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Abstract

Large Language Models (LLMs) suffer from001
huge number of parameters, which restricts002
their deployment on edge devices. Weight shar-003
ing is one promising solution that encourages004
weight reuse, effectively reducing memory us-005
age with less performance drop. However, cur-006
rent weight sharing techniques primarily fo-007
cus on small-scale models like BERT and em-008
ploy coarse-grained sharing rules, e.g., layer-009
wise. This becomes limiting given the preva-010
lence of LLMs and sharing an entire layer or011
block obviously diminishes the flexibility of012
weight sharing. In this paper, we present a per-013
spective on head-wise shareable attention for014
large language models. We further propose two015
memory-efficient methods that share parame-016
ters across attention heads, with a specific focus017
on LLMs. Both of them use the same dynamic018
strategy to select the shared weight matrices.019
The first method directly reuses the pre-trained020
weights without retraining, denoted as Direct-021
Share. The second method first post-trains022
with constraint on weight matrix similarity and023
then shares, denoted as PostShare. Experimen-024
tal results reveal our head-wise shared models025
still maintain satisfactory capabilities, demon-026
strating the feasibility of fine-grained weight027
sharing applied to LLMs.028

1 Introduction029

Large Language Models (LLMs) have achieved030

breakthrough performance in a variety of natu-031

ral language processing tasks (Wei et al., 2022;032

Bubeck et al., 2023; Zhao et al., 2023). However,033

such remarkable capability typically comes at the034

cost of a substantial increase in the model size (Ka-035

plan et al., 2020). Thus, LLMs with billions of036

parameters (Brown et al., 2020; Touvron et al.,037

2023) are more resource-hungry despite a wide038

margin of superiority over small-scale models (De-039

vlin et al., 2018; Liu et al., 2019). This can also040

pose challenges for deployment on low-capability041

devices due to limited storage and GPU memory.042

To address the high memory requirements of 043

models, weight sharing (Takase and Kiyono, 2021; 044

Liu et al., 2023) aims to reuse the same param- 045

eters to achieve memory- and storage-efficiency 046

while preserving model performance. For small- 047

scale models, e.g., BERT, it is known that several 048

techniques (Lan et al., 2019; Liu et al., 2023) are 049

proposed to explore across-layer parameter sharing. 050

While, Zhang et al. (2022) demonstrate identical 051

weights across different layers are the main cause 052

of training instability and performance degradation. 053

Moreover, the effective of similar techniques at the 054

scale of LLMs remains uncertain. 055

Thus, we strive to solve this central question: 056

Can we design fine-grained weight sharing strat- 057

egy that can smoothly apply to large language 058

models? For an effective memory-efficient weight 059

sharing method tailored to LLMs, two key chal- 060

lenges must be tackled: a) the choice of shared 061

modules whose weights are reused; b) the trade-off 062

between reducing memory footprint and preserving 063

diverse capabilities. 064

In the preliminary work, we empirically evaluate 065

the feasibility of weight sharing across the atten- 066

tion heads in LLMs inspired by attention map (i.e., 067

attention scores) reuse. Subsequently, we intro- 068

duce our design of head-wise shareable attention 069

strategy. It is a simple and intuitive technique for 070

parameter sharing that can be implemented in a 071

few minutes. Specifically, given the pre-trained 072

weight matrices, we concatenate the weight ma- 073

trix W q and W k for each head to measure the co- 074

sine similarity that determines which heads can be 075

shared. Meanwhile, head-wise weight sharing pro- 076

motes parameter diversity in the layers, and thus 077

its performance degradation is acceptable when the 078

number of shared parameters is below 30%. Even 079

as weight sharing ratio increases rapidly, our pro- 080

posed constrained post-training method can narrow 081

the performance drop, which may necessitate addi- 082

tional time. 083
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In summary, our key contributions include:084

