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Abstract

Anomaly detection is a complex problem due to the ambiguity in defining anomalies, the
diversity of anomaly types (e.g., local and global defect), and the scarcity of training data.
As such, it necessitates a comprehensive model capable of capturing both low-level and
high-level features, even with limited data. To address this, we propose CLIPFUSION, a
method that leverages both discriminative and generative foundation models. Given the
CLIP-based discriminative model’s limited capacity to capture fine-grained local details, we
incorporate a diffusion-based generative model to complement its features. This integration
yields a synergistic solution for anomaly detection. To this end, we propose using diffu-
sion models as feature extractors for anomaly detection, and introduce carefully designed
strategies to extract informative cross-attention and feature maps. Experimental results
on benchmark datasets (MVTec-AD, VisA) demonstrate that CLIPFUSION consistently
outperforms baseline methods in both anomaly segmentation and classification under both
zero-shot and few-shot settings. We believe that our method underscores the effectiveness
of multi-modal and multi-model fusion in tackling the multifaceted challenges of anomaly
detection, providing a scalable solution for real-world applications.

1 Introduction

Anomaly detection is an important problem in real-world applications such as industry (Bergmann et al.,
2019; Zou et al., 2022) and medicine (Setio et al., 2017; Menze et al., 2014). In this paper, we address
anomaly classification and segmentation.1 In anomaly classification (or segmentation), each image (or pixel)
is classified as normal or anomalous.

In practice, the number of abnormal images is small, while the potential types of abnormalities are highly
diverse, making it challenging to obtain representative examples. Moreover, developing methods that can
quickly adapt to new environments (e.g., new processes or products), even with a limited number of normal
images, has become a critical research topic (Rudolph et al., 2021; Sheynin et al., 2021; Zou et al., 2022;
Huang et al., 2022). To address this, we focus on the problem within the zero-shot or few-normal-shot2

setup.
1It is also referred to as anomaly detection and localization, respectively, in the literature. We use the terms anomaly

classification and segmentation, and refer to anomaly detection as the overarching problem encompassing both.
2In this paper, "few-shot" specifically refers to "few-normal-shot".
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Figure 1: Qualitative results of our model CLIPFUSION. It captures fine-grained anomalies more effectively
than WinCLIP.

The recent advent of large-scale pretrained foundation models, e.g., GPT (Brown et al., 2020) and DALL-E
(Ramesh et al., 2021; 2022), has opened new horizons for addressing such challenges. The generalizability
and scalability of foundation models make them particularly effective for tackling zero-shot and few-shot
tasks such as anomaly detection. Effectively utilizing off-the-shelf foundation models is an active research
direction. Our design follows this trend without retraining or introducing a shared module. Building on this,
we present a novel methodology that combines the complementary strengths of discriminative and generative
foundation models.

Anomaly detection is a multifaceted problem, and various approaches have been developed based on different
perspectives. First, anomaly detection has the aspect of one-class classification. This has led the community
to methods that learn normality from normal images and judge what deviates from it as anomalous. Here,
many methods extract normal features from normal images using a vision foundation model (Cohen &
Hoshen, 2020; Defard et al., 2021; Roth et al., 2022). Second, anomaly detection has the aspect of two-class
classification. The community has employed vision-language foundation models, such as CLIP (Radford
et al., 2021), to compare a query image against normal and abnormal text prompts (Jeong et al., 2023; Li
et al., 2024a). Third, anomaly detection also has the aspect of semantic segmentation. Many anomalous
features are fine-grained ones that appear in textures or edges. WinCLIP (window-based CLIP) attempted
to solve this by sliding windows at multiple scales. However, it is known that CLIP has limitations in
learning fine-grained features (Wysoczańska et al., 2025; Jiang et al., 2023), and such an approach might
be suboptimal. Also, it requires hundreds of forward passes due to the exhaustive sliding of multi-scale
windows.

The multifaceted nature of anomaly detection makes it challenging to address using only discriminative
models. So, we aim to create synergy by fusing a discriminative vision-language model (VLM) with a
generative text-to-image (T2I) model. These are two fundamentally distinct approaches to aligning images
and text. Discriminative models, such as CLIP, directly align embeddings in the same space, while generative
models, like diffusion models, align them indirectly by jointly performing a common task. Diffusion models
align images and text through a generative process that preserves fine-grained semantics. Consequently,
they may capture more detailed visual patterns. Therefore, it can be beneficial to leverage both high-level
information extracted from the CLIP-based model and low-level information extracted from the diffusion-
based model for effective anomaly detection.

We propose CLIPFUSION (= CLIP + Diffusion), a novel method that combines the strengths of multi-
modal (language and vision) and multi-model (CLIP and diffusion) approaches. In the zero-shot scenario,
CLIPFUSION effectively identifies anomalies by integrating image-text alignment from a CLIP-based model
and cross-attention maps (Chefer et al., 2023; Zhang et al., 2023b; Liu et al., 2024) from a diffusion-based
model. In the few-shot scenario, it further enhances its performance by additionally leveraging feature
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maps from the CLIP image encoder and the diffusion denoiser, enabling a more comprehensive comparison
between the query image and reference images. Figure 1 illustrates qualitative results, showcasing the model’s
ability to capture fine-grained anomalies. CLIPFUSION exemplifies a holistic framework that synergizes
complementary foundation models, and has the potential to extend beyond anomaly detection and advance
other recognition tasks.

Contributions of our work are summarized as follows:

• We propose the use of diffusion models as feature extractors for anomaly detection. To this end,
we exploit cross-attention and feature maps and carefully design extraction strategies. Since we
extract intermediate features from an off-the-shelf diffusion model without any training or iterative
denoising, our method is fast and efficient.

• We introduce a novel approach to anomaly detection that jointly leverages features from CLIP and
diffusion models. We demonstrate the complementary benefits of combining features from both
models. Since diffusion models compensate for CLIP’s limitations in capturing fine-grained local
details, our method eliminates the need for time-consuming techniques such as multi-scale sliding
windows.

• In terms of performance, our method consistently outperforms baselines. Unlike most prior works,
it is also versatile in scope: it can handle both segmentation and classification tasks under zero-shot
and few-shot settings.

• Our method requires no additional training, which enables fast real-world deployment. Even in
few-shot settings, the samples are used solely for feature extraction rather than training, making
the method more robust. In contrast, training-based methods are sensitive to the choice of when to
stop training, which is challenging in few-shot setups due to the absence of a validation set.

2 Related Work

Vision(-Language) Models for Anomaly Detection In works that utilize vision(-language) models in
anomaly detection, features are extracted from the intermediate layers of a model pretrained on a discrim-
inative task (e.g., classification or contrastive learning). Anomaly detection is performed by comparing the
features of the query image with the features of reference images. Some works utilize ResNet-based models
pretrained on ImageNet in the few-shot regime. In SPADE (Cohen & Hoshen, 2020), a k-nearest neighbors
algorithm is employed to identify the k reference images closest to the query image, which are then used as
the basis for anomaly detection. In PaDiM (Defard et al., 2021), features extracted from reference images
are modeled as Gaussian distributions, and the features of the query image are compared against these
distributions. In PatchCore (Roth et al., 2022), a memory bank is constructed using the features of reference
images, and the features of a query image are directly compared against this memory bank. WinCLIP (Jeong
et al., 2023) applies local windows and combines the results through harmonic aggregation. PromptAD (Li
et al., 2024a) learns prompt tokens through contrastive training.

A separate line of work assumes access to additional data and leverages it. Some methods require an auxiliary
dataset containing both normal and anomaly images, e.g., training on the MVTec-AD dataset and inference
on the VisA dataset (Hu et al., 2024; Zhu & Pang, 2024; Yao et al., 2024; Li et al., 2024c; Cao et al.,
2024; Zhou et al., 2023; Gu et al., 2024a; Qu et al., 2024). AnomalyGPT (Gu et al., 2024b) relies on an
auxiliary dataset with a large number of normal samples. In practice, acquiring such data with matching
characteristics is challenging, and these methods often struggle when deployed on datasets with distribution
shifts. Moreover, the need for additional training increases deployment time. Some methods also rely on
ground-truth segmentation masks, which are difficult to obtain in real-world scenarios (Hu et al., 2024; Cao
et al., 2024; Zhou et al., 2023). MuSc (Li et al., 2024b) leverages the test set by comparing the features of
test images, and is only feasible for batch-processing of the test set.

Diffusion Models for Discriminative Tasks Recently, there has been growing interest in applying
diffusion models to discriminative tasks (Fuest et al., 2024). In DDPM-Seg (Baranchuk et al., 2021), feature
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maps are constructed using activations extracted from intermediate layers of the denoiser and are utilized
for semantic segmentation. VPD (Zhao et al., 2023) further incorporates cross-attention maps for semantic
segmentation and depth estimation. These methods require fine-tuning for downstream tasks. On the
other hand, DiffusionClassifier (Li et al., 2023a) performs zero-shot classification by determining which text
conditioning best predicts the noise. P2PCAC (Hertz et al., 2022) and USCSD (Hedlin et al., 2024) reveal
that cross-attention maps contain rich information about spatial layouts through image editing and semantic
correspondence tasks.

3 Preliminaries

CLIP CLIP (Radford et al., 2021) consists of an image encoder fI(x) and a text encoder fT (c). These
encoders map images and texts into the same embedding space. The model is trained to match correct image-
text pairs with high similarity while assigning low similarity to incorrect pairs. This process is optimized
using the following contrastive loss (Chen et al., 2020):

p(T = ĉ|I = x) := exp(sim(fI(x), fT (ĉ))/τ)∑
c∈C exp(sim(fI(x), fT (c))/τ) , (1)

where C is the set of candidate text prompts, τ > 0 is the temperature hyperparameter, and sim(·, ·) is the
cosine similarity measure.

