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Abstract. Multiparametric and biparametric magnetic resonance imag-
ing (mpMRI/bpMRI) play an essential role in the detection, pre-biopsy
planning, and staging of clinically significant prostate cancer (csPCA).
One of the most commonly used structured reporting schemes in the eval-
uation of prostate MRI’s for suspected prostate cancer is the Prostate
Imaging-Reporting and Data System (PI-RADS) v.2.1, developed by
multiple international representative groups. Existing machine learning
models for classifying csPCa using PI-RADS are not reproducible due to
the availability of data sets. Meanwhile, public datasets lack PI-RADS
labels, a standard in prostate MRI. This hinders progress in the research
community. FastMRI Prostate is a recently released, publicly available
slice-level MRI dataset with PI-RADS labels. However, research using it
is limited due to its recent release, and no studies have yet applied DI-
NOv2 for csPCa classification on bpMRI. Several medical imaging studies
have shown DINOv2 to be an effective feature extractor. This study aims
to address these gaps by assessing the advantages and limitations of the
DINOv2 family of foundation models on the FastMRI Prostate dataset
for binary csPCa classification. Our findings reveal that DINOv2 models
outperformed other ImageNet pretrained CNN-based models. ViT-g vari-
ant obtained an AUROC = 0.889 for the T2W model and 0.862 for the
DWTI model. This suggests DINOv2 features representations are adapt-
able to this downstream task. There was minimal performance difference
between ViT-g and ViT-L, but a two-fold difference in training time
and VRAM needed, making it a good alternative when computational
resources are limited. ViT-S (21M parameters) achieved comparable per-
formance to ResNet-152 (60M parameters). Overall, this suggests that
DINOv2 models offer a good trade-off between performance and compu-
tational cost, making them a viable option even in resource-constrained
environments.
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1 Introduction

Prostate cancer is a common health issue among the male population often
present in men over 50 years old [4]. According to the Global cancer statistics
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(GLOBOCAN) in 2022, 1.5 million new cases of prostate cancer were registered
worldwide [2]. This represents 7.3% of all cancers in men which made it rank
second most common cancer. In terms of mortality, it is the fifth leading cause
of cancer death in men worldwide. Male patients often seek medical consultation
for lower urinary tract symptoms (LUTS), such as increased frequency, urgency,
weak or intermittent stream, or difficulty emptying the bladder. Some present
with more concerning signs like hematuria, anuria, or dysuria. Others may be
asymptomatic but undergo prostate cancer screening based on age-specific clin-
ical guidelines.

The first screening method for prostate cancer screening, after proper his-
tory taking and physical examination, is a digital rectal exam (DRE), where a
medical professional inserts a finger into the rectum and palpates the prostate
gland to provide a rough size measurement and to feel for irregularities in the
prostate. However, many experts do not recommend this due to limited evidence
of its benefits [22, 15, 11]. The second method is a blood test to measure prostate-
specific antigen (PSA) levels. Elevated serum PSA levels may indicate prostate
cancer, but may also show elevated results from non-cancerous conditions such
as benign prostatic hyperplasia (BPH), which causes prostate enlargement, in-
fections, or due to expected senescent changes, among other causes [13]. Patients
with abnormal DRE or PSA results may then be referred for biopsy to confirm
diagnosis, as a formal diagnosis of prostate cancer can only be done through
histopathologic assessment after biopsy.

Transrectal ultrasound (TRUS)-guided prostate biopsy is a widely used di-
agnostic procedure for the detection of prostate cancer, typically performed in
patients with elevated prostate-specific antigen (PSA) levels or abnormal digital
rectal examination findings. Under real-time ultrasound guidance, tissue sam-
ples are systematically obtained—usually 10 to 12 cores—from different regions
of the prostate for histopathologic evaluation. A pathologist then grades the
samples using the Gleason scale [14]. As an invasive procedure, biopsy carries
risks such as bleeding, pain, and infection. TRUS-guided biopsy also has a high
false-negative rate due to blind sampling, as it often misses areas like the anterior
gland, apex, and transition zone.

