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Abstract

We propose the first, to our knowledge, loss function for approximate Nash equi-1

libria of normal-form games that is amenable to unbiased Monte Carlo estimation.2

This construction allows us to deploy standard non-convex stochastic optimiza-3

tion techniques for approximating Nash equilibria, resulting in novel algorithms4

with provable guarantees. We complement our theoretical analysis with exper-5

iments demonstrating that stochastic gradient descent can outperform previous6

state-of-the-art approaches.7

1 Introduction8

Nash equilibrium famously encodes stable behavioral outcomes in multi-agent systems and is arguably9

the most influential solution concept in game theory. Formally speaking, if n players independently10

choose n, possibly mixed, strategies (xi for i 2 [n]) and their joint strategy (x =
Q

i xi) constitutes a11

Nash equilibrium, then no player has any incentive to unilaterally deviate from their strategy. This12

concept has sparked extensive research in various fields, ranging from economics [30] to machine13

learning [16], and has even inspired behavioral theory generalizations such as quantal response14

equilibria which allow for more realistic models of boundedly rational agents [28].15

Unfortunately, when considering Nash equilibria beyond the special case of the 2-player, zero-sum16

scenario, two significant challenges arise. First, it becomes unclear how a group of n independent17

players would collectively identify a Nash equilibrium when multiple equilibria are possible, giving18

rise to the equilibrium selection problem [18]. Secondly, even approximating a single Nash equilib-19

rium is known to be computationally intractable and specifically PPAD-complete [11]. Combining20

both problems together, e.g., testing for the existence of equilibria with welfare greater than some21

fixed threshold is NP-hard and it is in fact even hard to approximate (i.e., finding a Nash equilibrium22

with welfare greater than ! for any ! > 0, even when the best equilibrium has welfare 1� !) [2].23

From a machine learning (ML) practitioner’s perspective, however, such computational complexity24

results hardly give pause for thought as collectively we have become all too familiar with the25

unreasonable effectiveness of ML heuristics in circumventing such obstacles. Famously, non-convex26

optimization is NP-hard, even if the goal is to compute a local minimizer [31], however, stochastic27

gradient descent (and variants thereof) succeed in training models with billions of parameters [7].28

Unfortunately, computational techniques for Nash equilibrium have so far not achieved anywhere29

near the same level of success. In contrast, most modern Nash equilibrium solvers for n-player,30

m-action, general-sum, normal-form games (NFGs) are practically restricted to a handful of players31

and/or actions per player except in special cases (e.g., symmetric [38] or mean-field games [34]). This32

is partially due to the fact that an NFG is represented by a tensor with an exponential nmn entries;33

even reading this description into memory can be computationally prohibitive. More to the point, any34
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computational technique that presumes exact computation of the expectation of any function sampled35

according to x similarly does not have any hope of scaling beyond small instances.36

This inefficiency arguably lies at the core of the differential success between ML optimization and37

equilibrium computation. For example, numerous techniques exist that reduce the problem of Nash38

equilibrium computation to finding the minimum of the expectation of a random variable (see related39

work section). Unfortunately, unlike the source of randomness in ML applications where batch40

learning suffices to easily produce unbiased estimators, these techniques do not extend easily to game41

theory which incorporates non-linear functions such as maximum, best-response amongst others.42

This raises our motivating goal:43

Can we solve for Nash equilibria via unbiased stochastic optimization?

Our results. Following in the successful steps of the interplay between ML and stochastic optimiza-44

tion, we reformulate the approximation of Nash equilibria in an NFG as a stochastic non-convex45

optimization problem admitting unbiased Monte-Carlo estimation. This enables the use of powerful46

solvers and advances in parallel computing to efficiently enumerate Nash equilibria for n-player,47

general-sum games. Furthermore, this re-casting allows practitioners to incorporate other desirable48

objectives into the problem such as “find an approximate Nash equilibrium with welfare above !”49

or “find an approximate Nash equilibrium nearest the current observed joint strategy” resolving the50

equilibrium selection problem in effectively ad-hoc and application tailored manner. Concretely, we51

make the following contributions by producing:52

• A loss function L(x) 1) whose global minima coincide with interior Nash equilibria in normal53

form games, 2) admits unbiased Monte-Carlo estimation, and 3) is Lipschitz and bounded.54

