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Abstract

Unsupervised Anomaly Detection (UAD) plays a crucial role in identifying abnor-1

mal patterns within data without labeled examples, holding significant practical2

implications across various domains. Although the individual contributions of3

representation learning and clustering to anomaly detection are well-established,4

their interdependencies remain under-explored due to the absence of a unified5

theoretical framework. Consequently, their collective potential to enhance anomaly6

detection performance remains largely untapped. To bridge this gap, in this paper,7

we propose a novel probabilistic mixture model for anomaly detection to establish8

a theoretical connection among representation learning, clustering, and anomaly9

detection. By maximizing a novel anomaly-aware data likelihood, representation10

learning and clustering can effectively reduce the adverse impact of anomalous11

data and collaboratively benefit anomaly detection. Meanwhile, a theoretically sub-12

stantiated anomaly score is naturally derived from this framework. Lastly, drawing13

inspiration from gravitational analysis in physics, we have devised an improved14

anomaly score that more effectively harnesses the combined power of representa-15

tion learning and clustering. Extensive experiments, involving 17 baseline methods16

across 30 diverse datasets, validate the effectiveness and generalization capability17

of the proposed method, surpassing state-of-the-art methods.18

1 Introduction19

Unsupervised Anomaly Detection (UAD) refers to the task dedicated to identifying abnormal patterns20

or instances within data in the absence of labeled examples [8]. It has long received extensive21

attention in the past decades for its wide-ranging applications in numerous practical scenarios,22

including financial auditing [3], healthcare monitoring [44] and e-commerce sector [23]. Due to the23

lack of explicit label guidance, the key to UAD is to uncover the dominant patterns that widely exist24

in the dataset so that samples do not conform to these patterns can be recognized as anomalies. To25

achieve this, early works [7] have heavily relied on powerful unsupervised representation learning26

methods to extract the normal patterns from high-dimensional and complex data such as images, text,27

and graphs. More recent works [45, 2] have utilized clustering, a widely observed natural pattern in28

real-world data, to provide critical global information for anomaly detection and achieved tremendous29

success.30

While the individual contributions of representation learning and clustering to anomaly detection31

are well-established, their interrelationships remain largely unexplored. Intuitively, discriminative32

representation learning can leverage accurate clustering results to differentiate samples from distinct33

clusters in the embedding space (i.e., ➀). Similarly, it can utilize accurate anomaly detection to34

avoid preserving abnormal patterns (i.e., ➁). For accurate clustering, it can gain advantages from35

representation learning by operating in the discriminative embedding space (i.e., ➂). Meanwhile, it36
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Figure 1: Interdependent relationships among representation learning, clustering, and anomaly
detection.

can potentially benefit from accurate anomaly detection by excluding anomalies when formulating37

clusters (i.e., ➃). Anomaly detection can greatly benefit from both discriminative representation38

learning and accurate clustering (i.e., ➄ & ➅). However, these benefits hinge on the successful39

identification of anomalies and the reduction of their detrimental impact on the aforementioned40

tasks. As depicted in Figure 1, the integration of these three elements exhibits a significant reciprocal41

nature. In summary, representation learning, clustering, and anomaly detection are interdependent and42

intricately intertwined. Therefore, it is crucial for anomaly detection to fully leverage and mutually43

enhance the relationships among these three components.44

Despite the intuitive significance of the interactions among representation learning, clustering, and45

anomaly detection, existing methods have only made limited attempts to exploit them and fall short46

of expectations. On one hand, some methods [58] have acknowledged the interplay among these47

three factors, but their focus remains primarily on the interactions between two factors at a time,48

making only targeted improvements. For instance, some strategies include explicitly removing outlier49

samples during the clustering process [9] or designing robust representation learning methods [10] to50

mitigate the influence of anomalies. On the other hand, recent methods [45] have begun to explore51

the simultaneous optimization of these three factors within a single framework. However, these52

attempts are still in the stage of merely superimposing the objectives of the three factors without a53

unified theoretical framework. This lack of a guiding framework prevents the adequate modeling of54

the interdependencies among these factors, thereby limiting their collective contribution to a unified55

anomaly detection objective. Consequently, we aim to address the following question: Is it possible56

to employ a unified theoretical framework to jointly model these three interdependent objectives,57

thereby leveraging their respective strengths to enhance anomaly detection?58

In this paper, we try to answer this question and propose a novel model named UniCAD for anomaly59

detection. The proposed UniCAD integrates representation learning, clustering, and anomaly de-60

tection into a unified framework, achieved through the theoretical guidance of maximizing the61

anomaly-aware data likelihood. Specifically, we explicitly model the relationships between samples62

and multiple clusters in the representation space using the probabilistic mixture models for the63

likelihood estimation. Moreover, we creatively introduce a learnable indicator function into the64

objective of maximum likelihood to explicitly attenuate the influence of anomalies on representation65

learning and clustering. Under this framework, we can theoretically derive an anomaly score that66

indicates the abnormality of samples, rather than heuristically designing it based on clustering results67

as existing works do. Furthermore, building upon this theoretically supported anomaly score and68

inspired by the theory of universal gravitation, we propose a more comprehensive anomaly metric that69

considers the complex relationships between samples and multiple clusters. This allows us to better70

utilize the learned representations and clustering results from this framework for anomaly detection.71

To sum up, we underline our contributions as follows:72

• We propose a unified theoretical framework to jointly optimize representation learning, clustering,73

and anomaly detection, allowing their mutual enhancement and aid in anomaly detection.74

• Based on the proposed framework, we derive a theoretically grounded anomaly score and further75

introduce a more comprehensive score with the vector summation, which fully releases the power76

of the framework for effective anomaly detection.77

• Extensive experiments have been conducted on 30 datasets to validate the superior unsupervised78

anomaly detection performance of our approach, which surpassed the state-of-the-art through79

comparative evaluations with 17 baseline methods.80
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2 Related Work81

Typical unsupervised anomaly detection (UAD) methods calculate a continuous score for each sample82

to measure its anomaly degree. Various UAD methods have been proposed based on different83

assumptions, making them suitable for detecting various types of anomaly patterns, including84

subspace-based models [24], statistical models [16], linear models [49, 32], density-based models [6,85

38], ensemble-based models [39, 29], probability-based models [40, 58, 28, 27], neural network-86

based models [42, 51], and cluster-based models [18, 9]. Considering the field of anomaly detection87

has progressed by integrating clustering information to enhance detection accuracy [26, 56], we88

primarily focus on and analyze anomaly patterns related to clustering, incorporating a global clustering89

perspective to assess the degree of anomaly. Notable methods in this context include CBLOF [18],90

which evaluates anomalies based on the size of the nearest cluster and the distance to the nearest large91

cluster. Similarly, DCFOD [45] introduces innovation by applying the self-training architecture of92

the deep clustering [50] to outlier detection. Meanwhile, DAGMM [58] combines deep autoencoders93

with Gaussian mixture models, utilizing sample energy as a metric to quantify the anomaly degree.94

In contrast, our approach introduces a unified theoretical framework that integrates representation95

learning, clustering, and anomaly detection, overcoming the limitations of heuristic designs and the96

overlooked anomaly influence in existing methods.97

3 Methodology98

In this section, we first define the problem we studied and the notations used in this paper. Then we99

elaborate on the proposed method UniCAD. More specifically, we first introduce a novel learning100

objective that optimizes representation learning, clustering, and anomaly detection within a unified101

theoretical framework by maximizing the data likelihood. A novel anomaly score with theoretical102

support is also naturally derived from this framework. Then, inspired by the concept of universal103

gravitation, we further propose an enhanced anomaly scoring approach that leverages the intricate104

relationship between samples and clustering to detect anomalies effectively. Finally, we present an105

efficient iterative optimization strategy to optimize this model and provide a complexity analysis for106

the proposed model.107

Definition 1 (Unsupervised Anomaly Detection). Given a dataset X ∈ RN×D comprising N108

instances with D-dimensional features, unsupervised anomaly detection aims to learn an anomaly109

score oi for each instance xi in an unsupervised manner so that the abnormal ones have higher110

scores than the normal ones.111

3.1 Maximizing Anomaly-aware Likelihood112

Previous research has demonstrated the importance of discriminative representation and accurate113

clustering in anomaly detection [45]. However, the presence of anomalous samples can significantly114

disrupt the effectiveness of both representation learning and clustering [12]. While some existing115

studies have attempted to integrate these three separate learning objectives, the lack of a unified116

theoretical framework has hindered their mutual enhancement, leading to suboptimal results.117

To tackle this issue, in this paper, we propose a unified and coherent approach that considers118

representation learning, clustering, and anomaly detection by maximizing the likelihood of the119

observed data. Specifically, we denote the parameters of representation learning as Θ, the clustering120

parameter as Φ, and the dynamic indicator function for anomaly detection as δ(·). These parameters121

are optimized simultaneously by maximizing the likelihood of the observed data X:122

max log p(X|Θ,Φ) = max

N∑
i=1

δ(xi) log p(xi|Θ,Φ) = max

N∑
i=1

δ(xi) log

K∑
k=1

p(xi, ci = k|Θ,Φ),

(1)
where ci represents the latent cluster variable associated with xi, and ci = k denotes the probabilistic123

event that xi belongs to the k-th cluster. The δ(xi) is an indicator function that determines whether a124

sample xi is an anomaly of value 0 or a normal sample of value 1.125
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3.1.1 Joint Representation Learning and Clustering with p(xi|Θ,Φ)126

Based on the aforementioned advantages of MMs, we estimate the likelihood p(xi|Θ,Φ) with mixture127

models defined as:128

p(xi|Θ,Φ) =

K∑
k=1

p(xi, ci = k|Θ,Φ) =

K∑
k=1

p(ci = k) · p(xi|ci = k,Θ,µk,Σk)

=

K∑
k=1

ωk · p(xi|ci = k,Θ,µk,Σk),

(2)

where Φ = {ωk,µk,Σk}. The mixture model is parameterized by the prototypes µk, covariance129

matrices Σk, and mixture weights ωk from all clusters.
∑K

k=1 ωk = 1, and k = 1, 2, · · · ,K.130

In practice, the samples are usually attributed to high-dimensional features and it is challenging to131

detect anomalies from the raw feature space [41]. Therefore, modern anomaly detection methods [42,132

58] often map raw data samples X = {xi} ∈ RN×D into a low-dimensional representation space133

Z = {zi} ∈ RN×d with a representation learning function zi = fΘ(xi) and detect anomalies within134

this latent representation space.135

Following this widely adopted practice, we model the distribution of samples in the latent represen-136

tation space with a multivariate Student’s-t distribution giving its cluster ci = k. The Student’s-t137

distribution is robust against outliers due to its heavy tails. Bayesian robustness theory leverages138

such distributions to dismiss outlier data, favoring reliable sources, making the Student’s-t process139

preferable over Gaussian processes for data with atypical information [1]. Thus the probability140

distribution of generating xi with latent representation zi given its cluster ci = k can be expressed as:141

p(xi|ci = k,Θ,µk,Σk) =
Γ(ν+1

2 )|Σk|−1/2

Γ(ν2 )
√
νπ

(
1 +

1

ν
DM (zi,µk)

2

)− ν+1
2

, (3)

where zi = fΘ(xi) denotes the representation obtained from the data mapped through the neural142

network parameterized by Θ. Γ denotes the gamma function while ν is the degree of freedom.143

Σk is the scale parameter. DM (zi,µk) =
√

(zi − µk)TΣ
−1
k (zi − µk) represents the Mahalanobis144

distance [33]. In the unsupervised setting, as cross-validating ν on a validation set or learning it is145

unnecessary, ν is set as 1 for all experiments [50, 48]. The overall marginal likelihood of the observed146

data xi can be simplified as:147

p(xi|Θ,Φ) =

K∑
k=1

ωk ·
π−1 · |Σk|−1/2

1 +DM (zi,µk)2
. (4)

3.1.2 Anomaly Indicator δ(xi) and Score oi148

As we have discussed, the indicator function δ(xi) not only benefits both representation and clustering149

but also directly serves as the output of anomaly detection. Ideally, with the percentage of outliers150

denoted as l, an optimal solution for δ(xi) that maximizes the objective function J(Θ,Φ) entails151

setting all δ(xi) = 0 for xi among the l percent of outliers with lowest generation possibility152

p(xi|Θ,Φ), and otherwise δ(xi) = 1 is set for the remaining normal samples. Therefore, the153

indicator function is determined as:154

δ(xi) =

{
0, if p(xi|Θ,Φ) is among the l lowest,
1, otherwise.