• We investigate the feasibility of head-wise085

weight sharing for large language models and086

propose two corresponding methods named Di-087

rectShare and PostShare.088

• The proposed DirectShare is time-efficient and089

retain a large portion of the performance when090

sharing ratio is below 30%. Complementarily,091

PostShare yields satisfactory performance via092

post-training, especially under large ratios.093

• Experiments show our proposal achieves compa-094

rable performance to the competitive memory-095

efficient methods. Additional analysis also indi-096

cates its efficiency in small-scale models.097

2 Related Works098

2.1 Memory-efficient Approaches for LLMs099

With the growing size of language models, several100

memory-efficient techniques are proposed to solve.101

One line to reducing the memory footprint involves102

network compression, like quantization (Bai et al.,103

2020; Tao et al., 2022), pruning (Yang et al., 2022;104

Tao et al., 2023) and knowledge distillation (Wu105

et al., 2023; Tan et al., 2023). However, when106

applied to LLMs, many approaches have become107

infeasible (Frantar and Alistarh, 2023). To recover108

accuracy, they require extensive post-training of109

the model (Dettmers et al., 2023; Sun et al., 2023).110

In addition to these conventional methods, re-111

searchers have also investigated more efficient vari-112

ations of the self-attention mechanism for LLMs113

(Kitaev et al., 2020; Lv et al., 2023). Reformer (Ki-114

taev et al., 2020) leverages sparsity in the attention115

layers to improve the efficiency on long sequences116

and with small memory use. Lightformer (Lv et al.,117

2023) deploys SVD weight transfer and parameter118

sharing, which can significantly reduce the parame-119

ters on the premise of ensuring model performance.120

In this paper, our focus is on weight sharing across121

attention heads.122

2.2 Weight Sharing123

Weight sharing is a widely used technique (Lan124

et al., 2019; Liu et al., 2023; Lv et al., 2023; Xu125

and McAuley, 2023) that aims to improve param-126

eter efficiency and reduce inference memory foot-127

print. Weight sharing enables model compression128

by eliminating redundant parameters and decouples129

computation and parameters by reusing the same130

parameters for multiple computations.131

Task-oriented Weight Sharing. One of the 132

prevalent tasks using weight sharing mechanisms 133

is nerual machine translation (NMT). Tied Trans- 134

former (Xia et al., 2019) considers model-level 135

sharing and shares the weights of the encoder 136

and decoder of an NMT model. Dabre and Fu- 137

jita (2019) proposes a method, which shares the 138

weights across all Transformer layers and keeps 139

performance in NMT. Besides, Chi et al. (2021) 140

bring the idea of ALBERT (Lan et al., 2019) to the 141

speech recognition task. 142

Layer-wise Weight Sharing. Universal Trans- 143

former (Dehghani et al., 2018) shares the weights 144

across all layers with a dynamic halting mechanism 145

and improves accuracy on several tasks. Subformer 146

(Reid et al., 2021) utilizes sandwich-style param- 147

eter sharing, which only shares the central layers 148

while leaving the first and last layers independent. 149

Takase and Kiyono (2021) study strategies to ex- 150

plore the best way to prepare parameters of M lay- 151

ers and assign them into N layers (1≤M≤N). 152

3 Motivation and Empirical Analysis 153

In this section, we analyze the feasibility of head- 154

wise weight sharing from the perspective of atten- 155

tion map reuse. 156

3.1 Attention Map Similarity: From 157

Layer-wise to Head-wise 158

Prior researches (Xiao et al., 2019; Ying et al., 159

2021; Bhojanapalli et al., 2021) demonstrate the 160

effectiveness of attention map reuse due to the high 161

similarity of attention scores between different lay- 162

ers (especially for adjacency layers). Motivated by 163

this, we delve into attention map similarity, specif- 164

ically transitioning from layer-wise to head-wise 165

analysis. To measure the evolution of the attention 166

maps over layers and heads, we use the cosine sim- 167

ilarity Scos. When Scos equals one, it means that 168

the attention maps are perfectly similar. Consid- 169

ering two specific self-attention layers, the cosine 170

similarity is calculated as follows: 171

Scos(Ap,Aq) =
AT
p Aq

∥Ap∥∥Aq∥
(1) 172

where Ap,Aq denote the attention map of layers p 173

and q. 174

We visualize the layer-wise and head-wise at- 175

tention map similarity across three task-specific 176

datasets: WMT14 (En-Fr) (Bojar et al., 2014), 177

CommonsenceQA (Talmor et al., 2019) and WSC 178
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Figure 1: (a) Layer-wise Attention Map Similarity. Taking the last layer as an example, the most similar attention
layer with it is marked with

√
. (b) Head-wise Attention Map Similarity.

√
mark the top n heads whose attention

maps that are most similar to the 6-th head in the last layer(n=the number of heads per layer). (c) Weight Matrix
Similarity. ⃝ mark the connection between attention map similarity and weight similarity.

(Levesque et al., 2012). As shown in Fig. 1(a) and179

(b), the degrees of similarity in attention scores180

computed in different layers and heads present a181

certain level of consistency across different tasks.182

In addition, we find that the cosine similarity val-183

ues for pairs with high similarity are higher among184

different heads compared to layers. Specifically,185

the most similar self-attention layers reach a cosine186

similarity value of approximately 0.90, while in the187

case of head-wise comparisons, several pairs have188

a remarkable similarity of nearly 0.99.189

One observation is that as the number of pa-190

rameters increases, modules with high similarity191

exhibit variations, particularly in the fine-grained192

(e.g., head-wise) comparisons within large-scale193

pre-trained language models. Existing approaches194

employ "learning to share" techniques to dynami-195

cally adjust the sharing strategy (Xiao et al., 2019)196

or use a uniform sharing strategy but train the mod-197

ified model from scratch (Ying et al., 2021; Shim198

et al., 2023). However, such strategies pay little199

attention on reusing attention map among heads200

and incur high computational costs for LLMs.201

3.2 From Attention Map Similarity to Weight202

Matrix Similarity203

Attention weight matrix similarity provides a com-204

plementary perspective to attention map similarity,205

since the attention scores are calculated based on206

the weight matrices W q,W k. Weight sharing is207

traditionally based on the assumption that overpa-208

rameterization is evident in large-scale Transformer209

models, i.e., the difference in weights decreases as210

model size increases (Li et al., 2020). In this pa- 211

per, we explore a potential relationship between 212

attention map similarity and weight similarity. 213

As mentioned in Section 3.1, head-wise atten- 214

tion map similarity is higher than the cross-layer 215

similarity, while to the best of our knowledge, head- 216

wise attention map reuse is yet to be explored. This 217

might be attributed to the difficulty in finding an 218

optimal dynamic head-wise sharing strategy across 219

different tasks. One intuitive solution is to first 220

measure the attention map similarity between ev- 221

ery pair of heads in each dataset separately, and 222

then choose the overlapping modules to share. 223

Combined with the analysis of weight matrix 224

similarity, we have made a key discovery: given a 225

pre-trained LLM, by concatenating the weight ma- 226

trix W q and W k for each head to measure the co- 227

sine similarity, the most similar weight matrix cor- 228

responds to the overlapping modules with highly 229

similar attention maps observed across different 230

datasets. As illustrated in Fig. 1(b) and (c), deep 231

green circles mark the connection between atten- 232

tion map similarity and weight similarity (more 233

analysis in Appendix B). 234

This finding implies that attention heads with 235

high weight matrix similarity also demonstrate 236

analogous attention map similarity regardless of 237

the datasets and model size. Furthermore, since 238

different heads within the layer present sufficient 239

diversity (Zhou et al., 2021; Vig, 2019), we suppose 240

that weight sharing among these heads can result 241

in higher model behavior consistency compared to 242

layer-wise weight sharing. Thus, we further pro- 243
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Figure 2: ① DirectShare: Inspired by attention map reuse, directly share weight matrices across different heads
based on cosine similarity; ② PostShare: To balance the memory usage and the performance, implement post-
training with the constraint of weight matrix similarity and then share.

pose a simple yet effective method for head-wise244

weight sharing, especially validating its feasibility245

in large-scale models.246

4 Head-wise Shareable Attention247

Inspired by Section 3, we present a perspective on248

head-wise shareable attention for LLMs. Based249

on one straightforward yet effective weight sharing250

strategy, we propose two complementary methods,251

named DirectShare and PostShare. The overview252

of our proposal is presented in Figure 2.253

4.1 Head-wise Weight Sharing Strategy254

Multi-Head Attention (MHA) block is essentially255

a procedure that computes the relevance of each256

token in a sentence with respect to all other tokens.257

Let L be the number of input tokens and M be258

the number of attention heads in total. Given the259

input X ∈ RL×D, we can obtain queries, keys, and260

values in the i-th (1≤i≤M ) head via three weight261

matrices, denoted by W q
i ∈ RD×dq , W k

i ∈ RD×dk262

and W v
i ∈ RD×dv , respectively. D is the embed-263

ding dimension, and dq, dk(= dq), dv represent the264

dimensions of three weight matrices, respectively.265

To investigate the strategy of weight sharing ap-266

plied to all the above three weight matrices across267

heads for LLMs, we perform preliminary experi-268

ments in the choice of head-wise match functions269

Match(·,·). For the match functions, inputs are the270

weight matrices of head i, j and outputs are called271

matching scores m. The higher the score, the more272

likely it is to share parameters across the heads.273

m∗
i,j = Match(W ∗

i ,W
∗
j ), ∗ ⊆ {q, k, v} (2)274

Based on our intuitive analysis in Section 3.2, we275

choose the cosine similarity between the concate-276
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Figure 3: Experiments performed on PIQA and Open-
BookQA using different head-wise match functions for
Baichuan2-7B model.

