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Abstract
Imagine generating a city’s electricity demand pat-
tern based on weather, the presence of an electric
vehicle, and location, which could be used for ca-
pacity planning during a winter freeze. Such real-
world time series are often enriched with paired
heterogeneous contextual metadata (e.g., weather
and location). Current approaches to time series
generation often ignore this paired metadata. Ad-
ditionally, the heterogeneity in metadata poses
several practical challenges in adapting existing
conditional generation approaches from the im-
age, audio, and video domains to the time se-
ries domain. To address this gap, we introduce
TIME WEAVER, a novel diffusion-based model
that leverages the heterogeneous metadata in the
form of categorical, continuous, and even time-
variant variables to significantly improve time se-
ries generation. Additionally, we show that naive
extensions of standard evaluation metrics from
the image to the time series domain are insuffi-
cient. These metrics do not penalize conditional
generation approaches for their poor specificity
in reproducing the metadata-specific features in
the generated time series. Thus, we innovate a
novel evaluation metric that accurately captures
the specificity of conditional generation and the
realism of the generated time series. We show
that TIME WEAVER outperforms state-of-the-art
benchmarks, such as Generative Adversarial Net-
works (GANs), by up to 30% in downstream clas-
sification tasks on real-world energy, medical, air
quality, and traffic datasets.

1. Introduction
Generating synthetic time series data is useful for creating
realistic variants of private data (Yoon et al., 2020), stress-
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Figure 1. TIME WEAVER generates realistic metadata-specific
time series. Consider generating the air quality index of a particu-
lar location (XYZ) given the expected precipitation (green) for a
specific month (May). TIME WEAVER uses these metadata fea-
tures to generate samples (red) that closely match reality (blue).

testing production systems with new scenarios (Rizzato
et al., 2022; Agarwal & Chinchali, 2022), asking “what-if”
questions, and even augmenting imbalanced datasets (Gowal
et al., 2021). Imagine generating a realistic medical electro-
cardiogram (ECG) pattern based on a patient’s age, gender,
weight, medical record, and even the presence of a pace-
maker. This generated data could be used to train medical
residents, sell realistic data to third parties (anonymization),
or even stress-test a pacemaker’s ability to detect diseases
on rare variations of ECG data.

Despite potential advantages, current time series generation
methods (Yoon et al., 2019; Jeha et al., 2021; Donahue et al.,
2019) ignore the rich contextual metadata and are incapable
of generating time series for specific real-world conditions.
This is not due to a lack of data, as standard time series
datasets have long come with paired metadata conditions.
Instead, it is because today’s methods cannot handle diverse
metadata conditions.

At first glance, generating realistic time series based on rich
metadata conditions might seem like a straightforward ex-
tension of conditional image, video, or audio generation
(Rombach et al., 2021; Ramesh et al., 2022; Kong et al.,
2021). However, we argue that there are practical differ-
ences that make conditional time series generation and eval-
uation challenging, which are:

1. Rich Metadata: Metadata can be categorical (e.g.,
whether a patient has a pacemaker), quantitative (e.g.,
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age), or even a time series, such as anticipated precipita-
tion. Any conditional generative model for time series
should incorporate such a diverse mix of metadata con-
ditions (Table 1). In contrast, image, video, and audio
generation often deal with static text prompts.

2. Visual Inspection of Synthetic Data Quality: Visual
inspection is a key aspect in evaluating image genera-
tion approaches as evaluation metrics like the Inception
Score (IS) are widely adopted due to their alignment
with human judgment. On the contrary, it is non-trivial
to glance at a time series and tell if it retains key fea-
tures, such as statistical moments or frequency spectra.

3. Architectural Differences: In the image and audio
domains, we have powerful feature extractors trained
on internet-scale data (Radford et al., 2021; Wu* et al.,
2023). These are vital building blocks for encoding
conditions in image generation (Rombach et al., 2021).
However, these models are non-existent in the time
series domain due to the irregular nature of the time
series datasets with respect to horizon lengths, number
of channels, and the heterogeneity of the metadata.

4. Evaluation Metrics: Evaluating conditional gener-
ation approaches requires a metric that captures the
specificity of the generated samples with respect to
their paired metadata. In Fig. 4, we show how the ex-
isting metrics, such as the time series equivalent of the
standard Frechet Inception Distance (FID) score (Jeha
et al., 2021), fail to capture this specificity and only
measure how close the real and generated data distri-
butions are. This is because these metrics completely
ignore the paired metadata in their evaluation.

Given the above differences and insufficiencies in metrics,
our contributions are:

1. We present TIME WEAVER (Fig. 1), a novel diffusion
model for generating realistic multivariate time series
conditioned on metadata. We specifically innovate on
the standard diffusion model architecture to process
categorical and continuous metadata conditions.

2. We propose the Joint Frechet Time Series Distance
(J-FTSD), specifically designed to evaluate conditional
time series data generation models. J-FTSD incorpo-
rates time series and metadata conditions with feature
extractors trained using a contrastive learning frame-
work. In Sec. 6, we showcase J-FTSD’s ability to
accurately rank approaches based on their ability to
model conditional time series data distributions.

3. We show that our approach significantly outperforms
the state-of-the-art GAN models in generating high-
quality, metadata-specific time series on real-world en-
ergy, healthcare, pollution, and traffic datasets (Fig. 2).

97.9%

84.5%

78.5%

43.1%

9.85%

30.7%

26.2%

22.2%

Figure 2. TIME WEAVER beats GANs on all datasets on the
Joint Frechet Time Series Distance (J-FTSD) and Train on
Synthetic Test on Real (TSTR) metrics. J-FTSD indicates the
distributional similarity between the generated and real time series
datasets. Lower values of J-FTSD indicate that both generated
and real time series distributions are closer. TSTR indicates the
performance of a downstream task model trained on generated
time series data and evaluated on real time series data. Higher
values of TSTR indicate higher quality of the generated time series
data. We show the percentage improvement of TIME WEAVER

over state-of-the-art GAN models on four diverse datasets.