Diffusion A diffusion model (Ho et al., 2020) is trained through a sequential process that involves forward
diffusion and backward denoising. In the diffusion process, random noise is progressively added to a clean
image over several steps, following the equation:

q(xt|xt−1) = N (xt;
√

1− βt xt−1, βt I), (2)

where βt is the noise schedule hyperparameter, which determines the amount of noise added to the image
xt−1 (Nichol & Dhariwal, 2021). In the denoising process, random noise is progressively removed over several
steps using the following equation to restore the original image:

pθ(xt−1|xt) = N (xt−1; µθ(xt, t), Σθ(xt, t)). (3)

In this process, the denoiser ϵθ(xt, t) learns to predict the added noise from the noisy image xt at a given
time step t (Song et al., 2020). During inference, random noise is sampled, and the denoiser iteratively
removes it to generate a new image. By conditioning on a text prompt c, the denoiser ϵθ(xt, t, c) guides
the generation process to align the resulting image with the provided text. Diffusion models demonstrate
superior performance in understanding image details by generating high-quality images compared to other
generative models (Dhariwal & Nichol, 2021). They can also be utilized for inpainting a specific region of an
image. At each step, the untouched region is preserved by replacing it with the corresponding part of the
original image, ensuring that only the specified region is generated and seamlessly blended with the rest of
the image (Rombach et al., 2021).

4 Method

The final model, CLIPFUSION, is a fusion of our CLIP-based and diffusion-based models. For convenience,
we call the CLIP-based model PatchCLIP (patch-based CLIP) and the diffusion-based model MapDiff (map-
based diffusion). We first outline our feature extraction strategies from both models, tailored for anomaly
detection.

PatchCLIP CLIP processes an image by dividing it into multiple patches and outputs both patch embed-
dings and a class token embedding. While the class token embedding is aligned with text embeddings, patch
embeddings can provide additional information, which we incorporate to enrich the spatial representation.
Given that fine-grained details are handled by the diffusion-based model, PatchCLIP provides a simple yet
effective spatial prior, thereby avoiding the cumbersome multi-scale window sliding in WinCLIP.
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Figure 2: Overall framework for CLIPFUSION. The CLIP-based model and the diffusion-based model process
query and reference images to generate anomaly maps. The final anomaly map is obtained by fusing the
outputs of the vision and language components of both models.

Additionally, we utilize features extracted from CLIP’s image encoder. To achieve this, we make use of
the VV-attention mechanism proposed in CLIP surgery (Li et al., 2023b; 2024a). This mechanism was
introduced to complement CLIP’s QK-attention mechanism, which is specialized in global feature extraction.
It facilitates local feature extraction by enabling direct interactions between values (hence the name VV-
attention) that carry information about the patches themselves.

MapDiff We extract and utilize cross-attention maps and feature maps from the diffusion denoiser. To
achieve this, we use an inpainting pipeline that takes a clean image as input, rather than a generation
pipeline that starts with random noise. In the inpainting pipeline, a mask is provided to specify the region
where noise will be added. Here, we use the trick of applying an empty mask. This prevents noise from
being added, but the denoiser still perceives the original image as noisy, thereby allowing us to control the
timestep and extract features at the desired level of detail.

By passing the clean image through the denoiser once, we extract the maps from its intermediate layers. A
large timestep makes the denoiser interpret the image as highly noisy, capturing high-level pattern informa-
tion, while a small timestep emphasizes finer details.

4.1 Anomaly Segmentation

The final anomaly score map M ∈ RH×W for segmentation is obtained by fusing the score maps from Patch-
CLIP and MapDiff. In the zero-shot setup, only the language-guided score maps MCLIP,L and MDiff,L are
used. In the few-shot setup, the vision-guided score maps MCLIP,V and MDiff,V are additionally incorporated.
The final anomaly score map is computed as follows:

M := α(MCLIP,L + MCLIP,V ) + (1− α)(MDiff,L + MDiff,V ), (4)

where α is the weight between the models. In the zero-shot setup, M := αMCLIP,L + (1− α)MDiff,L.

4.1.1 Zero-shot

In the zero-shot setup, given a query image, we leverage the relationships between images and texts learned
by multi-modal models to create anomaly score maps.
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CLIP Language-guided Score Map MCLIP,L The query image is input to the CLIP image encoder (e.g.,
ViT), which divides it into patches, processes them, and outputs patch embeddings. On the other hand,
normal and abnormal text prompts are passed to the CLIP text encoder, producing normal and abnormal
text embeddings. Then, the degree (Equation 1) to which each patch embedding is aligned to the abnormal
text embedding is calculated for all patches and organized into a map. This is upsampled to the original
image size through interpolation to obtain MCLIP,L.

Diff Language-guided Score Map MDiff,L The query image is passed to the diffusion inpainting pipeline
along with an empty mask, a timestep, and a text prompt. The text prompt includes an object word and a
state word, for example:

“a photo of a [object] with [state]."

where [object] refers to the entity (e.g., “bottle”) in the image, and [state] describes a possible abnormal
condition (e.g., “crack”) of it. The [state] token interacts with the image as it passes through the denoiser
(e.g., U-Net), generating a cross-attention map. The cross-attention map of a diffusion model is a heatmap
showing where and how strongly a text token is attended to across image locations. Because we use a token
that denotes an anomalous state, the attention weight at a location serves as a proxy for anomaly likelihood.
That is, a higher value at a specific location in the map indicates that the location responds more strongly
to the [state] token (i.e., the abnormal condition). Therefore, we can use this cross-attention map as an
anomaly score map (Figure 3). Additionally, we calculate the average of cross-attention maps derived using
various possible abnormal conditions (e.g., “crack”, “hole”, “residue”, “damage”) to obtain MDiff,L.

This can be interpreted as follows. In anomaly segmentation, given an image I = x, we are interested in the
probability that the (h, w)-th pixel is abnormal (Ah,w = 1). This probability can be expressed as follows by
conditioning on a text prompt T = c:

p(Ah,w = 1|I = x) =
∑
c∈C

p(Ah,w = 1|I = x, T = c)p(T = c), (5)

where C represents the set of text prompts that describe abnormal conditions. Assuming that the text
prompt T is uniform and interpreting p(Ah,w = 1|I = x, T = c) as the cross-attention map intensity at the
corresponding location:

MDiff,L
h,w := 1

|C|
∑
c∈C

p(Ah,w = 1|I = x, T = c). (6)

4.1.2 Few-shot

In the few-shot setup, normal reference images are utilized. For the k-shot case, k images are used to
construct feature memory banks, which are then compared with the features of the query image. In general,
we extract normal features from normal reference images by passing them through the CLIP image encoder
and the diffusion denoiser. Then, the query image is passed through and the extracted features are compared
with the normal features. The degree of deviation is used as an anomaly score.

CLIP Vision-guided Score Map MCLIP,V The reference images are passed through the CLIP’s image
encoder to extract reference features and stored in the memory bank. Features with low-level semantic
information are extracted from a middle encoder block, while those with high-level semantic information
come from a later encoder block.

The set of reference features extracted from the encoder block b is denoted as Rb. For a given encoder
block b, the feature map extracted from the query image is denoted as F b ∈ RH×W ×Db . Then, MCLIP,V

h,w is
calculated by comparing the feature F b

h,w with the reference features r ∈ Rb, as follows:

MCLIP,V
h,w := 1

|B|
∑
b∈B

min
r∈Rb

1
2

(
1− sim(F b

h,w, r)
)

, (7)
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Figure 3: Examples of cross-attention maps extracted from a diffusion denoiser.

where B is the set of blocks b. That is, a score is computed based on the similarity, and the smallest among
all reference features in Rb is conservatively used as the anomaly score for b. The final anomaly score is the
average over B.

Diff Vision-guided Score Map MDiff,V Reference images are passed through the diffusion denoiser to
extract features, which are stored in the memory bank. The denoiser consists of three parts: an encoder
(down-blocks), a bottleneck (mid-block), and a decoder (up-blocks). Information in the encoder is passed
to the decoder via skip connections. The bottleneck is the most compressed stage, where much of the
detailed information is lost, making it unsuitable for feature extraction. Therefore, we extract features
from the decoder. Specifically, we focus on the middle and later decoder blocks, as they provide the most
semantically rich features (Baranchuk et al., 2021; Zhao et al., 2023).

When timestep t is given, the set of reference features extracted from the decoder block b is denoted as
Rt,b. The feature map extracted from the query image at timestep t and decoder block b is denoted as
F t,b ∈ RH×W ×Db . Then, MDiff,V

h,w is calculated as follows:

MDiff,V
h,w := 1

|T |
∑

(t,b)∈T

min
r∈Rt,b

1
2

(
1− sim(F t,b

h,w, r)
)

, (8)

where T is the set of combinations (t, b).

4.2 Anomaly Classification

The final anomaly score S ∈ R for classification is obtained by fusing four scores:

S := α(SCLIP,L + SCLIP,V ) + (1− α)(SDiff,L + SDiff,V ). (9)

In the zero-shot setup, only the language-guided scores are used. Specifically, the CLIP language-guided
score SCLIP,L is defined as the degree (Equation 1) of alignment between the query image’s class token
embedding and the abnormal text embedding. The diffusion language-guided score SDiff,L aggregates the
diffusion language-guided score map MDiff,L and is defined as follows:

SDiff,L := 1−median(MDiff,L)/ max(MDiff,L). (10)

This means that the score becomes larger when the degree of focus of the cross-attention map is high, that
is, when the maximum is significantly greater than the median.
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In the few-shot setup, we additionally aggregate the vision-guided score maps, defining the scores as follows
in accordance with common practice (Jeong et al., 2023):

SCLIP,V := max(MCLIP,V ), SDiff,V := max(MDiff,V ). (11)

5 Comparisons

Datasets We use the MVTec-AD (Bergmann et al., 2019) and VisA (Zou et al., 2022) datasets, which are
mainly used as benchmark datasets in anomaly detection. Each dataset consists of several object categories,
and each object category is divided into a training set containing only normal images and a test set containing
a mixture of normal and abnormal images. Query images are from the test set, and reference images are
sampled from the training set.

Baseline methods We compare against methods with the same setup, that is, methods that use only the
provided zero-shot or few-shot normal images and do not rely on any additional supervision. This setup
reflects a realistic and challenging scenario commonly encountered in practice.

Specifically, we compare our method, CLIPFUSION, with methods utilizing vision models (PaDiM, Patch-
Core) and those utilizing vision-language models (CLIP-AC, Trans-MM, MaskCLIP, WinCLIP, PromptAD3).
Note that, among these methods, only CLIPFUSION and WinCLIP are fully capable of handling both seg-
mentation and classification tasks in both zero-shot and few-shot scenarios.

Experimental details For PatchCLIP, we employ OpenCLIP (Ilharco et al., 2021; Cherti et al., 2023;
Schuhmann et al., 2022), which has been pretrained on LAION-400M (Schuhmann et al., 2021), using a
Vision Transformer (ViT) (Dosovitskiy, 2020) as its image encoder. For MapDiff, we utilize the pretrained
Stable Diffusion v2 model (Rombach et al., 2022), where the denoiser is based on U-Net (Ronneberger et al.,
2015).