nation matrix of W q
i and W k

i : 277

mq
i,j = mk

i,j = mv
i,j = Scos(W q

i ||W
k
i ,W

q
j ||W

k
j )

(3) 278

Besides, we try another five match functions to 279

compare: (1) Only W q
i used to measure the co- 280

sine similarity, i.e., m∗
i,j = Scos(W q

i ,W
q
j ); (2) 281

Only W k
i used to measure the cosine similarity, 282

i.e., m∗
i,j = Scos(W k

i ,W
k
j ); (3) Only W v

i used 283

to measure the cosine similarity, i.e., m∗
i,j = 284

Scos(W v
i ,W

v
j ); (4) Concatenate all the three ma- 285

trices and then calculate the cosine similarity, i.e., 286

m∗
i,j = Scos(W q

i ||W k
i ||W v

i ,W
q
j ||W k

j ||W v
j ); (5) 287

Separately use W q
i ,W

k
i ,W

v
i to measure the cosine 288

similarity and do weight sharing respectively, i.e., 289

m∗
i,j = Scos(W ∗

i ,W
∗
j ) and again ∗ ∈ {q, k, v}. 290

Figure 3 shows the results of our exploratory 291

study via DirectShare. As evidenced by the per- 292

formance curve, using separately weight sharing 293

causes a significant decline in performance com- 294

pared with sharing the three weight matrices to- 295

gether. And it is enough to do head-wise weight 296

sharing focusing only on the concatenation ma- 297

trix of W q
i and W k

i , since it achieves a favorable 298
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trade-off between reducing memory footprint and299

maintaining performance.300

4.2 DirectShare301

In practice, we traverse all head pairs to compute302

matching scores on Equation 3 and for each head,303

select the one with the highest score to match.304

When candidate shareable head pairs prepared, we305

select the top-N pairs in descending order accord-306

ing to the desired sharing ratio α. Finally, we can307

share the weight matrices together between each308

selected attention head pairs. A detailed algorithm309

for our DirectShare is presented in Algorithm 1 and310

Appendix A.

Algorithm 1: DirectShare using Head-
wise Weight Sharing Strategy

Input: Sharing ratio α, Original LLMM,
Number of layers L,
Number of heads per MHA blockH
Output: The LLMM∗ after weight sharing

1 Initialize candidate buffer Dτ ;
2 for layeri ← 2 to L do
3 for i← 1 toH do
4 indexi ← (layeri, i)
5 indexm← None
6 sm← -1
7 for layerj ← 1 to layeri − 1 do
8 for j ← 1 toH do
9 indexm ← (layerj , j)

10 Compute Scos using Eq. 3;
11 if Scos > sm then
12 sm ← Scos

13 Store candidate shareable head pair
< indexi, indexm, sm > in Dτ ;

14 Sort Dτ by descending matching scores sm;
15 N ← Top_N(Dτ , L,H, α);
16 M∗←Weight_Share(M, N ).

311

4.3 PostShare312

Although DirectShare demonstrates effectiveness313

in our experiments, we have also encountered no-314

ticeable performance drop in minor reading com-315

prehension datasets. To alleviate this problem, we316

propose PostShare, softly aligning model weights317

during the post-training process.318

With the same sharing strategy (Section 4.1),319

PostShare first selects the set of weight matrices320

to share. Next, we incorporate a regularization321

term into the loss function to constrain our post- 322

training process, encouraging selected weight ma- 323

trices more similar: 324

Lw =
1

|N |
∑

(i,j)∈N

 ∑
∗∈{q,k,v}

∥∥W ∗
i −W ∗

j

∥∥
2


(4) 325

where N is the set of selected attention head pairs 326

for sharing. With this regularization weight loss, 327

the proposed PostShare learn model weights by 328

minimizing the following combined loss function: 329

L = Lpost−training + γ × Lw (5) 330

where Lpost−training is the original post-training 331

loss, γ controls the strength of Lw. After the post- 332

training process, the corresponding weight matrices 333

can be shared as DirectShare does. Although post- 334

training indeed increases the time cost of weight 335

sharing, PostShare achieves stable and satisfactory 336

performance across different tasks when reducing 337

memory usage. 338

5 Experiments 339

5.1 Experimental Settings 340

Models. We evaluate DirectShare and PostShare 341

on two open-source LLMs: Llama2 (Touvron et al., 342

2023) and Baichuan2 (Baichuan, 2023) with 7B 343

and 13B parameters. In PostShare, we use English 344

Wikipedia (Foundation) to post-train the backbone 345

models for weight sharing. 346

Evaluation. To comprehensively evaluate the 347

model capabilities, we experiment on five distinct 348

tasks: reasoning, understanding, language, knowl- 349

edge and examination. For consistent comparisons, 350

we deploy open-source LLM evaluation platform 351

OpenCompass (Contributors, 2023). 352

Baselines. Since existing weight sharing tech- 353

niques do not support LLMs, we compare Direct- 354

Share against Magnitude Pruning (Zhu and Gupta, 355

2017) and LLM-Pruner (Ma et al., 2023), two in- 356

fluential works for model pruning. Certainly, they 357

are not directly comparable. To ensure fairness in 358

the experiments, both of them only prune the multi- 359

head attention module and thus compare when the 360

same number of parameters is reduced. See Ap- 361

pendix C for additional information. 362

5.2 Main Results 363

5.2.1 Evaluation on DirectShare 364

Table 1 shows the overall performance of Direct- 365

Share based on Llama2 models. Benchmarks are 366
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Benchmark Type Reasoning NLU Knowledge

Ratio Method CMNLI OCNLI AX-b AX-g RTE RACE-
middle

RACE-
high OBQA CSL TNEWS Wino-

Grande BoolQ C-Eval MMLU

0% Llama2-7B 32.98 33.12 53.53 55.34 49.82 33.15 35.51 31.80 55.62 20.22 54.04 70.67 32.20 46.69

10%

Magnitude 32.99 30.63 56.70 49.44 47.29 25.42 26.47 28.20 49.38 14.85 51.58 60.80 22.16 28.20

LLM-Pruner 32.99 33.75 57.61 50.00 48.38 28.20 30.73 27.20 53.12 19.76 52.98 66.09 22.31 38.11

DirectShare 33.00 32.50 54.17 51.97 50.90 28.34 28.96 28.20 54.37 20.86 52.63 67.74 28.75 43.43

30%

Magnitude 33.16 35.00 54.71 50.56 46.93 21.80 21.53 25.00 45.62 7.01 50.88 44.59 24.38 23.15

LLM-Pruner 32.99 31.25 56.34 52.53 48.74 21.52 22.21 26.80 50.00 10.20 50.88 54.77 22.82 25.16

