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ABSTRACT

Diffusion models are a class of generative models that learn to synthesize sam-
ples by inverting a diffusion process that gradually maps data into noise. While
these models have enjoyed great success recently, a full theoretical understanding
of their observed properties is still lacking, in particular, their weak sensitivity to
the choice of noise family and the role of adequate scheduling of noise levels for
good synthesis. By identifying a correspondence between diffusion models and a
well-known paradigm in cognitive science known as serial reproduction, whereby
human agents iteratively observe and reproduce stimuli from memory, we show
how the aforementioned properties of diffusion models can be explained as a nat-
ural consequence of this correspondence. We then complement our theoretical
analysis with simulations that exhibit these key features. Our work highlights how
classic paradigms in cognitive science can shed light on state-of-the-art machine
learning problems.

1 INTRODUCTION

Diffusion models are a class of deep generative models that have enjoyed great success recently
in the context of image generation (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song & Ermon,
2019; Rombach et al., 2022; Ramesh et al., 2022), with some particularly impressive text-to-image
applications such as DALL-E 2 (Ramesh et al., 2022) and Stable Diffusion (Rombach et al., 2022).
The idea behind diffusion models is to learn a data distribution by training a model to invert a
diffusion process that gradually destroys data by adding noise (Sohl-Dickstein et al., 2015). Given
the trained model, sampling is then done using a sequential procedure whereby an input signal (e.g.,
a noisy image) is iteratively denoised at different noise levels which, in turn, are successively made
finer until a sharp sample is generated. Initially, the noise family was restricted to the Gaussian class
(Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020) and the process was understood
as a form of Langevin dynamics (Song & Ermon, 2019). However, recent work showed that this
assumption can be relaxed substantially (Bansal et al., 2022; Daras et al., 2022) by training diffusion
models with a wide array of degradation families. One feature of this work is that it highlights
the idea that sampling (i.e. synthesis) can be thought of more generally as an alternating process
between degradation and restoration operators (Bansal et al., 2022). This in turn calls into question
the theoretical understanding of these models and necessitates new approaches.

A hint at a strategy for understanding diffusion models comes from noting that the structure of the
sampling procedure in these generalized models (i.e., as a cascade of noising-denoising units), as
well as its robustness to the choice of noise model, bears striking resemblance to a classic paradigm
in cognitive science known as serial reproduction (Bartlett & Bartlett, 1995; Xu & Griffiths, 2010;
Jacoby & McDermott, 2017; Langlois et al., 2021). In a serial reproduction task, participants ob-
serve a certain stimulus, e.g., a drawing or a piece of text, and then are asked to reproduce it from
memory (Figure 1A). The reproduction then gets passed on to a new participant who in turn repeats
the process and so on. The idea is that as people repeatedly observe (i.e., encode) a stimulus and
then reproduce (i.e., decode) it from memory, their internal biases build up so that the asymptotic
dynamics of this process end up revealing their inductive biases (or prior beliefs) with regard to that
stimulus domain. By modeling this process using Bayesian agents, Xu & Griffiths (2010) showed
that the process can be interpreted as a Gibbs sampler, and more so, that the stationary behavior of
this process is in fact independent of the nature of cognitive noise involved, making serial reproduc-
tion a particularly attractive tool for studying human priors (Figure 1B). The main contribution of
the present paper is to make the correspondence between diffusion and serial reproduction precise
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Figure 1: Serial reproduction paradigm. A. Participants observe (encode) a stimulus and then try
to reproduce (decode) it from memory. As the process unfolds, the generated samples gradually
change until they become consistent with people’s priors. Drawings are reproduced from Bartlett &
Bartlett (1995). B. Data from a real serial reproduction task reproduced from Langlois et al. (2021).
Participants observed a red dot placed on a background image (here a triangle) and were instructed
to reproduce the location of that dot from memory. The new dot location then gets passed to a new
participant who in turn repeats the task. The initial uniform distribution gets transformed into a
highly concentrated distribution around the triangle’s corners, capturing people’s visual priors.

and show how the observed properties of diffusion models, namely, their robustness to the choice
of noise family, and the role of adequate noise level scheduling for good sampling, jointly arise as
a natural consequence. The paper proceeds as follows. In Section 2 we review the mathematical
formulation of serial reproduction and diffusion models and set the ground for the analysis that fol-
lows. In Section 3, we establish a correspondence between sampling in diffusion models and serial
reproduction and show how it explains key properties of these models. In Section 4 we complement
our theoretical analysis with simulations, and then conclude with a discussion in Section 5.