Pre-biopsy magnetic resonance imaging play an increasingly vital role in
the early diagnosis of prostate cancer, and have been recommended prior to
biopsies to avoid possible complications as well as false negative sampling. Mul-
tiparametric MRI (mpMRI) and biparametric MRI (bpMRI) are both used in
prostate cancer imaging, each with distinct advantages and limitations. mpMRI
combines T2-weighted (T2W), diffusion-weighted (DWTI), and dynamic contrast-
enhanced (DCE) imaging, offering high diagnostic accuracy, especially for clin-
ically significant cancer. DCE improves lesion characterization in equivocal or
small cases and is supported by clinical guidelines. However, mpMRI requires
contrast administration, increasing scan time, cost, and risks in patients with
renal insufficiency and may cause major adverse effects, including respiratory
or cardiovascular issues and nephrogenic systemic fibrosis. In contrast, bpMRI
omits DCE and relies only on T2W and DWI sequences. This approach signifi-
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cantly shortens the examination time, reduces costs, and eliminates the need for
contrast, making it more accessible and safer for certain patient populations [10].
By using bpMRI, these issues are resolved while still producing similar results
with mpMRI [5, 3,23, 16]. A limitation of bpMRI is its usage with the PI-RADS
scoring system, specifically in the evaluation of the peripheral zone lesions with
a DWI/ADC score of 3, which elevates to a score of 4 if significant contrast
enhancement is detected. Prostate lesions detected on MRI can be graded us-
ing the Prostate Imaging—Reporting and Data System (PI-RADS) v2.1. This
reporting system aims to standardize prostate MRI acquisition, interpretation,
and reporting. The v2.1 scoring system ranges from 1 (very low likelihood of
clinically significant prostate cancer, or csPCa) to 5 (very high likelihood). Scor-
ing is based solely on MRI findings and excludes clinical history, digital rectal
examination (DRE), and PSA levels.

Deep learning models require each input to have an expected outcome value,
also known as a label, to learn the patterns behind the data. In terms of prostate
MRI image PI-RADS scoring, the image dataset must contain enough samples
for every PI-RADS score (i.e 1 to 5) in order to learn the representation of each
score. As highlighted in [1], it is important to have a benchmark dataset to
ensure that research published can be beneficial to the public health community.
Reproducible research by having a benchmark dataset is essential for advancing
machine learning research in medical imaging.

Manual annotation of prostate MRI datasets is time and resource intensive,
especially given the limited number of radiologists trained in this specialized
type of imaging. The recently released FastMRI Prostate [21] dataset, which
is publicly available, includes bpMRI scans with PI-RADS labels and slice-
level annotations that reflect how radiologists assess the likelihood of clinically
significant prostate cancer (csPCa). While the dataset has not yet been ap-
plied to prostate cancer classification tasks, its authors demonstrated feasibility
of diagnosing csPCa by training a ConvNeXt [12] binary classification model
on the provided slice-level labels. Huang et al. [9] showed that DINOv2 mod-
els performed best across three medical imaging benchmarks (i.e Chest X-ray,
iChallenge-AMD, HAM10000). This good performance indicates that features
learned in the DINOv2 self-supervised training from a huge amount of data can
be used for medical imaging. While DINOv2 has shown promise, its transfer-
ability to highly specialized modalities like MRI remains an open question. This
makes it a viable option for testing vision foundation models on the FastMRI
Prostate dataset. This research aims to address the lack of prior work done on
binary csPCa classification using slice-level PI-RADS score labels on the prostate
bpMRI. The primary contributions of our research are as follows:

— Application and limitations of DINOv2 on prostate MRI: We investigated all
DINOvV2 model sizes for the binary csPCa classification based on PI-RADS
score labels and provide novel insights into its transferability, performance
scaling, and domain-specific limitations in prostate MRI.
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— Utilization of FastMRI Prostate dataset: We trained a classifier head on
top of DINOv2 and CNN-based model backbones that can serve as future
baseline performance on this novel dataset.

