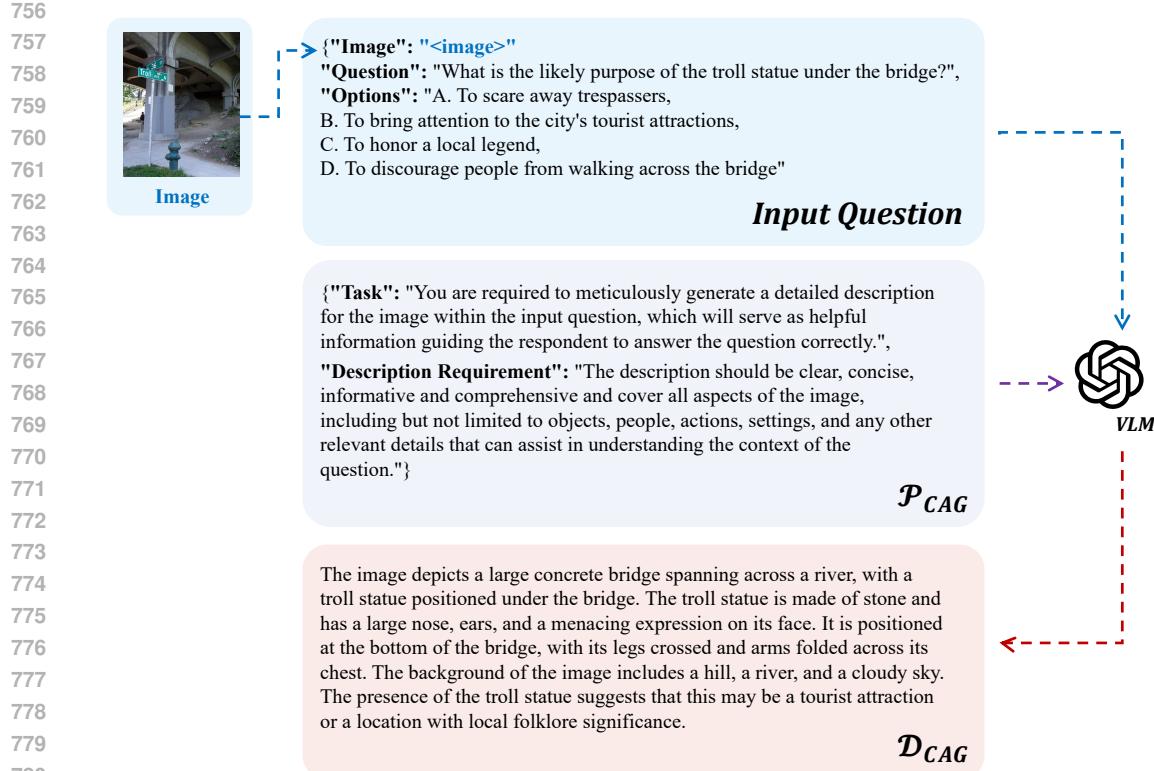
737 Finally, since the proportions of synchronized insertions $[P_1, P_2, \dots, P_{|List_R|}]$ and the ROUGE-L
738 scores for all the questions $[R_1, R_2, \dots, R_{|List_R|}]$ are obtained, the Pearson Correlation coefficient
739 can be computed. Specifically, the Pearson Correlation is 0.2166 with a p-value of 0.048, which sug-
740 gests that the proportions of the synchronized insertions and the corresponding score are significantly
741 positively related to each other.

742 **Experiment 2: Group Analysis.** We investigate the relationship between the proportion of synchro-
743 nized insertions and the quality of the model’s response.

745 To group the generated predictions according to response quality, we establish high- and low-scoring
746 groups. All predictions are ranked in descending order by their ROUGE-L scores. The top 30% form
747 G_h , the high-scoring group (high-quality responses), and G_l , the bottom 30% form the low-scoring
748 group (low-quality responses).

749 Then, we calculate the mean proportion of synchronized insertions for groups G_h, G_l , which are
750 denoted as \bar{P}_h, \bar{P}_l , respectively.

751 Finally, the means of the two groups \bar{P}_h, \bar{P}_l are compared, and a T-test is performed to assess the
752 statistical significance of the difference. Specifically, we find that $\bar{P}_h = 0.8889, \bar{P}_l = 0.5000$,
753 which suggests that in the high-scoring group, approximately 89% of insertions are the synchronized
754 insertions with significant attention shift from textual input to visual information; in contrast, in the
755 low-scoring group, only about half of the insertions are synchronized insertions. Besides, the P-value
of T-test is as low as 0.0019, which demonstrates that the result is highly statistically significant.