2. Background and Related Works
Generative Models in Time Series: Recently, Generative
Adversarial Networks (GANs) (Donahue et al., 2019; Yoon
et al., 2019; Li et al., 2022; Thambawita et al., 2021) have
emerged as popular methods for time series data genera-
tion. However, these GAN-based approaches often struggle
with unstable training and mode collapse (Chen, 2021). In
response, Diffusion Models (DMs) (Sohl-Dickstein et al.,
2015) have been introduced in the time series domain (Al-
caraz & Strodthoff, 2023; Tashiro et al., 2021), offering
more realistic data generation. DMs are a class of genera-
tive models that are state-of-the-art in a variety of domains,
including image (Dhariwal & Nichol, 2021; Ho et al., 2020),
speech (Chen et al., 2020; Kong et al., 2021), and video
generation (Ho et al., 2022). DMs operate by defining a
Markovian forward process q. The forward process grad-
ually adds noise to a clean data sample x0 ∼ X , where
X is the data distribution to be learned. The forward pro-
cess is predetermined by fixing a noise variance schedule
{β1, . . . , βT }, where βt ∈ [0, 1] and T is the total number
of diffusion steps. The following equations describe the
forward process:

q(x1, . . . , xT | x0) =

T∏
t=1

q(xt | xt−1), (1)

q(xt | xt−1) = N (
√
1− βtxt−1, βtI). (2)

Here, N (µ,Σ) represents a Gaussian distribution with mean
µ and covariance matrix Σ. During training, a clean sample
x0 is transformed into xt using Eq. (2). Then, a neural
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network, θdenoiser(xt, t), is trained to estimate the amount of
noise added between xt−1 and xt with the following loss
function:

LDM = Ex∼X ,ϵ∼N (0,I),t∼U(1,T ) [∥ϵ− θdenoiser(xt, t)∥22].
(3)

Here, t ∼ U(1, T ) indicates that t is sampled from a uniform
distribution between 1 and T , and ϵ is the noise added to
xt−1 to obtain xt. In inference, we start from xT ∼ N (0, I),
where N (0, I) represents a zero mean, unit variance Gaus-
sian distribution, and iteratively denoise using θdenoiser to
obtain a clean sample from the data distribution X , i.e.,
xT → xT−1, . . . , x0. A detailed explanation of DMs is
provided in App. A.1.

For conditional DMs, the most commonly used approach
is to keep the forward process the same as in Eq. (2), and
add additional conditions c to the reverse process. Minimiz-
ing ∥ϵ− θdenoiser(xt, t, c)∥22 in the loss function provided in
Eq. (3) facilitates learning the conditional distribution. Con-
ditional DMs are used in image, video (Saharia et al., 2021;
Lugmayr et al., 2022; Rombach et al., 2021; Ramesh et al.,
2022), and speech (Kong et al., 2021) generation. These
models allow for diverse conditioning inputs, like text, im-
age, or even segmentation maps. However, these methods
rely on image-focused tools like Convolutional Neural Net-
works (CNNs), which struggle to maintain essential time
series characteristics such as long-range dependencies, as
noted in (Gu et al., 2022). For time series data, models
such as CSDI (Tashiro et al., 2021) and SSSD (Alcaraz &
Strodthoff, 2022) exist but are mainly limited to imputation
tasks without substantial conditioning capabilities. Closest
to our work, Alcaraz & Strodthoff (2023) attempt to incorpo-
rate ECG statements as metadata (only categorical) for ECG
generation. However, this approach falls short as it does not
consider heterogeneous metadata. Our method surpasses
these limitations by effectively handling a broader range of
metadata modalities, thus enabling more realistic time series
data generation under varied heterogeneous conditions.

Metrics for Conditional Time Series Generation: Vari-
ous metrics have been developed in the time series domain,
focusing on the practical utility of the generated time se-
ries data. To this end, the Train on Synthetic Test on Real
(TSTR) metric (Jordon et al., 2018; Esteban et al., 2017)
is used to assess the ability of synthetic data to capture
key features of the real dataset. TSTR metrics have been
widely used to evaluate unconditional time series genera-
tion. Yoon et al. (2019) proposed the predictive score where
synthetic time series data is used to train a forecaster, and
the forecaster’s performance is evaluated on real time series
data. More traditional approaches include average cosine
similarity, Jensen distance (Li et al., 2022), and autocor-
relation comparisons (Lin et al., 2020; Bahrpeyma et al.,
2021). However, these heuristics often fail to fully capture

the nuanced performance of conditional generative models.

A more popular method to evaluate generative models is to
use distance metrics between the generated and real data
samples. One of the most commonly used distance met-
rics is the Frechet Distance (FD) (Fréchet, 1957). The
FD between two multivariate Gaussian distributions D1 ∼
N (µ1,Σ1) and D2 ∼ N (µ2,Σ2) is:

FD(D1,D2) = ∥µ1 − µ2∥2 + Tr(Σ1 +Σ2 − 2(Σ1Σ2)
1
2 ).
(4)

To evaluate image generation models, the FD is adjusted
to the Frechet Inception Distance (FID) (Heusel et al.,
2017). FID uses a feature extractor, the Inception-v3 model
(Szegedy et al., 2015), to transform images into embed-
dings upon which the FD is calculated. Similar adapta-
tions such as the Frechet Video Distance (Unterthiner et al.,
2018), Frechet ChemNet Distance (Preuer et al., 2018), and
Context-FID (Jeha et al., 2021) exist for other domains, em-
ploying domain-specific feature extractors. However, these
metrics are designed only to evaluate unconditional data
generation since they only match the true data distribution
marginalizing over all the conditions.