We set α = 0.25 in Equation 4 for segmentation and α = 0.75 in Equation 9 for classification to reflect the
different importance of the models in each task. We report the average performance and standard deviations
over five runs with different seeds. Further details are in Appendix A.2.

5.1 Anomaly Segmentation

Table 1 presents a comparison of our method’s performance with baseline methods for anomaly segmenta-
tion. The results show that CLIPFUSION consistently outperforms the baseline methods across all setups,
datasets, and metrics. Our method, in particular, demonstrates dramatic performance improvements in the
zero-shot setup. This highlights the critical contribution of the diffusion-based model’s cross-attention map
to zero-shot anomaly segmentation. Additionally, the significant performance improvements in the few-shot
setup demonstrate how the diffusion-based model complements the CLIP-based model.

5.2 Anomaly Classification

Table 2 shows the performance comparison between our method and baseline methods for anomaly classifi-
cation. CLIPFUSION consistently outperforms all baseline methods. This indicates that the diffusion-based
model enhances performance not only in the segmentation task but also in the classification task by rein-
forcing local information.

In both segmentation and classification tasks, the consistent performance improvements as the number of
shots increase highlight the scalability of our method with minimal additional data. Furthermore, the smaller
standard deviations observed in our results indicate the robustness of our approach. This robustness can be
attributed to the integration of multiple models, which mitigates the variability.

3The authors of PromptAD use the test set as a validation set during training to record the best performance for each category
separately and report the aggregated results. For a fair comparison, we treat the training epoch as a fixed hyperparameter
across categories and report the best-performing checkpoint reproduced using the official codebase. See Appendix A.5 for more
details.
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Table 1: Quantitative results for anomaly segmentation.

Setup Method MVTec-AD VisA
AUROC AUPRO AUROC AUPRO

0-shot

Trans-MM (Chefer et al., 2021) 57.5±0.0 21.9±0.0 49.4±0.0 10.2±0.0
MaskCLIP (Zhou et al., 2022) 63.7±0.0 40.5±0.0 60.9±0.0 27.3±0.0
WinCLIP (Jeong et al., 2023) 85.1±0.0 64.6±0.0 79.6±0.0 56.8±0.0
CLIPFUSION (ours) 90.9±0.0 87.1±0.0 92.1±0.0 83.3±0.0

1-shot

PaDiM (Defard et al., 2021) 89.3±0.9 73.3±2.0 89.9±0.8 64.3±2.4
PatchCore (Roth et al., 2022) 92.0±1.0 79.7±2.0 95.4±0.6 80.5±2.5
WinCLIP (Jeong et al., 2023) 95.2±0.5 87.1±1.2 96.4±0.4 85.1±2.1
PromptAD (Li et al., 2024a) 94.9±0.8 87.7±1.5 95.7±0.9 84.0±1.2
CLIPFUSION (ours) 95.8±0.1 90.4±0.1 97.3±0.1 87.0±0.3

2-shot

PaDiM (Defard et al., 2021) 91.3±0.7 78.2±1.8 92.0±0.7 70.1±2.6
PatchCore (Roth et al., 2022) 93.3±0.6 82.3±1.3 96.1±0.5 82.6±2.3
WinCLIP (Jeong et al., 2023) 96.0±0.3 88.4±0.9 96.8±0.3 86.2±1.4
PromptAD (Li et al., 2024a) 95.0±0.7 88.3±1.0 96.3±0.9 84.8±0.8
CLIPFUSION (ours) 96.3±0.1 91.4±0.2 97.7±0.1 87.3±0.2

4-shot

PaDiM (Defard et al., 2021) 92.6±0.7 81.3±1.9 93.2±0.5 72.6±1.9
PatchCore (Roth et al., 2022) 94.3±0.5 84.3±1.6 96.8±0.3 84.9±1.4
WinCLIP (Jeong et al., 2023) 96.2±0.3 89.0±0.8 97.2±0.2 87.6±0.9
PromptAD (Li et al., 2024a) 95.5±0.6 89.0±0.6 96.3±0.8 85.1±0.9
CLIPFUSION (ours) 96.8±0.1 92.1±0.2 98.0±0.1 87.7±0.5

Table 2: Quantitative results for anomaly classification.

Setup Method MVTec-AD VisA
AUROC AUPR AUROC AUPR

0-shot
CLIP-AC (Radford et al., 2021) 74.0±0.0 89.1±0.0 59.3±0.0 67.0±0.0
WinCLIP (Jeong et al., 2023) 91.8±0.0 96.5±0.0 78.1±0.0 81.2±0.0
CLIPFUSION (ours) 93.6±0.0 97.0±0.0 79.5±0.0 83.6±0.0

1-shot

PaDiM (Defard et al., 2021) 76.6±3.1 88.1±1.7 62.8±5.4 68.3±4.0
PatchCore (Roth et al., 2022) 83.4±3.0 92.2±1.5 79.9±2.9 82.8±2.3
WinCLIP (Jeong et al., 2023) 93.1±2.0 96.5±0.9 83.8±4.0 85.1±4.0
PromptAD (Li et al., 2024a) 92.6±1.0 95.7±0.9 83.1±2.1 85.7±1.2
CLIPFUSION (ours) 95.4±0.8 97.8±0.4 86.5±0.1 88.4±0.2

2-shot

PaDiM (Defard et al., 2021) 78.9±3.1 89.3±1.7 67.4±5.1 71.6±3.8
PatchCore (Roth et al., 2022) 86.3±3.3 93.8±1.7 81.6±4.0 84.8±3.2
WinCLIP (Jeong et al., 2023) 94.4±1.3 97.0±0.7 84.6±2.4 85.8±2.7
PromptAD (Li et al., 2024a) 93.2±1.0 96.1±1.0 85.0±1.8 87.2±1.8
CLIPFUSION (ours) 96.3±0.3 98.2±0.2 87.1±0.5 88.8±0.5

4-shot

PaDiM (Defard et al., 2021) 80.4±2.5 90.5±1.6 72.8±2.9 75.6±2.2
PatchCore (Roth et al., 2022) 88.8±2.6 94.5±1.5 85.3±2.1 87.5±2.1
WinCLIP (Jeong et al., 2023) 95.2±1.3 97.3±0.6 87.3±1.8 88.8±1.8
PromptAD (Li et al., 2024a) 93.8±0.7 96.5±0.7 86.2±1.6 88.1±1.9
CLIPFUSION (ours) 96.9±0.2 98.6±0.1 88.1±0.2 89.7±0.1

6 Empirical Study

In this section, results are reported under the one-shot setup.
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Table 3: Comparison of different models.

Task Model Dataset
CLIP Diff MVTec-AD VisA

Seg.
✓ × 94.7 93.7
× ✓ 95.1 96.5
✓ ✓ 95.8 97.3

Cls.
✓ × 93.5 82.2
× ✓ 87.2 78.9
✓ ✓ 95.4 86.5

Table 4: Comparison of different modalities.

Task Modality Dataset
Language Vision MVTec-AD VisA

Seg.
✓ × 90.9 92.1
× ✓ 95.4 96.1
✓ ✓ 95.8 97.3

Cls.
✓ × 93.2 79.5
× ✓ 90.5 82.8
✓ ✓ 95.4 86.5

Table 5: Timestep and block configurations.

Task Configuration MVTec-AD VisA

Seg. Step ↑, Block ↑ 94.3 95.1
Step ↑, Block ↓ 95.1 96.5

Cls. Step ↑, Block ↑ 86.3 76.2
Step ↑, Block ↓ 87.2 78.9

Table 6: Decoder blocks for feature maps.

Task Early Block MVTec-AD VisA

Seg. w/ 94.9 93.7
w/o 95.1 96.5

Cls. w/ 86.5 74.9
w/o 87.2 78.9

6.1 Ablation Study

Table 3 presents the comparative performance of different models. As expected, the diffusion-based model,
which captures local features effectively, performs better in the segmentation task, while the CLIP-based
model, which captures global features effectively, performs better in the classification task. The combination
of different models consistently yields better results compared to using either model alone. This empirical
evidence suggests that the two models capture complementary features, making their integration beneficial
for both segmentation and classification tasks.

Table 4 presents the performance of different modalities, highlighting their complementary strengths through
the combination of semantic and spatial information.

6.2 Extraction Strategies from Diffusion Denoisers

We explore strategies to effectively extract features from diffusion denoisers. Here, we conduct experiments
using only MapDiff to see the effect more clearly.

Table 5 highlights the impact of matching timestep and block numbers when calculating MDiff,V (Equation
8). Note that the decoder consists of four blocks (Block 0 to Block 3). Matching higher timesteps with
lower blocks yields better performance, and vice versa (Timestep 201 → Block 3, Timestep 401 → Block 2,
Timestep 801 → Block 1). This pattern reflects the intrinsic behavior of the diffusion denoiser: at higher
timesteps, the denoiser interprets the input image as highly noisy and prioritizes the extraction of global
features. The lower blocks, which process coarse-grained information, are particularly well-suited for this
task. Using higher timesteps can be seen as a regularization strategy, as they suppress local details and
highlight broader patterns.

Table 6 shows that when calculating MDiff,V (Equation 8), including the early block (Block 0) does not
enhance the model’s performance. On the contrary, excluding this block consistently yields better results.
This suggests that the early stages of the decoder act as preparatory steps for the later stages, without
forming concrete features.

6.3 Inference speed

Our method can be viewed as an extension of WinCLIP (Jeong et al., 2023). We report the inference latency
measured on an NVIDIA A100 GPU (40 GB) in Table 7, with a batch size of 1. As shown, our method is
approximately 6–8 times faster than WinCLIP.
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Table 7: Comparison of latency (ms).

Latency [ms] 0-shot 1-shot 2-shot 4-shot
WinCLIP 4782 9514 9633 9710
CLIPFUSION 783 1240 1269 1278

To capture fine-grained details, WinCLIP slides multi-scale windows over the query image, resulting in
hundreds of forward passes. In contrast, our CLIP-based model utilizes patch embeddings obtained from
a single forward pass. On top of this, we employ a diffusion-based model not as a denoiser for iterative
generation, but as a feature extractor to capture fine-grained details. As a result, our method requires only
a few forward passes in total.