• A loss function L
⌧ (x) 1) whose global minima coincide with logit equilibria (QREs) in normal55

form games, 2) admits unbiased Monte-Carlo estimation, and 3) is Lipschitz and bounded.56

• An efficient randomized algorithm for approximating Nash equilibria in a novel class of games. The57

algorithm emerges by employing a recent X -armed bandit approach to L
⌧ (x) and connecting its58

stochastic optimization guarantees to approximate Nash guarantees. For large games, this enables59

approximating equilibria faster than the game can even be read into memory.60

• An empirical comparison of stochastic gradient descent against state-of-the-art baselines for61

approximating NEs in large games. In some games, vanilla SGD actually improves upon previous62

state-of-the-art; in others, SGD is slowed by saddle points, a familiar challenge in deep learning [12].63

Overall, this perspective showcases a promising new route to approximating equilibria at scale in64

practice. We conclude the paper with discussion for future work.65

2 Preliminaries66

In an n-player, normal-form game, each player i 2 {1, . . . , n} has a strategy set Ai =67

{ai1, . . . , aimi} consisting of mi pure strategies. These strategies can be naturally indexed, so68

we redefine Ai = {1, . . . ,mi} as an abuse of notation. Each player i also has a utility function,69

ui : A =
Q

i Ai ! [0, 1], (equiv. “payoff tensor”) that maps joint actions to payoffs in the unit-70

interval . Note that equilibria are invariant to payoff shift and scale [27] so we are effectively assuming71

we know bounds on possible payoffs. We denote the average cardinality of the players’ action sets72

by m̄ = 1
n

P
k mk and maximum by m

⇤ = maxk mk. Player i may play a mixed strategy by73

sampling from a distribution over their pure strategies. Let player i’s mixed strategy be represented74

by a vector xi 2 �mi�1 where �mi�1 is the (mi � 1)-dimensional probability simplex embedded75

in Rmi . Each function ui is then extended to this domain so that ui(x) =
P

a2A ui(a)
Q

j xjaj76

where x = (x1, . . . , xn) and aj 2 Aj denotes player j’s component of the joint action a 2 A. For77

convenience, let x�i denote all components of x belonging to players other than player i.78

The joint strategy x 2
Q

i �
mi�1 is a Nash equilibrium if and only if, for all i 2 {1, . . . , n},79

ui(zi, x�i)  ui(x) for all zi 2 �mi�1, i.e., no player has any incentive to unilaterally deviate from80

x. Nash is typically relaxed with ✏-Nash, our focus: ui(zi, x�i)  ui(x) + ✏ for all zi 2 �mi�1.81

As an abuse of notation, let the atomic action ai = ei also denote the mi-dimensional “one-hot" vector82

with all zeros aside from a 1 at index ai; its use should be clear from the context. We also introduce83
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Loss Function Obstacle
Exploitabilty maxk ✏k(x) max of r.v.
Nikaido-Isoda (NI)

P
k ✏k(x) max of r.v.

Fully-Diff. Exp
P

k

P
ak2Ak

[max(0, uk(ak, x�i)� uk(x))]2 max of r.v.
Gradient-based NI NI w/ BRk  aBRk = ⇧�

⇣
xk + ⌘rxkuk(x)

⌘
⇧� of r.v.

Unconstrained Loss + Simplex Deviation Penalty sampling from xi 2 Rmk

Table 1: Previous loss functions for NFGs and their obstacles to unbiased estimation.