To evaluate conditional generation models, many metrics are
proposed for categorical conditions (Murray, 2019; Huang
et al., 2018; Benny et al., 2020; Liu et al., 2018; Miy-
ato & Koyama, 2018). To create a more general metric,
Soloveitchik et al. (2022) proposed the conditional FID
(CFID) metric that works with continuous conditionals and
calculates the conditional distributions of the generated and
real data given the condition. In particular, DeVries et al.
(2019) propose the Frechet Joint Distance (FJD), where the
embeddings of the image and condition are obtained with
different embedding functions and concatenated to create a
joint embedding space. DeVries et al. (2019) consider con-
ditions that are classes (image category), text descriptions
(image captions), or images (for tasks like style transfer).
However, in our case, the metadata could be any arbitrary
combination of categorical, continuous, and time-varying
conditions. Additionally, like other metrics considered in
the literature, FJD is defined for image generation and does
not consider the unique characteristics of time series data.
In contrast, our proposed J-FTSD metric is specifically de-
signed to evaluate time series data generation models condi-
tioned on heterogeneous metadata.

3. Problem Formulation
Consider a multivariate time series sample x ∈ RL×F ,
where L denotes the time series horizon, and F denotes
the number of channels. Each sample x is associated with
metadata c, comprising categorical features ccat ∈ NL×Kcat

and continuous features ccont ∈ RL×Kcont . Here, Kcat and
Kcont indicate the total numbers of categorical and contin-
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Figure 3. TIME WEAVER architecture for incorporating metadata in the diffusion process: This figure shows the training and
inference processes of TIME WEAVER. For training, we start from the original sample x0 (on the left) and gradually add noise through a
forward process q(xt | xt−1), resulting in noisy samples xt. The denoiser, θdenoiser, is trained to estimate the amount of noise added to
obtain xt from xt−1. During inference, the categorical and continuous metadata are first preprocessed with tokenizers θcat

token and θcont
token,

respectively. Then, we concatenate their output and process it through a self-attention layer θcondn to create the metadata embedding z.
This embedding is fed into θdenoiser with the noisy sample xt to obtain xt−1. The denoising process is repeated for T diffusion steps to
obtain a clean sample similar to x0.

uous metadata features, respectively. These features are
concatenated as c = ccat ⊕ ccont, where ⊕ represents the
vector concatenation operation. Thus, the metadata domain
is defined as NL×Kcat × RL×Kcont . Note that the domains of
ccat and ccont allow time-varying metadata features.

Example: Consider generating time series data represent-
ing traffic volume on a highway (F = 1) over 96 hours
(L = 96) using paired metadata. This metadata includes
seven time-varying categorical features like holidays (12
unique labels) and weather descriptions (11 unique labels),
denoted by Kcat = 7. It also includes four time-varying con-
tinuous features like expected temperature and rain forecast,
represented by Kcont = 4.

We denote the dataset Dx,c = {(xi, ci)}ni=1 consisting of
n independent and identically distributed (i.i.d) samples of
time series data x and paired metadata c, sampled from
a joint distribution p(x, c). Our objective is to develop
a conditional generation model G such that the samples
generated by G(c) distributionally match p(x|c).

4. Conditional Time Series Generation using
TIME WEAVER

Our approach, TIME WEAVER, is a diffusion-based con-
ditional generation model. We choose DMs over GANs
as we consider heterogeneous metadata, i.e., the metadata
can contain categorical, continuous, or even time-varying
features. Previous works show that the conditional variants
of GANs suffer from mode collapse when dealing with con-
tinuous conditions (Ding et al., 2020). Additionally, the
proposed alternatives have not been tested in the time series
domain for heterogeneous metadata. Our TIME WEAVER
model consists of two parts - a denoiser backbone that gen-
erates data and a preprocessing module that processes the
time-varying categorical and continuous metadata features.

Metadata Preprocessing: The preprocessing step involves

handling the metadata c = ccat ⊕ ccont. Here, ccat ∈ NL×Kcat

and ccont ∈ RL×Kcont represent time-varying categorical and
continuous metadata features, respectively (see Sec. 3). To
better incorporate these features from different modalities,
we process them separately and then combine them with a
self-attention layer.

• The categorical tokenizer θcat
token first converts each cate-

gory in ccat into one-hot encoding and then processes
with fully connected (FC) layers to create the categori-
cal embedding zcat ∈ RL×dcat . Similarly, the continu-
ous tokenizer θcont

token also uses FC layers to encode con-
tinuous metadata ccont into the continuous embedding
zcont ∈ RL×dcont . These FC layers learn the correlation
between metadata features within the categorical and
continuous domains. Using FC layers is just a design
choice; more sophisticated layers can also be used.

• zcat and zcont are then concatenated and passed through
a self-attention layer θcondn to generate the metadata
embedding z ∈ RL×dmeta . The self-attention layer
equips the generative model to capture the temporal
relationship between different metadata features.

Here, dcat, dcont, and dmeta are design choices, and we refer
the reader to App. A.4 for further details.