DirectShare 33.33 32.50 57.07 51.69 49.10 21.45 21.53 26.00 51.25 20.22 50.18 54.43 26.24 26.53

0% Llama2-13B 32.99 35.00 58.81 50.56 47.29 60.24 58.03 42.40 58.75 22.13 55.44 71.50 40.17 55.81

10%

Magnitude 32.82 33.12 51.99 50.56 48.38 22.42 21.78 27.40 51.25 15.39 49.82 62.32 22.52 27.54

LLM-Pruner 32.99 36.25 58.70 50.00 46.93 51.46 50.80 47.00 56.25 20.95 55.44 68.07 30.25 51.45

DirectShare 32.99 36.25 57.61 50.00 47.29 54.04 55.63 39.40 56.88 17.94 54.39 69.45 37.17 52.81

30%

Magnitude 33.78 33.75 46.65 50.00 51.99 21.80 22.01 28.80 46.25 4.19 49.12 56.45 23.99 22.86

LLM-Pruner 32.99 34.38 57.16 54.21 45.85 23.96 25.33 26.40 53.75 16.76 51.58 63.21 22.17 27.22

DirectShare 32.99 35.00 58.33 50.00 46.57 26.53 27.53 27.40 59.38 16.12 50.18 59.36 22.30 30.79

Table 1: Evaluation results of DirectShare based on the Llama2-7B and Llama2-13B models. Bold and underline
indicate the best and the second best results.

classified into three categories: reasoning, natu-367

ral language understanding (NLU) and knowledge-368

related. The corresponding results for Baichuan2369

models can be found in Appendix D.370

Logical and Common Sense Reasoning. In the371

domain of reasoning, when applying a 30% param-372

eter sharing to Llama2-7B, our DirectShare can373

still maintain an average performance of 99.51%374

across the five benchmarks, compared to the base375

model. With the same setting, the shared Llama2-376

13B retains 99.21% performance. This suggests our377

finding of head-wise shareable attention for LLMs378

indeed can work without significant performance379

degradation in reasoning tasks.380

The overall efficacy of our DirectShare rivals381

with the structured pruning results of LLM-Pruner,382

without any training. Moreover, our method is383

quite simple and fast, independent on the origi-384

nal training corpus, while structured pruning will385

nearly fail in the zero-shot generation tasks without386

dependencies (Ma et al., 2023).387

Natural Language Understanding (NLU). Com-388

pared to reasoning tasks, our experimental results389

unveil a notable performance decrease of approxi-390

mately 30% in large-scale reading comprehension391

datasets when applying DirectShare to Llama2-7B392

model. Beyond this, we discover that on content393

summary and analysis tasks, DirectShare manages394

to retain 94.23% of the performance exhibited by 395

the base model. The evaluation results of Llama2- 396

13B align with those of Llama2-7B and we find 397

the accuracy gap is larger as model size increases. 398

This trend also exists in Magnitude Pruning and 399

LLM-Pruner, even the performance drop is larger: 400

LLM-Pruner drops ≈ 3 points more than ours on 401

average while Magnitude Pruning is outperformed 402

by ours by a large margin. 403

To mitigate this degradation, some post-training 404

pruning methods like SparseGPT (Frantar and Al- 405

istarh, 2023) preserves accuracy via the weight 406

update procedure. Similarly, LLM-Pruner uses the 407

low-rank approximation (LoRA, Hu et al., 2021) to 408

post-train the pruned model. Motivated by this, our 409

PostShare proves to be beneficial, substantially im- 410

proving 17.80% accuracy, albeit at a certain amount 411

of time cost. For more details refer to Section 5.2.2. 412

However, this does not diminish the significance 413

of our DirectShare. The absence of post-training 414

allows us to better understand the feasibility of 415

head-wise weight sharing for LLMs. 416

Knowledge-related Tasks. As depicted in Table 1, 417

DirectShare takes a clear advantage over other ap- 418

proaches in the field of examination. Our chosen 419

C-Eval and MMLU span diverse disciplines to test 420

both world knowledge and problem solving abil- 421

ity exclusively in a Chinese and English context, 422

6



Ratio Method WinoGrande BoolQ C-Eval MMLU RACE-middle RACE-high OBQA OBQA-fact

0% Llama2-7B 54.04 70.67 32.20 46.69 33.15 35.51 31.8 42.2

30% DirectShare 50.18 54.43 26.24 26.53 21.45 21.53 26.00 27.60
PostShare 52.98 ↑ 2.80 66.57 ↑ 12.14 26.38 ↑ 0.14 33.36 ↑ 6.83 29.81 ↑ 8.36 29.45 ↑ 7.92 27.60 ↑ 1.60 33.60 ↑ 6.00

Table 2: Overall Performance of PostShare based on Llama2-7B model. See Appendix E for results on Llama2-13B.

respectively. To make this more concrete, Fig-423

ure 4 vividly contrasts the performance across dif-424

ferent subjects based on Llama2-7B on C-Eval and425

MMLU. But we have to admit directly do weight426

sharing across attention heads results in a obvious427

decline in knowledge-related abilities, which can428

be solved in PostShare.429

Human
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Other

(a) MMLU

20
22
24
26
28
30

A
cc

ur
ac

y

Magnitude LLM-Pruner DirectShare

Human
STEM

Social
Other

Hard
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20
22
24
26
28
30

A
cc

ur
ac

y

Figure 4: Performance of DirectShare across different
subjects based on Llama2-7B on C-Eval and MMLU.

5.2.2 Evaluation on PostShare430

Based on the evaluation conducted on DirectShare,431

we experiment on PostShare, with a special focus432

on those benchmarks where DirectShare experi-433

ences a large accuracy degradation.434

Table 2 reports how the performance improves435

with only 0.5 training epoch for Llama2-7B model.436

Specifically, in the reading comprehension and437

knowledge-related tasks mentioned above, Post-438

Share achieves 87.53% of the overall accuracy at-439

tained by the original model. Most of the gap be-440

tween models after DirectShare and the original441

counterparts can be narrowed via PostShare, espe-442

cially in BoolQ and RACE datasets.443

Last, it is important to emphasize that here we444

perform post-training with limited training corpus445

and thus it runs the risk of overfitting when train-446

ing only for one epoch. For example, PostShare447

achieves the higher accuracy in BoolQ at 0.3 epoch448

than at 0.5 epoch (68.29 vs. 66.57). In contrast, as449

the training epoch increases from 0.5 to 0.9, the450

accuracy in WinoGrande rises (52.98 vs. 54.39). It451

means that due to the domain-constrained corpus,452

overfitting to one specific dataset will potentially453

compromise the capabilities in other tasks. The454

in-depth analysis is provided in Appendix F.1.455

5.3 Additional Analysis 456

Statistics of Memory Reduction. Table 3 presents 457

the statistics of the parameter count and memory 458

requirements when applying DirectShare. When 459

sharing 30% parameter sharing in the MHA block, 460

our method achieves 10-13% memory. 461

Moreover, we find our weight sharing strategy 462

(Section 4.1) also applies to FFN block. We directly 463

observe the weight matrix similarity in FFN and 464

find the concatenation matrix of gate_proj, up_proj 465

and down_proj can be used as matching function 466

for FFN block. Since FFN does not have explain- 467

able fine-grained sub-blocks (like attention heads 468

in MHA), we use Traversal Searching method to 469

choose the optimal size of sub-block and find shar- 470

ing the whole FNN layer works best in the perfor- 471

mance maintenance. Finally, when we share 30% 472

of parameter sharing in both MHA and FFN block, 473

the model can save 26-28% GPU memory.