6.4 One-for-all paradigm

IIPAD (Lv et al.) recently proposes a new setting for few-shot anomaly detection, termed the one-for-all
paradigm. It aims to train a single unified model that can detect anomalies across multiple object categories.
In this paradigm, the one-shot setting refers to using N normal images (one for each category), where N is
the number of categories. Apart from this, we follow the same experimental setting as described in Section
5. Table 8 presents a comparison with IIPAD (the SOTA method under this paradigm) on the MVTec-AD
dataset in the one-shot setting, where our method achieves higher performance. See Appendix A.4 for more
results.

Table 8: One-for-all paradigm results.

Method AUROC AUPR
IIPAD 94.2 97.2
CLIPFUSION 94.5 97.3

7 Conclusion

We propose a methodology that synergistically combines discriminative and generative foundation models,
leveraging their complementary strengths. As a concrete application, we introduce CLIPFUSION, which
integrates CLIP and diffusion models for anomaly detection and consistently outperforms baselines in seg-
mentation and classification across zero-shot and few-shot scenarios. This holistic use of features from
discriminative and generative models may benefit the research community in tackling complex recognition
tasks.
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A Appendix

A.1 Further motivation for feature-based anomaly detection

Addressing anomaly detection with a single-perspective approach is challenging due to the open-ended nature
of abnormality. Discriminative models focus on global features but often miss fine-grained details, which are
crucial for detecting local structural or textural anomalies.
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When utilizing generative models in anomaly detection, the reconstruction-based approach has traditionally
been the dominant paradigm (Zavrtanik et al., 2021; Zhang et al., 2023a; Guo et al., 2023). This approach
compares the original image and the reconstructed image at both ends. However, since generative models
are primarily designed for creative image generation, they can produce high reconstruction errors even for
normal images. In addition, deciding how to apply the mask, including its location and size is challenging.4
As a result, the feature-based approach has recently gained prominence.

Building on this shift, we propose that a more fundamental approach to utilizing generative models for
anomaly detection is to extract features midway through the process. This leverages the image understanding
capability that underlies their image generation capability.

A.2 Further experimental details

Data pre-processing For PatchCLIP, we use the same pre-processing pipeline as in WinCLIP (Jeong
et al., 2023), which is specified in OpenCLIP (Ilharco et al., 2021), for both MVTec-AD and VisA datasets.
First, bicubic interpolation is used to resize images to a resolution of 240 to fit the ViT-B-16-plus-240 model.
After which, channel-wise standardization is applied with the precomputed values of (0.48145466, 0.4578275,
0.40821073) for the mean and (0.26862954, 0.26130258, 0.27577711) for the standard deviation. For MapDiff,
we use bilinear interpolation to resize images to a resolution of 512 before feeding into a customized Stable
Diffusion Inpainting pipeline from the diffusers library (von Platen et al., 2022).

Prompts The prompts are derived from those used to train CLIP for the ImageNet dataset (Deng et al.,
2009). For example, in the case of a segmentation task on MVTec-AD, PatchCLIP uses the prompt “a good,
cropped picture of the [state] [object] for classification”, where [state] is either “damaged”
or “perfect”. MapDiff uses the prompt “a close-up cropped png photo of a [object] with [state]
for anomaly segmentation” for query images. The [state] includes commonly observed anomaly types
“crack”, “hole”, and “residue”, along with a generic descriptor “damage”. For reference images, it uses
the prompt “a photo of a perfect [object]”.

Evaluation metrics We follow previous studies (Cohen & Hoshen, 2020; Defard et al., 2021; Roth et al.,
2022; Jeong et al., 2023) and use the following performance metrics. For anomaly classification, we report
the Area Under the ROC Curve (AUROC) at the image level and the Area Under the Precision-Recall
Curve (AUPR). For anomaly segmentation, we report the AUROC at the pixel level and the Area Under
the Per-Region Overlap Curve (AUPRO) (Bergmann et al., 2020; Li et al., 2021). Both AUPR and AUPRO
are particularly sensitive to class imbalance.

Hyperparameters We compare weights of (1, 0), (0, 1), (0.75, 0.25), (0.25, 0.75), and (0.5, 0.5) between
the CLIP and diffusion models. We observe a consistent trend: (0.25, 0.75) is effective for segmentation tasks,
while (0.75, 0.25) performs better for classification tasks. The same weights are used across all datasets for
each task. Please refer to Table 3.

Baseline performance The performance of Trans-MM, MaskCLIP, PaDiM, PatchCore, CLIP-AC, and
WinCLIP are referenced from the WinCLIP paper (Jeong et al., 2023).

A.3 Further empirical study

Table 9 demonstrates the effectiveness of extracting cross-attention maps from the encoder (down-blocks)
and decoder (up-blocks) while excluding the bottleneck (mid-block). Integrating the bottleneck results in
suboptimal performance due to its lack of spatial granularity critical for tasks like anomaly detection.

Table 10 illustrates the impact of using state ensemble for a cross-attention map. Without ensemble, only
a generic term “damage” is used to generate the cross-attention map. In contrast, the ensemble approach

4Since the location of the anomalous part is not known, it is unclear where to apply the mask. Also, if the mask is too large,
the reconstructed image may deviate significantly from the original image. Conversely, if the mask is too small and fails to fully
cover the anomaly, the anomaly may persist or even extend in the reconstructed image.
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Table 9: Denoiser components for cross-attention maps.

Task Denoiser Component Dataset
Enc Bneck Dec MVTec-AD VisA

Seg.
× × ✓ 94.4 96.0
✓ ✓ ✓ 94.4 96.4
✓ × ✓ 95.1 96.5

Cls.
× × ✓ 83.2 74.1
✓ ✓ ✓ 86.8 76.1
✓ × ✓ 87.2 78.9

averages cross-attention maps derived from both the generic term “damage” and more specific terms such
as “crack," “hole," and “residue." This approach significantly improves performance across tasks. By
incorporating these multiple specific states, the method generates diverse cross-attention maps that capture
fine-grained and complementary aspects of anomalies.

Table 10: State ensemble (generic and specific).

Task Ensemble Dataset
MVTec-AD VisA

Seg. w/o 94.0 95.8
w/ 95.1 96.5

Cls. w/o 85.4 73.1
w/ 87.2 78.9

Table 11 shows the impact of customizing state descriptors for each object class on performance. For example,
for both Cable and Pill, replacing the default set of states with a class-specific set composed of frequently
occurring anomaly types leads to consistent performance improvements.

Table 11: Effect of state customization.

Object State Set AUROC

Cable “crack”, “hole”, “residue”, “damage” 94.6
“crack”, “poke”, “scratch” 95.0

Pill “crack”, “hole”, “residue”, “damage” 83.0
“crack”, “scratch”, “residue” 83.5

Table 12 presents results obtained with different sets of states. The results show our method remains
reasonably robust across these variations.

Table 12: Different sets of states.

States Task Dataset
MVTec-AD VisA

“contamination”, “bend”, “cut”, “damage” Seg. 95.8 97.0
Cls. 95.4 85.9

“break”, “fold”, “stain”, “damage” Seg. 95.8 97.3
Cls. 95.6 86.1

A.4 Further results in the one-for-all paradigm

We evaluate anomaly detection performance under the one-for-all paradigm, where a single model is applied
across all object categories. Recall that, in this paradigm, the one-shot setting provides one image per
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category, for a total of N images across N object categories. IIPAD (Lv et al.) trains a prompt generator
using these examples for the one-for-all setting. In contrast, CLIPFUSION requires no additional training.
Nevertheless, it outperforms or matches IIPAD across all configurations and datasets for both segmentation
and classification, as shown in Tables 13 and 14.

Table 13: Quantitative results for anomaly segmentation in the one-for-all paradigm.

Setup Method MVTec-AD VisA
AUROC AUPR AUROC AUPR

1-shot IIPAD 96.4 89.8 96.9 87.3
CLIPFUSION 96.0 91.1 97.2 87.3

2-shot IIPAD 96.7 90.3 97.2 87.9
CLIPFUSION 96.4 91.9 97.4 88.1

4-shot IIPAD 97.0 91.2 97.4 88.3
CLIPFUSION 96.8 92.5 98.1 88.6

Table 14: Quantitative results for anomaly classification in the one-for-all paradigm.

Setup Method MVTec-AD VisA
AUROC AUPR AUROC AUPR

1-shot IIPAD 94.2 97.2 85.4 87.5
CLIPFUSION 94.5 97.3 85.5 88.1

2-shot IIPAD 95.7 97.9 86.7 88.6
CLIPFUSION 96.0 97.9 86.8 89.3

4-shot IIPAD 96.1 98.1 88.3 89.6
CLIPFUSION 96.4 98.2 88.3 90.0

A.5 Limitations of few-shot training

Training-based methods inherently suffer from epoch selection sensitivity. Figure 4a shows that the epoch at
which PromptAD performs best differs significantly across object categories. In conventional training setups,
such epoch selection is guided by a validation set. However, in few-shot anomaly detection, where only one
to four images are available, it is practically hard to reserve any for a separate validation set. The authors
of PromptAD circumvent this by using the test set for validation in their official implementation.5 However,
test sets are not accessible during model training in real-world applications. In contrast, CLIPFUSION
requires no additional training and uses few-shot examples solely for feature extraction, making validation
sets and epoch selection unnecessary.

Figure 4b reveals that even when the training epoch is fixed, performance varies considerably across different
random seeds. This highlights the instability and seed sensitivity of few-shot training, making it difficult to
ensure consistent and reproducible results without a validation set.

A.6 Effect of weights between the CLIP and diffusion models

We analyze the effect of varying the weights assigned to the CLIP and diffusion models. Recall that α and
(1−α) denote the weights of the CLIP and the diffusion model, respectively. By changing α, we adjust their
relative contributions and evaluate the performance. As shown in Table 15, segmentation achieves the best
performance among the tested alpha values at α = 0.25, while classification performed best at α = 0.75.

5https://github.com/FuNz-0/PromptAD
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Figure 4: AUROC across training epochs on the VisA dataset (1-shot setting).

Table 15: Effect of weights on performance.

Task Weight Dataset
CLIP Diff MVTec-AD VisA

Seg.

1 0 94.7 93.7
0.75 0.25 95.4 96.1
0.5 0.5 95.7 97.2
0.25 0.75 95.8 97.3

0 1 95.1 96.5

Cls.