Denoiser: As the denoiser backbone for TIME WEAVER,
we rely on two state-of-the-art architectures - CSDI (Tashiro
et al., 2021) and SSSD (Alcaraz & Strodthoff, 2022). The
CSDI model uses feature and temporal self-attention lay-
ers to process sequential time series data, while SSSD uses
structured state-space layers. Note that these denoisers are
designed for imputation and forecasting tasks. So, they are
designed to take unimputed and historical time series as
respective inputs. We modify these denoisers into more
flexible metadata-conditioned time series generators by aug-
menting them with preprocessing layers (θcat

token, θcont
token, and

θcondn). We refer the reader to App. A.4 for details regarding
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architectural changes. We train the preprocessing layers and
the denoiser θdenoiser jointly with the following loss:

L(θdenoiser,θcondn,θcont
token,θ

cat
token)

=Ex,c∼Dx,c,ϵ∼N (0,I),t∼U(1,T )

[∥ϵ− θdenoiser(xt, t, z)∥22], (5)

where z = θcondn(θ
cat
token(ccat)⊕θcont

token(ccont)), Dx,c represents
the dataset of time series and paired metadata sampled from
the joint distribution p(x, c), and T is the total number of
diffusion steps. As explained in Sec. 2, minimizing the loss
in Eq. (5) allows TIME WEAVER to learn how to generate
samples from the conditional distribution p(x|c). During
inference, we start from xT ∼ N (0, I) and iteratively de-
noise (with metadata c as input) for T steps to generate
x0 ∼ p(x|c). This process is depicted in Fig. 3.

5. Joint Frechet Time Series Distance
A good distance metric should penalize the conditional gen-
eration approach (provide higher values) if the real and gen-
erated joint distributions of the time series and the paired
metadata do not match. Existing metrics such as Context-
FID (Jeha et al., 2021) rely only on the time series feature
extractor, and the metric computation does not involve the
paired metadata. This prevents these metrics from penal-
izing conditional generation approaches for their inability
to reproduce metadata-specific features in the generated
time series. Therefore, we propose a new metric to evalu-
ate metadata-conditioned time series generation, the Joint
Frechet Time Series Distance (J-FTSD).

In J-FTSD, we compute the FD between the real and gener-
ated joint distributions of time series and paired metadata.
Consider samples from a real data distribution indicated
by Dr = {(xr

1, c1), . . . , (x
r
n, cn)}, where xr

i ∈ RL×F indi-
cates the time series, and ci ∈ RL×K indicates the paired
metadata as explained in Sec. 3. We denote the dataset of
generated time series and the corresponding metadata as
Dg = {(xg

1, c1), . . . , (x
g
n, cn)}, where xg

i = G(ci) ∀ i ∈
[1, n], and G denotes any arbitrary conditional generation
model, as defined in Sec. 3. First, similar to the FID and
FJD computations, we project the time series and the paired
metadata into a lower-dimensional embedding space using
ϕtime(·) : RL×F → Rdemb and ϕmeta(·) : RL×K → Rdemb

as the respective feature extractors, where demb is the size
of the embedding. We concatenate these time series and
metadata embeddings to create a joint embedding space. We
then calculate the FD over the joint embedding space. As
such, the J-FTSD metric is formally defined as:

J-FTSD(Dg, Dr) = ∥µzr − µzg∥2

+ Tr(Σzr +Σzg − 2(ΣzrΣzg )
1
2 ).

(6)

Here, µzd and Σzd for d ∈ {g, r} are calculated as:

zdi = ϕtime(x
d
i )⊕ ϕmeta(ci) ∀i : (xd

i , ci) ∈ Dd,

µzd =
1

n

n∑
i=1

zdi , Σzd =
1

n− 1

n∑
i=1

(zdi − µzd)(z
d
i − µzd)

⊤.

In essence, J-FTSD computes the FD between the Gaussian
approximations of the real and generated joint embedding
datasets. In Eq. (6), µzr , µzg and Σzr , Σzg are the mean
and the variance of the Gaussian approximations of the real
and generated joint embedding datasets, respectively.

Training Feature Extractors: Now, we describe our ap-
proach to obtain the feature extractors ϕtime and ϕmeta. As
explained in Sec. 2, DeVries et al. (2019) suggest using sep-
arate encoders for data samples and conditions. However,
they only deal with a specific type of condition, and this
naturally poses a problem for a straightforward extension of
their approach to our case, where the metadata could be any
arbitrary combination of categorical, continuous, and time-
varying features. As such, we propose a novel approach
to train the feature extractors ϕmeta and ϕtime specific to the
time series domain. We jointly train ϕtime and ϕmeta with
contrastive learning to better capture the joint distribution of
the time series and paired metadata as contrastive learning is
a commonly used method to map data from various modal-
ities into a shared latent space (Yuan et al., 2021; Zhang
et al., 2022; Ramesh et al., 2022).

Algorithm 1 One iteration for training time series ϕtime and
metadata ϕmeta feature extractors.

1: Input: Time series feature extractor ϕtime, Metadata
feature extractor ϕmeta, Time series batch Xbatch, Paired
Metadata batch Cbatch, Number of patches Npatch, Patch
length Lpatch, Batch size Nbatch.

2: Randomly select Npatch patches of length Lpatch from
each sample in Xbatch and Cbatch to generate Xpatch

batch and
Cpatch

batch .
3: Obtain the time series and metadata embedding -

ϕtime(X
patch
batch ) and ϕmeta(C

patch
batch ) respectively.

4: Obtain the logits - ϕtime(X
patch
batch )

Tϕmeta(C
patch
batch ).

5: Define the labels - [0, 1, 2, . . . , Nbatch ×Npatch − 1].
6: Compute Ltime = LCE(logits,labels).
7: Compute Lmeta = LCE(logits.T,labels).
8: Compute Ltotal = (Ltime + Lmeta)/2.
9: Update parameters of ϕtime and ϕmeta to minimize Ltotal.