2 BACKGROUND

2.1 SERIAL REPRODUCTION

We begin with a brief exposition of the mathematical formulation of the serial reproduction paradigm
(Xu & Griffiths, 2010; Jacoby & McDermott, 2017). A serial reproduction process is a Markov
chain over a sequence of stimuli (images, sounds, text, etc.) x0 → x1 → · · · → xt → ... where
the dynamics are specified by the encoding-decoding cascade of a Bayesian agent with some prior
π(x) and a likelihood model p(x̂|x). The prior captures the previous experiences of the agent with
the domain (i.e., their inductive bias), and the likelihood specifies how input stimuli x map into
noisy percepts x̂ (e.g., due to perceptual, production or cognitive noise). Specifically, given an input
stimulus xt, the agent encodes xt as a noisy percept x̂t, and then at reproduction decodes it into a
new stimulus xt+1 by sampling from the Bayesian posterior (a phenomenon known as probability
matching) (Griffiths & Kalish, 2007),

p(xt+1|x̂t) =
p(x̂t|xt+1)π(xt+1)∫

p(x̂t|x̃t+1)π(x̃t+1)dx̃t+1
. (1)

The generated stimulus xt+1 is then passed on to a new Bayesian agent with similar prior and
likelihood who in turn repeats the process and so on. From here, we see that the transition kernel of
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the process can be derived by integrating over all the intermediate noise values against the posterior

p(xt+1|xt) =

∫
p(xt+1|x̂t)p(x̂t|xt)dx̂t

=

∫
p(x̂t|xt+1)p(x̂t|xt)∫

p(x̂t|x̃t+1)π(x̃t+1)dx̃t+1
π(xt+1)dx̂t.

(2)

Crucially, by noting that x̃t+1 is a dummy integration variable we see that the prior π(x) satisfies
the detailed-balance condition with respect to this kernel

p(xt+1|xt)π(xt) = p(xt|xt+1)π(xt+1). (3)
This in turn implies that the prior π(x) is the stationary distribution of the serial reproduction process
irrespective of the noise model p(x̂|x), so long as it allows for finite transition probabilities between
any pair of stimuli to preserve ergodicity (Xu & Griffiths, 2010; Griffiths & Kalish, 2007). This
insensitivity to noise is what makes serial reproduction a particularly attractive tool for studying
inductive biases in humans (Figure 1B). It is also worth noting that another way to derive these
results is by observing that the full process over stimulus-percept pairs (x, x̂) whereby one alternates
between samples from the likelihood p(x̂|x) and samples from the posterior p(x|x̂) implements a
Gibbs sampler from the joint distribution p(x, x̂) = p(x̂|x)π(x).

2.2 DIFFUSION MODELS

We next review the basics of diffusion models and set the ground for the analysis in the next section.
Following (Sohl-Dickstein et al., 2015; Ho et al., 2020), a diffusion model is a generative model that
learns to sample data out of noise by inverting some specified forward process q(x0, . . . , xT ) that
gradually maps data x0 ∼ qd(x0) to noise xT ∼ qn(xT ), where qd(x) and qn(xT ) are given data
and noise distributions, respectively. Such forward process can be implemented as a Markov chain

q(x0, . . . , xT ) = qd(x0)

T∏
t=1

q(xt|xt−1) (4)

with some pre-specified transition probabilities q(xt|xt−1) = Tqn(xt|xt−1;βt) where Tqn is a noise
(diffusion) kernel and βt being some diffusion parameter for which the noise distribution qn is
stationary, i.e.,

∫
Tqn(y|x)qn(x)dx = qn(y). This ensures that for a sufficiently large time t = T

we are guaranteed to transform qd(x) into qn(x). A common explicit example of this is a Gaussian
kernel Tqn(xt|xt−1;βt) = N (xt;

√
1− βtxt−1, βtI) where I is the identity matrix, however we

will not assume that. The inversion is then done by solving a variational problem with respect to a
trainable reverse process pθ(x0, . . . , xT ) which itself is assumed to be Markov

pθ(x0, . . . , xT ) = p(xT )

T∏
t=1

pθ(xt−1|xt) (5)

where p(xT ) = qn(xT ), that is, the reverse process starts from noise and iteratively builds its way
back to data. Since we are interested in the optimal structure of pθ we will suppress θ in what follows.
The reverse process induces a probability distribution over data p(x0) by marginalizing Equation 5
over all xt>0. The variational objective is then given by a bound K on the log-likelhood of the data
under the reverse process L = −

∫
qd(x0) log p(x0)dx0 and can be written as (Sohl-Dickstein et al.,

2015)