Sharing Ratio #Params GPU Memory

Llama2-7B
0% 6.74B/100% 17826M/100%
30% MHA 6.09B/90.36% 15512M/87.02%
30% MHA+FFN 4.74B/70.33% 12932M/72.55%

Llama2-13B
0% 13.02B/100% 30800M/100%
30% MHA 11.76B/90.32% 27898M/90.58%
30% MHA+FFN 9.21B/70.74% 23002M/74.68%

Table 3: The actual memory savings brought by Direct-
Share on Llama2 models (recorded during inference on
the BoolQ Dataset in OpenCompassv1.0 platform).

474
Ablation on Head-wise Matching Functions. For 475

weight sharing, the choice of shared heads is criti- 476

cal. In Figure 3, we plot the performance curve on 477

PIQA (Bisk et al., 2019) and OpenBookQA using 478

different head-wise match functions for Baichuan2- 479

7B model. And the corresponding detailed results 480

are presented in Appendix F.2. Notably, using the 481

cosine similarity between the concatenation matrix 482

of W q and W k attains the most favorable outcomes. 483

This may be because it guarantees the maximum 484

similarities between attention maps from the model 485
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Method
Ratio=30% CMNLI OCNLI AX-b AX-g RTE Wino-

Grande BoolQ C-Eval MMLU RACE-
middle

RACE-
high OBQA OBQA-

fact CSL

DirectShare 33.33 32.50 57.07 51.69 49.10 50.18 54.43 26.24 26.53 21.45 21.53 26.00 27.60 51.25

DirectShare
+ 4bit GPTQ

34.61
↑ 1.28

30.63
↓ 1.87

57.79
↑ 0.72

47.47
↓ 4.22

49.82
↑ 0.72

49.12
↓ 1.06

51.95
↓ 2.48

21.88
↓ 4.34

25.38
↓ 1.15

21.24
↓ 0.21

21.33
↓ 0.20

23.40
↓ 2.60

26.60
↓ 1.00

50.00
↓ 1.25

Table 4: Performance of combining weight sharing and quantization on Llama2-7B model.

before and after weight sharing. Also, this choice486

is much more stable and robust in some tasks like487

reading comprehension(e.g., OpenBookQA).488

Robustness on the Model Size. In previous489

experiments, we adopt our approach in LLMs.490

Since small-scale models are not highly over-491

parameterized as large-scale models (Gao et al.,492

2023), we further verify the effectiveness of our493

method on smaller models like BERT-base, GPT2-494

small. For analysis, we set the sharing ratio from495

0% to 50% with a step of 10% for the fine-tuned496

GPT-small model on WMT-14 En-Fr dataset. As497

shown in Table 5, at a 50% sharing ratio, the GPT-498

small can still yield a BLEU score of 39.44 without499

any post-training. Such kind of variance in perfor-500

mance is acceptable that to some degree proves our501

method is also suitable for small-scale models.502

Sharing Ratio 0% 10% 20% 30% 40% 50%

BLEU 43.62 42.49 41.95 41.34 39.96 39.44
Meteor 42.33 40.75 40.18 38.43 37.21 36.62

Table 5: Robustness on the model size via PostShare
(performed on GPT2-small using WMT-14 En-Fr).

Combine Weight Sharing with Quantization. In503

terms of saving memory, post-quantization em-504

ploys the strategy of reducing precision in the LLM505

parameters, while weight sharing aims to reduce506

the number of parameters. From these two differ-507

ent directions, we suppose integrating weight shar-508

ing and quantization may help towards even more509

memory reduction of LLMs. Hence, we choose510

GPTQ (Frantar et al., 2022) as a representative and511

test the effectiveness of applying two techniques512

in tandem. Specifically, we quantize Llama2-7B513

model after 30% DirectShare to 4 bit precision. As514

reported in Table 4, they can be effectively com-515

bined with no more than 5 points performance drop.516

Combine PostShare with DirectShare. Another517

interesting research finding is the combination of518

our DirectShare and PostShare, where PostShare519

can play a role in fast performance recovery for Di-520

rectShare. Specifically, if we set the sharing ratio to521

30% and post-train only 0.5 epoch, the combination522

based on Llama2-7B performs on par with the Post-523

Share, as Figure 5 shows. It can also be seen that524

21.45

29.81
29.18

21.53

29.45 27.19

50.18
52.98 54.04

51.69

53.93
51.12

65.94
76.00

76.50
26.00

27.60

26.40

54.43

66.5768.96 26.24 26.38

27.65

Figure 5: Evaluation results when combining Direct-
Share with PostShare based on Llama2-7B model.

DirectShare+PostShare outperforms in some spe- 525

cific datasets like BoolQ and WinoGrande, which 526

we speculate is due to the mitigation of overfitting 527

problem in PostShare to some extent. 528

Visualization Study on the Shared Weights. To 529

provide a more detailed explanation of our ratio- 530

nale behind head-wise weight sharing, we conduct 531

a visualization study on the ratios of weight shar- 532

ing across the MHA layers in two models of dif- 533

ferent scales (see Appendix F.3). Results indicate 534

the shareable weights distribution across attention 535

heads is similar regardless of the sharing ratio. We 536

also observe a relative balanced sharing ratio across 537

MHA layers than layer-wise weight sharing, which 538

may seem counter-intuitive. However, we find such 539

fine-grained operation on weights has already been 540

used in model pruning (Sun et al., 2023; Ma et al., 541

2023), constantly superior to layer-wise pruning. 542

6 Conclusion 543

In this paper, we illustrate the feasibility of fine- 544

grained weight sharing strategy applied in LLMs, 545

namely, head-wise shareable attention. Conse- 546

quently, we propose two methods for head-wise 547

weight sharing called DirectShare and PostShare, 548

which are complementary in terms of time and per- 549

formance. Our DirectShare concentrates on a sim- 550

ple, no-training yet effective sharing strategy, per- 551

forming competitively with one of the state-of-the- 552

art model pruning methods. PostShare, on the other 553

hand, shows an impressive performance on keep- 554

ing LLM’s capabilities, needing to compromise on 555

time efficiency. Last, we hope our work inspires 556

researchers to explore better fine-grained weight 557

sharing techniques for memory-efficient LLMs. 558
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Limitations559