1 0 93.5 82.2
0.75 0.25 95.4 86.5
0.5 0.5 95.0 86.4
0.25 0.75 92.7 83.9

0 1 87.2 78.9

A.7 Failure cases

Figure 5 provides representative failure cases. In Figure 5(a), although the anomaly lies in the outer sheath
of the cables, the diffusion-based model over-activates on the dense and repetitive wire patterns, failing
to highlight the true defect. Figure 5(b) shows a logical anomaly, where the absence of a transistor itself
constitutes the defect. Lacking this contextual understanding, the models struggle to determine where to
attend, resulting in mislocalization.

A.8 Results on different backbones

Table 16 reports the performance of our framework with different diffusion backbones. We observe that the
results are consistent across backbones. This indicates that our method is robust to the choice of diffusion
backbone.

A.9 Pseudocode
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(a) Attention saturation (Cable)

(b) Logical anomaly (Transistor)

Figure 5: Failure analysis examples.

Table 16: Different backbones.

Backbone Task Dataset
MVTec-AD VisA

Stable Diffusion v1.5 Seg. 95.8 96.7
Cls. 93.5 86.4

Stable Diffusion v2.0 Seg. 95.8 97.3
Cls. 95.4 86.5

Stable Diffusion v2.1 Seg. 95.8 97.3
Cls. 94.6 86.5
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Algorithm 1 CLIPFUSION for Anomaly Segmentation
Require: Query image x; optional k normal reference images R = {ri}k

i=1; object label o; state set C; CLIP
image and text encoders fI , fT ; diffusion denoiser ϵθ; CLIP blocks B; Diffusion timestep-block pairs
T = {(t, b)}; fusion weight α ∈ [0, 1]

Ensure: Pixel-level anomaly map M

1: Initialize MCLIP,L, MDiff,L ← 0 ▷ See Sec. 4.1.1 zero-shot
2: (CLIP, language-guided)
3: Encode x with fI to obtain the patch embeddings
4: Encode prompts “a photo of the perfect [o]” and “a photo of the damaged [o]” with fT

5: Form MCLIP,L by per-patch alignment (abnormal vs. normal)
6: (Diffusion, language-guided)
7: for state s ∈ C do
8: Run ϵθ on x with empty mask and prompt “a photo of a [o] with [s]”
9: Extract cross-attention map for state s; accumulate MDiff,L ←MDiff,L + CrossAttn(s)

10: end for
11: MDiff,L ←MDiff,L/|C|

12: Initialize MCLIP,V , MDiff,V ← 0 ▷ See Sec. 4.1.2 few-shot
13: if k > 0 then
14: (CLIP, vision-guided)
15: For each r ∈ R and b ∈ B, extract features from fI and store into Rb

16: For each (h, w),
17: MCLIP,V

h,w ← 1
|B|

∑
b∈B minr∈Rb

1
2

(
1− sim(F b

h,w, r)
)

(Eq. 7)
18: (Diffusion, vision-guided)
19: For each r ∈ R and (t, b) ∈ T , extract features from ϵθ and store into Rt,b

20: For each (h, w),
21: MDiff,V

h,w ← 1
|T |

∑
(t,b)∈T minr∈Rt,b

1
2

(
1− sim(F t,b

h,w, r)
)

(Eq. 8)
22: end if
23: Fuse maps M ← α(MCLIP,L + MCLIP,V ) + (1− α)(MDiff,L + MDiff,V ) (Eq. 4)
24: return M

21



Published in Transactions on Machine Learning Research (10/2025)

Algorithm 2 CLIPFUSION for Anomaly Classification
Require: Query image x; optional k normal reference images R = {ri}k

i=1; object label o; state set C; CLIP
image and text encoders fI , fT ; diffusion denoiser ϵθ; CLIP blocks B; Diffusion timestep–block pairs
T = {(t, b)}; fusion weight α ∈ [0, 1]

Ensure: Image-level anomaly score S

1: Initialize SCLIP,L, SDiff,L ← 0 ▷ See Sec. 4.2
2: (CLIP, language-guided)
3: Encode x with fI to obtain the class token embedding
4: Encode prompts “a photo of the perfect [o]” and “a photo of the damaged [o]” with fT

5: Calculate SCLIP,L via Eq. (1)
6: (Diffusion, language-guided)
7: Compute MDiff,L as in Alg. 1
8: SDiff,L ← 1−median(MDiff,L)/ max(MDiff,L) (Eq. 10)

9: Initialize SCLIP,V , SDiff,V ← 0
10: if k > 0 then
11: (CLIP, vision-guided)
12: Build memory banks Rb from fI ; compute MCLIP,V as in Alg. 1
13: SCLIP,V ← max(MCLIP,V ) (Eq. 11)
14: (Diffusion, vision-guided)
15: Build memory banks Rt,b from ϵθ; compute MDiff,V as in Alg. 1
16: SDiff,V ← max(MDiff,V ) (Eq. 11)
17: end if
18: Fuse scores S ← α

(
SCLIP,L + SCLIP,V

)
+ (1− α)

(
SDiff,L + SDiff,V

)
(Eq. 9)

19: return S
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A.10 Detailed quantitative results

Table 17: AUROC (%) results on MVTec-AD classification.

Category k=0 k=1 k=2 k=4
WinCLIP CLIPFUSION PaDiM PatchCore WinCLIP CLIPFUSION PaDiM PatchCore WinCLIP CLIPFUSION PaDiM PatchCore WinCLIP CLIPFUSION

Bottle 99.2±0.0 100.0±0.0 97.4±0.7 99.4±0.4 98.2±0.9 100.0±0.0 98.5±1.0 99.2±0.3 99.3±0.3 100.0±0.0 98.8±0.2 99.2±0.3 99.3±0.4 100.0±0.0
Cable 86.5±0.0 87.3±0.0 57.7±4.6 88.8±4.2 88.9±1.9 95.0±0.9 62.3±5.9 91.0±2.7 88.4±0.7 96.3±0.4 70.0±6.1 91.0±2.7 90.9±0.9 96.7±0.4
Capsule 72.9±0.0 88.1±0.0 57.7±7.3 67.8±2.9 72.3±6.8 83.6±6.9 64.3±3.0 72.8±7.0 77.3±8.8 89.0±2.7 65.2±2.5 72.8±7.0 82.3±8.9 91.2±1.6
Carpet 100.0±0.0 99.9±0.0 96.6±1.0 95.3±0.8 99.8±0.3 100.0±0.0 97.8±0.5 96.6±0.5 99.8±0.3 100.0±0.1 97.9±0.4 96.6±0.5 100.0±0.0 100.0±0.0
Grid 98.8±0.0 99.9±0.0 54.2±6.7 63.6±10.3 99.5±0.3 99.4±0.4 67.2±4.2 67.7±8.3 99.4±0.2 99.6±0.4 68.1±3.8 67.7±8.3 99.6±0.1 99.5±0.4
Hazelnut 93.9±0.0 96.9±0.0 88.3±2.6 88.3±2.7 97.5±1.4 99.3±0.4 90.8±0.8 93.2±3.8 98.3±0.7 99.3±0.3 91.9±1.2 93.2±3.8 98.4±0.4 99.3±0.5
Leather 100.0±0.0 99.9±0.0 97.5±0.7 97.3±0.7 99.9±0.0 99.9±0.0 97.5±0.9 97.9±0.7 99.9±0.0 100.0±0.0 98.5±0.2 97.9±0.7 100.0±0.0 100.0±0.0
Metal nut 97.1±0.0 98.3±0.0 53.0±3.8 73.4±2.9 98.7±0.8 99.8±0.3 54.8±3.8 77.7±8.5 99.4±0.2 99.9±0.2 60.7±5.2 77.7±8.5 99.5±0.2 100.0±0.0
Pill 79.1±0.0 77.6±0.0 61.3±3.8 81.9±2.8 91.2±2.1 96.1±0.4 59.1±6.4 82.9±2.9 92.3±0.7 96.2±0.2 54.9±2.7 82.9±2.9 92.8±1.0 96.4±0.4
Screw 83.3±0.0 77.3±0.0 55.0±2.5 44.4±4.6 86.4±0.9 72.5±8.5 54.0±4.4 49.0±3.8 86.0±2.1 73.5±5.1 50.0±4.1 49.0±3.8 87.9±1.2 82.0±4.5
Tile 100.0±0.0 99.1±0.0 92.2±2.2 99.0±0.9 99.9±0.0 99.9±0.2 93.3±1.1 98.5±1.0 99.9±0.2 99.9±0.1 93.1±0.6 98.5±1.0 99.9±0.1 100.0±0.0
Toothbrush 87.5±0.0 96.9±0.0 82.5±1.2 83.3±3.8 92.2±4.9 98.9±1.6 87.6±4.2 85.9±3.5 97.5±1.6 99.1±0.8 89.2±2.5 85.9±3.5 96.7±2.6 98.5±0.8
Transistor 88.0±0.0 86.7±0.0 73.3±6.0 78.1±6.9 83.4±3.8 90.9±1.4 72.8±6.3 90.0±4.3 85.3±1.7 91.1±0.8 82.4±6.5 90.0±4.3 85.7±2.5 92.9±1.0
Wood 99.4±0.0 96.7±0.0 96.1±1.2 97.8±0.3 99.9±0.1 98.9±0.3 96.9±0.5 98.3±0.6 99.9±0.1 98.6±0.2 97.0±0.2 98.3±0.6 99.8±0.3 98.8±0.1
Zipper 91.5±0.0 94.0±0.0 85.8±2.7 92.3±0.5 88.8±5.9 96.5±0.7 86.3±2.6 94.0±2.1 94.0±1.4 95.3±2.2 88.3±2.0 94.0±2.1 94.5±0.5 96.2±0.6
Mean 91.8±0.0 93.2±0.0 76.6±3.1 83.4±3.0 93.1±2.0 95.4±0.8 78.9±3.1 86.3±3.3 94.4±1.3 95.9±0.3 80.4±2.5 88.8±2.6 95.2±1.3 96.8±0.2

Table 18: AUPR (%) results on MVTec-AD classification.