(5)

As this method involves sorting the samples based on the generation probability as being anomalous,155

the values of p(xi|Θ,Φ) can serve as a form of anomaly score, a classic approach within the mixture156

model framework [40, 58]. This suggests that the likelihood of a sample being anomalous is inversely157

related to its generative probability since a lower generative probability indicates a higher chance of158

the sample being an outlier. Thus the anomaly score of sample xi can be defined as:159
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oi =
1

p(xi|Θ,Φ)
=

1∑K
k=1 ωk · π−1·|Σk|−1/2

1+DM (zi,µk)2

. (6)

3.2 Gravity-inspired Anomaly Scoring160

In practical applications, it is proved that anomaly scores derived from generation probabilities often161

yield suboptimal performance [17]. This observation prompts a reconsideration of how to fully162

leverage the complex relationships among samples or even across multiple clusters for anomaly163

detection. In this section, we first provide a brief introduction to the concept of Newton’s Law of164

Universal Gravitation [35] and then demonstrate how the anomaly score is intriguingly similar to this165

cross-field principle. Finally, we discuss the advantages of introducing the vector sum operation into166

the anomaly score inspired by the analogy.167

3.2.1 Analog Anomaly Scoring and Force Analysis168

To begin with, Newton’s Law of Universal Gravitation [35] stands as a fundamental framework for169

describing the interactions among entities in the physical world. According to this law, every object170

in the universe experiences an attractive force from another object. In classical mechanics, force171

analysis involves calculating the vector sum of all forces acting on an object, known as the resultant172

force, which is crucial in determining an object’s acceleration or change in motion:173

F⃗i,total =

K∑
k=1

F⃗ik, with F⃗ik =
G ·mimk

r2ik
· r⃗ik, (7)

where F⃗ik represents the k-th force acting on the object i. This force is proportional to the product of174

their masses, (mi and mk), and inversely proportional to the square of the distance rik between them.175

G represents the gravitational constant, and r⃗ij is the unit direction vector.176

Similarly, if denoting: F̃ik = p(xi, ci = k|Θ,Φ) = ωk · π−1·|Σk|−1/2

1+DM (zi,µk)2
, the score of Equation (6)177

bears analogies to the summation of the magnitudes of forces as:178

oi =
1∑K

k=1 F̃ik

, with F̃ik =
G̃ · m̃im̃k

r̃2ik
, (8)

where G̃ = π−1, m̃k = ωk|Σk|−1/2, m̃i = 1, and r̃ik =
√

1 +DM (zi,µk)2. Here, r̃ik is taken as179

the measure of distance within the representation space, modified slightly by an additional term for180

smoothness. The constant G̃ serves a role akin to the gravitational constant in this analogy, whereas181

m̃k resembles the concept of mass for the cluster. The notation m̃i suggests a standardization where182

the mass of each data point is considered uniform and not differentiated.183

3.2.2 Anomaly Scoring with Vector Sum184

Comparing Equation (7) with Equation (8), what still differs is that, unlike a simple sum of the185

scalar value, the resultant force F⃗i,total employs the vector sum and incorporates both the magnitude186

and direction r̂ik of each force. This distinction is crucial because forces in different directions187

can neutralize each other with a large angle between them or enhance each other’s effects with a188

small angle. Inspired by this difference, we consider modeling the relationship between samples and189

clusters as a vector, and aggregating them through vector summation. The vector-formed anomaly190

score oVi is defined as:191

oVi =
1

∥
∑K

k=1 F̃ik · r⃗ik∥
, (9)

where r⃗ik represents the unit direction vector in the representation space from the sample zi to the192

cluster prototype µk , and ∥ · ∥ represents the L2 norm.193
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3.3 Iterative Optimization194

Given the challenge posed by the interdependence of the parameters of the network Θ and those of the195

mixture model {ωk,µk,Σk} in joint optimization, we propose an iterative optimization procedure.196

The pseudocode for training the model is presented in Algorithm 1 in the appendix.197

3.3.1 Update Φ198

To update the parameters of the mixture model Φ = {ωk,µk,Σk}, we use the Expectation-199

Maximization (EM) algorithm to maximize equation (1) [36]. The detailed derivation is included in200

Appendix B.201

E-step. During the E-step of iteration (t+ 1), our goal is to compute the posterior probabilities of202

each data point belonging to the k-th cluster within the mixture model. Given the observed sample203

xi and the current estimates of the parameters Θ(t) and Φ(t), the expected value of the likelihood204

function of latent variable ck, or the posterior possibilities, can be expressed as:205

τ
(t+1)
ik = p(ci = k|xi,Θ,Φ(t)) =

p(xi, ci = k|Θ,Φ(t))∑K
j=1 p(xi, ci = j|Θ,Φ(t))

=
F̃

(t)
ik∑K

j=1 F̃
(t)
ij

. (10)

The scale factor[36] serving as an intermediate result for subsequent updates in the M-step is :206

u
(t+1)
ik =

2

1 +DM (z
(t)
i ,µ

(t)
k )

. (11)

M-step. In the M-step of iteration (t + 1), given the gradients ∂J(Θ,Φ)
∂ωk

= 0, ∂J(Θ,Φ)
∂µk

= 0, and207

∂J(Θ,Φ)
∂Σk

= 0, we derive the analytical solutions for the mixture model parameters ωk, µk, and Σk.208

Assume the anomalous ratio is l ∈ [0, 1], the number of the normal samples is n = int(l ∗N). The209

updating process for {ω(t+1)
k ,µ

(t+1)
k ,Σ

(t+1)
k } is as follows:210

• The mixture weights ωk are updated by averaging the posterior probabilities over all data points211

with the number of samples , reflecting the relative presence of each component in the mixture:212

ω
(t+1)
k =

n∑
i=1

τ
(t+1)
ik /n. (12)

• The prototypes µk are updated to be the weighted average of the data points, where weights are the213

posterior probabilities:214

µ
(t+1)
k =

n∑
i=1

(
τ
(t+1)
ik u

(t+1)
ik zi

)
/

n∑
i=1

(
τ
(t+1)
ik u

(t+1)
ik

)
. (13)

• The covariance matrices Σk are updated by considering the dispersion of the data around the newly215

computed prototypes:216

Σ
(t+1)
k =

∑n
i=1 τ

(t+1)
ik u

(t+1)
ik (zi − µ

(t+1)
k )(zi − µ

(t+1)
k )⊺∑K

j=1 τ
(t+1)
ij

. (14)

3.3.2 Update Θ217

We focus on anomaly-aware representation learning and use stochastic gradient descent to optimize218

the network parameters Θ, by minimizing the following joint loss:219

L = −J(Θ,Φ) + g(Θ), (15)

where J(Θ,Φ) = log p(X|Θ,Φ). An additional constraint term g(Θ) is introduced to prevent short-220

cut solution [15]. In practice, an autoencoder architecture is implemented, utilizing a reconstruction221

loss g(Θ) = ∥x− x̂∥2 as the constraint.222

These updates are iteratively performed until convergence, resulting in optimized model parameters223

that best fit the given data according to the mixture model framework.224
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4 Experiments225

4.1 Datasets & Baselines226

We evaluated UniCAD on an extensive collection of datasets, comprising 30 tabular datasets that227

span 16 diverse fields. We specifically focused on naturally occurring anomaly patterns, rather228

than synthetically generated or injected anomalies, as this aligns more closely with real-world229

scenarios. The detailed descriptions are provided in Table 4 of Appendix D.1. Following the setup230

in ADBench [17], we adopt an inductive setting to predict newly emerging data, a highly beneficial231

approach for practical applications.232

To assess the effectiveness of UniCAD, we compared it with 17 advanced unsupervised anomaly233

detection methods, including: (1) traditional methods: SOD [24] and HBOS [16]; (2) linear methods:234

PCA [49] and OCSVM [32]; (3) density-based methods: LOF [6] and KNN [38]; (4) ensemble-based235

methods: LODA [39] and IForest [29]; (5) probability-based methods: DAGMM [58], ECOD [28],236

and COPOD [27]; (6) cluster-based methods: DBSCAN [13], CBLOF [18], DCOD [45] and KMeans-237

- [9]; and (7) neural network-based methods: DeepSVDD [42] and DIF [51]. These baselines238

encompass the majority of the latest methods, providing a comprehensive overview of the state-of-239

the-art. For a detailed description, please refer to Appendix D.2.240

4.2 Experiment Settings241

In the unsupervised setting, we employ the default hyperparameters from the original papers for all242

comparison methods. Similarly, the UniCAD also utilizes a fixed set of parameters to ensure a fair243

comparison. For all datasets, we employ a two-layer MLP with a hidden dimension of d = 128 and244

ReLU activation function as both encoder and decoder. We utilize the Adam optimizer [21] with a245

learning rate of 1e−4 for 100 epochs. For the EM process, we set the maximum iteration number246

to 100 and a tolerance of 1e−3 for stopping training when the objectives converge. The number of247

components in the mixture model is set as k = 10, and the proportion of the outlier is set as l = 1%.248

We evaluate the methods using Area Under the Receiver Operating Characteristic (AUC-ROC) and249

Area Under the Precision-Recall Curve (AUC-PR) metrics [17], reporting the average ranking (Avg.250