L ≥ K =

T∑
t=1

∫
q(x0, . . . , xT ) log

[
p(xt−1|xt)

q(xt|xt−1)

]
dx0 . . . dxT −Hqn (6)

where Hqn is the entropy of the noise distribution qn which is a constant. Finally, by defining the
forward posterior

q(xt−1|xt) ≡
q(xt|xt−1)q(xt−1)∫

q(xt|x̃t−1)q(x̃t−1)dx̃t−1
=

q(xt|xt−1)q(xt−1)

q(xt)
(7)

where q(xt−1) and q(xt) are the marginals of the forward process (Equation 4) at steps t− 1 and t,
respectively, we can rewrite K as (see Appendix A)

K = −
T∑

t=1

Ext∼qDKL [q(xt−1|xt)||p(xt−1|xt)] + Cq (8)
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where DKL is the Kullback-Leibler divergence and Cq is a constant. While Equation 8 is not
necessarily the most tractable form of the bound K, it will prove useful in the next section when we
make the connection to serial reproduction (see Appendix A, Eqs. 17-26 in Ho et al. (2020) for a
similar derivation).

Before proceeding to the next section, it is worth pausing for a moment to review the existing theo-
retical interpretations of diffusion models and the challenges they face. Two general formulations of
diffusion models exist in the literature, namely, Denoising Diffusion Probabilistic Models (DDPMs)
(Ho et al., 2020; Sohl-Dickstein et al., 2015) which adopt a formulation similar to the one used here,
and Score-Based Models (Song & Ermon, 2019; Daras et al., 2022) which learn to approximate the
gradient of the log-likelihood of the data distribution under different degradations, also known as the
score of a distribution, and then incorporate that gradient in a stochastic process that samples from
the data distribution. These formulations are not entirely independent and in fact have been shown
to arise from a certain class of stochastic differential equations (Song et al., 2020). Importantly,
these analyses often assume that the structure of noise is Gaussian, either to allow for tractable ex-
pressions for variational loss functions (Sohl-Dickstein et al., 2015), or as a way to link sampling to
well-known processes such as Langevin dynamics (Song & Ermon, 2019). This theoretical reliance
on Gaussian noise has been recently called into question as successful applications of diffusion mod-
els with a wide variety of noise classes were demonstrated empirically (Bansal et al., 2022; Daras
et al., 2022). We seek to remedy this issue in the next section.

3 DIFFUSION SAMPLING AS SERIAL REPRODUCTION

3.1 MATHEMATICAL DERIVATION

As noted in the introduction, the sampling procedure for diffusion models is strikingly similar to the
process of serial reproduction. In what follows we will make this statement more precise and show
how it allows to explain key features of diffusion models. First, observe that the non-negativity of
the KL divergence implies that the bound in Equation 8 is maximized by the solution

p(xt−1|xt) = q(xt−1|xt) =
q(xt|xt−1)q(xt−1)∫

q(xt|x̃t−1)q(x̃t−1)dx̃t−1
. (9)

In other words, what the diffusion model is approximating at each step t − 1 is simply a Bayesian
posterior with the diffusion kernel q(xt|xt−1) = Tqn(xt|xt−1;βt) serving as likelihood and the
forward marginal at step t − 1, namely q(xt−1), serving as a prior. For clarity, in what follows we
will denote the optimal posterior distribution at step t−1 (Equation 9) as pt−1(x|y) and the marginal
at step t− 1 as qt−1(x).

Next, to make contact with the recent literature that extends diffusion models to generalized noise
families which decompose sampling into a process that alternates between restoration and degrada-
tion (Bansal et al., 2022; Daras et al., 2022) we define the sampling process for a diffusion model
as a Markov sequence xT → x̂T → xT−1 → · · · → xt → x̂t → xt−1 → · · · → x0, where
xT ∼ qn(xT ), x̂t is a noisy version of xt under the noise kernel Tqn(x̂t|xt;βt), and the transition
x̂t → xt−1 is done by denoising using the posterior pt−1. While this might seem at first to be at
odds with the standard definition of sampling in Gaussian DDPMs whereby sampling is done by
iterative applications of the posterior in Equation 9, we will show in Section 3.2 that our definition
is in fact equivalent. From here, the transition kernel for the sampling process at step t − 1 which
we denote by ps,t−1(xt−1|xt) is given by

ps,t−1(xt−1|xt) =

∫
pt−1(xt−1|x̂t)Tqn(x̂t|xt;βt)dx̂t

=

∫
Tqn(x̂t|xt−1;βt)Tqn(x̂t|xt;βt)∫
Tqn(x̂t|x̃t−1;βt)qt−1(x̃t−1)dx̃t−1

qt−1(xt−1)dx̂t.