Category k=0 k=1 k=2 k=4
WinCLIP CLIPFUSION PaDiM PatchCore WinCLIP CLIPFUSION PaDiM PatchCore WinCLIP CLIPFUSION PaDiM PatchCore WinCLIP CLIPFUSION

Bottle 99.8±0.0 100.0±0.0 99.2±0.2 99.8±0.1 99.4±0.3 100.0±0.0 99.6±0.3 99.8±0.1 99.8±0.1 100.0±0.0 99.7±0.0 99.8±0.1 99.8±0.1 100.0±0.0
Cable 91.2±0.0 92.7±0.0 64.9±3.8 93.8±2.2 93.2±1.1 97.1±0.5 69.6±6.6 95.1±1.3 92.9±0.6 97.8±0.3 76.1±5.6 97.1±0.7 94.4±0.3 98.1±0.2
Capsule 91.5±0.0 97.2±0.0 86.9±2.2 89.4±2.0 91.6±2.7 95.9±2.2 88.4±0.8 91.0±2.9 93.3±3.6 97.4±0.8 87.8±0.8 94.9±1.1 95.1±3.3 98.0±0.4
Carpet 100.0±0.0 100.0±0.0 99.0±0.2 98.7±0.2 99.9±0.1 100.0±0.0 99.4±0.1 99.0±0.1 99.9±0.1 100.0±0.0 99.4±0.1 98.8±0.2 100.0±0.0 100.0±0.0
Grid 99.6±0.0 100.0±0.0 75.0±3.3 81.1±4.9 99.9±0.1 99.8±0.1 82.5±2.3 84.1±4.0 99.8±0.1 99.9±0.1 83.0±1.8 86.4±4.0 99.9±0.0 99.8±0.1
Hazelnut 96.9±0.0 98.3±0.0 93.3±1.7 92.9±2.2 98.6±0.7 99.6±0.2 94.1±0.5 96.0±2.0 99.1±0.4 99.6±0.1 94.8±0.6 97.0±1.2 99.1±0.2 99.6±0.3
Leather 100.0±0.0 100.0±0.0 99.2±0.2 99.1±0.2 100.0±0.0 100.0±0.0 99.2±0.3 99.3±0.2 100.0±0.0 100.0±0.0 99.6±0.1 99.6±0.1 100.0±0.0 100.0±0.0
Metal nut 99.3±0.0 99.6±0.0 82.0±2.7 91.0±1.1 99.7±0.2 99.9±0.1 82.2±1.4 92.3±4.0 99.9±0.0 100.0±0.0 85.5±1.7 97.0±2.6 99.9±0.1 100.0±0.0
Pill 95.7±0.0 94.8±0.0 88.3±1.3 96.5±0.6 98.3±0.5 99.3±0.1 87.9±2.6 96.6±0.7 98.6±0.1 99.3±0.0 87.0±1.2 96.9±0.4 98.6±0.2 99.4±0.1
Screw 93.1±0.0 89.3±0.0 78.1±1.0 71.4±2.3 94.2±0.6 87.5±4.7 77.3±1.3 72.9±3.4 94.1±1.5 87.4±3.2 75.7±2.8 71.8±1.9 94.9±0.8 93.0±2.3
Tile 100.0±0.0 99.6±0.0 97.2±0.7 99.6±0.3 100.0±0.0 100.0±0.1 97.6±0.4 99.4±0.4 100.0±0.1 100.0±0.0 97.6±0.2 99.6±0.1 100.0±0.0 100.0±0.0
Toothbrush 95.6±0.0 98.8±0.0 93.7±0.5 93.5±1.4 96.7±2.0 99.6±0.5 95.2±1.6 94.1±1.4 99.0±0.6 99.7±0.3 95.8±0.7 94.8±0.7 98.7±1.1 99.5±0.2
Transistor 87.1±0.0 84.7±0.0 66.2±7.5 77.7±5.5 79.0±4.0 89.8±1.5 69.0±6.5 89.3±3.9 80.7±2.3 89.9±0.7 77.6±8.4 84.5±9.0 80.7±3.2 92.3±1.3
Wood 99.8±0.0 99.0±0.0 98.8±0.3 99.3±0.1 100.0±0.0 99.7±0.1 99.0±0.1 99.5±0.2 100.0±0.0 99.6±0.1 99.1±0.0 99.5±0.2 99.9±0.1 99.7±0.0
Zipper 97.5±0.0 97.9±0.0 95.5±0.9 97.2±0.3 96.8±1.8 98.9±0.3 95.4±1.0 97.8±1.0 98.3±0.4 98.3±1.0 96.2±0.8 99.1±0.7 98.5±0.2 98.7±0.2
Mean 96.5±0.0 96.8±0.0 88.1±1.7 92.2±1.5 96.5±0.9 97.8±0.4 89.3±1.7 93.8±1.7 97.0±0.7 97.9±0.2 90.5±1.6 94.5±1.5 97.3±0.6 98.5±0.1

Table 19: AUROC (%) results on MVTec-AD segmentation.

Category k=0 k=1 k=2 k=4
WinCLIP CLIPFUSION PaDiM PatchCore WinCLIP CLIPFUSION PaDiM PatchCore WinCLIP CLIPFUSION PaDiM PatchCore WinCLIP CLIPFUSION

Bottle 89.5±0.0 94.1±0.0 96.1±0.5 97.9±0.1 97.5±0.2 97.3±0.2 96.9±0.1 98.1±0.0 97.7±0.1 97.5±0.0 97.1±0.1 98.2±0.0 97.8±0.0 97.7±0.1
Cable 77.0±0.0 73.2±0.0 88.4±1.2 95.5±0.8 93.8±0.6 91.3±0.2 90.0±0.8 96.4±0.3 94.3±0.4 92.2±0.3 92.1±0.4 97.5±0.3 94.9±0.1 92.9±0.4
Capsule 86.9±0.0 94.6±0.0 94.5±0.6 95.6±0.4 94.6±0.8 97.9±0.4 95.2±0.5 96.5±0.4 96.4±0.3 98.4±0.2 96.2±0.4 96.8±0.6 96.2±0.5 98.5±0.1
Carpet 95.4±0.0 99.3±0.0 97.8±0.2 98.4±0.1 99.4±0.0 99.4±0.1 98.2±0.0 98.5±0.1 99.3±0.0 99.5±0.0 98.4±0.0 98.6±0.1 99.3±0.0 99.5±0.0
Grid 82.2±0.0 98.9±0.0 70.2±2.8 58.8±4.9 96.8±1.0 98.8±0.2 70.8±2.0 62.6±3.2 97.7±0.8 98.9±0.4 77.0±1.8 69.4±1.3 98.0±0.2 99.2±0.1
Hazelnut 94.3±0.0 96.7±0.0 95.4±0.7 95.8±0.6 98.5±0.2 98.2±0.1 96.8±0.3 96.3±0.6 98.7±0.1 98.2±0.1 97.2±0.2 97.6±0.1 98.8±0.0 98.7±0.1
Leather 96.7±0.0 99.2±0.0 98.5±0.1 98.8±0.2 99.3±0.0 99.3±0.0 98.7±0.1 99.0±0.1 99.3±0.0 99.3±0.0 98.8±0.0 99.1±0.0 99.3±0.0 99.4±0.0
Metal nut 61.0±0.0 74.2±0.0 74.6±1.1 89.3±1.4 90.0±0.6 86.2±1.2 80.3±2.1 94.6±1.4 91.4±0.4 89.7±0.9 82.7±3.9 95.9±1.8 92.9±0.4 91.3±0.8
Pill 80.0±0.0 83.0±0.0 84.8±1.0 93.1±1.1 96.4±0.3 95.5±0.2 87.3±0.7 94.2±0.3 97.0±0.2 95.6±0.2 88.9±0.5 94.8±0.4 97.1±0.0 95.8±0.2
Screw 89.6±0.0 97.2±0.0 83.3±0.7 89.6±0.5 94.5±0.4 95.6±0.4 89.8±0.8 90.0±0.7 95.2±0.3 95.6±0.6 90.8±0.2 91.3±1.0 96.0±0.5 96.3±0.5
Tile 77.6±0.0 96.2±0.0 84.1±1.1 94.1±0.5 96.3±0.2 97.7±0.1 87.7±0.2 94.4±0.2 96.5±0.1 97.8±0.1 88.9±0.3 94.6±0.1 96.6±0.1 97.8±0.1
Toothbrush 86.9±0.0 93.2±0.0 97.3±0.3 97.3±0.4 97.8±0.1 99.1±0.1 97.7±0.3 97.5±0.2 98.1±0.1 99.2±0.1 98.4±0.2 98.4±0.4 98.4±0.5 99.2±0.1
Transistor 74.7±0.0 69.2±0.0 90.2±2.8 84.9±2.7 85.0±1.8 87.3±2.6 92.3±2.1 89.6±0.9 88.3±1.0 88.6±0.8 94.0±2.7 90.7±1.4 88.5±1.2 90.3±0.6
Wood 93.4±0.0 96.0±0.0 90.7±0.4 92.7±0.9 94.6±1.0 95.7±1.2 91.9±0.1 93.2±0.7 95.3±0.4 96.4±0.3 92.2±0.1 93.5±0.3 95.4±0.2 96.4±0.4
Zipper 91.6±0.0 98.2±0.0 93.9±0.8 97.4±0.4 93.9±0.8 98.4±0.3 95.4±0.3 98.0±0.1 94.1±0.7 98.3±0.1 96.1±0.2 98.1±0.1 94.2±0.4 98.5±0.1
Mean 85.1±0.0 90.9±0.0 89.3±0.9 92.0±1.0 95.2±0.5 95.8±0.1 91.3±0.7 93.3±0.6 96.0±0.3 96.3±0.1 92.6±0.7 94.3±0.5 96.2±0.3 96.8±0.1

Table 20: AUPRO (%) results on MVTec-AD segmentation.