Rank) across all datasets. All experiments are run 3 times with different seeds, and the mean results251

are reported.252

4.3 Performance and Analysis253

Performance Comparison. Table 1 presents a comparison of UniCAD with 10 unsupervised254

baseline methods across 30 tabular datasets using the AUC-ROC metric. The experimental results,255

which encompass 17 baselines, are included in Tables 5 and 6 of Appendix D.3, with additional256

experiments on other data domains presented in Appendix E. Our proposed UniCAD achieves the257

top average ranking, exhibiting the best or near-best performance on a larger number of datasets258

and confirming advanced capabilities. It is noteworthy that there is no one-size-fits-all unsupervised259

anomaly detection method suitable for every type of dataset, as demonstrated by the observation that260

other methods have also achieved some of the best results on certain datasets. However, our model261

showcased a remarkable ability to generalize across most datasets featuring natural anomalies, as262

evidenced by statistical average ranking. As for clustering-based methods such as KMeans--, DCOD,263

and CBLOF, they mostly rank in the top tier among all baseline methods, supporting the advantage of264

combining deep clustering with anomaly detection. However, our method significantly outperformed265

these methods by mitigating their limitations and further providing a unified framework for joint266

representation learning, clustering, and anomaly detection.267

Effectiveness of Vector Sum in Anomaly Scoring. As demonstrated in Table 1, we compare the268

anomaly score oi derived directly from the generation possibility with its vector summation form oV
i .269

According to our statistical findings, we observe that vector scores oV
i consistently outperform scalar270

scores oi. This indicates that the introduction of the vector summation, analogous to the concept271

of resultant force, makes a substantial difference in anomaly detection scenarios involving multiple272

clusters. The performance gains of the vector sum scores strongly demonstrate the effectiveness273

of the UniCAD in capturing the subtle differences in the distinctions among multiple clusters and274

underscore the utility of this factor in the context of anomaly detection based on clustering.275
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Table 1: AUCROC of 10 unsupervised algorithms on 30 tabular benchmark datasets. In each dataset,
the algorithm with the highest AUCROC is marked in red, the second highest in blue, and the third
highest in green.

Dataset OC
SVM LOF IForest DA

GMM ECOD DB
SCAN CBLOF DCOD KMeans-- DIF UniCAD

(Scalar)
UniCAD
(Vector)

annthyroid 57.23 70.20 82.01 56.53 78.66 50.08 62.28 55.01 64.99 66.76 75.27 72.72
backdoor 85.04 85.79 72.15 55.98 86.08 76.55 81.91 79.57 89.11 92.87 87.28 89.24
breastw 80.30 40.61 98.32 N/A 99.17 85.20 96.86 99.02 97.05 77.45 98.15 98.56

campaign 65.70 59.04 71.71 56.03 76.10 50.60 64.34 63.16 63.51 67.53 73.52 73.64
celeba 70.70 38.95 70.41 44.74 76.48 50.36 73.99 91.41 56.76 65.29 81.38 82.00
census 54.90 47.46 59.52 59.65 67.63 58.50 60.17 72.84 63.33 59.66 67.90 67.84
glass 35.36 69.20 77.13 76.09 65.83 54.55 78.30 78.07 77.30 84.57 79.52 82.17

Hepatitis 67.75 38.06 69.75 54.80 75.22 68.12 73.05 48.38 64.64 74.24 75.53 80.62
http 99.59 27.46 99.96 N/A 98.10 49.97 99.60 99.53 99.55 99.49 99.53 99.52

Ionosphere 75.92 90.59 84.50 73.41 73.15 81.12 90.79 57.78 91.36 89.74 92.04 90.37
landsat 36.15 53.90 47.64 43.92 36.10 50.17 63.69 33.40 55.31 54.84 49.60 57.37

Lymphography 99.54 89.86 99.81 72.11 99.52 74.16 99.81 81.19 100.00 83.67 99.29 99.73
mnist 82.95 67.13 80.98 67.23 74.61 50.00 79.96 65.23 82.45 88.16 86.00 86.64
musk 80.58 41.18 99.99 76.85 95.40 50.00 100.00 42.19 72.16 98.22 99.92 100.00

pendigits 93.75 47.99 94.76 64.22 93.01 55.33 96.93 94.33 94.37 93.79 95.12 95.52
Pima 66.92 65.71 72.87 55.93 63.05 51.39 71.49 72.16 70.44 67.28 75.16 74.87

satellite 59.02 55.88 70.43 62.33 58.09 55.52 71.32 55.97 67.71 74.52 72.46 77.65
satimage-2 97.35 47.36 99.16 96.29 96.28 75.74 99.84 86.01 99.88 99.63 99.87 99.88

shuttle 97.40 57.11 99.56 97.92 99.13 50.40 93.07 97.20 69.97 97.00 99.15 98.75
skin 49.45 46.47 68.21 N/A 49.08 50.00 68.03 64.34 65.47 66.36 72.26 69.69

Stamps 83.86 51.26 91.21 88.89 87.87 52.08 69.89 93.41 79.78 87.95 91.37 94.18
thyroid 87.92 86.86 98.30 79.75 97.94 53.57 94.74 78.55 92.26 96.26 97.66 97.48

vertebral 37.99 49.29 36.66 53.20 40.66 49.74 41.01 38.13 38.14 47.20 33.11 47.37
vowels 61.59 93.12 73.94 60.58 62.24 57.50 92.12 51.56 93.45 81.02 88.38 92.09

Waveform 56.29 73.32 71.47 49.35 62.36 66.41 71.27 63.47 74.35 75.33 71.81 74.29
WBC 99.03 54.17 99.01 N/A 99.11 87.43 96.88 94.92 97.45 81.27 97.68 98.93
Wilt 31.28 50.65 41.94 37.29 36.30 49.96 34.50 44.71 34.91 39.46 48.95 52.56
wine 73.07 37.74 80.37 61.70 77.22 40.33 27.14 82.18 27.36 41.69 82.72 95.25

WPBC 45.35 41.41 46.63 47.80 46.65 52.22 45.32 49.67 45.01 44.69 48.02 49.90

Avg. Rank 7.8 8.9 5.1 8.7 6.4 9.3 5.7 7.4 6.0 5.8 3.7 2.6

(a) Optimization Analysis (b) AUC-ROC Surface (c) AUC-PR Surface

Figure 2: (a) demonstrates the performance variations during the optimization process on the satimage-
2 dataset. (b) & (c) Analysis of cluster count k, anomaly ratio l.

Analysis of EM Iterative Optimization. To comprehend the iterative training within our model,276

we have illustrated the performance variations accompanying the increase in iteration counts in277

Figure 2a. Specifically, we monitored the iteration number t for the satimage-2 dataset, ranging278

from 0 to 10, while maintaining other default parameters constant. Both AUC-ROC and AUC-PR279

performance curves displayed consistent trends, with minor fluctuations only during the initial phase.280

The performance remained relatively stable throughout the last steps, illustrating the effectiveness281

and convergence of iterative EM optimization.282

Runtime Comparison. We present a analysis of the runtime performance of various methods,283

including our proposed approach, as detailed in Table 2. Our experiments, conducted on the backdoor284

dataset, reveal that while non-deep learning methods exhibit lower runtime, they often simplify the285

problem space excessively, failing to capture the complex non-linear relationships present in the286

data. In contrast, our method, when compared to existing deep learning techniques, demonstrates287

a significant reduction in computational time. This indicates that our approach not only manages288
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Table 2: Runtime Comparison. The runtime is reported in seconds (s).
Phase IForest KMeans-- DAGMM DCOD UniCAD
Fit 0.256 103.697 795.004 4548.634 246.113
Infer 0.0186 0.059 4.190 16.190 0.079

Table 3: Ablation study on AUC-ROC scores, calculated across 30 datasets.
Metric w/ Gauss. w/o J(Θ,Φ) w/o δ(xi) Full Model

Avg. Rank (w/ baselines & variants) 6.2 6.6 5.0 4.2

to efficiently model complex patterns but also achieves an optimal balance between computational289

efficiency and modeling capability.290

4.4 Ablation Studies291

In this section, we examine the contributions of different components in UniCAD. Tables 3 reports the292

results. We make three major observations. Firstly, the anomaly detection performance experiences a293

significant drop when replacing the Student’s t distribution with a Gaussian distribution for the Mixture294

Model, highlighting the robustness of the Student’s t distribution in unsupervised anomaly detection.295

Secondly, omitting the likelihood maximization loss (w/o J(Θ,Φ)) also results in a considerable296

decrease in overall performance. This observation underscores the importance of deriving both297

the optimization objectives and anomaly scores from the likelihood generation probability through298

a theoretical framework, which allows for unified joint optimization of anomaly detection and299

clustering in the representation space. Furthermore, the indicator function δ(xi) also contributes to a300

performance increase. These results further confirm the effectiveness of our UniCAD in mitigating the301

negative influence of anomalies in the clustering process, as the existence of outliers may significantly302

degrade the performance of clustering. In summary, all these ablation studies clearly demonstrate303

the effectiveness of our theoretical framework in simultaneously considering representation learning,304

clustering, and anomaly detection.305

4.5 Sensitivity of Hyperparameters306

In this section, we conducted a sensitivity analysis on key hyperparameters of the model applied307

to the donors dataset, focusing on the number of clusters k and the proportion of the outlier set l.308

The results of this analysis are illustrated in Figure 2. Notably, the optimal range for l tends to be309

lower than the actual proportion of anomalies in the dataset. Furthermore, a pattern was observed310

with the number of clusters k, where the model performance initially improved with an increase in k,311

followed by a subsequent decline. This suggests the existence of an optimal range for the number of312

clusters, which should be carefully selected based on the specific application context.313

5 Conclusion314

This paper presents UniCAD, a novel model for Unsupervised Anomaly Detection (UAD) that315

seamlessly integrates representation learning, clustering, and anomaly detection within a unified316

theoretical framework. Specifically, UniCAD introduces an anomaly-aware data likelihood based on317

the mixture model with the Student-t distribution to guide the joint optimization process, effectively318

mitigating the impact of anomalies on representation learning and clustering. This framework319

enables a theoretically grounded anomaly score inspired by universal gravitation, which considers320

complex relationships between samples and multiple clusters. Extensive experiments on 30 datasets321

across various domains demonstrate the effectiveness and generalization capability of UniCAD,322

surpassing 15 baseline methods and establishing it as a state-of-the-art solution in unsupervised323

anomaly detection. Despite its potential, the proposed method’s applicability to broader fields like324

time series and multimodal anomaly detection requires further exploration and validation, highlighting325

a significant area for future work.326
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Remi Munos, Petar Veličković, and Michal Valko. Large-scale representation learning on graphs445

via bootstrapping. arXiv preprint arXiv:2102.06514, 2021.446

[48] Laurens Van Der Maaten. Learning a parametric embedding by preserving local structure. In447

Artificial intelligence and statistics, pages 384–391. PMLR, 2009.448

[49] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis. Chemometrics449

and intelligent laboratory systems, 2(1-3):37–52, 1987.450

[50] Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding for clustering451

analysis. In International conference on machine learning, pages 478–487. PMLR, 2016.452