2 Methodology

2.1 Data

The FastMRI Prostate [21] dataset was used for linear probing various pretrained
models such as DenseNet121 (8], ResNet152 [7], and VGG19 [20] pretrained on
ImageNet1k [6], and DINOv2 [17] pretrained on a large, diverse, curated dataset
of 142 million images via self-supervised learning. It contains T2W and DWI MRI
sequences with PI-RADS labels indicating the existence and score of prostate
cancer for each slice. In total, there are 312 subjects which are divided into
training, validation, and test groups containing 218, 48, 46 subjects respectively.
Table 1 shows the corresponding number of slices for each group including their
distribution across PI-RADS categories (P=1 to P=5). For DWI, we only used
the ADC map and b1500 DWI sequences.

Table 1. Distribution of MRI slices across data splits and PIRADS categories (abbre-
viated as P=1 to P=5) for T2W and DWI sequences.

MRI Seq.|Data Split|Total Slices| P=1 |P=2|P=3|P=4|P=5

Train 6,647 6,106 | 200 | 133 | 88 | 120
T2W | Validation 1,462 1,345 | 23 | 67 | 10 | 17
Test 1,399 1,290 | 41 | 31 | 10 | 27

Train 13,274  |12,186| 244 | 352 | 242 | 250
DWI |Validation 2,916 2,672 | 38 |142| 18 | 46
Test 2,790 2,578 | 46 | 78 | 56 | 32

2.2 Preprocessing

We trained two models for each MRI sequence. This is patterned after how clin-
icians use PI-RADS grading when assessing MRI sequences. Figure 2 shows a
high-level flowchart of our training approach. In the T2W model, U-Net seg-
mentation was applied to extract the region of interest (i.e. prostate area) in the
T2W images [19]. U-Net has shown strong performance in prior studies involv-
ing segmentation in MRI data. Prostate segmentation was necessary because
without it the model also takes into account the unrelated organs and tissues
surrounding the prostate. This causes noise and affects the performance of the
model. In addition, it aligns with the PI-RADS guidelines, which excludes the as-
sessment of the peripheral zone in T2W images. The segmentation step resulted
in a mask of the prostate region. The output image mask was cropped and re-
sized to 224x224, then stacked to three channels to ensure compatibility with
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Fig.1. End-to-end experiment pipeline. (a) Image preprocessing is composed of
prostate segmentation (for T2W only), mask extraction, resizing, and normalization
(b) Data augmentation involves translation, rotation, and horizontal flipping (c) The
backbone weights are frozen (d) Linear classification head outputs 2 classes (0 = low
risk, 1 = high risk)

Validation Set

-VGG19
- ResNet152

(forT2 images oniy)

Test Set

DINOv2’s expected input shape. Data augmentation methods such as horizontal
flipping, random rotation between -10 to 10 degrees, and translation, with lim-
ited minimum and maximum values for each axis, to avoid accidentally removing
the region of interest in the augmented samples. Afterwards, normalization was
applied to the images. The same preprocessing and augmentation steps were
performed for the DWI model, except for prostate segmentation. ADC maps
and b1500 DWI images were stacked after applying the preprocessing methods.

2.3 Training

All models were trained using PyTorch 2.0 [18] on NVIDIA RTX A6000 GPUs.
The DINOv2 models were obtained from the official DINOv2 website. There are
four backbones that vary according to the parameters they have. The classifi-
cation head was left by default to show that linear probing is sufficient for the
downstream task of csPCa classification. To avoid overfitting, several methods
were performed. Cosine learning rate annealing was applied to stabilize model
training. We used SGD optimizer with an initial value for learning rate set at
le™®. Due to the nature of the problem where most samples will generally be
non-csPCa, a weighted binary cross entropy loss function was applied to take
into account the class imbalance.