Algorithm 1 summarizes one training iteration of our fea-
ture extractors ϕtime and ϕmeta. This is visually depicted in
App. A.3. Given the batch of time series Xbatch and meta-
data Cbatch, we randomly pick Npatch patches with horizon
Lpatch from each time series and metadata sample in batches
Xbatch and Cbatch (line 1). Then, we obtain the time series
and metadata embeddings for all patches through their re-
spective feature extractors, ϕtime for time series, and ϕmeta

5



Time Weaver: A Conditional Time Series Generation Model

DATASET HORIZON # CHANNELS CATEGORICAL FEATURES CONTINUOUS FEATURES

AIR QUALITY (CHEN, 2019) 96 6 12 STATIONS, 5 YEARS, 12 MONTHS,
31 DATES, 24 HOURS, 17 WIND DIRECTIONS

TEMPERATURE, PRESSURE,
DEW POINT TEMPERATURE,
RAIN LEVELS, WIND SPEED

TRAFFIC (HOGUE, 2019) 96 1

12 HOLIDAYS, 7 YEARS, 12 MONTHS,
31 DATES, 24 HOURS,
11 BROAD WEATHER DESCRIPTIONS,
38 FINE WEATHER DESCRIPTIONS

TEMPERATURE, RAIN LEVELS,
SNOW FALL LEVELS,
CLOUD CONDITIONS

ELECTRICITY (TRINDADE, 2015) 96 1 370 USERS, 4 YEARS, 12 MONTHS, 31 DATES N.A.
ECG (WAGNER ET AL., 2020) 1000 8 71 HEART DISEASE STATEMENTS N.A.

Table 1. Dataset overview for experiments with TIME WEAVER. This table outlines the key characteristics of the datasets employed
in our experiments. These datasets, encompassing Air Quality, Traffic, Electricity, and ECG, have been selected to demonstrate TIME

WEAVER’s versatility across different time horizons (col 1), number of channels (col 2), and a wide range of metadata types (col 3,4).

Figure 4. J-FTSD correctly penalizes the conditional time series data distribution. A good metric should penalize the conditional
generation approaches for not being specific to the metadata and deviating from real time series data distribution. As such, we compare
the sensitivity of different distance metrics under various synthetic disturbances on the Air Quality dataset (starting from the left); we
add Gaussian noise, warp, impute, and randomly change the metadata of the time series samples. We clearly show that as the amount
of perturbation increases, our J-FTSD metric (in red) shows the highest sensitivity, correctly capturing the dissimilarities between the
perturbed and the original datasets. In contrast, the other metrics remain unchanged or show lower sensitivity.

for metadata (line 2). Finally, we compute the dot product
of time series and metadata embeddings (line 3) and obtain
the symmetric cross-entropy loss (lines 4 - 7), which is used
to jointly update the parameters of ϕtime and ϕmeta (line 8).

In essence, we learn a joint embedding space for time series
and metadata by jointly training ϕtime and ϕmeta. This is
achieved by adjusting the feature extractors’ parameters to
maximize the cosine similarity of the time series embed-
dings and the metadata embeddings of Nbatch ×Npatch pairs
of time series and paired metadata in the batch. In our ex-
periments, we used the Informer encoder architecture (Zhou
et al., 2021) for ϕtime and ϕmeta. We choose Lpatch based
on the length of the smallest chunk of the time series that
contains metadata-specific features. We refer the readers to
App. A.3 for further details on the choices of Npatch, Lpatch,
and the encoder architecture.

Why is J-FTSD a good metric for evaluating conditional
generation models? One aspect of the J-FTSD compu-
tation involves estimating the covariance between the time
series and the metadata embeddings. Additionally, jointly
training the feature extractors with contrastive learning aids
in effectively capturing the correlation between the time
series and the metadata embeddings. Therefore, the covari-
ance term decreases if the generated time series does not

contain metadata-specific features. This allows J-FTSD to
accurately penalize for the differences between the real and
generated joint distributions, which directly translates to
penalizing conditional generation approaches for their poor
specificity in reproducing metadata-specific features.

6. Experiments
We evaluated the performance of TIME WEAVER across
datasets featuring a diverse mix of seasonalities, discrete and
continuous metadata conditions, a wide range of horizons,
and multivariate correlated channels. The list of datasets
and their metadata features are provided in Table 1. All
models are trained on the train split, while all metrics are
reported on the test split, further detailed in App. A.2.

Baselines: We represent the results for the CSDI and SSSD
backbones for TIME WEAVER as TIME WEAVER-CSDI
and TIME WEAVER-SSSD, respectively. Since there are no
existing approaches for metadata-conditioned time series
generation with categorical, continuous, and time-variant
metadata features, we modify the existing state-of-the-art
GAN approaches to incorporate metadata conditions, similar
to TIME WEAVER. The GAN baselines include CNN-based
approaches like WaveGAN (Donahue et al., 2019), an audio-
focused GAN model, and Pulse2Pulse (Thambawita et al.,
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APPROACH AIR QUALITY ECG TRAFFIC ELECTRICITY
J-FTSD ↓ TSTR ↑ J-FTSD ↓ TSTR ↑ J-FTSD ↓ TSTR ↑ J-FTSD ↓ TSTR ↑

WAVEGAN
(DONAHUE ET AL., 2019) 14.25±0.79 0.61±0.01 9.55±0.01 0.65±0.001 25.69±0.01 0.54±0.01 7.82±0.002 0.57±0.007
PULSE2PULSE
(THAMBAWITA ET AL., 2021) 22.07±0.02 0.60±0.002 13.49±0.04 0.63±0.03 17.70±0.002 0.52±0.03 2.8±0.01 0.71±0.004
TIME WEAVER-CSDI 2.2±0.07 0.77±0.01 7.25±0.09 0.83±0.001 0.53±0.01 0.66±0.06 0.6±0.003 0.78±0.001
TIME WEAVER-SSSD 8.61±0.18 0.63±0.02 5.43±0.1 0.85±0.007 0.36±0.03 0.65±0.07 1.19±0.008 0.77±0.001

Table 2. TIME WEAVER outperforms GAN-based approaches on the J-FTSD and TSTR metrics. The table shows the performance
of all the models (rows) on specified datasets (columns). The TIME WEAVER variants significantly outperform GANs on the J-FTSD
and TSTR metrics. Our experimental findings also confirm that lower J-FTSD scores correspond to higher AUC (TSTR) scores when
tested on the original test dataset, showcasing the utility of our proposed J-FTSD metric in evaluating the quality of the generated data
distribution. We report the mean and standard deviation of both metrics, averaged over three seeds.