[51] Hongzuo Xu, Guansong Pang, Yijie Wang, and Yongjun Wang. Deep isolation forest for453

anomaly detection. IEEE Transactions on Knowledge and Data Engineering, 2023.454

[52] Xiaowei Xu, Nurcan Yuruk, Zhidan Feng, and Thomas AJ Schweiger. Scan: a structural455

clustering algorithm for networks. In Proceedings of the 13th ACM SIGKDD international456

conference on Knowledge discovery and data mining, pages 824–833, 2007.457

[53] Zhiming Xu, Xiao Huang, Yue Zhao, Yushun Dong, and Jundong Li. Contrastive attributed458

network anomaly detection with data augmentation. In Advances in Knowledge Discovery and459

Data Mining: 26th Pacific-Asia Conference, PAKDD 2022, Chengdu, China, May 16–19, 2022,460

Proceedings, Part II, pages 444–457. Springer, 2022.461

[54] Xu Yuan, Na Zhou, Shuo Yu, Huafei Huang, Zhikui Chen, and Feng Xia. Higher-order structure462

based anomaly detection on attributed networks. In 2021 IEEE International Conference on463

Big Data (Big Data), pages 2691–2700. IEEE, 2021.464

[55] Yu Zheng, Ming Jin, Yixin Liu, Lianhua Chi, Khoa T Phan, and Yi-Ping Phoebe Chen. Genera-465

tive and contrastive self-supervised learning for graph anomaly detection. IEEE Transactions466

on Knowledge and Data Engineering, 2021.467

12



[56] Shuang Zhou, Xiao Huang, Ninghao Liu, Qiaoyu Tan, and Fu-Lai Chung. Unseen anomaly468

detection on networks via multi-hypersphere learning. In Proceedings of the 2022 SIAM469

International Conference on Data Mining (SDM), pages 262–270. SIAM, 2022.470

[57] Shuang Zhou, Qiaoyu Tan, Zhiming Xu, Xiao Huang, and Fu-lai Chung. Subtractive aggregation471

for attributed network anomaly detection. In Proceedings of the 30th ACM International472

Conference on Information & Knowledge Management, pages 3672–3676, 2021.473

[58] Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki Cho, and474

Haifeng Chen. Deep autoencoding gaussian mixture model for unsupervised anomaly detection.475

In International conference on learning representations, 2018.476

13



Algorithm 1 Model training for UniCAD

Input: data points X, cluster number K, outlier ratio l, tolerance λ, iterations t
Output: network parameters Θ, mixture parameters {ωk,µk,Σk}

1: Initialize Θ and {µk, ωk,Σk};
2: for i = 1 to t do
3: if i = 1 then
4: Xi ← X;
5: else
6: Re-order the point in X such that o1 ≥ · · · ≥ on;
7: Li ← {x1, . . . , x⌊N∗l⌋};
8: Xi ← X \ Li;
9: end if

10: Update Θ with Equation (15);
11: while |J(Θ,Φ)− Jold(Θ,Φ)| > λ do
12: Jold(Θ,Φ) = J(Θ,Φ);
13: Calculate τ with Equation (10);
14: Update {ωk,µk,Σk} with Equation (12), (13) and (14);
15: end while
16: Calculate oi with Equation (9);
17: end for
18: return Θ and {ωk,µk,Σk}

A Iterative Training Algorithm477

The pseudocode for training the model is presented in Algorithm 1. Initially, all parameters undergo478

random initialization. In subsequent iterations, following the initial round, the outlier set L undergoes479

updates based on the anomaly score oi. This is succeeded by the adjustment of the network parameters480

Θ based on xi, further optimizing the performance of Θ through the utilization of the estimated481

parameters µk, ωk,Σk. The essence of the algorithm is embedded in its alternating optimization482

strategy, iteratively refining the accuracy of representation learning and mixed model parameter483

estimation, thereby augmenting the overall training effectiveness of the model.484

B Derivation of EM Algorithm485

This appendix provides the detailed derivation of the Expectation-Maximization (EM) algorithm486

for optimizing the parameters of a mixture model based on Student’s t-distribution. The focus is487

on deriving analytical solutions for the maximization of the parameters Φ = {µk,Σk, ωk} of the488

mixture components. The EM algorithm alternates between two steps:489

In the E-step, we calculate the posterior probabilities τik, representing the probability of data point490

i belonging to cluster k, given the current parameters. The posterior probabilities for a Student’s491

t-distribution mixture model are formulated as:492

τik =
ωk · p(zi|µk,Σk)∑K
j=1 ωj · p(zi|µj ,Σj)

, (16)

where τ (zi|µk,Σk) denotes the Student’s t-distribution for data point i with respect to cluster k, and493

K is the number of mixture components.494

The Student’s t-distribution is depicted as a hierarchical conditional probability, resembling a Gaussian495

distribution with an accuracy scale factor u, where its latent variable follows a gamma distribution.496

Adopting a degree of freedom ν = 1, the value of uik is given by:497

uik =
ν + 1

ν +DM (zi,µk)
=

2

1 +DM (zi,µk)
(17)

In the M-step, we update the parameters Φ = {ωk, µk, and Σk} using the derivatives obtained in498

the previous steps. In our model, the likelihood function for a Student’s-t Distribution Mixture Model499
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Figure 3: Score comparison with other methods.

(SMM) is represented as:500

L(ω,µ,Σ) =

N∑
i=1

K∑
k=1

ωk ·
π−1 · |Σk|−

1
2

1 + (zi − µk)TΣ
−1
k (zi − µk)

, (18)

where ωk are the mixture weights, Σk the covariance matrices, µk the means, and zi the data points.501

The derivative with respect to ωk must consider the constraint that the sum of the mixture weights502

equals 1, i.e.,
∑

k ωk = 1. Hence, we introduce a Lagrange multiplier λ to address this constraint503

and construct the Lagrangian L′:504

L′(ω,µ,Σ, λ) = L(ω,µ,Σ) + λ

(
1−

K∑
k=1

ωk

)
, (19)

The derivative with respect to ωk is:505

∂L′

∂ωk
=

∂L

∂ωk
− λ, (20)

Substituting the definition of L(ω,µ,Σ), we obtain:506

∂L

∂ωk
=
∑
i

p(zi|µk,Σk)∑K
j=1 ωj · p(zi|µj ,Σj)

=
∑
i

τik
ωk

, (21)

To solve for ωk, we first multiply both sides of the equation by ωk and apply the constraint condition:507

∑
k

ωk

(∑
i

τik
ωk
− λ

)
= 0, (22)

Upon further organization, we find that the Lagrange multiplier λ actually equals the total number of508

data points N (since
∑

i τik = Nk, where Nk is the expected total number of data points belonging509

to the kth component, and the sum of all Nk equals the total number of data points N ).510

Finally, we can solve for ωk:511

ωk =

∑
i τik
N

, (23)

This result indicates that the weight ωk of each mixture component equals the proportion of the512

posterior probabilities of the data points it contains relative to all data points.513

To update µk and Σk, we consider the conditional expectation of the data log-likelihood function:514

Q(µk,Σk) =

N∑
i=1

τik

(
− log(π)− 1

2
log |σk|+

1

2
log uik

−1

2
uik(zi − µk)

TΣ−1
k (zi − µk)

) (24)
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(a) Scalar Sum (b) Vector Sum

Figure 4: Analysis of gravitational force.

Maximizing Q(µk,Σk) with respect to µk leads to:515

∂Q

∂µk
=

1

2

N∑
i=1

τikuik(2Σ
−1
k µk − 2Σ−1

k zik) (25)

Setting ∂Q
∂µk

= 0 results in the updated mean µ
(t+1)
k :516

µ
(t+1)
k =

n∑
i=1

(
τ
(t+1)
ik u

(t+1)
ik zi

)
/

n∑
i=1

(
τ
(t+1)
ik u

(t+1)
ik

)
. (26)

Considering the derivative of Q(µk,Σk) with respect to Σ−1
k :517

∂Q

∂Σ−1
k

=
1

2

N∑
i=1

τik
(
Σk − uik(zi − µk)× (zi − µk)

T
)
. (27)

Setting ∂Q
∂µk

= 0 yields the updated covariance matrix Σ
(t+1)
k :518

Σ
(t+1)
k =

∑n
i=1 τ

(t+1)
ik u

(t+1)
ik (zi − µ

(t+1)
k )(zi − µ

(t+1)
k )T∑K

j=1 τ
(t+1)
ij

. (28)

C Anomaly Score with Vector Sum519

C.1 Advantages520

Here we discuss the advantages of employing vector sum in anomaly score with a toy example.521

The application of the vector sum principle extends beyond physical mechanics and finds relevance522

in various domains. In relational embedding [5], for example, relationships can be represented as523

vectors. Aggregating these vectors allows for capturing complexities like transitivity, symmetry, and524

antisymmetry.525

Similarly, in our context, the vector sum can help capture more complex relationships along clus-526

ters. Consider Figure 4 as an example, where a sample v is attracted by two groups of cluster527

prototypes ({µ1,µ2}, {µ3,µ4}) with the same mass and sample-prototype distances (m̃1 = m̃2 =528

m̃3 = m̃4, r̃v1 = r̃v2 = r̃v3 = r̃v4). Without considering the direction of the forces, the two groups529

of prototypes would attract the sample with equal forces. However, we argue that the two groups of530

prototypes should exert different influences. A sample close to two clusters with a large difference531

({µ1,µ2}) is more likely to be an anomaly compared to a sample that is close to two clusters with532

a smaller difference ({µ3,µ4}). For example, in a social network, a user who equally likes two533

extremely different communities, like money-saving tips and luxury items, is more anomalous than534

a user who equally likes two similar communities, like private jets and luxury items. Applying535

the vector sum, the total force of {µ1,µ2} is much smaller than that of {µ3,µ4}. As the anomaly536

score is inversely related to the total force, it is more anomalous when equally attracted by {µ1,µ2}537

with large difference. This indicates that the vector sum successfully captures subtle differences538

in the distinctions among multiple clusters, thereby assisting in the identification of more accurate539

anomalies.540

16



C.2 Toy Example541

In the appendix, as illustrated in Figure 3, we investigated a toy example. We discussed a specific542

pattern of anomalies termed group anomalies, where a small number of anomalous samples cluster543

together. It is crucial to note that we do not claim this anomaly pattern is common in real-world data;544

our goal is merely to point out a specific anomaly pattern that is challenging for traditional cluster-545

based anomaly detection methods to detect. Specifically, we utilize three Gaussian distributions with546

high variance (each generating 300 data samples) and one with lower variance (generating 30 data547

samples). Because the samples from the smaller Gaussian follow a different generative mechanism548

and represent a minority in the dataset, we consider them anomalies.549

We set the cluster number for KMeans-- and GMM at four, indicating that the Gaussian distribution550

comprising anomalous samples was also recognized as a cluster. KMeans-- employs a cluster-based551

approach, using the distance to the nearest cluster center as the anomaly score, while GMM uses552

a probability-based approach, considering the samples’ likelihood in the mixture model as the553

anomaly score. However, both approaches are ineffective in this scenario. Rather than identifying the554

small cluster as anomalous, they tend to misidentify samples on the peripheries of larger clusters as555

anomalies.556

By contrast, our scoring method views the entire small cluster as more likely anomalous, followed by557

outlier samples on the margins of the larger clusters. This visualization provides a perspective that558

distinguishes our method from previous efforts.559

D Experimental Supplementary560

D.1 Benchmark Datasets Details561

Due to space constraints in the main text, we utilized 30 public datasets from ADBench [17], covering562

all different types of data. The details of the 30 datasets are presented in Table 4.563