L=—(wy-y-log(y) +wo-(1—y)- log(l—7))

Where L is the loss function:

wy is the weight of the majority class
wq is the weight of the minority class
1y is the true label

— ¢ is the predicted label

The DenseNet121, VGGNet19, and ResNet152 models were obtained from
the collection of readily available PyTorch models. These were already pretrained
on the ImageNet [6] dataset. The model backbones were used as a feature ex-
tractor while a linear classification head was trained in the same manner as
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DINOv2 models to minimize the variation between the two groups. All of the
models were trained with 20 epochs and a batch size of 32. The batch size was
chosen as the maximum that can fit in the GPU resource used for this study.
The only current model, as of writing, that has set an initial baseline perfor-
mance for FastMRI Prostate dataset is the ConvNeXt architecture pretrained
also on ImageNet. For each of these models, a linear classifier was trained on
top of frozen pretrained features to evaluate downstream task performance. The
end-to-end training pipeline is shown in Figure 1.

Implementation code will be made available upon acceptance to ensure re-
producibility.

3 Results and Discussion

3.1 Evaluation

DWI
(ADC and b1500)

Peripheral Zone
b
Transition Zone Train T2W Model

Fig. 2. Simplified flowchart on PI-RADS based on the MRI sequence

Train DWI Model

MRI Dataset

I

Given the biparametric MRI input from FastMRI Prostate, two models were
trained based on the zone of the prostate. This strategy was patterned after the
PI-RADS assessment standards which suggests the use of T2W in assessing the
transition zone and DWTI for the peripheral zone. Each model will be able to
focus on the characteristics of each MRI sequence. Final score is then evaluated
in the same manner as clinicians do when referencing PI-RADS. Figure 2 shows

the PI-RADS v2 assessment guidelines that clinicians use in assessing a prostate
MRI.

Table 2. Comparison of AUC performance across all models

DINOv2 CNN
ViT-S ViT-B ViT-L ViT-g|ResNet-152 DenseNet-201 VGG-19 ConvNeXt
T2W| 0.83 0.86 0.882 0.889 0.83 0.8 0.77 0.83
DWI|0.797 0.83 0.86 0.862 0.75 0.79 0.71 0.8

The model was evaluated using the area under the receiver operating char-
acterstic curve (AUROC) in order to find out how well the model is able to
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classify. The task is approached as a binary classification problem, PI-RADS
labels greater than or equal to 3 show high risk for csPCa requiring biopsy or
other follow-up, and PI-RADS less than 3 indicates low risk for csPCa. This
aligns with the clinically relevant threshold for distinguishing non-suspicious
from suspicious findings. The developed model was tested against the test set of
the FastMRI Prostate dataset and compared its performance against ImageNet
pretrained CNN models.

3.2 Results

Table 2 shows that overall performance of DINOv2 pretrained models obtain
a higher AUROC than the CNN-based models. An explanation for this is the
quality of features learned by DINOv2 models during pretraining on a huge
amount of unlabeled data, through self-supervised learning, compared to Ima-
geNet1lk. Specifically, the ViT-g variant obtained the highest score among all
other methods for both the T2W model and DWI model. In comparison, the
ViT-S variant scored similarly with other CNN-based models. Despite its sig-
nificantly lower number of parameters (20M), it still achieves performance on
par with ResNet152 (60M). It is expected that as the number of parameters
increases, the performance also improves but only until a certain point. This can
be observed with the score of ViT-L and ViT-g.

Table 3. Training (in minutes) and Inference Time (in milliseconds) for all DINOv2
model sizes including their corresponding number of parameters (in millions) and giga
floating-point operations per second (GFLOPs) per image.