r
i
xi

as player i’s utility gradient. And for convenience, denote by H
i
il = Ex�il [ui(ai, al, x�il)] the84

bimatrix game approximation [20] between players i and l with all other players marginalized out;85

x�il denotes all strategies belonging to players other than i and l and ui(ai, al, x�il) separates out l’s86

strategy xl from the rest of the players x�i. Similarly, denote by T
i
ilq = Ex�ilq [ui(ai, al, aq, x�ilq)]87

the 3-player tensor approximation to the game. Note player i’s utility can now be written succinctly88

as ui(xi, x�i) = x
>
i r

i
xi

= x
>
i H

i
ilxl = xiT

i
ilqxlxq for any l, q where we use Einstein notation for89

tensor arithmetic. For convenience, define diag(z) as the function that places a vector z on the90

diagonal of a square matrix, and diag3 : z 2 Rd
! Rd⇥d⇥d as a 3-tensor of shape (d, d, d) where91

diag3(z)iii = zi. Following convention from differential geometry, let TvM be the tangent space92

of a manifold M at v. For the interior of the d-action simplex �d�1, the tangent space is the same at93

every point, so we drop the v subscript, i.e., T�d�1. We denote the projection of a vector z 2 Rd94

onto this tangent space as ⇧T�d�1(z) = z �
1
d1

>
z. We drop d when the dimensionality is clear95

from the context. Finally, let U(S) denote a discrete uniform distribution over elements from set S.96

3 Related Work97

Representing the problem of computing a Nash equilibrium as an optimization problem is not new. A98

variety of loss functions and pseudo-distance functions have been proposed. Most of them measure99

some function of how much each player can exploit the joint strategy by unilaterally deviating:100

✏k(x)
def
= uk(BRk, x�k)� uk(x) where BRk 2 argmax

z
uk(z, x�k). (1)

As argued in the introduction, we believe it is important to be able to subsample payoff tensors of101

normal-form games in order to scale to large instances. As Nash equilibria can consist of mixed102

strategies, it is advantageous to be able to sample from an equilibrium to estimate its exploitability ✏.103

However none of these losses is amenable to unbiased estimation under sampled play. Each of the104

functions currently explored in the literature is biased under sampled play either because 1) a random105

variable appears as the argument of a complex, nonlinear (non-polynomial) function or because 2) how106

to sample play is unclear. Exploitability, Nikaido-Isoda (NI) [32] (also known by NashConv [21] and107

ADI [15]), as well as fully-differentiable options ([36], p. 106, Eqn 4.31) introduce bias when a max108

over payoffs is estimated using samples from x. Gradient-based NI [35] requires projecting the result109

of a gradient-ascent step onto the simplex; for the same reason as the max, this is prohibitive because110

it is a nonlinear operation which introduces bias. Lastly, unconstrained optimization approaches ([36],111

p. 106) that instead penalize deviation from the simplex lose the ability to sample from strategies112

when iterates are no longer proper distributions. Table 1 summarizes these complications.113

4 Nash Equilibrium as Stochastic Optimization114

We will now develop our proposed loss function which is amenable to unbiased estimation. Our key115

technical insight is to pay special attention to the geometry of the simplex. To our knowledge, prior116

works have failed to recognize the role of the tangent space T�. Proofs are in the appendix.117

4.1 Stationarity on the Simplex Interior118

Lemma 1. Assuming player i’s utility, ui(xi, x�i), is concave in its own strategy xi, a strategy in119

the interior of the simplex is a best response BRi if and only if it has zero projected-gradient1 norm:120

1Not to be confused with the nonlinear (i.e., introduces bias) projected gradient operator introduced in [19].
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BRi 2
�
int� \ argmax

z
ui(z, x�i)� ui(xi, x�i

��
() (BRi 2 int�) ^ (||⇧T�[r

i
BRi ]|| = 0).

(2)

In NFGs, each player’s utility is linear in xi, thereby satisfying the concavity condition of Lemma 1.121

4.2 Projected Gradient Norm as Loss122

An equivalent description of a Nash equilibrium is a joint strategy x where every player’s strategy is123

a best response to the equilibrium (i.e., xi = BRi so that ✏i(x) = 0). Lemma 1 states that any interior124

best response has zero projected-gradient norm, which inspires the following loss function125

L(x) =
X

k

⌘k||⇧T�(r
k
xk
)||2 (3)

where ⌘k > 0 represent scalar weights, or equivalently, step sizes to be explained next.126

Proposition 1. The loss L is equivalent to NashConv, but where player k’s best response is approxi-127

mated by a single step of projected-gradient ascent with step size ⌘k: aBRk = xk + ⌘k⇧T�(rk
xk
).128