810

811

Table 5: Hyper-parameter settings across three datasets.

812

813

Parameter	M3CoT	ScienceQA	LLaVA-W
N_C	8	8	6
K	3	3	3
N	4	4	2
M	4	4	1
Region size for AVP s_r (grid)	1	1	1
Grid size for AVP s_g	4	4	4
δ	0.5	0.2	0.2
Temperature	0.7	0.7	0.7
Do sample	True	True	True
Top_p	0.9	0.9	0.9
Repetition_penalty	1.2	1.2	1.2
Min_new_tokens	32	32	32
Max_new_tokens	512	1024	1024

814

815

816

817

818

819

820

821

822

823

824

825

826

827

I EMPIRICAL ANALYSIS OF THE APPROXIMATE SUBMODULARITY OF FUNCTION F

830

To offer a more comprehensive insight into the motivation for employing a greedy algorithm, this section provides a thorough analysis. We emphasize that for functions that are not theoretically submodular, a greedy approach remains one of the conventional methods for addressing their maximization, as established in recognized works Bian et al. (2017); Sener & Savarese (2018); Kim et al. (2016); Krause et al. (2008); Das & Kempe (2011). In this part, we conduct meticulously designed experiments to investigate the extent to which the information gain function F approximates submodularity. The experimental results reveal that F empirically exhibits significant submodular characteristics. This finding motivates us to follow established works Bian et al. (2017); Sener & Savarese (2018); Kim et al. (2016); Krause et al. (2008); Das & Kempe (2011) to propose a greedy algorithm to solve the maximization problem for F . The analysis is detailed as follows:

831

Firstly, we would like to introduce the definition of a submodular function. According to existing research Nemhauser et al. (1978), a function f is a submodular function if it satisfies

$$f(A \cup \{R_i\}) - f(A) \geq f(B \cup \{R_i\}) - f(B) \quad (15)$$

832

for any sets $A \subseteq B \subset C$ and any element that satisfies $R_i \in C \setminus B$. In our scenario, the Inequality 15 is written as

$$F(A \cup \{R_i\}) - F(A) \geq F(B \cup \{R_i\}) - F(B) \quad (16)$$

833

for any $A \subset B \subset C$ and any $R_i \in C \setminus B$, which means that the information gain from incorporating a visual region exhibits a diminishing returns property.

834

To demonstrate this empirically, we design the experiment detailed as follows, aiming to show that for two sets of regions of different sizes, $S_{small} \subset S_{large} \subset C$, the information gain from incorporating a given visual region $R_{test} \in C \setminus S_{large}$ into the context of a VLM is greater when R_{test} is added to S_{small} than when it is added to S_{large} , ceteris paribus.

835

Experimental Setup. In our experimental design, each time the AVP process is triggered to select salient regions, we first execute it to select K_{small} regions from the total candidate pool C to form the set S_{small} . Subsequently, building upon S_{small} , we select an additional $K_{large} - K_{small}$ regions to construct the set S_{large} , where K_{small} and K_{large} are the respective set sizes. This construction inherently ensures that $S_{small} \subset S_{large}$.

836

Next, to compute the information gain contributed by a given region, we randomly sample a region R_{test} from $C \setminus S_{large}$. We then calculate the VLM's information content, which are denoted as U_s , U_s^* , U_l , and U_l^* , when the context incorporates (1) S_{small} , (2) $S_{small} \cup \{R_{test}\}$, (3) S_{large} , and (4) $S_{large} \cup \{R_{test}\}$, respectively. We expect to observe in the majority of cases that:

837

$$U_s^* - U_s \geq U_l^* - U_l. \quad (17)$$

We conduct experiments on the M3CoT and LLaVA-W benchmarks, setting $K_{small} \in \{2, 3, 4, 5\}$ and $K_{large} = K_{small} + 1$ for simplicity. In terms of evaluation, we record the proportion of instances for which the inequality $U_s^* - U_s \geq U_l^* - U_l$ holds, and further introduce a Binomial Test to rigorously examine the significance of the results.