(10)

This kernel has an identical structure to the serial reproduction kernel in Equation 2, and as such,
the forward marginal qt−1 satisfies detailed balance with respect to it. In other words, we have a set
of detailed-balance conditions given by

ps,t−1(xt|xt−1)qt−1(xt−1) = ps,t−1(xt−1|xt)qt−1(xt). (11)
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A. Forward process: adding noise

B. Reverse process: generation
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E. Robustness to noise type: generation with a different stationary distribution

q(xt|xt-1)
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Figure 2: Simulation results for the optimal sampling process. Data was generated by sampling
two dimensional vectors from a Swiss-roll distribution. We considered different diffusion noise
families and computed their corresponding reverse sampling processes. Each image corresponds to
the distribution of samples at a given iteration in a process. A. Forward process for a Gaussian noise
kernel. B. The corresponding reverse sampling process. C. Reverse sampling process for a bimodal
kernel. D. Reverse sampling for a fade-type noise with uniform stationary distribution. E. Reverse
sampling for a fade-type noise with mixture stationary distribution.

In particular, the last of these ps,0 satisfies this condition for the true data distribution since by
definition q0(x) = qd(x). Now, observe that unlike the case in serial reproduction where we had
a single distribution π(x) satisfying detailed balance at all steps, here we have a sequence of such
distributions. Nevertheless, we can still analyze the induced sampling distribution ps(x0) in light of
Equation 11. Indeed, by substituting the detailed-balance conditions we have

ps(x0) =

∫
ps,0(x0|x1) . . . ps,T−1(xT−1|xT )qn(xT )dx1...T

= qd(x0)

∫
ps,0(x1|x0)

q1(x1)

qd(x1)
. . . ps,T−1(xT |xT−1)

qn(xT )

qT−1(xT )
dx1...T .

(12)

From here we see that the performance of ps(x0) as a good approximator of the true data distribution
qd(x0) critically depends on whether the integral on the right-hand-side of Equation 12 sums up to
one. Observe that the integral can be evaluated step-by-step by first integrating over xT , then xT−1

and down to x1. For the xT integral we have∫
ps,T−1(xT |xT−1)

qn(xT )

qT−1(xT )
dxT =

∫
T (x̂|xT−1;βT )

qT (x̂)

∫
T (x̂|xT ;βT )qn(xT )dxT dx̂. (13)

Now, using the fact that qn is stationary with respect to Tqn and that by construction qT (x) = qn(x),
the rightmost intergral and the denominator cancel out and the remaining integral over x̂ integrates
to 1. Going one step further to the integral over xT−1 (and its own latent x̂) we have∫

ps,T−2(xT−1|xT−2)
qT−1(xT−1)

qT−2(xT−1)
dxT−1 =

∫
T (x̂|xT−2;βT−1)

qT−1(x̂)

∫
T (x̂|xT−1;βT−1)qT−1(xT−1).

(14)
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Unlike before, we are no longer guaranteed stationarity for qT−1. One trivial solution for this is to
use a very strong (abrupt) diffusion schedule {βt} such that the marginals behave like q0 = qd and
qt>0 = qn, that is, within one step we are pretty much at noise level. From the perspective of the
Bayesian posterior in Equation 9, this limit corresponds to the case where the Bayesian inversion
simply ignores the very noisy input and instead relies on its learned prior which happens to be the
data distribution for p0. Such a solution, however, is not really feasible in practice because it means
that the denoising network that approximates the final Bayesian posterior p0 must learn to map pure
noise to true data samples in one step, but this is precisely the problem that we’re trying to solve.
We therefore exclude this solution.

Luckily, there is another way around this problem, namely, if the diffusion parameter βT−1 is chosen
such that it changes qT−1 only by a little so that it is approximately stationary, that is,

qT−1(x̂) ≈
∫

dxT−1T (x̂|xT−1;βT−1)qT−1(xT−1), (15)

then the integral in Equation 14 will again be close to 1, as the denominator cancels out with the
rightmost integral. By induction, we can repeat this process for all lower levels and conclude that

ps(x0) ≈ qd(x0) (16)

Crucially, under this schedule denoising networks only need to learn to invert between successive
levels of noise. This suggests that the structure of the optimal sampling processes allows one to trade
a hard abrupt noise schedule with a feasible smooth one by spreading the reconstruction complexity
along the diffusion path in a divide-and-conquer fashion.