2021), a model specializing in DeepFake generation. Addi-
tionally, we compare the TIME WEAVER variants against a
diffusion model with a U-Net 1D (Ronneberger et al., 2015)
denoiser backbone. We chose the 1D variant of U-Net as the
basic U-Net architecture is the most preferred denoiser back-
bone used in pixel-space image diffusion. The exact training
details are provided in App. A.4 and A.5. We additionally
tried comparing with TimeGAN (Yoon et al., 2019), a Recur-
rent Neural Network (RNN) based approach, and TTS-GAN
(Li et al., 2022), a Transformer-based approach. However,
both of these GAN models did not converge on any of the
datasets. We show their training results in App. A.5.4.

Evaluation Metrics: We evaluate our approaches and the
GAN baselines using the J-FTSD metric, as detailed in
Sec. 5. To validate the correctness of J-FTSD’s evaluation,
we also report the area under the curve (AUC) scores of a
classifier trained only using synthetic data. The classifier
is trained to predict the metadata given the corresponding
synthetic time series. We then test this classifier on the
real unseen test dataset. High accuracy indicates that our
synthetic data faithfully retains critical features of the paired
metadata. We use a standard ResNet-1D (He et al., 2016)
model for the classifier. We denote this metric as TSTR in
Table 2. For each dataset, the categories for which we train
the classifier are listed as follows: Electricity - Months (12),
Air Quality - Stations (12), Traffic - Weather Descriptions
(11), and ECG - Heart Conditions (71). The exact training
steps of the classifiers and a detailed description of the
metrics are outlined in App. A.6.

Experimental Results and Analysis: Our experiments
demonstrate that the TIME WEAVER models significantly
outperform baseline models in synthesizing time series data
across all evaluated benchmarks. Our experiments address
the following key questions:

Does the J-FTSD metric correctly penalize when the gen-
erated time series samples are not specific to the paired
metadata? In Fig. 4, we assess the sensitivity of our
J-FTSD metric against previous FD-based metrics. This as-
sessment involves introducing controlled perturbations into
the time series to test the sensitivity of the metric. These
perturbations include Gaussian noise - which introduces

Gaussian noise of increasing variance; time warping, in-
volving scaling adjustments; imputation - imputing the time
series with local mean and label flipping - where metadata
conditions are randomly changed, decoupling them from
the time series. An effective metric should demonstrate
an increased sensitivity when the real and generated joint
distributions of time series and metadata diverge. We com-
pare J-FTSD against three FD-based metrics: 1) the FTSD
score, which calculates the FD using only time series em-
beddings (derived from the ϕtime feature extractor); 2) the
Context-FID score (Jeha et al., 2021) where ϕtime is trained
to maximize similarity of similar time series; 3) the J-FTSD
(Intra-Modal) score, which differs from J-FTSD in that the
time series and metadata feature extractors are trained indi-
vidually to maximize the embedding similarity for similar
samples. Our J-FTSD metric is the most sensitive when com-
pared to other metrics under synthetic disturbances. The key
benefit of our metric can be observed in the label-flipping
experiment, where only our metric increases as we increase
the label-flipping probability in the paired metadata condi-
tions. Other metrics remain unchanged and lack sufficient
sensitivity because they overlook paired metadata in their
distance calculations, a critical factor that J-FTSD adeptly
incorporates. Additionally, the J-FTSD (Intra-Modal) score
remains mostly unchanged under these perturbations, high-
lighting the advantage of the joint training of the time series
and metadata feature extractors in our metric. Experiments
in Fig. 4 underscore the importance of our J-FTSD metric
in assessing the quality of the generated time series data.

How does TIME WEAVER compare against other ap-
proaches on real-world datasets? Across all the datasets,
the TIME WEAVER variants consistently outperform GAN
models in terms of J-FTSD scores, as shown in Table 2.
Specifically, we beat the best GAN model by roughly 6×
on the Air Quality dataset, 1.75× on the ECG dataset, 4×
on the Electricity dataset, and more than 40× on the Traffic
dataset. To understand this performance gain, we conduct
an ablation study where we compare the TIME WEAVER-
CSDI model and WaveGAN (Donahue et al., 2019) in the
presence and absence of metadata on the Air Quality and
Electricity datasets. We use the FTSD metric, which is the
Frechet Distance without considering the metadata embed-
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Figure 5. TIME WEAVER generated time series distributions match the real time series distributions. Each column represents a
different dataset. The real time series is in blue, while the generated time series is in red. The first & third rows correspond to the TIME

WEAVER model, and the second & fourth rows correspond to the best-performing GAN model. The top two rows have the real and
generated time series for unseen test metadata conditions. The bottom two rows compare the histograms of the real and generated time
series values aggregated over their respective datasets, also for unseen test metadata conditions. Both results indicate that our TIME

WEAVER model can generate realistic time series samples that are specific to the corresponding metadata conditions, beating the previous
state-of-the-art GAN model. In both scenarios, the GAN model fails to match the real time series data distribution, while our TIME

WEAVER model has learned the correct conditional distribution for specific metadata conditions, specifically for the Air Quality and
Traffic datasets.

dings, as our evaluation metric. The quantitative results of
this study are summarized in Table 8. We find that TIME
WEAVER provides lower FTSD for the Electricity dataset,
and WaveGAN provides lower FTSD for the Air Quality
dataset in the absence of metadata. However, in the pres-
ence of metadata, we note that TIME WEAVER outperforms
WaveGAN on both datasets. The key insight is that TIME
WEAVER processes metadata more efficiently than GAN-
based approaches to generate metadata-specific time series.
This observation aligns with the recent work (Ding et al.,
2020) that shows GANs perform poorly with continuous
conditions. The metadata conditions in the time series do-
main are so complex (a mix of categorical, continuous, and
time-varying conditions) that the GAN models fail to learn
a good conditional time series distribution.