This paper primarily focuses on the head-wise560

weight sharing in Multi-Head Attention (MHA)561

block, inspired by the attention map similarity562

across heads. Although we have explored the fea-563

sibility of our proposal weight sharing strategy in564

the Feed-Forward Network (FFN) block, we only565

complete downstream evaluation on Baichuan2-7B566

model. To further verify the effectiveness of apply-567

ing weight sharing to both MHA and FFN block,568

we should offer comprehensive experimental val-569

idation across different models and compare the570

results with baselines. We leave it as future work.571

Furthermore, the computing resources limited572

our ability to conduct experiments on LLMs with573

a model size of more than 13B. Although we hy-574

pothesize that our approach can still work in larger575

models, which proves to have redundant parame-576

ters (Frantar and Alistarh, 2023), it is crucial to577

validate this hypothesis with further exploration.578
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A Detailed Explanation for DirectShare 844

Algorithm 1 summarizes the procedure of Direct- 845

Share: 846

(1) Matching (line 1-13) 847

We first initialize the buffer Dτ (line 1) which 848

is then used to store each candidate shareable at- 849

tention head pairs. Next, the iterative process of 850

matching begins: 851

Prepare Candidate Pairs (line 2-9): Given the 852

number of layers L and the number of heads per 853

MHA block H, we can construct candidate atten- 854

tion head pairs for sharing. For each pair, we then 855

record the layer index and the head index accord- 856

ingly, i.e., indexi and indexm respectively. 857

Calculate Similarity (line 10-13): We use 10 858

randomly selected samples from Wikipedia as the 859

calibration samples for calculating the weight ma- 860

trix similarity. We present the design of head-wise 861

match function in Section 4.1. The final matching 862

score Scos is obtained by averaging across samples 863

(line 10). For every attention head, our approach 864

selects the most matching counterpart according to 865

Scos (line 11-12) and stores them as pairs in the 866

buffer Dτ (line 13). 867

(2) Weight Sharing (line 14-16) 868

We sort the candidate pairs in Dτ in descending 869

order of their matching scores sm (line 14). Then, 870

the top-N pairs N are selected according to the de- 871

sired sharing ratio α (line 15). Finally, we create an 872

undirected graph that associates each selected head 873

pairs. Thus, all attention heads in one connected 874

component can share the weight matrices (line 16), 875

resulting in the final modelM∗. Take note that for 876

each connected component, we should calculate 877
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similarity again between each head and the other878

heads and choose the shared attention head with879

the highest average matching score.880

Algorithm 2: Weight_Share Function
Input: top-N matched head pairs N ,

Original LLMM
Output: The LLMM∗ after weight sharing

1 Initialize one undirected graph G;
2 for pair in N do
3 head1, head2← pair;
4 G.add_edge(head1, head2)

5 C ← G.find_connected_components();
6 M∗ ←M;
7 for c in C do
8 h← find_shared_head(c);
9 M∗ ← tie_weight(M∗, c, h)

10 returnM∗;

B Relation between Matrix Weights and881

Attention Map Similarities882

Our visual analysis (in Section3.2) can intuitively883

illustrate that the shared head pair with the high-884

est similar weight matrices to a large degree ex-885

hibits highly similar attention maps across different886

datasets. Aside from this, we also provide a metric887

to measure the relation:888

Degree =
#num of matched heads

#num of samples
(6)889

Each time we use 100 randomly selected samples890

from each dataset to calculate the average cosine891

similarity value and repeat 50 times. From Table 6,892

it can be seen the matched degree is relatively high,893

so it is reasonable for us to do weight sharing di-894

rectly across heads.895

Dataset WMT-14 CQA WSC Average

Llama2-7B 100% 91.30% 100% 97.10%

Table 6: The degree metric measured to quantify the
relation between matrix weights and attention map sim-
ilarities. CQA stands for CommonsenseQA benchmark.

C Implementation Details896

In this section, we will provide additional informa-897

tion about our experimental implementation.898

C.1 Baselines 899

To our knowledge, there is no existing baseline for 900

our methods, due to the absence of prior research 901

on fine-grained weight sharing for LLMs. To pro- 902

vide a comprehensive demonstration of the effec- 903

tiveness of our DirectShare, we can only choose 904

another important memory-efficient method of a 905

different category for comparison. Here, we se- 906

lect two model pruning methods applied in LLMs: 907

one classical model pruning method Magnitude 908

Pruning and one state-of-the-art structured pruning 909

method LLM-Pruner. We do not consider unstruc- 910

tured pruning methods in this paper since they can 911

not achieve real memory reduction without special- 912

ized hardware or software. 913

Based on the results presented in Table 7, 8, 9, it 914

is evident that our DirectShare performs on par with 915

one of the prior best structured pruning methods 916

regarding the overall performance, superior to the 917

standard magnitude pruning. Consequently, we 918

claim that designing such a fine-grained (i.e., head- 919

wise) weight sharing strategy with a specific focus 920

on LLMs is indeed simple but effective and this 921

would be a good direction for future work. 922

C.2 Benchmarks 923

Logical and Common Sense Reasoning. In the 924

domain of reasoning, we consider two Chinese 925

natural language inference benchmarks and three 926

English benchmarks: CMNLI (Xu et al., 2020), 927

OCNLI (Hu et al., 2020), along with AX-b, AX-g 928

and RTE from SuperGLUE (Wang et al., 2020). 929

Natural Language Understanding (NLU). In 930

this field, we cover multiple tasks, including 931

RACE (Lai et al., 2017) and OpenBookQA (Mi- 932

haylov et al., 2018) for reading comprehension, 933

CSL (Li et al., 2022) for content summary and 934

TNEWS (Xu et al., 2020) for content analysis. 935

Knowledge-related Tasks. We perform evalu- 936

ations regarding knowledge on various datasets: 937

WinoGrande (Levesque et al., 2012) about lan- 938

guage, BoolQ (Clark et al., 2019) testing knowl- 939

edge question answering, C-Eval (Huang et al., 940

2023) and MMLU (Hendrycks et al., 2021) stand- 941

ing for two comprehensive examination bench- 942

marks. 943

C.3 Post-training Details 944

For carrying out the post-training process, we em- 945

ploy the code framework from LLaMA-Factory 946

12



repository1 with DeepSpeed ZeRO-12. The Adam947

optimizer with a learning rate of 5e-5 is used in948

our experiment and the parameter values assigned949

during training are β1 = 0.9 and β2 = 0.95. For950

Llama 2-7B model, we set the batch size to 32.951

While for Llama 2-13B model, the batch size of952

training is only 8 subject to the limited computa-953

tional resources. Besides, the maximum context954

size and γ are set to 4096 and 0.5, respectively.955

D Experimental Results based on956

Baichuan 2 Models957

We re-implement Magnitude Pruning and LLM-958

Pruner with their public code to accommodate959

Baichuan2 models.960

D.1 Logical and Common Sense Reasoning961

Table 7 presents a comparison on five datasets962

about reasoning abilities for three memory-efficient963

methods performed on the Baichuan2 models.964

Our results show that compared to NLU and965

knowledge-related abilities (listed in Table 8,9),966

DirectShare can indeed maintain its reasoning abil-967

ities to a large extent. Specifically, at 30% ratio, Di-968

rectShare remains competitive with LLM-Pruner.969

Ratio Method CMNLI OCNLI AX-b AX-g RTE
0% Baichuan2-7B 33.37 41.88 51.90 50.28 57.40