This connection was already pointed out in prior work for unconstrained problems [15, 35], but this129

result is the first for strategies constrained to the simplex.130

4.3 Connection to True Exploitability131

In general, we can bound exploitability in terms of the projected-gradient norm as long as each132

player’s utility is concave (this result extends beyond gradients to subgradients of non-smooth133

functions).134

Lemma 2. The amount a player can gain by exploiting a joint strategy x is upper bounded by a135

quantity proportional to the norm of the projected-gradient:136

✏k(x) 
p
2||⇧T�(r

k
xk
)||. (4)

This bound is not tight on the boundary of the simplex, which can be seen clearly by considering xk137

to be part of a pure strategy equilibrium. In that case, this analysis assumes xk can be improved upon138

by a projected-gradient ascent step (via the equivalence pointed out in Proposition 1). However, that139

is false because the probability of a pure strategy cannot be increased beyond 1. We mention this to140

provide further intuition for why L(x) is only valid for interior equilibria.141

Note that ||⇧T�(rk
xk
)||  ||r

k
xk
|| because ⇧T� is a projection. Therefore, this improves the naive142

bounds on exploitability and distance to best responses given using the “raw” gradientrk
xk

.143

Lemma 3. The exploitability of a joint strategy x, is upper bounded by a function of L(x):144

✏ 

r
2n

mink ⌘k

p
L(x)

def
= f(L). (5)

4.4 Unbiased Estimation145

As discussed in Section 3, a primary obstacle to unbiased estimation of L(x) is the presence of146

complex, nonlinear functions of random variables, with the projection of a point onto the simplex147

being one such example (see ⇧� in Table 1). However, ⇧T�, the projection onto the tangent space148

of the simplex, is linear! This is the key that allows us to design an unbiased estimator (Lemma 5).149

Our proposed loss requires computing the squared norm of the expected value of the gradient150

under the players’ mixed strategies, i.e., the l-th entry of player k’s gradient equals rk
xkl

=151

Ea�k⇠x�kuk(akl, a�k). By analogy, consider a random variable Y . In general, E[Y ]2 6= E[Y 2].152

This means that we cannot just sample projected-gradients and then compute their average norm to153

estimate our loss. However, consider taking two independent samples from two corresponding identi-154

cally distributed, independent random variables Y (1) and Y
(2). Then E[Y (1)]2 = E[Y (1)]E[Y (2)] =155
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Exact Sample Others Sample All
Estimator of rk(p)

xk uk(akl, x�k) uk(akl, a�k ⇠ x�k) mkuk(akl ⇠ U(Ak), a�k ⇠ x�k)el
r̂

k(p)
xk Bounds [0, 1] [0, 1] [0,mk]

r̂
k(p)
xk Query Cost

Qn
i=1 mi mk 1

L Bounds ±
1
4

P
k ⌘kmk ±

1
4

P
k ⌘kmk ±

1
4

P
k ⌘km

3
k

L Query Cost n
Qn

i=1 mi 2nm̄ 2n

Table 2: Examples and Properties of Unbiased Estimators of Loss and Player Gradients (r̂k(p)
xk ).

E[Y (1)
Y

(2)] by properties of expected value over products of independent random variables. This is156

a common technique to construct unbiased estimates of expectations over polynomial functions of157

random variables. Proceeding in this way, definerk(1)
xk as a random variable distributed according to158

the distribution induced by all other players’ mixed strategies (j 6= k). Let rk(2)
xk be independent and159

distributed identically to rk(1)
xk . Then160

L(x) = E[
X

k

⌘k(r̂
k(1)
xk
�

1

mk
(1>
r̂

k(1)
xk

)1
| {z }

projected-gradient 1

)>(r̂k(2)
xk
�

1

mk
(1>
r̂

k(2)
xk

)1
| {z }

projected-gradient 2

)] (6)

where r̂k(p)
xk is an unbiased estimator of player k’s gradient. This unbiased estimator can be con-161

structed in several ways. The most expensive, an exact estimator, is constructed by marginalizing162

player k’s payoff tensor over all other players’ strategies. However, a cheaper estimate can be obtained163

at the expense of higher variance by approximating this marginalization with a Monte Carlo estimate164

of the expectation. Specifically, if we sample a single action for each of the remaining players, we165

can construct an unbiased estimate of player k’s gradient by considering the payoff of each of its166

actions against the sampled background strategy. Lastly, we can consider constructing a Monte Carlo167

estimate of player k’s gradient by sampling only a single action from player k to represent their entire168

gradient. Each of these approaches is outlined in Table 2 along with the query complexity [3] of169

computing the estimator and bounds on the values it can take (derived via Lemma 19).170