Experimental Results. The experimental results are presented in Table 6. As we can see, the Inequality 15 holds in most instances across all settings and datasets. Furthermore, to confirm the significance of the obtained results, we introduce the Binomial Test, an exact statistical procedure for assessing the extent to which experimental outcomes with a binary structure are attributable to chance alone. The p-values, presented in Table 6, are all substantially below the 0.05 significance level. This demonstrates that the information gain function F behaves in a manner that is empirically near-submodular, which motivates us to follow existing research Bian et al. (2017); Sener & Savarese (2018); Kim et al. (2016); Krause et al. (2008); Das & Kempe (2011) where greedy algorithms are proposed to solve the problem of maximizing approximately submodular functions.

Table 6: Proportions of instances on M3CoT and LLaVA-W benchmarks for which the approximate submodularity of information gain function F is manifested. The backbone is Chameleon-7B and the model is our proposed AIMCoT. K_{large} is set to $K_{small} + 1$ for simplicity. The significance levels of these results are listed below them.

K_{small}	2	3	4	5
M3CoT (n=2318)	72.00%	62.99%	67.04%	61.09%
P-value	<1e-6	<1e-6	<1e-6	<1e-6
LLaVA-W (n=60)	61.67%	68.33%	61.67%	63.33%
P-value	0.0462	0.0031	0.0462	0.0249

J ANALYSIS OF THE SELECTED REGIONS’ SOURCE

In this section, we examine the distribution of sources for the visual regions selected by the AVP module of AIMCoT. These regions are drawn from two sets, C_{attn} and C_{exp} , with their respective selection proportions denoted as P_{attn} and P_{exp} . Intuitively, P_{exp} reflects the significance of incorporating the exploratory set C_{exp} to construct a better multimodal CoT. A larger value of P_{exp} indicates that the exploratory set C_{exp} makes a greater contribution by providing informative salient regions to AIMCoT, and vice versa.

Experimental Setup The experiments are conducted on the M3CoT and LLaVA-W benchmarks. Our proposed AIMCoT is implemented with the Chameleon-7B backbone under a default 0-shot setting. To ensure the reliability of the results, we repeat each experiment three times on both benchmarks.

Results and Analysis As presented in Table 7, although the value of P_{exp} fluctuates across different experimental runs on the same benchmark, it remains consistently around 20% on M3CoT and 30% on LLaVA-W. This indicates that the influence of stochastic factors on the source distribution of the selected regions is limited, which validates our rationale of using this metric as a reflection of the relative importance of C_{attn} and C_{exp} . Furthermore, we observe that P_{exp} is significantly greater than zero. This demonstrates that the exploratory set C_{exp} consistently serves as a critical component of the total candidate set C , contributing a substantial portion of the informative regions for AIMCoT.

Table 7: Proportion of salient regions selected by the AVP module of our proposed AIMCoT from the exploratory set C_{exp} .