Additionally, we compare TIME WEAVER against a diffu-
sion model baseline with U-Net 1D (Ronneberger et al.,
2015) as the denoiser backbone. The quantitative results for
this comparison are provided in Table 9. We note that the
best-performing TIME WEAVER model outperforms the dif-
fusion model baseline with the U-Net 1D denoiser, with an
average improvement of 9% in TSTR and 17% in J-FTSD
metrics. This superior performance highlights the impor-
tance of time series-specific innovations in TIME WEAVER

for complex metadata-specific time series generation.

Does the synthetic data generated by TIME WEAVER
capture metadata-specific features to train an accurate
classifier? When training with the generated synthetic time
series data, the classifier’s accuracy in classifying metadata
hinges on the presence of distinct metadata-specific features
in the time series. The high TSTR scores in Table 2 strongly
suggest that the data generated by TIME WEAVER retain
the essential characteristics necessary to train classifiers that
exhibit high AUC on real unseen test data. The marked
improvement in TSTR scores with TIME WEAVER when
compared to GAN models demonstrates both the practical
value and the superior quality of the synthetic data generated
by our model.

Does lower J-FTSD correlate with higher TSTR per-
formance? The experimental data, as outlined in Table 2,
exhibit a clear correlation: lower J-FTSD scores are con-
sistently associated with higher TSTR scores on the orig-
inal, unseen test dataset. This correlation is expected as
both metrics evaluate the precision of the generated time
series relative to the corresponding metadata, as well as the
closeness of the real and generated joint distributions. This
further underscores the effectiveness of the J-FTSD metric
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as a reliable indicator to assess the quality of generated data.
We further solidify the validity of J-FTSD by showing that
lower values of J-FTSD correspond to lower values of the
Dynamic Time Warping (DTW) metric, where DTW is com-
puted between the real and generated time series samples.
Lower DTW indicates higher similarity between the real
and generated time series. We refer the reader to App. A.7.3
for further details and experimental results.

Does the synthetic data generated by TIME WEAVER
qualitatively match the real data? Figure 5 (top two
rows) displays the quality and realism of the time series data
generated by the best-performing TIME WEAVER model.
This figure contrasts generated time series samples with real
ones under identical metadata conditions. The comparison
demonstrates that the TIME WEAVER model produces time
series samples that are highly similar to real samples, effec-
tively mapping metadata to the corresponding time series. In
contrast, GAN baseline models face challenges in generat-
ing realistic time series and accurately mapping metadata. A
notable example is their performance with ECG signals (2nd
column): GAN models only learn to generate a noisy ver-
sion of the ECG samples while our TIME WEAVER model
generates a pristine, realistic sample. We provide additional
qualitative samples in App. A.11.

Does the synthetic data generated by TIME WEAVER
match the real data in terms of density and spread of
time series values? In Fig. 5 (bottom two rows), we extend
our analysis to compare real and generated data distribu-
tions across all datasets. This is achieved by transforming
the real and generated time series datasets into histograms of
their respective values. Take, for instance, the traffic dataset:
we aggregate all samples to form a histogram over the raw
time series values for both real and generated datasets. The
TIME WEAVER model provides a significantly more accu-
rate representation of the real time series distribution than
the best-performing GAN model. GAN models consistently
fail to learn the complex underlying distributions of real data,
particularly evident in the Air Quality and Traffic datasets.

Does TIME WEAVER retain the causal relationship be-
tween the input metadata and the corresponding gener-
ated time series? We analyze TIME WEAVER’s ability to
retain causal relationships using the Air Quality dataset. We
note that there exist physical models that indicate the effect
on the particulate matter level (one of the time series chan-
nels) whenever there is rainfall (metadata input). We show
through qualitative examples in Fig. 11 that the generated
particulate matter levels adhere to this effect. However, we
note that this is not a rigorous proof of causality. We aim
to build upon this work to develop time series generative
models that can maintain causal relationships between the
input metadata and the generated time series.

Training and Inference Complexity: Here, we discuss the

training and inference complexity of our approach. For the
inference complexity, we make the following observations:

• The TIME WEAVER-CSDI denoiser’s inference time
complexity reflects that of any transformer architecture,
scaling quadratically with the time series length L and
linearly with respect to the hidden dimension size H
and the number of diffusion steps T .

• The TIME WEAVER-SSSD denoiser’s inference time
complexity reflects that of the S4 model (Alcaraz &
Strodthoff, 2022), scaling quadratically with the hidden
dimension size H and the number of diffusion steps T .

• Our metadata encoder’s inference time complexity
is the same as that of the transformer architecture,
O(L2K +K2L), where K is the number of metadata
conditions. As the metadata encoder only runs once
for a single sample generation, its time complexity is
not affected by the number of diffusion steps.

Additionally, we tabulate the exact time taken to generate a
sample for all datasets in Table 11. For training complexity,
we show the rate of change of J-FTSD for TIME WEAVER
and GAN models. Specifically, we considered the Air Qual-
ity dataset, and the results are shown in Fig. 10. As expected,
we observe that the rate of decrease of J-FTSD is quicker
for TIME WEAVER when compared to GAN models.