We can extend Lemma 3 to one that holds under T samples with probability 1� � by applying, for171

example, a Hoeffding bound: ✏  f
�
L̂(x) +O(

q
1
T ln(1/�)

�
.172

4.5 Interior Equilibria173

We discussed earlier that L(x) captures interior equilibria. But some games may only have pure174

equilibria. We show how to circumvent this shortcoming by considering quantal response equilibria175

(QREs), specifically, logit equilibria. By adding an entropy bonus to each player’s utility, we can176

• guarantee all equilibria are interior,177

• still obtain unbiased estimates of our loss,178

• maintain an upper bound on the exploitability ✏ of any approximate equilibrium in the179

original game (i.e., the game without an entropy bonus).180

Define u
⌧
k(x) = uk(x) + ⌧S(xk) where the Shannon entropy S(xk) = �

P
l xkl ln(xkl) is a 1-181

strongly concave function with respect to the 1-norm [6]. Also define L
⌧ (x) as before except where182

r
k
xk

is replaced withrk⌧
xk

= rxku
⌧
k(x), i.e., the gradient of player k’s utility with the entropy bonus.183

It is well known that Nash equilibria of entropy-regularized games satisfy the conditions for logit184

equilibria [23], which are solutions to the fixed point equation xk = softmax(
rk

xk
⌧ ). The appearance185

of the softmax makes clear that all probabilities have positive mass at positive temperature.186

Recall that in order to construct an unbiased estimate of our loss, we simply needed to construct187

unbiased estimates of player gradients. The introduction of the entropy term to player k’s utility is188

special in that it depends entirely on known quantities, i.e., the player’s own mixed strategy. We189

can directly and deterministically compute ⌧
dS
dxk

= �⌧(ln(xk) + 1) and add this to our estimator of190

r
k(p)
xk : r̂k⌧(p)

xk = r̂k(p)
xk + ⌧

dS
dxk

. Consider our refined loss function with changes in blue:191
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Figure 1: Upper Bound (✏  f(L⌧ )) Heatmap Visualization. The first row examines the loss land-
scape for the classic anti-coordination game of Chicken (Nash equilibria: (0, 1), (1, 0), (2/3, 1/3))
while the second row examines the Prisoner’s dilemma (Unique Nash equilibrium: (0, 0)). Tem-
perature increases for each plot moving to the right. For high temperatures, interior (fully-mixed)
strategies are incentivized while for lower temperatures, nearly pure strategies can achieve minimum
exploitability. For zero temperature, pure strategy equilibria (e.g., defect-defect) are not captured by
the loss as illustrated by the bottom-left Prisoner’s Dilemma plot with a constant loss surface.

L
⌧ (x) =

X

k

⌘k||⇧T�(r
k⌧
xk
)||2. (7)

As mentioned above, the utilities with entropy bonuses are still concave, therefore, a similar bound192

to Lemma 2 applies. We use this to prove the QRE counterpart to Lemma 3 where ✏QRE is the193

exploitability of an approximate equilibrium in a game with entropy bonuses.194

Lemma 4. The entropy regularized exploitability, ✏QRE , of a joint strategy x, is upper bounded as:195

✏QRE 

r
2n

mink ⌘k

p
L⌧ (x)

def
= f(L⌧ ). (8)

Lastly, we establish a connection between quantal response equilibria and Nash equilibria that allows196

us to approximate Nash equilibria in the original game via minimizing our modified loss L⌧ (x).197

Lemma 14 (L⌧ Scores Nash Equilibria). Let L⌧ (x) be our proposed entropy regularized loss198

function with payoffs bounded in [0, 1] and x be an approximate QRE. Then it holds that199