D.2 Baselines Details564

A comprehensive overview of the unsupervised anomaly detection methods is presented below.565

D.2.1 Traditional Models566

• Subspace Outlier Detection (SOD) [24]: Identifies outliers in varying subspaces of a high-567

dimensional feature space, targeting anomalies that emerge in lower-dimensional projections.568

• Histogram-based Outlier Detection (HBOS) [16]: Assumes feature independence and calculates569

outlyingness via histograms, offering scalability and efficiency.570

D.2.2 Linear Models571

• Principal Component Analysis (PCA) [49]: Utilizes singular value decomposition for dimension-572

ality reduction, with anomalies indicated by reconstruction errors.573

• One-class SVM (OCSVM) [32]: Defines a decision boundary to separate normal samples from574

outliers, maximizing the margin from the data origin.575

D.2.3 Density-based Models576

• Local Outlier Factor (LOF) [6] : Measures local density deviation, marking samples as outliers if577

they lie in less dense regions compared to their neighbors.578

• K-Nearest Neighbors (KNN) [38]: Anomaly scores are assigned based on the distance to the k-th579

nearest neighbor, embodying a simple yet effective approach.580

D.2.4 Ensemble-based Models581

• Lightweight On-line Detector of Anomalies (LODA) [39] : An ensemble method suitable for582

real-time processing and adaptable to concept drift through random projections and histograms.583

• Isolation Forest (IForest) [29]: Isolates anomalies by randomly selecting features and split values,584

leveraging the ease of isolating anomalies to identify them efficiently.585
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Table 4: Statistics of tabular benchmark datasets.

Data # Samples # Features # Anomaly % Anomaly Category

annthyroid 7200 6 534 7.42 Healthcare
backdoor 95329 196 2329 2.44 Network
breastw 683 9 239 34.99 Healthcare

campaign 41188 62 4640 11.27 Finance
celeba 202599 39 4547 2.24 Image
census 299285 500 18568 6.20 Sociology
glass 214 7 9 4.21 Forensic

Hepaitis 80 19 13 16.25 Healthcare
http 567498 3 2211 0.39 Web

Ionosphere 351 33 126 35.90 Oryctognosy
landsat 6435 36 1333 20.71 Astronautics

Lymphography 148 18 6 4.05 Healthcare
magic.gamma 19020 10 6688 35.16 Physical

mnist 7603 100 700 9.21 Image
musk 3062 166 97 3.17 Chemistry

pendigits 6870 16 156 2.27 Image
Pima 768 8 268 34.90 Healthcare

satellite 6435 36 2036 31.64 Astronautics
satimage-2 5803 36 71 1.22 Astronautics

shuttle 49097 9 3511 7.15 Astronautics
skin 245057 3 50859 20.75 Image

Stamps 340 9 31 9.12 Document
thyroid 3772 6 93 2.47 Healthcare

vertebral 240 6 30 12.50 Biology
vowels 1456 12 50 3.43 Linguistics

Waveform 3443 21 100 2.90 Physics
WBC 223 9 10 4. 48 Healthcare
Wilt 4819 5 257 5.33 Botany
wine 129 13 10 7.75 Chemistry

WPBC 198 33 47 23.74 Healthcare

D.2.5 Probability-based Models586

• Deep Autoencoding Gaussian Mixture Model (DAGMM) [58]: Combines a deep autoencoder587

with a GMM for anomaly scoring, utilizing both low-dimensional representation and reconstruction588

error.589

• Empirical-Cumulative-distribution-based Outlier Detection (ECOD) [28]: Uses ECDFs to590

estimate feature densities independently, targeting outliers in distribution tails.591

• Copula Based Outlier Detector (COPOD) [27]: A hyperparameter-free method leveraging592

empirical copula models for interpretable and efficient outlier detection.593

D.2.6 Cluster-based Models594

• DBSCAN [13]: A density-based clustering algorithm that identifies clusters based on the density595

of data points, effectively separating high-density clusters from low-density noise, and is widely596

used for anomaly detection in spatial data.597

• Clustering Based Local Outlier Factor (CBLOF) [18]: Calculates anomaly scores based on598

cluster distances, using global data distribution.599

• KMeans-- [45]: Extends k-means to include outlier detection in the clustering process, offering an600

integrated approach to anomaly detection.601

• Deep Clustering-based Fair Outlier Detection (DCFOD) [9]: Enhances outlier detection with a602

focus on fairness, combining deep clustering and adversarial training for representation learning.603
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Table 5: AUCROC of 17 unsupervised algorithms on 30 tabular benchmark datasets. In each dataset,
the algorithm with the highest AUCROC is marked in red, the second highest in blue, and the third
highest in green.

Dataset SOD HBOS PCA OC
SVM LOF KNN LODA IForest DA

GMM ECOD COPOD DB
SCAN CBLOF DCOD KMeans-- Deep

SVDD DIF UniCAD
(Scalar)

UniCAD
(Vector)

annthyroid 77.38 60.15 66.24 57.23 70.20 71.69 41.02 82.01 56.53 78.66 76.80 50.08 62.28 55.01 64.99 76.09 66.76 75.27 72.72
backdoor 68.77 71.56 80.16 85.04 85.79 80.58 66.38 72.15 55.98 86.08 80.97 76.55 81.91 79.57 89.11 78.83 92.87 87.28 89.24
breastw 93.97 98.94 95.13 80.30 40.61 97.01 98.49 98.32 N/A 99.17 99.68 85.20 96.86 99.02 97.05 63.36 77.45 98.15 98.56

campaign 69.16 78.55 72.78 65.70 59.04 72.27 51.67 71.71 56.03 76.10 77.69 50.60 64.34 63.16 63.51 54.42 67.53 73.52 73.64
celeba 48.44 76.18 79.38 70.70 38.95 59.63 60.17 70.41 44.74 76.48 75.68 50.36 73.99 91.41 56.76 45.17 65.29 81.38 82.00
census 62.12 64.89 68.74 54.90 47.46 66.88 37.14 59.52 59.65 67.63 69.07 58.50 60.17 72.84 63.33 54.16 59.66 67.90 67.84
glass 73.36 77.23 66.29 35.36 69.20 82.29 73.13 77.13 76.09 65.83 72.43 54.55 78.30 78.07 77.30 55.71 84.57 79.52 82.17

Hepatitis 67.83 79.85 75.95 67.75 38.06 52.76 64.87 69.75 54.80 75.22 82.05 68.12 73.05 48.38 64.64 57.45 74.24 75.53 80.62
http 78.04 99.53 99.72 99.59 27.46 3.37 12.48 99.96 N/A 98.10 99.29 49.97 99.60 99.53 99.55 60.38 99.49 99.53 99.52

Ionosphere 86.37 62.49 79.19 75.92 90.59 88.26 78.42 84.50 73.41 73.15 79.34 81.12 90.79 57.78 91.36 53.94 89.74 92.04 90.37
landsat 59.54 55.14 35.76 36.15 53.90 57.95 38.17 47.64 43.92 36.10 41.55 50.17 63.69 33.40 55.31 62.48 54.84 49.60 57.37

Lymphography 71.22 99.49 99.82 99.54 89.86 55.91 85.55 99.81 72.11 99.52 99.48 74.16 99.81 81.19 100.00 71.91 83.67 99.29 99.73
mnist 60.10 60.42 85.29 82.95 67.13 80.58 72.27 80.98 67.23 74.61 77.74 50.00 79.96 65.23 82.45 50.98 88.16 86.00 86.64
musk 74.09 100.00 100.00 80.58 41.18 69.89 95.11 99.99 76.85 95.40 94.20 50.00 100.00 42.19 72.16 66.02 98.22 99.92 100.00

pendigits 66.29 93.04 93.73 93.75 47.99 72.95 89.10 94.76 64.22 93.01 90.68 55.33 96.93 94.33 94.37 27.32 93.79 95.12 95.52
Pima 61.25 71.07 70.77 66.92 65.71 73.43 65.93 72.87 55.93 63.05 69.10 51.39 71.49 72.16 70.44 49.49 67.28 75.16 74.87

satellite 63.96 74.80 59.62 59.02 55.88 65.18 61.98 70.43 62.33 58.09 63.20 55.52 71.32 55.97 67.71 57.40 74.52 72.46 77.65
satimage-2 83.08 97.65 97.62 97.35 47.36 92.60 97.56 99.16 96.29 96.28 97.21 75.74 99.84 86.01 99.88 55.68 99.63 99.87 99.88

shuttle 69.51 98.63 98.62 97.40 57.11 69.64 60.95 99.56 97.92 99.13 99.35 50.40 93.07 97.20 69.97 51.81 97.00 99.15 98.75
skin 60.35 60.15 45.26 49.45 46.47 71.46 45.75 68.21 N/A 49.08 47.55 50.00 68.03 64.34 65.47 45.69 66.36 72.26 69.69

Stamps 73.26 90.73 91.47 83.86 51.26 68.61 87.18 91.21 88.89 87.87 93.40 52.08 69.89 93.41 79.78 59.48 87.95 91.37 94.18
thyroid 92.81 95.62 96.34 87.92 86.86 95.93 74.30 98.30 79.75 97.94 94.30 53.57 94.74 78.55 92.26 52.14 96.26 97.66 97.48

vertebral 40.32 28.56 37.06 37.99 49.29 33.79 30.57 36.66 53.20 40.66 25.64 49.74 41.01 38.13 38.14 37.81 47.20 33.11 47.37
vowels 92.65 72.21 65.29 61.59 93.12 97.26 70.36 73.94 60.58 62.24 53.15 57.50 92.12 51.56 93.45 49.87 81.02 88.38 92.09

Waveform 68.57 68.77 65.48 56.29 73.32 73.78 60.13 71.47 49.35 62.36 75.03 66.41 71.27 63.47 74.35 53.94 75.33 71.81 74.29
WBC 94.60 98.72 98.20 99.03 54.17 90.56 96.91 99.01 N/A 99.11 99.11 87.43 96.88 94.92 97.45 62.46 81.27 97.68 98.93
Wilt 53.25 32.49 20.39 31.28 50.65 48.42 26.42 41.94 37.29 36.30 33.40 49.96 34.50 44.71 34.91 45.90 39.46 48.95 52.56
wine 46.11 91.36 84.37 73.07 37.74 44.98 90.12 80.37 61.70 77.22 88.65 40.33 27.14 82.18 27.36 64.26 41.69 82.72 95.25

WPBC 51.28 51.24 46.01 45.35 41.41 46.59 49.31 46.63 47.80 46.65 49.34 52.22 45.32 49.67 45.01 44.01 44.69 48.02 49.90

Avg. Rank 11.00 8.26 8.98 11.59 13.59 10.00 13.24 7.09 13.24 9.19 8.29 14.21 8.07 10.90 8.71 15.48 8.38 5.41 3.59

(a) AUC-ROC (b) AUC-PR

Figure 5: Critical difference diagrams for AUC-ROC and AUC-PR.