Experiment Number	1	2	3
M3CoT	17.25%	20.44%	27.27%
LLaVA-W	31.33%	25.77%	26.67%

918 **K DEPLOYMENT OF AIMCOT**
919920 **K.1 ANALYSIS OF THE COMPLEXITY OF AVP MODULE**
921922 **Overview of the AVP Module** The Active Visual Probing (AVP) module’s primary purpose is
923 to dynamically and intelligently select salient sub-regions of an image during the text generation
924 process. This is achieved by calculating the “information gain” that each potential sub-region offers,
925 thereby allowing the model to “zoom in” on relevant visual details and generate more informed and
926 contextually aware text.927 The AVP logic is primarily encapsulated in three key methods:
928929 1. `forward`: The main entry point where the AVP process is triggered based on changes in visual
930 attention.
931 2. `_generate_candidate_regions`: Generates a diverse set of potential image regions (can-
932 didates) for evaluation.
933 3. `_calculate_information_gain_iterative`: The core of the AVP module. It iter-
934 atively evaluates candidate regions and selects the combination that maximizes the reduction in
935 uncertainty (entropy) for the next token prediction.936 **Definition of the Notations** Let’s define the key variables that will be used in the complexity
937 analysis:
938939 • N : The current sequence length of the input tokens.
940 • N_C : The total number of candidate regions generated (`avp_num_candidates`).
941 • K : The number of regions to be selected in each AVP cycle
942 (`avp_num_regions_to_select`).
943 • G : The grid size of the vision model’s feature map (e.g., `model_vision_grid_size`, which
944 is 4 by default, making the total number of patches $G^2 = 16$).
945 • V_{sub} : The number of visual tokens (“vokens”) generated for a single cropped sub-image region.
946 • ΔN : The length added per selected region, where $\Delta N = V_{sub} + 2$ (accounting for the `boi` and
947 `eoi` tokens).
948 • L : The number of layers in the transformer model.
949 • H : The hidden size of the model.
950 • V_{vocab} : The size of the model’s vocabulary.
951952 **AVP Triggering in the `forward` Method** The AVP mechanism is not activated on every forward
953 pass; instead, it is triggered conditionally based on the change in attention directed towards the visual
954 tokens. Specific to its operational process, in terms of attention calculation, the code calculates
955 `latest_vattns`—which refers to the sum of attention scores from the last token to all visual
956 patch tokens—and this step requires iterating through the attention matrices. Meanwhile, regarding
957 the trigger condition, the core logic is `if delta_vattns > config['delta']`, where
958 `delta_vattns` represents the difference between the current and previous visual attention sums.
959 In conclusion, the cost of this trigger check per token generation is minimal; it primarily involves
960 retrieving and summing pre-computed attention scores. The complexity is approximately $O(L \cdot N)$
961 to extract and sum the relevant attention weights to the G^2 visual patches, but this is dwarfed by the
962 main model’s complexity.963 **`_generate_candidate_regions` Method** This method generates N_C candidate regions
964 from the image’s attention map, using a hybrid strategy that combines attention-based and ran-
965 dom sampling. Specifically, for attention-based candidates, it first flattens the $G \times G$ attention
966 map, then uses `torch.topk` to find the indices of the `avp_num_attention_based`
967 patches with the highest attention—with the complexity of `topk` on a tensor of size
968 G^2 being $O(G^2 \log(\text{avp_num_attention_based}))$ —and subsequently creates bounding
969 boxes around these top patches, which is a constant time operation for each of the
970 `avp_num_attention_based` candidates; for random candidates, it generates the remain-
971 ing $N_C - \text{avp_num_attention_based}$ candidates by randomly selecting coordinates,
an operation with complexity $O(N_C - \text{avp_num_attention_based})$. As a result, the

time complexity in this part is $O(G^2 \log(\text{avp_num_attention_based}) + N_C)$, and since `avp_num_attention_based` is a small constant and G^2 is fixed (e.g., 16), this can be considered approximately $O(N_C)$.

`calculate_information_gain_iterative` Method This is the most computationally intensive part of the AVP module. It employs a greedy, iterative approach to select the K best regions out of N_C candidates. The method consists of an outer loop that runs K times (for each region to be selected). Inside this loop, it evaluates the remaining candidates to pick the one that provides the highest immediate information gain.

Let's analyze a **single iteration** of this outer loop (e.g., the k -th iteration, where k ranges from 0 to $K - 1$):

First, for the **initial entropy calculation**, it performs one forward pass through the base model (`self.model`) with the current sequence of tokens (which includes tokens from k previously selected regions), where the sequence length at this stage is $N_k = N + k \cdot \Delta N$; with Key-Value (KV) caching from previous iterations, the cost can be incremental: $O(L \cdot \Delta N \cdot N_{k-1} \cdot H)$ for updating the cache with the last selected region's tokens, rather than a full $O(L \cdot N_k^2 \cdot H)$.

Next, for the **batch preparation for lookahead analysis**, the code iterates through the remaining $N_C - k$ candidate regions, and for each candidate, it performs cropping and vokenization (cropping the image pixels and passing them to `self.model.get_image_tokens`, which involves a forward pass through the vision encoder with complexity approximately $O(G^2)$ per crop, negligible compared to the transformer) and tensor concatenation (creating a new input sequence by appending the new vokens, with the length of this new sequence being $N_k + \Delta N$), with this loop running $N_C - k$ times.

Subsequently, for the **batch forward pass (lookahead)**, the $N_C - k$ new input sequences are padded and batched together, a single batched forward pass is performed on these $N_C - k$ sequences, the maximum sequence length in this batch is $N_k + \Delta N$, and since all lookahead sequences share the same prefix of length N_k , KV caching for the prefix can be reused across the batch; the complexity is then self-attention among suffix tokens: $O(L \cdot (N_C - k) \cdot \Delta N^2 \cdot H)$ and cross-attention to prefix: $O(L \cdot (N_C - k) \cdot \Delta N \cdot N_k \cdot H)$, with the dominant term (when $N_k \gg \Delta N$) being $O(L \cdot (N_C - k) \cdot \Delta N \cdot N_k \cdot H)$, which is the key optimization from batch processing and caching, reducing from quadratic to linear dependence on N_k .