To summarize, we have shown that the sampling process of an optimal diffusion model approximates
the true data distribution irrespective of the choice of noise family, so long as the noise schedule
{βt} is chosen such that it alters the input distribution gradually. This result is consistent with
recent work suggesting that a good scheduling heuristic minimizes the sum of Wasserstein distances
between pairs of distributions along the diffusion path of the forward process (Daras et al. (2022);
see also Dhariwal & Nichol (2021)). It also explains the necessary thinning in βt for later stages of
the synthesis where the marginal becomes more and more structured. In the Section 4, we provide
empirical support for this theoretical analysis.

3.2 CLARIFYING THE CONNECTION TO PREVIOUS WORK

Before moving on to the empirical analysis, we complete our theoretical derivation by showing that
our definition of the sampling process is equivalent to the one used in the well-studied Gaussian
DDPM formalism of Ho et al. (2020). As noted in that paper (Section 3.2 of Ho et al. (2020)), the
posterior is taken to be of the form p(xt−1|xt) = N (xt−1;µ(xt, t),Σ(xt, t)) with Σ(xt, t) = σ2

t I ,
where µ(xt, t) is a trainable function and I is the identity matrix. This can be also written as xt−1 =
µ(xt, t) + σtz where z ∼ N (0, I). In other words, the posterior is given by a Gaussian distribution
around a function of the input µ(xt, t) with some diagonal covariance matrix with variance σ2

t .
Intuitively, equivalence then follows from the fact that introducing an additional noising step in the
sampling process is simply adding Gaussian noise to a Gaussian posterior which corresponds to a
redefinition of the mean and variance parameters (which are design parameters; Dhariwal & Nichol
(2021)). More explicitly, our sampling process is defined as xT → x̂T → xT−1 → · · · → x0,
that is, we start from an initial sample xT and then successively add noise to it and then denoise
it with the posterior. Now, since the initial xT ∼ qn(xT ) is sampled from the stationary noise
distribution, adding noise to it (i.e., transitioning to x̂T ) does not change its distribution so we can
equivalently start by denoising xT using the posterior (as in DDPM) and then adding noise and
so on. Mathematically, this corresponds to applying to the generated posterior sample (i.e., the
denoised xT ) a generic noisy transformation of the form x → αx+ σz′ where z′ ∼ N (0, I) where
α and σ are some scaling and variance parameters (similar to Equation 2 in Ho et al. (2020)). Now,
when combined with the Gaussian posterior above this yields xT−1 = αµ(xT , T ) + ασT z + σz′

which corresponds to p(xT−1|xT ) = N (xT−1;αµ(xT , T ), (α
2σ2

T + σ2)I), but this is equivalent
to the formula used in Ho et al. (2020) up to a redefinition of the mean and variance, namely,
µT (xT , T ) → αµ(xT , T ) and σ2

T → α2σ2
T + σ2. The same holds for all subsequent steps which,

as in the case of DDPM, terminate with a final application of the posterior denoiser. Thus, we see
that the two definitions are equivalent up to a redefinition of the trainable posterior parameters.

6



Under review as a conference paper at ICLR 2023

0 10 20 30 40 50 60 70 80 90 100
Number of steps

0.1

0.2

0.3

0.4

0.5

D
is

ta
n
ce

 t
o
 d

is
tr

ib
u
tio

n
 (

b
its

)

Error (DKL)

A.

B.

C.

0 10 20 30 40 50 60 70 80 90 100
Number of steps

0

0.2

0.4

0.6

0.8

C
o
m

p
le

xi
ty

 (
b
its

)

Complexity

0 10 20 30 40 50 60 70 80 90 100
Steps

0.01

0.02

0.03

0.04

0.05
N

o
is

e
 (

si
g
m

a
)

Noise schedule

T=2
T=3
T=6
T=12
T=24
T=48
T=100

Figure 3: Effect of noise schedule on reconstruction error. A. Different noise injection schedules
for a Gaussian noise kernel. B. Reconstruction error as measured by the KL divergence between
the generated distribution and the true data distribution. C. A measure of inversion “complexity” as
quantified by the maximum KL divergence between two consecutive marginals along the forward
diffusion path.