D.2.7 Neural Network-based Models604

• Deep Support Vector Data Description (DeepSVDD) [42]: Minimizes the volume of a hyper-605

sphere enclosing network data representations, isolating anomalies outside this sphere.606

• Deep Isolation Forest for Anomaly Detection (DIF) [51]: Utilizes deep learning to enhance607

traditional isolation forest techniques, offering improved anomaly detection in complex datasets608

with minimal parameter tuning.609

Each method’s unique mechanism and application context provide a rich landscape of techniques610

for unsupervised anomaly detection, illustrating the field’s diverse methodologies and the breadth of611

approaches to tackling anomaly detection challenges.612

D.3 Supplementary Experimental Results613

In the appendix, we detail the statistical analysis conducted to compare the performance of various614

anomaly detectors. We obtained this diagram by conducting a Friedman test (p-value: 4.657e-19),615

indicating significant differences among different detectors. We utilized average ranks and the616

Nemenyi test to generate the critical difference diagram, as shown in Figure 5. It is noteworthy that617

the vector version exhibits significantly superior performance compared to the scalar version across618

more methods. The detailed outcomes for the AUCROC and AUCPR metrics, spanning 30 datasets619

and against 17 baseline approaches, are showcased in Table 5 and Table 6.620

D.4 Complexity Analysis621

The complexity of each iteration in UniCAD involves three parts: constructing the outlier set,622

updating the network parameters Θ, and optimizing the mixture model using the EM algorithm.623
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Table 6: AUCPR of 17 unsupervised algorithms on 30 tabular benchmark datasets. In each dataset,
the algorithm with the highest AUCPR is marked in red, the second highest in blue, and the third
highest in green.

Dataset SOD HBOS PCA OC
SVM LOF KNN LODA IForest DA

GMM ECOD COPOD DB
SCAN CBLOF DCOD KMeans-- Deep

SVDD DIF UniCAD
(Scalar)

UniCAD
(Vector)

annthyroid 18.84 16.99 16.12 10.37 15.71 16.74 7.06 30.47 9.64 25.35 16.58 7.60 13.74 10.01 15.41 21.75 18.93 26.37 25.03
backdoor 37.07 4.96 31.29 8.79 26.14 44.37 13.84 4.75 5.47 10.72 7.69 21.04 7.03 6.77 15.47 55.70 41.46 37.77 36.36
breastw 84.88 97.71 95.11 82.70 28.55 92.19 97.04 96.04 N/A 98.54 99.40 78.42 91.94 96.83 92.25 48.60 50.65 94.47 95.90

campaign 19.14 38.01 27.90 29.25 14.59 27.18 14.11 32.26 14.54 36.65 38.58 11.43 20.88 19.61 18.86 16.75 26.52 27.66 27.12
celeba 2.36 13.82 15.89 10.73 1.73 3.14 4.04 8.96 1.95 13.96 13.69 2.32 11.22 17.48 3.19 2.73 5.44 15.12 14.66
census 8.54 8.68 10.02 6.82 5.48 9.04 5.03 7.78 9.03 9.46 9.92 7.52 7.52 10.92 8.13 8.42 7.42 9.70 9.75
glass 18.73 11.82 10.05 8.02 20.11 20.26 13.37 10.99 24.58 15.35 9.78 6.88 11.57 9.66 14.66 8.46 18.86 13.29 15.33

Hepatitis 24.73 37.73 36.65 29.44 13.67 21.95 30.90 26.25 22.93 32.80 41.50 22.31 36.54 19.53 25.14 30.04 34.93 36.08 43.37
http 8.32 44.79 56.43 46.86 3.82 0.70 0.67 90.83 N/A 16.61 35.19 0.37 47.53 44.03 45.09 13.39 41.72 43.53 43.52

Ionosphere 85.88 41.78 73.92 74.54 88.07 90.41 73.04 80.41 64.97 64.69 69.89 63.04 89.77 47.63 91.36 43.24 87.45 89.55 87.61
landsat 26.38 22.03 16.18 16.21 24.69 24.65 18.86 19.81 24.48 16.24 17.48 20.80 31.05 15.57 22.40 36.92 24.35 20.84 23.27

Lymphography 22.00 91.83 97.02 93.59 23.08 38.69 44.54 97.31 19.52 90.87 88.68 7.66 97.31 12.34 100.00 34.58 32.84 91.69 96.66
mnist 19.15 12.51 39.93 33.20 20.90 35.53 25.86 27.71 23.75 17.45 21.35 9.21 30.60 23.59 37.12 20.18 44.55 41.19 41.94
musk 7.59 100.00 99.89 10.61 2.82 9.65 47.60 99.61 32.76 50.13 34.79 3.16 100.00 2.87 37.55 8.78 70.70 97.65 99.96

pendigits 4.46 29.27 23.65 23.52 3.78 6.50 18.71 26.05 4.67 30.65 21.22 2.94 32.87 22.21 32.67 1.53 23.75 24.86 21.68
Pima 48.24 56.61 54.03 50.00 47.18 55.14 44.09 55.82 41.55 50.45 55.19 36.65 52.99 50.24 53.50 35.02 46.34 54.66 54.23

satellite 47.23 67.25 59.64 57.61 37.68 50.01 61.94 65.92 58.33 52.22 56.58 37.56 61.43 43.31 54.68 41.77 68.92 71.68 75.13
satimage-2 26.11 78.04 85.69 82.71 4.30 39.14 80.52 93.45 22.07 64.49 76.55 12.08 97.09 8.12 97.13 2.58 72.90 97.33 97.31

shuttle 20.27 96.40 92.35 85.29 13.76 20.38 48.75 97.62 93.20 90.45 96.56 7.68 79.89 81.82 32.66 12.41 67.23 92.05 92.36
skin 24.61 23.70 17.40 19.03 18.25 28.72 18.44 26.08 N/A 18.37 17.99 20.89 28.34 26.29 25.58 19.06 25.36 28.87 28.72

Stamps 20.28 35.24 41.09 31.39 21.29 23.53 34.60 39.49 43.73 33.21 43.10 11.03 24.46 47.36 35.63 12.07 34.68 42.39 50.94
thyroid 23.56 50.98 44.34 21.23 20.81 34.98 14.68 63.11 16.06 51.06 19.64 9.44 29.88 10.56 31.69 2.70 50.36 60.99 60.06

vertebral 11.79 9.23 10.49 10.94 14.24 10.57 9.68 10.46 15.24 11.84 8.89 13.11 11.43 11.58 10.54 10.62 14.31 9.78 12.96
vowels 38.88 13.41 8.92 8.24 34.42 63.41 13.82 15.12 12.22 10.56 4.14 13.27 35.14 3.58 49.10 4.58 14.97 26.52 32.42

Waveform 9.66 5.86 5.79 4.37 11.33 13.04 4.71 6.24 3.11 4.76 6.90 5.33 17.93 4.26 19.74 4.41 11.28 6.49 7.83
WBC 54.00 73.56 82.29 89.87 5.57 66.55 78.67 90.49 N/A 86.19 86.19 30.25 67.31 33.43 71.88 8.99 13.32 68.69 83.14
Wilt 5.53 3.84 3.13 3.62 5.05 4.73 3.36 4.23 4.00 3.93 3.69 5.33 3.74 4.62 3.76 4.65 4.05 4.80 5.19
wine 7.95 43.08 30.87 21.56 7.77 8.43 48.82 25.96 17.51 23.54 45.71 8.11 5.98 24.44 6.27 18.78 8.38 21.40 49.59

WPBC 25.62 23.04 23.01 22.93 20.29 21.49 25.39 22.42 22.49 21.24 22.81 23.86 21.08 22.86 20.58 25.00 20.73 22.71 24.90

Avg. Rank 10.83 8.19 8.31 11.14 13.24 9.36 11.79 7.29 11.96 9.36 9.53 14.91 8.53 11.97 9.03 13.41 9.10 6.31 4.74

Constructing the outlier set requires a sorting operation, for which we use Numpy’s built-in quantile624

calculation with a time complexity of O(N logN). Considering the number of network parameters625

along with the computation of the loss function, the computational complexity for optimizing Θ is626

approximately O(TNDd+ TNKd). The EM algorithm for the Student’s t mixture model includes627

two main steps: the E-step, where the complexity for computing the probability (or responsibility)628

of each data point belonging to each component is approximately O(NKd), and the M-step, where629

the full computational complexity of updating the parameters (mean, covariance matrix) of each630

component is O(NKd2). In practice, we use diagonal covariance matrices, which reduces the631

update complexity to roughly O(NKd). If the EM algorithm requires T round to converge, its632

time complexity is approximately O(TNKd). Therefore, the time complexity for t-iterations is633

O(tN(logN + Td(D +K))).634

E Additional Experiments on Graph635

E.1 Baselines636

Our proposed method was compared with 16 graph domain baseline methods grouped into three637

categories as follows:638

• Contrastive Learning-based Methods: This group includes CoLA [30], SLGAD [55],639

CONAD [53], and ANEMONE [20]. These methods primarily assume that the contrastive loss640

between anomalous nodes and their neighborhoods is more significant.641

• Autoencoder-based Methods: This category consists of MLPAE [43], GCNAE [22], DOMI-642

NANT [11], GUIDE [54], ComGA [31], AnomalyDAE [14], ALARM [37], DONE/AdONE [4]643

and AAGNN [57]. These methods focus on the reconstruction errors of anomalous nodes during644

the process of reconstructing the graph structure or features.645

• Clustering-based Methods: This category of methods encompasses SCAN [52], CBLOF [18],646

and DCFOD [45]. These methods generally identify anomalies by detecting if a sample deviates647

from the clustering.648

E.2 Datasets649

We assess the performance of our model using four graph benchmark datasets containing organic650

anomalies. Table 7 presents the statistical summary for each dataset. These datasets contain naturally651

occurring real-world anomalies and are valuable for assessing the performance of anomaly detection652

algorithms in real-world scenarios. The sources and compositions of these datasets are as follows:653
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Table 7: Statistics of graph benchmark datasets.