10%
Magnitude 33.11 33.12 55.62 50.84 55.96

LLM-Pruner 37.31 40.62 49.18 50.00 60.65
DirectShare 33.00 41.25 49.55 51.12 60.29

30%
Magnitude 32.97 31.25 48.28 51.97 46.57

LLM-Pruner 34.20 34.38 47.55 50.84 51.26
DirectShare 32.97 30.63 54.71 51.69 49.82

0% Baichuan2-13B 33.21 40.62 59.69 50.59 44.77

10%
Magnitude 33.21 31.25 55.62 48.60 46.93

LLM-Pruner 33.66 36.88 58.51 49.72 47.65
DirectShare 33.23 40.00 53.71 53.37 53.07

30%
Magnitude 33.21 30.00 50.91 48.03 43.32

LLM-Pruner 33.04 36.88 55.71 50.28 44.04
DirectShare 33.11 30.00 54.98 50.00 45.13

Table 7: Evaluation results on reasoning tasks when
applying DirectShare to Baichuan2 models.

D.2 Natural Language Understanding970

Table 8 presents the performance for each NLU971

task discussed in Section 5.2.1 when applying Di-972

rectShare to Baichuan2 models. Consistent with973

the experiments on Llama2-7B and Llama2-13B974

models, similar performance drop exists. Thus, at975

1https://github.com/hiyouga/LLaMA-Factory
2Because of our designed special loss function in the post-

training stage, only DeepSpeed ZeRO-1 can work.

the cost of post-training time, our PostShare can 976

narrow the gap observed across the majority of 977

datasets. With regard to individual datasets, it re- 978

mains to be seen if the gap can be largely recovered 979

given the best training epoch3. 980

Ratio Method RACE-
middle

RACE-
high OBQA CSL TNEWS

0% Baichuan2-7B 51.04 52.63 32.20 66.25 28.60

10%
Magnitude 24.37 28.13 30.20 57.50 27.60

LLM-Pruner 25.42 35.36 32.60 61.25 26.05
DirectShare 50.49 48.46 28.20 63.75 26.23

30%
Magnitude 21.80 21.67 27.60 57.50 13.66

LLM-Pruner 22.56 22.67 27.40 53.12 21.31
DirectShare 25.14 23.44 27.60 52.50 18.40

0% Baichuan2-13B 68.94 67.27 42.20 63.12 28.96

10%
Magnitude 25.56 26.33 26.20 45.62 11.38

LLM-Pruner 41.71 46.80 32.40 62.50 29.23
DirectShare 47.56 49.34 31.20 64.38 22.22

30%
Magnitude 24.58 24.58 25.40 50.62 6.65

LLM-Pruner 22.63 21.81 26.80 55.00 24.13
DirectShare 22.14 23.99 26.60 53.13 17.58

Table 8: NLU abilities of Baichuan2 models after Di-
rectShare.

D.3 Knowledge-related Tasks 981

The results of Baichuan2 models on knowledge- 982

related tasks are shown in Table 9. Similar decline 983

appears in Llama2-7B and Llama2-13B models as 984

well. 985

Ratio Method WinoGrande BoolQ C-Eval MMLU

0% Baichuan2-7B 54.04 63.30 56.19 54.65

10%
Magnitude 50.18 57.06 34.70 45.47

LLM-Pruner 50.53 59.30 48.14 51.78
DirectShare 51.58 58.01 50.41 49.96

30%
Magnitude 49.12 55.41 23.91 24.36

LLM-Pruner 51.23 48.93 22.11 25.62
DirectShare 51.58 51.53 21.86 24.05

0% Baichuan2-13B 56.14 67.00 59.21 59.58

10%
Magnitude 50.53 40.55 25.22 25.55

LLM-Pruner 51.23 65.87 49.60 51.49
DirectShare 53.33 61.04 53.65 52.60

30%
Magnitude 50.18 50.09 25.35 24.66

LLM-Pruner 50.53 59.42 21.09 24.95
DirectShare 48.77 40.83 23.25 24.82

Table 9: Results on knowledge-related tasks of
Baichuan2 models after DirectShare.

3We speculate that it may be attributed to overfitting is-
sue. Furthermore, as the model size increases, it becomes
increasingly difficult to determine the optimal training epoch
for effectively mitigating overfitting.
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Ratio Method WinoGrande BoolQ C-Eval MMLU RACE-middle RACE-high OBQA OBQA-fact

0% Llama 2-13B 55.44 71.50 40.17 55.81 60.24 58.03 42.40 60.00

30% DirectShare 50.18 59.36 22.30 30.79 26.53 27.53 27.40 27.80
PostShare∗ 53.68 ↑ 3.50 71.25 ↑ 11.89 25.80 ↑ 3.50 33.90 ↑ 3.11 32.03 ↑ 3.30 29.07 ↑ 1.54 33.60 ↑ 6.20 38.80 ↑ 11.00

Table 10: Performance of PostShare based on the Llama2-13B backbone. * means choosing relatively good
performance across different training steps.
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Figure 6: Ratios of weight sharing across the MHA Layers in Llama2-7B/13B and Baichuan2-7B/13B.

E PostShare on Llama 2-13B Model986

In addition to Llama2-7B, we also experiment with987

Llama2-13B to evaluate PostShare (See Table 10).988

Compared to Llama2-7B, the best training epoch989

on Llama2-13B is much smaller: approximately990

hundreds of training steps is enough, otherwise it991

may suffer from overfitting issue. However, the992

overfitting problem seems to be obvious as model993

size increases, resulting in the challenge with re-994

gard to choosing the best training epoch.995

F More Analysis996

F.1 Overfitting Phenomenon in PostShare997

Figure 7 shows the performance curves on different998

kinds of datasets across various post-training steps.999

Remarkably, our PostShare requires no more than 11000

epoch that can push the selected weights closer for1001

sharing while keeping the performance. However,1002

we observe the slight overfitting phenomenon in1003

PostShare, i.e., the capabilities initially improve1004

and then experience a slight decline. Besides, it1005

is clear that the turning point about performance1006

varies with datasets. Detailed statistical data are1007

provided in Table 11.1008
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Figure 7: Accuracy across different training steps during
PostShare.