Additionally, for the **information gain calculation**, it calculates the entropy for each of the $N_C - k$ outputs from the lookahead pass, which involves a softmax over the vocabulary and is $O((N_C - k) \cdot V_{vocab})$.

Finally, for the **selection and state update**, `torch.argmax` finds the best candidate in $O(N_C - k)$ time, and the base input sequence is updated for the next iteration.

Overall Complexity of the Method We must sum the complexity over the K iterations of the outer loop. The most computationally intensive operation is the batched lookahead forward pass, which is significantly optimized through batch processing and Key-Value caching. The overall time complexity can be expressed as follows:

$$\sum_{k=0}^{K-1} O(L \cdot (N_C - k) \cdot \Delta N \cdot (N + k \cdot \Delta N) \cdot H). \quad (18)$$

This formula highlights that, thanks to KV caching, the complexity scales linearly with sequence length N —a substantial improvement over the standard quadratic dependence. While the cost is also linear with respect to the number of candidates N_C and selections K , our framework maintains strong deployability. This is because the AVP module is highly efficient at extracting crucial visual information from the candidate set. Our empirical results demonstrate that AIMCoT achieves exceptional performance (as shown in Table 2) even when these hyper-parameters are kept at low levels (e.g., $K = 3$, $N_C = 6$, which is the default setting). In conclusion, we can approximate the complexity of AVP as follows:

$$O(K \cdot N_C \cdot L \cdot \Delta N \cdot (N + K \cdot \Delta N) \cdot H). \quad (19)$$

1026 This demonstrates that **the combination of architectural optimizations (batching and KV caching)**
 1027 **and the high extractive efficiency of AVP ensures the module’s practicality, making it efficient**
 1028 **and readily deployable in practice.** As a comparison, the attention-driven selection method within
 1029 the baseline model ICoT is with a complexity of $O(\log K \cdot \Delta N + L \cdot N \cdot H)$, which also scales
 1030 linearly with sequence length N . Although this is acknowledged to be lower than the complexity of
 1031 AVP shown in Equation 19, our empirical results detailed in Appendix K.2 suggest that AVP’s average
 1032 inference time is **no more than 1.36 times** that of this method, while **achieving performance far**
 1033 **superior to it** as analyzed in Section 5.5.

1034

1035 K.2 EMPIRICAL ANALYSIS OF THE DEPLOYMENT OF AIMCoT

1036

1037 In this section, we empirically investigate the deployability of the AIMCoT framework and the
 1038 temporal overhead introduced by the AVP module. For the experimental setup, we utilized Chameleon-
 1039 7B as the backbone in a 0-shot setting to compare the average inference time of AIMCoT against
 1040 ICoT Gao et al. (2025). ICoT, as a key baseline model in this study, employs a Top-K strategy to
 1041 simultaneously select regions with the highest attention scores for constructing the multimodal CoT,
 1042 thereby expected to possess a relatively lower time complexity compared to AIMCoT. Consequently,
 1043 the comparison with ICoT serves as a direct indicator of AIMCoT’s deployability.

1044

1045 Table 8: Comparison of the average time to process each instance between AIMCoT and the baseline
 1046 model (ICoT).

1047

Dataset	AIMCoT	ICoT
M3CoT	13.37s	11.62s
LLaVA-W	11.65s	8.58s

1052 The experimental results are presented in Table 8. Two key observations can be drawn. First,
 1053 the AVP module does not introduce significant temporal costs to the AIMCoT framework, an
 1054 efficiency attributable to batch processing and the KV Cache mechanism. Second, AIMCoT achieves
 1055 substantially superior performance as shown in Table 2, at a time cost comparable to that of the
 1056 efficient baseline, which is less than 1.36 times that of ICoT (specifically, 1.15 and 1.36 times on
 1057 M3CoT and LLaVA-W benchmarks, respectively). This suggests that **our proposed AIMCoT**
 1058 **framework achieves a favorable trade-off between performance and deployability.**

1059

1060 L SENSITIVITY ANALYSIS OF δ

1061

1063 The hyper-parameter δ within the DAT module serves as a crucial threshold to trigger the AVP
 1064 module, which inserts salient visual regions to improve the construction of the multimodal
 1065 CoT. In this section, we detail a sensitivity analysis of δ by adjusting δ across the range of
 1066 $[0.1, 0.125, 0.15, 0.175, 0.2, 0.225]$ and examining not only (1) the performance of AIMCoT, but also
 1067 (2) the number of times the AVP is triggered. The experiments are conducted under 0-shot setting on
 1068 Chameleon-7B backbone and LLaVA-W benchmark. The experimental results are shown in Figure 5.