MRI Seq.| Variant |Params|GFLOPs|Training Time|Inference Time
ViT-S/14 20 ~ 4.5 1.77 0.78
ToOW Vi.T-B/14 86 ~ 17 3.01 1.33
ViT-L/14] 300 ~ 61 6.02 2.66
ViT-g/14| 1,100 ~ 225 15.23 6.72
ViT-S/14 20 ~ 4.5 4.68 0.62
DWI ViT-B/14 86 ~ 17 9.5 1.28
ViT-L/14] 300 ~ 61 32.5 4.44
ViT-g/14| 1,100 =~ 225 118.2 16.21

Table 3 shows the wall-clock training and inference time for all DINOv2
models under the same hardware and software environment to ensure fair and
consistent measurement. The time measurement includes the end-to-end pipeline
from loading the image up to running the validation and test set evaluation.
There is minimal performance difference between the two models yet there is a
two to four-fold difference in the training and inference time.

In Table 4, we show the effect of performing preprocessing on the model AUC
scores. Ideally, DINOv2 features are ready to use for natural scene images. How-
ever, in the context of medical imaging, there is a domain shift that needs to be
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Table 4. Performance of the ViT-g model after individual preprocessing steps applied
independently to T2W and DWI modalities. The baseline indicates performance with-
out any preprocessing. Scores reflect AUC performance, and the absolute improvement
compared to the baseline for each MRI sequence.

MRI Seq.|Preprocessing Step AUC|Improvement
Baseline 0.720 —
Center crop 0.833 0.113
Zone segmentation + mask | 0.865 0.145

Tow Horiz9ntal flipping 0.840 0.120
Rotation 0.840 0.120
Translation 0.830 0.110
Normalization 0.872 0.152
All 0.889 0.169
Baseline 0.821 -
Horizontal flipping 0.825 0.004
Rotation 0.826 0.005

DWI Translation 0.830 0.009
Normalization 0.847 0.026
All 0.862 0.041

addressed. We explore if DINOv2 as a feature extractor on a linear classification
head is capable of differentiating between csPCa and non-csPCa. For the T2W
model, the baseline score is 0.72. Applying all preprocessing steps resulted in
0.169 increase which can be attributed to applying prostate zone segmentation
(U-Net) and normalization. The T2W images need to be segmented as there
are several organs visible in this MRI sequence. For this downstream task, we
only need the prostate area, and referencing how clinicians use PI-RADS, the
primary focus of T2W is for the transition zone only. Thus, it only makes sense
to extract only the transition zone area of the prostate. In the DWI model, there
is minimal improvement in the baseline (0.82) with just an increase of 0.041 af-
ter applying the preprocessing steps. Performing normalization contributed the
most to the improvement as it standardizes the intensity distribution resulting in
a better signal-to-noise ratio. This aligns with the PI-RADS as it focuses on the
hypointensity for ADC and hyperintensity of high b-value DWI images. Despite
adding a few preprocessing steps, this does not significantly affect the time it
takes to train the model or perform inference.

3.3 Limitations and Future Work

This study utilized minimal preprocessing and a simple classification head to
evaluate the capabilities of feature extractors, particularly DINOv2’s backbones,
without extensive customization. The scope was limited to binary classification
to establish the potential of DINOv2 for prostate cancer detection on bpMRI.
Additionally, while this study focuses on linear probing, fine-tuning offers a
promising avenue for future improvement. Future work will expand to multi-
class classification using the full PI-RADS scoring system (1-5). While the T2W
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model showed promising results, its performance may improve with advanced
prostate segmentation techniques. Beyond the benchmark dataset, we are now
evaluating the method on clinical MRI data from a tertiary hospital to assess
the method’s performance in real-world settings and its potential for clinical use.

4 Conclusion

This study highlights the advantages and limitations of DINOv2 in 2D binary
classification when applied to FastMRI Prostate. The ViT-g variant obtained the
highest AUROC for both T2W and DWI models. Despite freezing the backbone
which allowed it to act as a feature extractor, it still achieved strong perfor-
mance. However, training required significant VRAM (~ 46GB). Given minimal
performance differences, the ViT-L variant is a more resource-efficient alterna-
tive, using roughly half the VRAM of ViT-g. A key strength of the DINOv2
models lies in the high-quality feature representations learned during large-scale
pretraining. Future work will extend to 2D multi-class classification across all
PI-RADS classes using the FastMRI Prostate dataset.
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