Epoch RACE-
middle

RACE-
high OBQA BoolQ PIQA Wino-

Grande

0.10 27.72 27.56 29.40 65.38 71.06 51.58
0.20 27.72 27.59 28.80 67.80 73.29 52.28
0.30 28.48 27.90 27.60 68.29 75.24 53.33
0.40 28.13 27.99 27.00 66.09 75.79 52.98
0.50 29.81 29.45 27.60 66.57 76.00 52.98
0.60 30.36 30.36 27.40 65.72 75.90 52.98
0.70 30.43 30.25 27.60 66.15 75.90 52.98
0.80 29.60 30.10 27.80 65.44 75.90 55.09
0.90 29.53 29.87 27.60 65.54 76.33 54.39
1.00 29.67 30.02 27.80 65.38 76.06 54.04

Table 11: Accuracy across different training steps during
PostShare.
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Sharing Ratio 5% 10% 15% 20% 25% 30% 35% 40%

Dataset PIQA OBQA PIQA OBQA PIQA OBQA PIQA OBQA PIQA OBQA PIQA OBQA OBQA OBQA

Wq 74.92 29.2 74.97 27.5 73.29 27.8 70.89 27.7 64.64 27.5 58.43 25.5 24.4 25.7
Wk 74.92 28.7 74.27 27.6 71.71 27.7 70.35 27.6 68.77 27.6 64.36 27.2 27.6 26.9
Wv 74.92 28.1 74.48 27.7 73.29 26.7 70.46 28.5 68.39 25.6 60.17 23.1 23.9 22.5

Wq,W k,W v 71.71 27.6 63.55 27.8 54.03 26.8 50.16 24.5 51.41 25.5 51.09 25.5 29.0 25.3
Wq||W k||W v 74.59 34.7 74.59 30.0 73.45 30.3 70.73 28.2 66.59 27.6 63.33 27.6 27.1 25.0

Wq||W k(Ours) 75.84 33.9 75.30 28.2 74.54 27.5 73.01 27.3 69.37 27.5 65.56 28.0 27.6 28.6

Table 12: Results on PIQA and OBQA with different head-wise matching functions for Baichuan2-7B model.

F.2 Impact of Different Head-wise Matching1009

Functions1010

The selection of shared heads plays a crucial role1011

in weight sharing. An ablation experiment for this1012

is shown in Table 12.1013

F.3 Visualization Study on the Shared Weights1014

As depicted in Figure 6, the distribution of ratios1015

of shared weights across attention heads is similar1016

regardless of the sharing ratio.1017

G Generations from Models after Weight1018

Sharing1019

Table 13, 14 and 15 show more examples of the1020

models after head-wise weight sharing. We present1021

the generation results of both the shared model via1022

DirectShare and PostShare.

Model Generated Responses

Llama2-7B
w/ DirectShare

The future is going to be one that presents many
challenges, but also a great deal of opportunity.
Everybody knows this, and it’s why we have been
working so hard on the newest version of the
future. The problem with the future is that it’s not
always easy to see what you are doing wrong. It
can be difficult to find
Neural Sequential Model, especially transformers,
are a powerful tool for the analysis of time-series
data. surely, they can be used to predict the future.
Their use is not limited to the financial industry.
In this article, we will discuss the benefits and
limitations of the

Llama2-7B
w/ PostShare

The future is going to be one that presents many
challenges, and the world will need a new
generation of leaders. The United Nations has
identified the following as key issues for the future:
Climate change, Food security, Energy security,
Water scarcity, Global health, Human rights,
International law, Peacekeeping, Sustainable
Neural Sequential Model, especially transformers,
is a type of artificial neural network that uses a
sequence of vectors to represent the input and
output. The model was introduced by Geoffrey
Hinton in 1987. It has been used for speech
recognition, handwriting recognition,

Table 13: Responses from Llama2-7B (Sharing
Ratio=30%).

1023

Model Generated Responses

Baichuan2-7B
w/ DirectShare
(English)

There are many reasons to support why persever-
ance is of great importance. The first and fore-
most, it’s the only way you can get better at what
ever your doing! It also gives us an opportunity to
learn from our mistakes or
Her eyes shone with happiness. “I’m so happy to
see you,” She said, “and I am very proud of the
work that we have done together in this project
and it is a great honor for me as an artist because
there are many people who has been working on
these projects over the years but not all of them
were able to do what was needed from us at any
given time when things got out of hand or if they
had lost their way”

Baichuan2-7B
w/ DirectShare
(Chinese)

如何健康的生活 1. 注意休息,保证睡眠。2.合
理饮食:多吃水果、蔬菜等。3.适当运动(如散
步) 4.保持乐观心态5.多饮水6.避免劳累7.不要
熬夜8.劳逸结合9.注意安全10.尊重生命

想要成功需要把握什么?1. 首先,要有一个好的
心态。2.其次,要有一定的经济基础3.接着就是
自己的实力了4. 最后一个条件是:自己一定要
努力!

Table 14: Responses from Baichuan2-7B (Sharing
Ratio=30%).

Model Generated Responses Reference

GPT2-small
w/ PostShare

In the letter, Mr Snowden said he
believed the support of the intern-
ational community could persuade
the US government to abandon cr-
iminal charges against him.<to-fr>
Dans la lettre, M. le député a dit
que l’appui de la communauté
internationale pourrait convaincre
le gouvernement américain de
abandonner la charge pénale contre
lui.

Dans sa lettre, M. Snow-
den a écrit qu’il pensait
que le soutien de la com-
munauté internationale
pourrait persuader le
gouvernement améri-
cain d’abandonner
les charges pénales
retenues contre lui.

The letter extends an offer to coop-
erate with German authorities "wh-
en the difficulties of this humanita-
rian situation have been resolved."
<to-fr> La lettre élargit une invita-
tion à coopérer avec les autorités
allemands lorsque les difficultés
de cette situation humanitaire sont
réglées.

La lettre avance une of-
fre de coopération avec
les autorités allemandes
« lorsque les difficultés
de cette situation hu-
manitaire auront été ré-
solues ».

The first test plane was unveiled in
March and took flight for the first
time in September after months of
delays.<to-fr> Le premier étudiant
a été démontré en mars et a fait
l’avion pour la première fois après
des mois de retard.

Le premier avion
d’essai a été dévoilé
en mars et s’est envolé
pour la première fois
en septembre après des
mois de retard.

Table 15: Responses from GPT2-small (Sharing
Ratio=30%).
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