1069 The left figure illustrates that AIMCoT exhibits limited performance when the threshold, δ , is set too
 1070 low. This underscores the importance of inserting visual information at critical moments: excessively
 1071 frequent or inopportune visual insertions can disrupt the VLM’s reasoning process, leading to
 1072 suboptimal performance. As δ increases, the model’s performance progressively improves, reaching
 1073 its peak at $\delta = 0.2$ (our default setting), which corresponds to a ROUGE-L score of 0.2983. However,
 1074 a further increase in δ results in a slight performance degradation. This highlights the criticality of
 1075 visual information insertion for constructing an interleaved Chain of Thought: an overly stringent
 1076 threshold excessively impedes the incorporation of visual data, preventing the AVP from supplying
 1077 the model with necessary visual supplementation in a timely manner.

1078 Conversely, the right figure demonstrates a consistent decrease in the number of times the AVP is
 1079 triggered as δ is raised. This showcases the efficacy of δ as a threshold for modulating the activation
 frequency of the AVP.

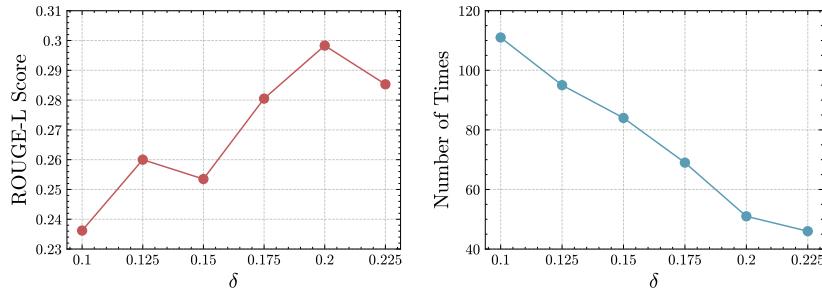


Figure 5: Experimental results of the sensitivity analysis of the hyper-parameter δ . The left figure illustrates the performance of AIMCoT when δ takes different values, while the right one shows the number of times the AVP module within AIMCoT is triggered.

Table 9: Experimental results of sensitivity analysis of hyper-parameters N_C, K on M3CoT benchmark, which illustrate the average time of AIMCoT to process an instance under different settings. Since N_C, K inherently satisfies $N_C \geq K$, any entry corresponding to a setting that satisfies $N_C < K$ is filled with the symbol "-".

N_C	1	2	3	4	5	6	7
K=1	12.78s	12.80s	12.83s	12.87s	12.90s	12.93s	12.97s
K=3	-	-	13.18s	13.23s	13.30s	13.37s	13.42s
K=5	-	-	-	-	13.41s	13.49s	13.56s
K=7	-	-	-	-	-	-	13.66s

Table 10: Experimental results of sensitivity analysis of hyper-parameters N_C, K on LLaVA-W benchmark, which illustrate the average time of AIMCoT to process an instance under different settings. Since N_C, K inherently satisfies $N_C \geq K$, any entry corresponding to a setting that satisfies $N_C < K$ is filled with the symbol "-".

N_C	1	2	3	4	5	6	7
K=1	10.61s	10.70s	10.75s	10.84s	10.92s	11.00s	11.08s
K=3	-	-	11.21s	11.36s	11.51s	11.65s	11.80s
K=5	-	-	-	-	11.79s	11.96s	12.14s
K=7	-	-	-	-	-	-	12.38s

1134

1135 Table 11: Performance comparison AIMCoT variants on the basis of different constructions of the
1136 candidate set C .