✏  n⌧(W (1/e) +
m̄� 2

e
) + 2

r
nmaxk mk

mink ⌘k

p
L⌧ (x) (9)

where W is the Lambert function: W (1/e) = W (exp(�1)) ⇡ 0.278.200

This upper bound is plotted as a heatmap for familiar games in Figure 1. Notice how pure equilibria201

are not visible as minima for zero temperature, but appear for slightly warmer temperatures.202

5 Analysis203

In the preceding section we established a loss function that upper bounds the exploitability of an204

approximate equilibrium. In addition, the zeros of this loss function have a one-to-one correspondence205

with quantal response equilibria (which approximate Nash equilibria at low temperature).206

Here, we derive properties that suggest it is “easy” to optimize. While this function is generally207

non-convex and may suffer from a proliferation of saddle points and local maxima (Figure 2) , it is208

Lipschitz continuous (over a subset of the interior) and bounded. These are two commonly made209

assumptions in the literature on non-convex optimization, which we leverage in Section 6. In addition,210

we can derive its gradient, its Hessian, and characterize its behavior around global minima.211
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Figure 2: We reapply the analysis of [12], originally designed to understand the success of SGD in
deep learning, to “slices” of several popular extensive form games. To construct a slice (or meta-
game), we randomly sample 6 deterministic policies and then consider the corresponding n-player,
6-action normal-form game at ⌧ = 0.1 (with payoffs normalized to [0, 1]). The index of a critical
point xc (rxL

⌧ (xc) = 0) indicates the fraction of negative eigenvalues in the Hessian of L⌧ at xc;
↵ = 0 indicates a local minimum, 1 a maximum, else a saddle point. We see a positive correlation
between exploitability and ↵ indicating a lower prevalence of local minima at high exploitability.

Lemma 15. The gradient of L⌧ (x) with respect to player l’s strategy xl is212

rxlL
⌧ (x) = 2

X

k

⌘kB
>
kl⇧T�(r

k⌧
xk
) (10)

where Bll = �⌧ [I �
1
ml

11>]diag( 1
xl
) and Bkl = [I � 1

mk
11>]Hk

kl for k 6= l.213

Lemma 17. The Hessian of L⌧ (x) can be written214

Hess(L⌧ ) = 2
⇥
B̃

>
B̃ + T⇧T�(r̃

⌧ )
⇤

(11)

where B̃kl =
p
⌘kBkl, ⇧T�(r̃⌧ ) = [⌘1⇧T�(r1⌧

x1
), . . . , ⌘n⇧T�(rn⌧

xn
)], and we augment T (the215

3-player approximation to the game, T k
lqk) so that T l

lll = ⌧diag3( 1
x2
l
).216

At an equilibrium, the latter term disappears because ⇧T�(rk⌧
xk
) = 0 for all k (Lemma 1). If X217

was Rnm̄, then we could simply check if B̃ is full-rank to determine if Hess � 0. However, X is a218

simplex product, and we only care about curvature in directions toward which we can update our219

equilibrium. Toward that end, define M to be the n(m̄+ 1)⇥ nm̄ matrix that stacks B̃ on top of a220

repeated identity matrix that encodes orthogonality to the simplex:221

M(x) =

2

666666664

�⌧
p
⌘1⇧T�(

1
x1
)
p
⌘1⇧T�(H1

12) . . .
p
⌘1⇧T�(H1

1n)
...

...
...

...
p
⌘n⇧T�(Hn

n1) . . .
p
⌘n⇧T�(Hn

n,n�1) �⌧
p
⌘n⇧T�(

1
xn

)
1>
1 0 . . . 0
...

...
...