Dataset # Nodes # Edges # Features # Anomaly Category

Disney 124 670 28 6 co-purchase network
Weibo 8,405 407,963 400 868 social media network
Reddit 10,984 168,016 64 366 user-subreddit network

T-Finance 39,357 42,445,086 10 1,803 trading network

• Weibo[19] is a labeled graph comprising user posts extracted from the social media platform654

Tencent Weibo. The user-user graph establishes connections between users who exhibit similar655

topic labels. A user is considered anomalous if they have engaged in a minimum of five suspicious656

events, whereas normal nodes represent users who have not.657

• Reddit[25] consists of a user-subreddit graph extracted from the popular social media platform658

Reddit. This publicly accessible dataset encompasses user posts within various subreddits over659

a month. Each user is assigned a binary label indicating whether they have been banned on the660

platform. Our assumption is that banned users exhibit anomalous behavior compared to regular661

Reddit users.662

• Disney[34] is a co-purchase network of movies that includes attributes such as price, rating, and the663

number of reviews. The ground truth labels, indicating whether a movie is considered anomalous664

or not, were assigned by high school students through majority voting.665

• T-Finance[46] aims to identify anomalous accounts within a trading network. The nodes in666

this network represent unique anonymous accounts, each characterized by ten features related to667

registration duration, recorded activity, and interaction frequency. Graph edges denote transaction668

records between accounts. If a node is associated with activities such as fraud, money laundering,669

or online gambling, human experts will designate it as an anomaly.670

E.3 Experiment Settings671

Table 8: AUC-ROC and AUC-PR of 16 unsupervised algorithms on 4 graph benchmark datasets.

Group Method Weibo Reddit Disney T-Finance
AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR

CL-Based

CoLA 0.382 0.087 0.527 0.036 0.455 0.060 0.243 0.031
SL-GAD 0.421 0.109 0.594 0.040 0.494 0.061 0.442 0.041

ANEMONE 0.320 0.082 0.536 0.036 0.454 0.068 0.226 0.030
CONAD 0.806 0.432 0.551 0.037 0.600 0.138 N/A N/A

AE-Based

MLPAE 0.880 0.629 0.501 0.035 0.563 0.064 0.299 0.030
GCNAE 0.847 0.567 0.526 0.033 0.517 0.059 0.295 0.030
GUIDE 0.897 0.692 0.566 0.040 0.521 0.060 N/A N/A

DOMINANT 0.927 0.797 0.561 0.037 0.590 0.077 N/A N/A
ComGA 0.925 0.809 0.568 0.037 0.494 0.058 N/A N/A

AnomalyDAE 0.892 0.694 0.560 0.037 0.520 0.070 N/A N/A
ALARM 0.952 0.843 0.559 0.037 0.595 0.123 N/A N/A
DONE 0.856 0.579 0.551 0.037 0.517 0.061 0.550 0.046

AAGNN 0.804 0.530 0.564 0.045 0.479 0.059 N/A N/A

Cluster-Based

SCAN 0.701 0.186 0.496 0.033 0.548 0.053 N/A N/A
CBLOF* 0.972 0.875 0.503 0.035 0.574 0.146 0.524 0.046
DCFOD* 0.684 0.196 0.552 0.038 0.675 0.119 0.521 0.066
UniCAD * 0.985 0.927 0.560 0.040 0.701 0.130 0.876 0.422

In this experiment, we compared graph-based methods on relational data. For methods originally672

designed around feature vectors, including CBLOF, DCFOD, and our approach, we uniformly673

employed the same graph representation learning technique as described in BGRL [47]. Specifically,674

we used a two-layer Graph Convolutional Network (GCN) for encoding, which produced output675

embeddings with a dimensionality of 128. The training epochs were set to 3000, including a warm-up676

period of 300 epochs. The hidden size of the predictor was set to 512, and the momentum was fixed677

at 0.99.678
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E.4 Performance Analysis679

The performance of UniCAD compared to 16 baseline methods on the four datasets are summarized680

in Table 8. From the results, we have the following observations: Our model consistently outperforms681

the baseline methods on most datasets, underlining its effectiveness in anomaly detection even within682

graph data contexts. This highlights the superiority of UniCAD in detecting anomalies in real-world683

graph data.684

When comparing UniCAD with the four contrastive learning-based methods, it exhibits a distinct685

advantage, outperforming them by a substantial margin across all metrics. Unlike contrastive learning686

methods that rely on the local neighborhood for anomaly detection, UniCAD leverages the global687

clustering distribution. This key difference contributes to its consistently superior performance.688

Although CONAD incorporates human prior knowledge about anomalies, enabling it to outperform689

other similar methods on the Weibo and Disney datasets, it still falls short compared to our proposed690

UniCAD.691

Compared to the autoencoder-based methods, UniCAD offers the advantage of lower memory692

requirements along with better performance. Graph autoencoders typically reconstruct the entire693

adjacency matrix during full graph training, resulting in memory usage of at leastO(N2). In contrast,694

UniCAD, as a clustering-based method, only requires O(N ×K). Among the autoencoder-based695

methods, GCNAE, DONE, and AdONE can be extended to the T-Finance dataset as they only696

reconstruct the sampled subgraphs rather than the entire adjacency matrix. However, UniCAD still697

showcases superior performance while being more memory-efficient.698

UniCAD also demonstrates superior performance compared to various other clustering-based methods,699

including traditional structural clustering (SCAN) methods that treat the embedding from BGRL as700

tabular data (CBLOF, DCFOD).701
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NeurIPS Paper Checklist702

The checklist is designed to encourage best practices for responsible machine learning research,703

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove704

the checklist: The papers not including the checklist will be desk rejected. The checklist should705

follow the references and precede the (optional) supplemental material. The checklist does NOT706

count towards the page limit.707

Please read the checklist guidelines carefully for information on how to answer these questions. For708

each question in the checklist:709

• You should answer [Yes] , [No] , or [NA] .710

• [NA] means either that the question is Not Applicable for that particular paper or the relevant711

information is Not Available.712

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).713

The checklist answers are an integral part of your paper submission. They are visible to the714

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it715

(after eventual revisions) with the final version of your paper, and its final version will be published716

with the paper.717

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.718

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a719

proper justification is given (e.g., "error bars are not reported because it would be too computationally720

expensive" or "we were unable to find the license for the dataset we used"). In general, answering721

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we722

acknowledge that the true answer is often more nuanced, so please just use your best judgment and723

write a justification to elaborate. All supporting evidence can appear either in the main paper or the724

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification725

please point to the section(s) where related material for the question can be found.726

IMPORTANT, please:727

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",728

• Keep the checklist subsection headings, questions/answers and guidelines below.729

• Do not modify the questions and only use the provided macros for your answers.730

1. Claims731

Question: Do the main claims made in the abstract and introduction accurately reflect the732

paper’s contributions and scope?733

Answer: [Yes]734

Justification: The main claims presented in the abstract and introduction are consistent with735

the paper’s contributions and accurately outline the scope.736

Guidelines:737

• The answer NA means that the abstract and introduction do not include the claims made738

in the paper.739

• The abstract and/or introduction should clearly state the claims made, including the740

contributions made in the paper and important assumptions and limitations. A No or NA741

answer to this question will not be perceived well by the reviewers.742

• The claims made should match theoretical and experimental results, and reflect how much743

the results can be expected to generalize to other settings.744

• It is fine to include aspirational goals as motivation as long as it is clear that these goals745

are not attained by the paper.746

2. Limitations747

Question: Does the paper discuss the limitations of the work performed by the authors?748

Answer: [Yes]749

23



Justification: The limitations of the method’s application scope are discussed in Section 5 of750

the paper, along with considerations for future work.751

Guidelines:752

• The answer NA means that the paper has no limitation while the answer No means that753

the paper has limitations, but those are not discussed in the paper.754

• The authors are encouraged to create a separate "Limitations" section in their paper.755

• The paper should point out any strong assumptions and how robust the results are to756

violations of these assumptions (e.g., independence assumptions, noiseless settings, model757

well-specification, asymptotic approximations only holding locally). The authors should758

reflect on how these assumptions might be violated in practice and what the implications759

would be.760

• The authors should reflect on the scope of the claims made, e.g., if the approach was only761

tested on a few datasets or with a few runs. In general, empirical results often depend on762

implicit assumptions, which should be articulated.763

• The authors should reflect on the factors that influence the performance of the approach.764

For example, a facial recognition algorithm may perform poorly when image resolution is765

low or images are taken in low lighting. Or a speech-to-text system might not be used766

reliably to provide closed captions for online lectures because it fails to handle technical767

jargon.768

• The authors should discuss the computational efficiency of the proposed algorithms and769

how they scale with dataset size.770

• If applicable, the authors should discuss possible limitations of their approach to address771

problems of privacy and fairness.772

• While the authors might fear that complete honesty about limitations might be used by773

reviewers as grounds for rejection, a worse outcome might be that reviewers discover774

limitations that aren’t acknowledged in the paper. The authors should use their best775

judgment and recognize that individual actions in favor of transparency play an important776

role in developing norms that preserve the integrity of the community. Reviewers will be777

specifically instructed to not penalize honesty concerning limitations.778

3. Theory Assumptions and Proofs779

Question: For each theoretical result, does the paper provide the full set of assumptions and780

a complete (and correct) proof?781

Answer: [Yes]782

Justification: The full set of assumptions and complete proofs for each theoretical result783

are provided and can be found in the appendix, specifically in Section B, ensuring that the784

theoretical framework is transparent and verifiable.785

Guidelines:786

• The answer NA means that the paper does not include theoretical results.787

• All the theorems, formulas, and proofs in the paper should be numbered and cross-788

referenced.789

• All assumptions should be clearly stated or referenced in the statement of any theorems.790

• The proofs can either appear in the main paper or the supplemental material, but if they791

appear in the supplemental material, the authors are encouraged to provide a short proof792

sketch to provide intuition.793

• Inversely, any informal proof provided in the core of the paper should be complemented794

by formal proofs provided in appendix or supplemental material.795

• Theorems and Lemmas that the proof relies upon should be properly referenced.796

4. Experimental Result Reproducibility797

Question: Does the paper fully disclose all the information needed to reproduce the main ex-798

perimental results of the paper to the extent that it affects the main claims and/or conclusions799

of the paper (regardless of whether the code and data are provided or not)?800

Answer: [Yes]801
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Justification: All necessary information for reproducing the main experimental results,802

including dataset links, baseline comparisons, and the methodologies of our proposed803

approach, are comprehensively included within the submission files, facilitating transparency804

and reproducibility of the research findings.805

Guidelines:806

• The answer NA means that the paper does not include experiments.807

• If the paper includes experiments, a No answer to this question will not be perceived well808

by the reviewers: Making the paper reproducible is important, regardless of whether the809

code and data are provided or not.810

• If the contribution is a dataset and/or model, the authors should describe the steps taken to811

make their results reproducible or verifiable.812

• Depending on the contribution, reproducibility can be accomplished in various ways.813