Construction of C	M3CoT (ACC.)	LLaVA-W (ROUGE-L)
$C_{attn} \cup C_{rand}$ ($C_{exp} = C_{rand}$)	31.4	29.8
$C_{attn} \cup C_{ss}$ ($C_{exp} = C_{ss}$)	31.2	29.5
$C_{attn} \cup C_{fsam}$ ($C_{exp} = C_{fsam}$)	31.0	29.6
C_{attn}	30.8	28.9
C_{rand}	30.4	28.6
C_{ss}	30.3	28.7
C_{fsam}	29.9	27.7

1141

1142

1143

1144

1145

1146

1147

1148

M SENSITIVITY ANALYSIS OF K, N_C

1149

Our proposed AIMCoT incorporates the design of AVP module. In contrast to existing research, AIMCoT, benefiting from the AVP module, does not simply select the top- K regions with the highest attention scores from the attention map. Instead, it meticulously selects K regions from a total set C of N_C candidate regions to construct the multimodal CoT ($N_C = N + M$). However, this approach may inevitably raise concerns regarding the deployability of AIMCoT, particularly as the hyper-parameters N_C and K increase.

1150

1151

1152

1153

1154

1155

To investigate this, we conduct experiments to explore the average processing time per instance for AIMCoT with larger values of N_C and K . For the experimental setup, we implement AIMCoT with the Chameleon-7B backbone on the M3CoT and LLaVA-W datasets under various combinations of N_C and K . The results are presented in Tables 9 and 10, from which we derive two key insights:

1156

1157

1158

1159

- **Insensitivity to the growth of the candidate set size N_C :** observing any row with a fixed K (e.g., $K = 3$ on Table 9), as N_C increases from 3 to 7, the total processing time rises from 13.18s to 13.42s, a marginal increase of only 0.24s. This implies that each additional candidate region introduces an average overhead of less than 0.06s. This strongly demonstrates that the performance of the AVP module does not degrade sharply with a moderate expansion of the candidate pool, indicating excellent scalability.
- **Diminishing marginal cost with the increase in the number of selections K :** considering a fixed column for N_C (e.g., $N_C = 7$ on Table 10), as K increases from 1 → 3, 3 → 5, and 5 → 7, the processing time increases by 0.72s, 0.34s, and 0.24s, respectively, which shows a notable decrease in incremental cost. This suggests that the primary computational overhead of the AVP algorithm lies in the initiation of the iterative search (the jump from $K = 1$ to $K = 3$). Once the iteration begins, the cost of subsequent selection steps is remarkably low, benefiting from efficient mechanisms such as the batch processing and KV Cache.

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

Based on these key insights, our proposed AVP module demonstrates high computational efficiency and robustness when faced with increased computational complexity (i.e., larger N_C and K values).

1173

1174

1175

1176

1177

N ABLATION STUDY ON THE CONSTRUCTION OF CANDIDATE SET C

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

In this section, we investigate the influence of different compositions of the total set C on the performance of our proposed AIMCoT. We specifically examine two primary configurations:

Constructing C using only C_{attn} or C_{exp} . For the latter, we evaluate four distinct construction methodologies for C_{exp} : (a) C_{rand} : uniform random sampling; (b) C_{ss} : the selective search algorithm Uijlings et al. (2013), which is the seminal region proposal method utilized in R-CNN Girshick et al. (2014); (c) C_{fsam} : FastSAM Zhao et al. (2023), a computationally efficient variant of the foundational vision segmentation model, SAM Kirillov et al. (2023).

Constructing C using both C_{attn} and C_{exp} . Similarly, as for C_{exp} , we also consider its diversified construction, including C_{rand} , C_{ss} , and C_{fsam} .

1188 It is worth noting that although the construction is diverse, the size of C remains consistent. When C
1189 is composed of C_{attn} and C_{exp} , the two each account for half. The experimental results are shown in
1190 Table 11.

1191 As observed, the combination of the two sets (i.e., $C = C_{attn} \cup C_{exp}$) invariably yields superior
1192 performance for AIMCoT compared to configurations where either $C = C_{attn}$ or $C = C_{exp}$ is used
1193 exclusively. This highlights the importance of diversifying the sources of candidate visual regions.
1194

1195 When comparing the different construction methods for C_{exp} , the performance gap among models is
1196 marginal when used in conjunction with C_{attn} . Specifically, despite its simplicity, random sampling
1197 achieves highly competitive results, which motivates our choice to adopt it as the default method for
1198 constructing C_{exp} . Intuitively, the advantage of random sampling lies in its ability to provide regions
1199 across different parts of the image unbiasedly with maximal spatial diversity.
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241