4 SIMULATIONS

To test the theoretical findings of the previous section, we selected a simulation setup in which the
Bayesian posteriors are tractable and can be computed analytically. Specifically, similar to Sohl-
Dickstein et al. (2015), we considered a case where the data is given by two-dimensional vectors
(x, y) in the range −0.5 ≤ x, y ≤ 0.5 that are sampled from a Swiss-roll-like data distribution. For
tractability, we discretized the space into a finite grid of size 41 × 41 (1,681 bins) with wrapped
boundaries (to avoid edge artifacts). We then analytically computed the forward (noising) distribu-
tions using Equation 4 (Figure 2A) and the reverse sampling distributions using Equation 10 (Figure
2B) (we did not train any neural networks). As for the noise families, we considered multiple op-
tions to test whether the process is indeed robust to noise type. Specifically, we considered Gaussian
noise with a linear variance schedule σt = 0.03 + 0.04 ∗ (t/T ) (Figure 2A-B), a bimodal noise
kernel consisting of a mixture with two modes symmetrically positioned 0.07 units away from the
center resulting in diagonal smearing (Figure 2C), a fade-type noise where there is an increasing
probability pt = 0.01 + 0.99 ∗ (t/T ) to sample from a different pre-specified distribution, namely,
uniform (Figure 2D) and Gaussian mixture (Figure 2E). T denotes the total number of steps as be-
fore (See Supplementary Section B for additional details about the simulations). As can be clearly
seen, in all of these cases, whether we changed the noise kernel or the stationary noise distribution,
the sampler was able to converge on a good approximation for the underlying Swiss-roll distribution
(see Supplementary Figure S1 for additional simulations with the posterior-only sampling scheme
and Supplementary Figure S2 for examples of bad samplers due to inadequate noise schedules).
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Next, we wanted to test how the approximation accuracy of the sampler depends on the graduality of
the noise injection in the forward process as captured by the number of diffusion steps. To that end,
we restricted ourselves to the Gaussian case and considered different noise schedules by varying the
number of steps interpolating between two fixed levels of variance, that is, σt = 0.01+0.04∗ (t/T )
for different values of the number of steps T (Figure 3A). To quantify accuracy, we computed the
reconstruction error as measured by the KL divergence between the generated data distribution and
the true data distribution, i.e., DKL[qd(x0)||ps(x0)] for each of the chosen schedules (Figure 3B).
We also added a measure of inversion “complexity” which measures the biggest change between
consecutive distributions along the forward diffusion path, that is, maxt DKL[qt+1(x)||qt(x)]. The
idea is that the bigger this number is the less gradual (more abrupt) the noise injection is, making the
learning of the denoiser harder in practice, i.e., recovering a clean sample from noisy data (Figure
3C). As predicted, we see that adding more steps results in lower reconstruction error and lower
complexity. In addition, we also see that beyond a certain number of steps the accuracy of the
sampler saturates, presumably because the forward process has enough time to reach stationarity
and to do that in a smooth way (see also Figure S3 for another similar simulation with a different
noise type).

Finally, we also performed diffusion experiments with deep neural networks to validate that this
dependence on the number of steps indeed occurs. Specifically, we trained a Denoising Diffusion
Probabilistic Model (Ho et al., 2020) to denoise MNIST (LeCun & Cortes, 2005), FMNIST (Xiao
et al., 2017), KMNIST (Clanuwat et al., 2018), and CIFAR10 (Krizhevsky et al., 2009) images1. For
this model, the noise at step t depends on the diffusion parameter βt = βmin+(βmax−βmin)∗t/T .
To investigate the effect of the noise schedule, we set βmin = 0.0001, βmax = 0.02 and retrained the
model multiple times with a different number of total steps each time (T ∈ [50, 500]). To evaluate
the sample quality from each trained model, we generated 6,000 images using the same number of
steps as the model was trained on, and computed the Fréchet inception distance (FID; Heusel et al.
(2017)) between each set of generated images and the training set. Smaller FID values correspond
to better image generation quality. We report the results in Figure 4A alongside a sample of the
resulting images for different values of T (Figure 4B). We see that similar to the idealized case,
gradual noise schedules with a bigger number of steps tend to improve sample quality and reach
some saturation level beyond a certain number of steps. We should note that the number of steps
needed for high quality samples may be reduced by an appropriate choice of a sampling method,
however, the overall dependence on the number of steps remains the same (see e.g., Tables 1-4 and
Figures 1, A.1-3 of Watson et al. (2021)).

5 DISCUSSION

In this work, we derived a correspondence between diffusion models and an experimental paradigm
used in cognitive science known as serial reproduction, whereby Bayesian agents iteratively encode
and decode stimuli in a fashion similar to the game of telephone. This was achieved by analyzing
the structure of the underlying optimal inversion that the model was attempting to approximate and
integrating it in a diffusion sampling process. Crucially, this allowed us to provide a new theoretical
understanding for key features of diffusion models that challenged previous formulations, specifi-
cally, their robustness to the choice of noise family and the role of noise scheduling. In addition,
we validated these theoretical findings by simulating the optimal process as well as by training real
diffusion models.