...
0 . . . 0 1>

n

3

777777775

(12)

where ⇧T�(z 2 Ra⇥b) = [Ia �
1
a1a1>

a ]z subtracts the mean from each column of z and 1
xi

is222

shorthand for diag( 1
xi
). If M(x)z = 0 for a nonzero vector z 2 Rnm̄, this implies there exists a z223

that 1) is orthogonal to the ones vectors of each simplex (i.e., is a valid equilibrium update direction)224

and 2) achieves zero curvature in the direction z, i.e., z>(B̃>
B̃)z = z

>(Hess)z = 0, and so Hess225

is not positive definite. Conversely, if M(x) is of rank nm̄ for a quantal response equilibrium x, then226

the Hessian of L⌧ at x in the tangent space of the simplex product (X =
Q

i Xi) is positive definite.227

In this case, we call x well-isolated because it implies it is not connected to any other equilibria.228

By analyzing the rank of M , we can confirm that many classical matrix games including Rock-229

Paper-Scissors, Chicken, Matching Pennies, and Shapley’s game all induce strongly convex L
⌧ ’s at230

zero temperature (i.e., they have unique mixed Nash equilibria). In contrast, a game like Prisoner’s231

Dilemma has a unique pure strategy that will not be captured by our loss at zero temperature.232
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Figure 3: Comparison of SGD on L
⌧=0 against baselines on four games evaluated in [15]. From left

to right: 2-player, 3-action, nonsymmetric; 6-player, 5-action, nonsymmetric; 4-player, 66-action,
symmetric; 3-player, 286-action, symmetric. SGD struggles at saddle points in Blotto.

6 Algorithms233

We have formally transformed the approximation of Nash equilibria in NFGs into a stochastic234

optimization problem. To our knowledge, this is the first such formulation that allows one-shot235

unbiased Monte-Carlo estimation which is critical to introduce the use of powerful algorithms capable236

of solving high dimensional optimization problems. We explore two off-the-shelf approaches.237

Stochastic gradient descent is the workhorse of high-dimensional stochastic optimization. It comes238

with guaranteed convergence to stationary points [10], however, it may converge to local, rather than239

global minima. It also enjoys implicit gradient regularization [4], seeking “flat” minima and performs240

approximate Bayesian inference [26]. Despite the lack of global convergence guarantee, in the next241

section, we find it performs well empirically in games previously examined by the literature.242

We explore one other algorithmic approach to non-convex optimization based on minimizing regret,243

which enjoys finite time convergence rates. X -armed bandits [8] systematically explore the space of244

solutions by refining a mesh over the joint strategy space, trading off exploration versus exploitation245

of promising regions.2 Several approaches exist [5, 37] with open source implementations (e.g., [24]).246

6.1 High Probability, Polynomial Convergence Rates247

We use a recent X -armed bandit approach called BLiN [14] to establish a high probability Õ(T�1/4)248

convergence rate to Nash equilibria in n-player, general-sum games under mild assumptions. The249

quality of this approximation improves as ⌧ ! 0, at the same time increasing the constant on the250

convergence rate via the Lipschitz constant
p
L̂ defined below. For clarity, we assume users provide251

a temperature in the form ⌧ = 1
ln(1/p) with p 2 (0, 1) which ensures all equilibria have probability252

mass greater than p
m⇤ for all actions (Lemma 9). Lower p corresponds with lower temperature.253

The following convergence rate depends on bounds on the exploitability in terms of the loss254

(Lemma 14), bounds on the magnitude of estimates of the loss (Lemma 8), Lipschitz bounds on the255

infinity norm of the gradient (Corollary 2), and the number of distinct strategies (nm̄ =
P

k mk).256

Theorem 1 (BLiN PAC Rate). Assume ⌘k = ⌘ = 2/L̂, ⌧ = 1
ln(1/p) , and a previously pulled arm is257

returned uniformly at random (i.e., t ⇠ U([T ])). Then for any w > 0258

✏t  w

h
n

ln(1/p)

�
W (1/e) +

m̄� 2

e

�
+ 4(1 + (4c2)1/3)

p
nm⇤L̂

⇣ lnT
T

⌘ 1
2(dz+2)

i
(13)

with probability (1 � w
�1)(1 � 2T�2) where W is the Lambert function (W (1/e) ⇡ 0.278),259

m
⇤ = maxk mk, c  1

4
nm̄
L̂

⇣
ln(m⇤)
ln(1/p) + 2

⌘2


1
4

⇣
ln(m⇤)
ln(1/p) + 2

⌘
upper bounds the range of stochastic260

estimates of L⌧ (see Lemma 8), and L̂ =
⇣

ln(m⇤)
ln(1/p) + 2

⌘⇣
m⇤2

p ln(1/p) + nm̄

⌘
(see Corollary 2).261

This result depends on the near-optimality [37] or zooming-dimension dz = nm̄(↵hi�↵lo
↵lo↵hi

) 2 [0,1)262

(Theorem 2) where ↵lo and ↵hi denote the degree of the polynomials that lower and upper bound the263

function L
⌧
� s locally around an equilibrium. For example, in the case where the Hessian is positive264

definite, ↵lo = ↵hi = 2 and dz = 0. Here, s : [0, 1]n(m̄�1)
!