For example, if the contribution is a novel architecture, describing the architecture fully814

might suffice, or if the contribution is a specific model and empirical evaluation, it may be815

necessary to either make it possible for others to replicate the model with the same dataset,816

or provide access to the model. In general. releasing code and data is often one good817

way to accomplish this, but reproducibility can also be provided via detailed instructions818

for how to replicate the results, access to a hosted model (e.g., in the case of a large819

language model), releasing of a model checkpoint, or other means that are appropriate to820

the research performed.821

• While NeurIPS does not require releasing code, the conference does require all submis-822

sions to provide some reasonable avenue for reproducibility, which may depend on the823

nature of the contribution. For example824

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to825

reproduce that algorithm.826

(b) If the contribution is primarily a new model architecture, the paper should describe827

the architecture clearly and fully.828

(c) If the contribution is a new model (e.g., a large language model), then there should829

either be a way to access this model for reproducing the results or a way to reproduce830

the model (e.g., with an open-source dataset or instructions for how to construct the831

dataset).832

(d) We recognize that reproducibility may be tricky in some cases, in which case authors833

are welcome to describe the particular way they provide for reproducibility. In the834

case of closed-source models, it may be that access to the model is limited in some835

way (e.g., to registered users), but it should be possible for other researchers to have836

some path to reproducing or verifying the results.837

5. Open access to data and code838

Question: Does the paper provide open access to the data and code, with sufficient instruc-839

tions to faithfully reproduce the main experimental results, as described in supplemental840

material?841

Answer: [Yes]842

Justification: The paper ensures open access to both the data and code necessary for843

reproducing the main experimental results, complemented by detailed instructions in the844

supplemental material.845

Guidelines:846

• The answer NA means that paper does not include experiments requiring code.847

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/848

public/guides/CodeSubmissionPolicy) for more details.849

• While we encourage the release of code and data, we understand that this might not be850

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not851

including code, unless this is central to the contribution (e.g., for a new open-source852

benchmark).853

• The instructions should contain the exact command and environment needed to run to854

reproduce the results. See the NeurIPS code and data submission guidelines (https:855

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.856
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• The authors should provide instructions on data access and preparation, including how to857

access the raw data, preprocessed data, intermediate data, and generated data, etc.858

• The authors should provide scripts to reproduce all experimental results for the new859

proposed method and baselines. If only a subset of experiments are reproducible, they860

should state which ones are omitted from the script and why.861

• At submission time, to preserve anonymity, the authors should release anonymized ver-862

sions (if applicable).863

• Providing as much information as possible in supplemental material (appended to the864

paper) is recommended, but including URLs to data and code is permitted.865

6. Experimental Setting/Details866

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-867

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the868

results?869

Answer: [Yes]870

Justification: Detailed information regarding the training and test setups, including data871

splits, hyperparameters and their selection process, the type of optimizer used, and other872

relevant details, are thoroughly documented in Section 4.2 of the paper.873

Guidelines:874

• The answer NA means that the paper does not include experiments.875

• The experimental setting should be presented in the core of the paper to a level of detail876

that is necessary to appreciate the results and make sense of them.877

• The full details can be provided either with the code, in appendix, or as supplemental878

material.879

7. Experiment Statistical Significance880

Question: Does the paper report error bars suitably and correctly defined or other appropriate881

information about the statistical significance of the experiments?882

Answer: [Yes]883

Justification: The paper reports the statistical significance of the experiments by detailing884

the results of the Friedman test and the Nemenyi test in Appendix D.3.885

Guidelines:886

• The answer NA means that the paper does not include experiments.887

• The authors should answer "Yes" if the results are accompanied by error bars, confidence888

intervals, or statistical significance tests, at least for the experiments that support the main889

claims of the paper.890

• The factors of variability that the error bars are capturing should be clearly stated (for891

example, train/test split, initialization, random drawing of some parameter, or overall run892

with given experimental conditions).893

• The method for calculating the error bars should be explained (closed form formula, call894

to a library function, bootstrap, etc.)895

• The assumptions made should be given (e.g., Normally distributed errors).896

• It should be clear whether the error bar is the standard deviation or the standard error of897

the mean.898

• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably899

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality900

of errors is not verified.901

• For asymmetric distributions, the authors should be careful not to show in tables or figures902

symmetric error bars that would yield results that are out of range (e.g. negative error903

rates).904

• If error bars are reported in tables or plots, The authors should explain in the text how they905

were calculated and reference the corresponding figures or tables in the text.906

8. Experiments Compute Resources907
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Question: For each experiment, does the paper provide sufficient information on the com-908

puter resources (type of compute workers, memory, time of execution) needed to reproduce909

the experiments?910

Answer: [Yes]911

Justification: Detailed information on the compute resources, including the type of compute912

workers (CPU/GPU), memory, and execution time for each experiment, is provided in the913

supplementary materials, enabling accurate reproduction of the experiments.914

Guidelines:915

• The answer NA means that the paper does not include experiments.916

• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or917

cloud provider, including relevant memory and storage.918

• The paper should provide the amount of compute required for each of the individual919

experimental runs as well as estimate the total compute.920

• The paper should disclose whether the full research project required more compute than921

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t922

make it into the paper).923

9. Code Of Ethics924

Question: Does the research conducted in the paper conform, in every respect, with the925

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?926

Answer: [Yes]927

Justification: The research adheres to the NeurIPS Code of Ethics, including considerations928

for anonymity, fairness, and transparency, with no deviations reported or necessary under929

current laws or regulations.930

Guidelines:931

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.932

• If the authors answer No, they should explain the special circumstances that require a933

deviation from the Code of Ethics.934

• The authors should make sure to preserve anonymity (e.g., if there is a special consideration935

due to laws or regulations in their jurisdiction).936

10. Broader Impacts937

Question: Does the paper discuss both potential positive societal impacts and negative938

societal impacts of the work performed?939

Answer: [Yes]940

Justification: The paper thoroughly discusses both the potential positive impacts, such as941

enhancements in anomaly detection for critical applications.942

Guidelines:943

• The answer NA means that there is no societal impact of the work performed.944

• If the authors answer NA or No, they should explain why their work has no societal impact945

or why the paper does not address societal impact.946

• Examples of negative societal impacts include potential malicious or unintended uses947

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,948

deployment of technologies that could make decisions that unfairly impact specific groups),949

privacy considerations, and security considerations.950

• The conference expects that many papers will be foundational research and not tied to951

particular applications, let alone deployments. However, if there is a direct path to any952

negative applications, the authors should point it out. For example, it is legitimate to point953

out that an improvement in the quality of generative models could be used to generate954

deepfakes for disinformation. On the other hand, it is not needed to point out that a955

generic algorithm for optimizing neural networks could enable people to train models that956

generate Deepfakes faster.957
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• The authors should consider possible harms that could arise when the technology is being958

used as intended and functioning correctly, harms that could arise when the technology is959

being used as intended but gives incorrect results, and harms following from (intentional960

or unintentional) misuse of the technology.961

• If there are negative societal impacts, the authors could also discuss possible mitigation962

strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-963

nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback964

over time, improving the efficiency and accessibility of ML).965

11. Safeguards966

Question: Does the paper describe safeguards that have been put in place for responsible967

release of data or models that have a high risk for misuse (e.g., pretrained language models,968

image generators, or scraped datasets)?969

Answer: [NA]970

Justification: The paper poses no such risks.971

Guidelines:972

• The answer NA means that the paper poses no such risks.973

• Released models that have a high risk for misuse or dual-use should be released with974

necessary safeguards to allow for controlled use of the model, for example by requiring975

that users adhere to usage guidelines or restrictions to access the model or implementing976

safety filters.977

• Datasets that have been scraped from the Internet could pose safety risks. The authors978

should describe how they avoided releasing unsafe images.979

• We recognize that providing effective safeguards is challenging, and many papers do not980

require this, but we encourage authors to take this into account and make a best faith981

effort.982

12. Licenses for existing assets983

Question: Are the creators or original owners of assets (e.g., code, data, models), used in984

the paper, properly credited and are the license and terms of use explicitly mentioned and985

properly respected?986

Answer: [Yes]987

Justification: The paper appropriately credits the creators of the utilized assets, including988

code, data, and models, and explicitly mentions the licenses and terms of use, ensuring989

compliance with the original terms set by the asset owners.990

Guidelines:991

• The answer NA means that the paper does not use existing assets.992

• The authors should cite the original paper that produced the code package or dataset.993

• The authors should state which version of the asset is used and, if possible, include a URL.994

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.995

• For scraped data from a particular source (e.g., website), the copyright and terms of service996

of that source should be provided.997

• If assets are released, the license, copyright information, and terms of use in the package998

should be provided. For popular datasets, paperswithcode.com/datasets has curated999

licenses for some datasets. Their licensing guide can help determine the license of a1000

dataset.1001

• For existing datasets that are re-packaged, both the original license and the license of the1002

derived asset (if it has changed) should be provided.1003

• If this information is not available online, the authors are encouraged to reach out to the1004

asset’s creators.1005

13. New Assets1006

Question: Are new assets introduced in the paper well documented and is the documentation1007

provided alongside the assets?1008

Answer: [NA]1009
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Justification: The paper does not release new assets.1010

Guidelines:1011

• The answer NA means that the paper does not release new assets.1012

• Researchers should communicate the details of the dataset/code/model as part of their sub-1013

missions via structured templates. This includes details about training, license, limitations,1014

etc.1015

• The paper should discuss whether and how consent was obtained from people whose asset1016

is used.1017

• At submission time, remember to anonymize your assets (if applicable). You can either1018

create an anonymized URL or include an anonymized zip file.1019

14. Crowdsourcing and Research with Human Subjects1020

Question: For crowdsourcing experiments and research with human subjects, does the paper1021

include the full text of instructions given to participants and screenshots, if applicable, as1022

well as details about compensation (if any)?1023

Answer: [NA]1024

Justification: The paper does not involve crowdsourcing nor research with human subjects.1025

Guidelines:1026

• The answer NA means that the paper does not involve crowdsourcing nor research with1027

human subjects.1028

• Including this information in the supplemental material is fine, but if the main contribution1029

of the paper involves human subjects, then as much detail as possible should be included1030

in the main paper.1031

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or1032

other labor should be paid at least the minimum wage in the country of the data collector.1033

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human1034

Subjects1035

Question: Does the paper describe potential risks incurred by study participants, whether1036

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1037

approvals (or an equivalent approval/review based on the requirements of your country or1038

institution) were obtained?1039

Answer: [NA]1040

Justification: The paper does not involve crowdsourcing nor research with human subjects.1041

Guidelines:1042

• The answer NA means that the paper does not involve crowdsourcing nor research with1043

human subjects.1044

• Depending on the country in which research is conducted, IRB approval (or equivalent)1045

may be required for any human subjects research. If you obtained IRB approval, you1046

should clearly state this in the paper.1047

• We recognize that the procedures for this may vary significantly between institutions1048

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1049

guidelines for their institution.1050

• For initial submissions, do not include any information that would break anonymity (if1051

applicable), such as the institution conducting the review.1052
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