We conclude with some remarks regarding promising future directions. First, in this work we fo-
cused on probabilistic diffusion models, as these are the most common. Nevertheless, a new class
of models suggests that it is possible to implement completely deterministic diffusion processes
(Bansal et al., 2022). A related formulation of serial reproduction (Griffiths & Kalish, 2007) where
the assumption of probability matching is replaced with deterministic maximum-a-posteriori (MAP)
estimation such that the Gibbs sampling process becomes an Expectation-Maximization algorithm
(EM) could provide a suitable setup for reinterpreting such diffusion models. Second, in the present
work we assumed asymptotic stationarity (Sohl-Dickstein et al., 2015) as we wanted to focus on
the simplest theoretical setup that would allow addressing the question of robustness to noise types.

1We used Brian Pulfer’s PyTorch re-implementation of DDPM – https://github.com/
BrianPulfer/PapersReimplementations
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Figure 4: Reconstruction error of a DDPM trained on various datasets for different noise schedules
(as captured by the total number of steps interpolating between two noise levels in the forward
process). A. Performance quantified using FID score. B. Example samples from different models.

However, recent work suggests that this assumption too can be relaxed (Watson et al., 2021); a
follow-up study could extend our work to include such setups. Third, future work could use this
new perspective as an inspiration for defining better noise scheduling metrics by directly trading
off intermediate stationarity, convergence rate, and sample accuracy. Finally, this interpretation also
suggests that it may be possible to come up with multi-threaded sampling procedures that incor-
porate multiple serial processes with different learned ‘priors’ and selection strategies as a way of
generating samples that possess a collection of desired qualities. This is inspired by the idea that
serial reproduction can be interpreted as a process of cumulative cultural evolution whereby a het-
erogeneous group of agents jointly reproduce and mutate stimuli so as to optimize them for different
properties (Xu et al., 2013; Thompson et al., 2022; van Rijn et al., 2022). We hope to explore these
avenues in future research.

Reproducibility Statement. The Matlab code for reproducing all simulation analyses of the op-
timal diffusion sampler discussed in Section 4 is provided with the Supplementary Material at-
tached to this submission. As for necessary code for reproducing the training of the DDPM
model, we simply used Brian Pulfer’s PyTorch re-implementation of DDPM that can be found at
– https://github.com/BrianPulfer/PapersReimplementations. Further details
can be found in Appendix B.
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APPENDIX

A DERIVATION OF EQUATION 8

To get to Equation 8, we simply plug Equation 7 into Equation 6 which yields

K =

T∑
t=1

∫
q(x0, . . . , xT ) log

[
p(xt−1|xt)

q(xt|xt−1)

]
dx0 . . . dxT −Hqn

=

T∑
t=1

∫
q(x0, . . . , xT ) log

[
p(xt−1|xt)q(xt−1)

q(xt−1|xt)q(xt)

]
dx0 . . . dxT −Hqn

=

T∑
t=1

∫
q(x0, . . . , xT ) log

[
p(xt−1|xt)

q(xt−1|xt)

]
dx0 . . . dxT + Cq

(17)

where we defined Cq =
∑T

t=1

∫
q(x0, . . . , xT ) log(q(xt−1)/q(xt)) −Hqn which is simply a con-

stant with respect to p. Next, observe that the Markovian decomposition in Equation 4 implies that∫
q(x0, . . . , xT )dx0 . . . dxt−1dxt+2 . . . dxT = q(xt|xt−1)q(xt−1) (18)

where q(xt−1) =
∫
q(xt−1|xt−2) . . . q(x1|x0)qn(x0)dx0 . . . dxt−2 is the marginal at step t− 1. By

combing this with Bayes formula in Equation 7 we can write

K =

T∑
t=1

∫
q(xt|xt−1)q(xt−1) log

[
p(xt−1|xt)

q(xt−1|xt)

]
dxt−1dxt + Cq

= −
T∑

t=1

∫
q(xt−1|xt)q(xt) log

[
q(xt−1|xt)

p(xt−1|xt)

]
dxt−1dxt + Cq

= −Ext∼qDKL [q(xt−1|xt)||p(xt−1|xt)]] + Cq

(19)

which is the desired result. It’s worth noting that a similar result can be found in Ho et al. (2020).