Category k=0 k=1 k=2 k=4
WinCLIP CLIPFUSION PaDiM PatchCore WinCLIP CLIPFUSION PaDiM PatchCore WinCLIP CLIPFUSION PaDiM PatchCore WinCLIP CLIPFUSION

Bottle 76.4±0.0 88.4±0.0 89.8±0.8 93.5±0.3 91.2±0.4 93.7±0.4 91.7±0.2 93.9±0.3 91.8±0.3 94.1±0.1 92.2±0.2 94.0±0.2 91.6±0.2 94.5±0.3
Cable 42.9±0.0 71.5±0.0 59.1±3.2 84.7±1.0 72.5±2.3 79.7±0.8 66.5±2.8 88.5±0.9 74.7±2.3 82.0±1.0 74.2±1.8 91.7±0.6 77.0±1.1 84.4±1.0
Capsule 62.1±0.0 88.5±0.0 80.0±2.0 83.9±0.9 85.6±2.7 92.5±1.1 82.3±2.1 86.6±1.0 90.6±0.6 94.1±0.2 85.7±1.3 87.8±1.9 90.1±1.5 94.7±0.5
Carpet 84.1±0.0 98.2±0.0 92.9±0.3 93.3±0.3 97.4±0.4 98.3±0.1 93.9±0.2 93.7±0.4 97.3±0.3 98.4±0.1 94.4±0.2 93.9±0.4 97.0±0.2 98.5±0.1
Grid 57.0±0.0 95.7±0.0 41.2±4.6 21.7±9.5 90.5±2.7 96.1±1.1 45.1±3.6 23.7±3.8 92.8±2.5 97.1±0.9 55.5±3.4 30.4±4.6 93.6±0.6 96.9±0.7
Hazelnut 81.6±0.0 93.8±0.0 85.7±1.9 88.3±1.3 93.7±0.9 94.3±0.3 89.4±0.9 89.8±1.3 94.2±0.3 94.7±0.5 90.4±0.7 92.0±0.3 94.2±0.3 95.6±0.6
Leather 91.1±0.0 97.7±0.0 95.6±0.2 95.2±1.0 98.6±0.0 97.8±0.1 96.2±0.2 95.9±0.3 98.3±0.4 97.7±0.1 96.3±0.1 96.4±0.1 98.0±0.4 97.6±0.1
Metal nut 31.8±0.0 74.1±0.0 38.1±1.6 66.7±2.9 84.7±1.1 80.1±1.6 48.2±5.0 79.6±4.2 86.7±0.8 85.8±1.6 54.0±8.8 83.8±5.5 89.4±0.1 87.6±1.1
Pill 65.0±0.0 87.6±0.0 78.9±0.6 89.5±1.6 93.5±0.2 93.9±0.3 84.3±0.4 91.6±0.5 94.5±0.2 94.2±0.2 86.6±0.4 92.5±0.4 94.6±0.3 94.5±0.1
Screw 68.5±0.0 89.5±0.0 51.6±1.7 68.1±1.3 82.3±1.1 84.0±0.8 69.5±2.1 69.0±2.1 84.1±0.5 83.6±1.5 72.3±0.8 72.4±3.1 86.3±1.8 85.9±1.1
Tile 51.2±0.0 91.9±0.0 66.7±1.5 82.5±1.1 89.4±0.4 94.5±0.2 71.9±0.5 82.5±0.5 89.6±0.4 94.7±0.2 73.6±0.9 83.0±0.1 89.9±0.3 94.8±0.1
Toothbrush 67.7±0.0 90.6±0.0 82.1±1.5 79.0±2.4 85.3±1.0 91.6±0.9 83.3±2.6 81.0±0.7 84.7±1.4 92.1±0.3 87.1±1.7 85.5±3.0 86.0±3.3 92.7±0.4
Transistor 43.4±0.0 52.5±0.0 70.3±7.0 70.9±4.6 65.0±1.8 68.8±3.0 76.5±5.5 78.8±1.5 68.6±1.1 71.3±0.6 82.2±7.4 79.5±2.8 69.0±1.1 73.1±1.3
Wood 74.1±0.0 93.1±0.0 86.5±0.6 87.1±1.0 91.0±0.6 95.0±0.8 88.0±0.2 86.8±1.4 91.8±0.6 95.3±0.2 88.4±0.2 87.7±0.4 91.7±0.3 95.3±0.4
Zipper 71.7±0.0 94.0±0.0 81.7±2.0 91.2±1.1 86.0±1.7 95.4±0.6 85.6±0.7 92.8±0.4 86.4±1.6 95.7±0.3 87.2±0.8 93.4±0.2 86.9±0.7 96.0±0.3
Mean 64.6±0.0 87.1±0.0 73.3±2.0 79.7±2.0 87.1±1.2 90.4±0.1 78.2±1.8 82.3±1.3 88.4±0.9 91.4±0.2 81.3±1.9 84.3±1.6 89.0±0.8 92.1±0.2
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Table 21: AUROC (%) results on VisA classification.

Category k=0 k=1 k=2 k=4
WinCLIP CLIPFUSION PaDiM PatchCore WinCLIP CLIPFUSION PaDiM PatchCore WinCLIP CLIPFUSION PaDiM PatchCore WinCLIP CLIPFUSION

Candle 95.4±0.0 94.3±0.0 70.8±4.1 85.1±1.4 93.4±1.4 92.6±0.7 75.8±2.1 85.3±1.5 94.8±1.0 93.4±1.8 77.5±1.6 87.8±0.8 95.1±0.3 94.0±0.9
Capsules 85.0±0.0 80.3±0.0 51.0±7.8 60.0±7.6 85.0±3.1 83.0±1.2 51.7±4.6 57.8±5.4 84.9±0.8 83.1±0.9 52.7±3.4 63.4±5.4 86.8±1.7 83.0±0.8
Cashew 92.1±0.0 81.7±0.0 62.3±9.9 89.5±4.4 94.0±0.4 89.4±1.7 74.6±3.6 93.6±0.6 94.3±0.5 89.3±1.0 77.7±3.2 93.0±1.5 95.2±0.8 90.8±1.4
Chewinggum 96.5±0.0 96.8±0.0 69.9±4.9 97.3±0.3 97.6±0.8 97.4±0.3 82.7±2.1 97.8±0.6 97.3±0.8 97.6±0.3 83.5±3.7 98.3±0.3 97.7±0.3 97.7±0.3
Fryum 80.3±0.0 88.4±0.0 58.3±5.9 75.0±4.8 88.5±1.9 92.2±1.0 69.2±9.0 83.4±2.4 90.5±0.4 93.1±1.2 71.2±5.9 88.6±1.3 90.8±0.5 93.7±0.4
Macaroni1 76.2±0.0 79.3±0.0 62.1±4.6 68.0±3.4 82.9±1.5 86.8±0.7 62.2±5.0 75.6±4.6 83.3±1.9 87.9±1.1 65.9±3.9 82.9±2.7 85.2±0.9 88.9±1.4
Macaroni2 63.7±0.0 61.8±0.0 47.5±5.9 55.6±4.6 70.2±0.9 72.2±2.1 50.8±2.9 57.3±5.6 71.8±2.0 70.8±2.2 55.0±2.9 61.7±1.8 70.9±2.2 72.7±1.8
PCB1 73.6±0.0 83.7±0.0 76.2±1.2 78.9±1.1 75.6±23.0 91.3±1.3 62.4±10.8 71.5±20.0 76.7±5.2 89.7±4.0 82.6±1.5 84.7±6.7 88.3±1.7 89.7±2.8
PCB2 51.2±0.0 61.6±0.0 61.2±2.0 81.5±0.8 62.2±3.9 69.7±5.3 66.8±2.0 84.3±1.7 62.6±3.7 75.9±3.3 73.5±2.4 84.3±1.0 67.5±2.6 76.4±1.4
PCB3 73.4±0.0 67.8±0.0 51.4±12.2 82.7±2.3 74.1±1.1 76.6±4.5 67.3±3.8 84.8±1.2 78.8±1.9 79.2±2.7 65.9±1.9 87.0±1.1 83.3±1.7 78.4±1.2
PCB4 79.6±0.0 76.9±0.0 76.1±3.6 93.9±2.8 85.2±8.9 91.4±1.9 69.3±13.7 94.3±3.2 82.3±9.9 87.8±5.0 85.4±2.0 95.6±1.6 87.6±8.0 94.1±1.6
Pipe fryum 69.7±0.0 81.5±0.0 66.7±2.2 90.7±1.7 97.2±1.1 95.8±1.1 75.3±1.8 93.5±1.3 98.0±0.6 96.6±0.6 82.9±2.2 96.4±0.7 98.5±0.4 97.0±0.2
Mean 78.1±0.0 79.5±0.0 62.8±5.4 79.9±2.9 83.8±4.0 86.5±0.1 67.4±5.1 81.6±4.0 84.6±2.4 87.0±0.5 72.8±2.9 85.3±2.1 87.3±1.8 88.0±0.2

Table 22: AUPR (%) results on VisA classification.

Category k=0 k=1 k=2 k=4
WinCLIP CLIPFUSION PaDiM PatchCore WinCLIP CLIPFUSION PaDiM PatchCore WinCLIP CLIPFUSION PaDiM PatchCore WinCLIP CLIPFUSION

Candle 95.8±0.0 94.9±0.0 69.2±3.9 86.6±2.3 93.6±1.5 92.9±0.6 72.8±1.0 86.8±1.7 95.1±1.1 93.9±1.8 72.5±1.1 88.9±1.1 95.3±0.4 94.4±1.0
Capsules 90.9±0.0 88.8±0.0 63.4±5.7 72.3±5.3 89.9±2.5 90.4±0.7 63.4±2.0 73.6±4.7 88.9±0.7 90.6±0.4 63.0±2.3 78.4±3.1 91.5±1.4 90.7±0.3
Cashew 96.4±0.0 91.9±0.0 78.2±5.7 94.6±2.0 97.2±0.2 95.3±0.8 86.1±2.2 96.9±0.3 97.3±0.2 95.2±0.4 88.4±2.0 96.5±0.7 97.7±0.4 95.8±0.6
Chewinggum 98.6±0.0 98.7±0.0 79.8±3.6 98.9±0.1 99.0±0.3 98.9±0.1 89.5±1.9 99.1±0.2 98.9±0.3 99.0±0.1 88.5±3.2 99.3±0.1 99.0±0.1 99.0±0.1
Fryum 90.1±0.0 94.6±0.0 74.5±2.9 87.6±2.4 94.7±1.0 96.6±0.4 81.0±5.4 92.1±1.3 95.8±0.2 96.9±0.5 81.5±3.0 95.0±0.6 96.0±0.3 97.1±0.1
Macaroni1 75.8±0.0 81.1±0.0 60.4±2.9 67.8±3.4 84.9±1.2 88.4±0.9 63.1±4.3 74.9±5.2 84.7±1.5 88.9±0.9 64.9±2.1 82.1±3.5 86.5±0.6 89.8±1.3
Macaroni2 60.3±0.0 59.5±0.0 51.7±5.0 54.9±3.2 68.4±1.8 71.0±2.4 52.7±1.5 57.2±2.6 70.4±1.8 68.3±4.9 54.9±2.5 60.2±3.0 69.6±2.8 70.9±3.3
PCB1 78.4±0.0 87.0±0.0 68.6±2.4 72.1±2.5 76.5±19.0 91.2±1.4 60.4±7.7 72.6±16.4 78.3±4.3 89.2±4.2 77.4±2.9 81.0±9.2 87.7±1.7 89.3±3.5
PCB2 49.2±0.0 66.8±0.0 63.3±1.2 84.4±0.4 64.9±3.3 69.8±5.1 68.9±2.6 86.6±1.1 65.8±4.0 75.7±3.2 75.0±1.7 86.2±1.0 71.3±3.4 75.5±2.0
PCB3 76.5±0.0 70.3±0.0 52.3±10.8 84.6±1.5 73.5±1.6 79.5±3.3 65.2±3.8 86.1±0.5 80.9±1.6 80.9±2.9 64.5±2.4 88.3±1.1 84.8±1.8 81.0±1.4
PCB4 77.7±0.0 78.5±0.0 74.7±2.6 92.8±3.1 78.5±15.5 88.8±3.1 67.6±11.9 93.2±3.4 72.5±16.2 84.8±5.6 84.0±2.0 94.9±1.2 85.6±8.9 91.9±2.1
Pipe fryum 82.3±0.0 90.5±0.0 79.2±1.5 95.4±0.6 98.6±0.5 98.0±0.6 84.5±1.7 96.8±0.7 99.0±0.3 98.4±0.3 89.8±1.7 98.3±0.3 99.2±0.2 98.6±0.1
Mean 81.2±0.0 83.6±0.0 68.3±4.0 82.8±2.3 85.1±4.0 88.4±0.2 71.6±3.8 84.8±3.2 85.8±2.7 88.5±0.5 75.6±2.2 87.5±2.1 88.8±1.8 89.5±0.1