Q
i �

mi�1 is any function that maps265

from the unit hypercube to a product of simplices; we analyze two such maps in the appendix.266

2Zhou et al. [39] developed a similar approach but only for pure Nash equilibria.
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Figure 4: Bandit-based (BLiN) Nash solver applied to an artificial 7-player, symmetric, 2-action
game. We search for a symmetric equilibrium, which is represented succinctly as the probability of
selecting action 1. The plot shows the true exploitability ✏ of all symmetric strategies in black and
indicates there exist potentially 5 NEs (the dips in the curve). Upper bounds on our unregularized
loss L capture 4 of these equilibria, missing only the pure NE on the right. By considering our
regularized loss, L⌧ , we are able to capture this pure NE (see zoomed inset). The bandit algorithm
selects strategies to evaluate, using 10 Monte-Carlo samples for each evaluation (arm pull) of L⌧ .
These samples are displayed as vertical bars above with the height of the vertical bar representing
additional arm pulls. The best arms throughout search are denoted by green circles (darker indicates
later in the search). The boxed numbers near equilibria display the welfare of the strategy.

Note that Theorem 1 implies that for games whose corresponding L
⌧ has zooming dimension dz = 0,267

NEs can be approximated with high probability in polynomial time. This general property is difficult268

to translate concisely into game theory parlance. For this reason, we present the following more269

interpretable corollary which applies to a more restricted class of games.270

Corollary 1. Consider the class of NFGs with at least one QRE(⌧ ) whose local polymatrix approx-271

imation indicates it is isolated (i.e., M from equation (12) is rank-nm̄ implies Hess � 0 implies272

dz = nm̄( 2�2
4 ) = 0). Then by Theorem 1, BLiN is a fully polynomial-time randomized approximation273

scheme (FPRAS) for QREs and is a PRAS for NEs of games in this class.274

To convey the impact of stochastic optimization guarantees more concretely, assume we are given275

that an interior well-isolated NE exists. Then for a 20-player, 50-action game, it is 1000⇥ cheaper to276

compute a 1/100-NE with probability 95% than it is to just list the nm
n payoffs that define the game.277

6.2 Empirical Evaluation278

Figure 3 shows SGD is competitive with scalable techniques to approximating NEs. Shapley’s game279

induces a strongly convex L (see Section 5) leading to SGD’s strong performance. Blotto shows280

signs of convergence to low, but nonzero ✏, demonstrating the challenges of local minima.281

We demonstrate BLiN (applied to L
⌧ ) on a 7-player, symmetric, 2-action game. Figure 4 shows the282

bandit algorithm discovers two equilibria, settling on one near x = [0.7, 0.3]⇥ 7 with a wider basin283

of attraction (and higher welfare). In theory, BLiN can enumerate all NEs as T !1.284

7 Conclusion285

In this work, we proposed a stochastic loss for approximate Nash equilibria in normal-form games.286

An unbiased loss estimator of Nash equilibria is the “key” to the stochastic optimization “door”287

which holds a wealth of research innovations uncovered over several decades. Thus, it allows the288

development of new algorithmic techniques for computing equilibria. We consider bandit and vanilla289

SGD methods in this work, but theses are only two of the many options now at our disposal (e.g,290

adaptive methods [1], Gaussian processes [9], evolutionary algorithms [17], etc.). Such approaches as291

well as generalizations of these techniques to imperfect-information games are promising directions292

for future work. Similarly to how deep learning research first balked at and then marched on to train293

neural networks via NP-hard non-convex optimization, we hope computational game theory can294

march ahead to make useful equilibrium predictions of large multiplayer systems.295
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