B ADDITIONAL SIMULATION DETAILS

B.1 SIMULATIONS WITH IDEALIZED MODEL

We ran idealized simulations in two dimensions (x, y) in the range −0.5 ≤ x, y ≤ 0.5. We
used a 41 by 41 finite grid (1,681 bins) with bin width of 0.025. For the data distribution we
used a Swiss-roll distribution similar to Sohl-Dickstein et al. (2015). We made training a bit
more challenging by avoiding bins that have zero density. This was done by interpolating the
Swiss-roll distribution p with a uniform distribution over the finite grid pu so in practice we used
p′ = 0.9 · p + 0.1 · pu. We computed marginal distributions as vectors over the 1,681 bins, and
conditional distributions as 1,681 by 1,681 matrices. In all cases, we computed noise terms with
wrapped boundaries so that boundary artifacts are avoided. We used three types of noise: (1)
Gaussian noise, (2) bimodal noise and (3) fade noise. The Gaussian noise over (x, y) was de-
fined as p(y, x) = C · exp (− 1

2 (y − x)TΣ(y − x)), where Σ = σ · I2 is a diagonal matrix, σ is the
noise parameter, and C is a normalization constant. The bimodal distribution was defined as fol-
lows: p(y, x) = C ·(exp (− 1

2 (y − x+ µ)TΣ(y − x+ µ))+exp (− 1
2 (y − x− µ)TΣ(y − x− µ))),

where µ = (0.05, 0.05) and Σ = σ · I2. The fade noise depended on a parameter f between 0 and 1,
and linearly interpolated between not changing the distribution and completely changing it to some
final distribution pF . It was defined by the following formula: p(y, x) = (1− f) · δ(y−x)+ f · pF .
Where δ(z) is the Dirac two-dimensional delta function. For stationary distribution we chose either
uniform (Fig. 2D) or a mixture with three modes (Fig. 2E). The three equally weighted modes were
located in points x1 = (0.1, 0.2), x2 = (−0.2,−0.1), x3 = (0.2,−0.2) and had covariance matrix
of 0.0128∗I2, 0.0128∗I2, and 0.0128∗I3, where I2 is the 2 by 2 identity matrix and I3 is the matrix
[2, 1; 1, 2]. We provide the code reproducing all figures and simulation as part of the Supplemental
materials.
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A. Gaussian Noise: Sampling with Noise Injection

B. Gaussian Noise: Sampling without Noise Injection

C. Bimodal Noise: Sampling with Noise Injection

D. Bimodal Noise: Sampling without Noise Injection

E. Fade Noise with Non-uniform Stationary Distribution: Sampling with Noise Injection

F. Fade Noise with Non-uniform Stationary Distribution: Sampling without Noise Injection

Figure S1: Comparison between sampling with noise injection and without noise injection for dif-
ferent noise types.

B.2 SIMULATIONS WITH DDPM

For our experiments with deep neural networks, we trained a Denoising Diffusion Probabilistic
Model (Ho et al., 2020) to denoise MNIST (LeCun & Cortes, 2005), FMNIST (Xiao et al., 2017),
KMNIST (Clanuwat et al., 2018), and CIFAR10 (Krizhevsky et al., 2009) images. We used Brian
Pulfer’s PyTorch re-implementation of DDPM – (https://github.com/BrianPulfer/
PapersReimplementations). The UNet (Ronneberger et al., 2015) used by this implemen-
tation is designed to be compatible with single-channel images of size 28x28 (which is standard
for MNIST variants) so CIFAR10 images first had to be resized and transformed to grayscale. Our
focus is not on the technical implementation of DDPM, so we direct interested readers to Brian
Pulfer’s repository as it contains helpful documentation and commentary. The key detail is that for
this model, the noise at step t depends on the diffusion parameter βt = βmin+(βmax−βmin)∗ t/T
where T is the total number of steps and t = 0, 1, 2, ..., T . To investigate the effect of the noise
schedule, we set βmin = 0.0001, βmax = 0.02 and retrained the model multiple times with a dif-
ferent number of total steps each time (T ∈ [50, 500]). For each dataset, this process took less than
2 hours to run on a single RTX 3080 Laptop GPU. To evaluate the sample quality from each trained
model, we generated 6,000 images using the same number of steps as the model was trained on, and
computed the Fréchet inception distance (FID; Heusel et al. (2017)) between each set of generated
images and the training set of the respective dataset.
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C.  Fade noise with a different stationary distribution 
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Figure S2: Examples of bad noise schedules. Similar to the other simulations we had T = 10 steps,
but unlike before the schedules here have a fixed noise parameter that did not change over the 10
steps. A. Gaussian noise. We used a constant σ = 0.01 in all steps. B. Bimodal noise. We used a
constant σ = 0.001 in all steps. C. Fade noise. We used a constant f = 0.0001 in all steps. (see
Supplementary Section B, for the definitions of these parameters).
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Figure S3: Effect of noise schedule on reconstruction error for an additional bimodal noise type.
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