Table 23: AUROC (%) results on VisA segmentation.

Category k=0 k=1 k=2 k=4
WinCLIP CLIPFUSION PaDiM PatchCore WinCLIP CLIPFUSION PaDiM PatchCore WinCLIP CLIPFUSION PaDiM PatchCore WinCLIP CLIPFUSION

Candle 88.9±0.0 97.5±0.0 91.7±2.2 97.2±0.2 97.4±0.2 98.4±0.2 94.9±0.8 97.7±0.3 97.7±0.1 98.5±0.1 95.4±0.2 97.9±0.1 97.8±0.2 98.6±0.1
Capsules 81.6±0.0 96.1±0.0 70.9±1.1 93.2±0.9 96.4±0.6 97.8±0.3 75.7±1.7 94.0±0.2 96.8±0.3 97.9±0.5 79.1±0.7 94.8±0.5 97.1±0.2 97.9±0.1
Cashew 84.7±0.0 72.5±0.0 95.5±0.6 98.1±0.1 98.5±0.2 98.2±0.3 96.4±0.4 98.2±0.2 98.5±0.1 98.5±0.1 97.2±0.3 98.3±0.2 98.7±0.0 98.0±0.5
Chewinggum 93.3±0.0 99.1±0.0 90.1±0.4 96.9±0.3 98.6±0.1 99.0±0.1 93.1±0.7 96.6±0.1 98.6±0.1 98.9±0.1 94.4±0.5 96.8±0.1 98.5±0.1 98.8±0.1
Fryum 88.5±0.0 92.5±0.0 93.3±0.6 93.3±0.5 96.4±0.3 95.2±0.3 94.1±0.6 94.0±0.3 97.0±0.2 96.1±0.3 95.0±0.4 94.2±0.2 97.1±0.1 96.5±0.4
Macaroni1 70.9±0.0 98.6±0.0 89.4±0.9 95.2±0.4 96.4±0.6 99.1±0.1 91.7±0.3 96.0±1.3 96.5±0.7 99.2±0.1 93.5±0.5 97.0±0.3 97.0±0.2 99.3±0.1
Macaroni2 59.3±0.0 96.5±0.0 86.4±1.1 89.1±1.6 96.8±0.4 97.4±0.3 90.1±0.8 90.2±1.9 96.8±0.6 97.5±0.1 90.2±0.3 93.9±0.3 97.3±0.3 97.9±0.2
PCB1 61.2±0.0 91.6±0.0 89.9±0.3 96.1±1.5 96.6±0.6 95.5±0.2 90.6±0.6 97.6±0.9 97.0±0.9 96.2±0.2 93.2±1.5 98.1±1.0 98.1±0.9 97.4±0.9
PCB2 71.6±0.0 91.1±0.0 90.9±1.4 95.4±0.2 93.0±0.4 96.1±0.3 93.9±0.9 96.0±0.3 93.9±0.2 96.7±0.1 93.7±1.0 96.6±0.2 94.6±0.4 97.3±0.3
PCB3 85.3±0.0 88.4±0.0 93.9±0.3 96.2±0.3 94.3±0.3 96.2±0.2 95.1±0.5 97.1±0.1 95.1±0.2 96.9±0.2 95.7±0.1 97.4±0.2 95.8±0.1 97.3±0.2
PCB4 94.4±0.0 93.5±0.0 89.6±0.6 95.6±0.6 94.0±0.9 95.8±0.5 90.7±0.9 96.2±0.4 95.6±0.3 96.7±0.2 92.1±0.5 97.0±0.2 96.1±0.3 97.3±0.2
Pipe fryum 75.4±0.0 87.6±0.0 97.2±0.6 98.8±0.2 98.3±0.2 99.4±0.1 98.1±0.4 99.1±0.1 98.5±0.2 99.4±0.1 98.5±0.1 99.1±0.0 98.7±0.1 99.5±0.0
Mean 79.6±0.0 92.1±0.0 89.9±0.8 95.4±0.6 96.4±0.4 97.3±0.1 92.0±0.7 96.1±0.5 96.8±0.3 97.7±0.1 93.2±0.5 96.8±0.3 97.2±0.2 98.0±0.1

Table 24: AUPRO (%) results on VisA segmentation.

Category k=0 k=1 k=2 k=4
WinCLIP CLIPFUSION PaDiM PatchCore WinCLIP CLIPFUSION PaDiM PatchCore WinCLIP CLIPFUSION PaDiM PatchCore WinCLIP CLIPFUSION

Candle 83.5±0.0 93.3±0.0 81.5±5.3 92.6±0.4 94.0±0.4 94.5±0.7 87.3±1.2 93.4±0.6 94.2±0.2 94.8±0.3 88.3±0.7 94.1±0.4 94.4±0.2 95.3±0.3
Capsules 35.3±0.0 83.7±0.0 30.6±1.1 66.6±4.5 73.6±3.5 87.7±3.1 38.4±3.7 67.9±2.3 75.9±1.9 88.0±2.6 43.3±2.0 69.0±3.2 77.0±1.4 87.2±0.7
Cashew 76.4±0.0 92.3±0.0 73.4±2.1 90.8±0.2 91.1±0.8 91.7±1.4 78.4±2.7 91.4±1.0 90.4±0.6 90.1±1.2 81.2±2.8 92.1±0.3 91.3±0.9 89.6±1.5
Chewinggum 70.4±0.0 89.1±0.0 58.1±0.6 78.2±1.3 91.0±0.5 85.9±1.2 63.7±2.4 78.0±0.4 90.9±0.7 85.5±1.0 67.2±1.8 79.3±0.8 91.0±0.4 84.5±0.7
Fryum 77.4±0.0 88.3±0.0 71.1±1.6 78.7±2.3 89.1±1.0 83.2±2.1 71.2±0.8 81.4±2.8 89.3±0.2 84.1±1.7 73.2±1.3 81.0±1.2 89.7±0.5 85.3±1.4
Macaroni1 34.3±0.0 87.7±0.0 62.2±4.4 83.4±1.3 84.6±2.3 90.0±0.5 71.8±2.4 86.2±4.6 85.2±1.4 91.2±0.8 76.6±2.1 89.6±0.7 86.8±0.8 91.8±0.7
Macaroni2 21.4±0.0 75.5±0.0 54.9±3.6 66.0±3.0 89.3±2.4 80.3±2.0 65.6±3.4 67.2±6.5 88.6±1.7 79.2±1.5 65.9±1.5 78.3±0.9 90.5±1.3 83.0±1.8
PCB1 26.3±0.0 73.5±0.0 63.9±1.8 79.0±10.7 82.5±6.0 86.3±0.7 68.4±4.1 86.1±1.7 83.8±5.0 86.1±2.9 70.2±3.3 88.1±2.6 87.9±2.1 84.9±2.8
PCB2 37.2±0.0 73.5±0.0 64.4±3.8 80.9±0.5 73.6±1.5 80.5±1.8 72.9±3.4 82.9±1.8 76.2±0.9 82.8±0.9 71.9±2.6 83.7±1.0 78.0±1.3 84.0±1.9
PCB3 56.1±0.0 66.2±0.0 69.0±1.2 78.1±2.0 79.5±2.5 82.7±1.9 74.0±2.3 82.2±1.1 82.3±1.8 83.1±1.6 77.2±0.8 84.4±1.9 84.2±1.0 81.7±3.1
PCB4 80.4±0.0 81.2±0.0 59.1±1.8 77.9±3.1 76.6±4.1 84.5±1.8 62.6±3.6 79.5±4.8 81.7±1.2 86.1±1.2 67.9±2.6 83.5±2.5 84.2±0.7 88.5±1.0
Pipe fryum 82.3±0.0 95.2±0.0 83.9±0.8 93.6±0.5 96.1±0.6 96.6±0.3 86.9±0.9 94.5±0.4 96.2±0.6 97.2±0.2 88.7±1.3 95.0±0.5 96.6±0.2 97.0±0.2
Mean 56.8±0.0 83.3±0.0 64.3±2.4 80.5±2.5 85.1±2.1 87.0±0.3 70.1±2.6 82.6±2.3 86.2±1.4 87.3±0.2 72.6±1.9 84.9±1.4 87.6±0.9 87.7±0.5
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A.11 Detailed qualitative results

Figure 6: Qualitative results for 0-shot CLIPFUSION with images for PatchCLIP and MapDiff anomaly
score maps on MVTec-AD.
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Figure 7: Qualitative results for 0-shot CLIPFUSION with images for PatchCLIP and MapDiff anomaly
score maps on MVTec-AD.
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Figure 8: Qualitative results for 0-shot CLIPFUSION with images for PatchCLIP and MapDiff anomaly
score maps on VisA.
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