7. Conclusion
This paper addresses a critical gap in synthetic time series
data generation by introducing TIME WEAVER, a novel
diffusion-based generative model. TIME WEAVER lever-
ages heterogeneous paired metadata, encompassing categor-
ical, continuous, and time-variant variables, to significantly
improve the quality of generated time series. Moreover, we
introduce a new evaluation metric, J-FTSD, to assess con-
ditional time series generation models. This metric offers
a refined approach to evaluate the specificity of generated
time series relative to paired metadata conditions. Through
TIME WEAVER, we demonstrate state-of-the-art results for
generated sample quality and diversity across four diverse
real-world datasets.

Limitations: Despite its superior performance in generat-
ing realistic time series data, TIME WEAVER encounters
challenges typical of DMs, including slower inference and
prolonged training durations compared to GAN-based mod-
els. Future work will focus on overcoming these limitations,
potentially through techniques such as progressive distilla-
tion (Salimans & Ho, 2022) for accelerated inference. We
also aim to explore the application of heterogeneous paired
metadata conditions to enhance forecasting and anomaly
detection within the time series domain.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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Fréchet, M. Sur la distance de deux lois de probabilité.
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A. Appendix
A.1. Diffusion Process

Diffusion Models (DMs) are trained to denoise a noisy sample, referred to as the reverse or the backward process pθ. The
noisy samples are generated by a Markovian forward process q, where we gradually corrupt a clean sample from the dataset
by adding noise for T diffusion steps. The forward process is predetermined by specifying a noise schedule {β1, . . . , βT },
where βt ∈ [0, 1]. The following equations parameterize the forward process:

q(x1, . . . , xT | x0) =

T∏
t=1

q(xt | xt−1), (7)

q(xt | xt−1) = N (
√
1− βtxt−1, βtI), (8)

where X is the data distribution that we want to learn, x0 ∼ X , N (µ,Σ) represents a Gaussian distribution with mean µ and
covariance matrix Σ, and T is the number of diffusion steps. The noise schedule {β1, . . . , βT } and T are chosen such that
xT resembles samples from a Gaussian distribution with zero mean and unit variance, i.e., q(xT ) ≃ N (0, I). This allows
us to start the backward process from xT ∼ N (0, I) and iteratively denoise for T steps to obtain a sample from X . The
reverse process is parameterized as follows:

pθ(x0, . . . , xT−1 | xT ) = p(xT )

T∏
t=1

pθ(xt−1 | xt). (9)

Here, p(xT ) = N (0, I). Essentially, the reverse process is learnable, and pθ(xt−1 | xt) approximates q(xt−1 | xt, x0).
pθ(xt−1 | xt) is parameterized using a neural network, θdenoiser. Ho et al. (2020) show that through simple reparametrization
tricks, we can convert the learning objective from approximating q(xt−1 | xt, x0) to estimating the amount of noise added
to go from xt−1 to xt. Thus, the diffusion objective is stated as minimizing the following loss function:

LDM = Ex∼X ,ϵ∼N (0,I),t∼U(1,T ) [∥ϵ− θdenoiser(xt, t)∥22], (10)

where t ∼ U(1, T ) indicates that t is sampled from a uniform distribution between 1 and T , ϵ is the noise added to xt−1 to
obtain xt, and θdenoiser takes the noisy sample xt and the diffusion step t as input to estimate ϵ. This is equivalent to the
score-matching techniques (Song & Ermon, 2019; Song et al., 2021).

A.2. Dataset Description

In this section, we describe in detail the various datasets used in our experiments, their training, validation, and testing splits,
and the normalization procedures.

A.2.1. ELECTRICITY DATASET

The Electricity dataset consists of power consumption recordings for 370 users over four years from 2011 to 2015. We
frame the following task for this dataset - “Generate the electricity demand pattern for user 257, for the 3rd of August 2011,”
which is a univariate time series. We consider the following features as the metadata: 370 users, four years, 12 months, and
31 dates (Table 3). The power consumption is recorded every 15 minutes, so the time series is 96 time steps long. The total
number of samples without any preprocessing is 540200. We remove samples with values of 0 for the entire time series,
and the resulting total number of samples is 434781. We establish a data split comprising training, validation, and test sets
distributed in an 80-10-10 ratio. To obtain the split, we randomly pick 80% of the 434781 samples and assign them to the
training set. The same is repeated for the validation and the test sets. We avoid using the traditional splits proposed by
Du et al. (2023), as their split creates certain year metadata features in the test set that do not exist in the training set. For
example, no month from 2011 exists in the training set split proposed by Du et al. (2023).

A.2.2. TRAFFIC DATASET

For traffic volume synthesis, we use the metro interstate traffic volume dataset. The dataset has hourly traffic volume
recordings from 2012 to 2018, along with metadata annotations like holidays, textual weather descriptions, and weather
forecasts (Table 3). Here, we want to generate time series samples for prompts such as “Given the following weather
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DATASET HORIZON # CHANNELS CATEGORICAL FEATURES CONTINUOUS FEATURES

AIR QUALITY 96 6
12 STATIONS, 5 YEARS, 12 MONTHS,
31 DATES, 24 HOURS, 17 WIND DIRECTIONS

TEMPERATURE, PRESSURE,
DEW POINT TEMPERATURE,
RAIN LEVELS, WIND SPEED

TRAFFIC 96 1

12 HOLIDAYS, 7 YEARS, 12 MONTHS,
31 DATES, 24 HOURS,
11 BROAD WEATHER DESCRIPTIONS,
38 FINE WEATHER DESCRIPTIONS

TEMPERATURE, RAIN LEVELS,
SNOWFALL LEVELS,
CLOUD CONDITIONS

ELECTRICITY 96 1 370 USERS, 4 YEARS, 12 MONTHS, 31 DATES N.A.
ECG 1000 8 71 HEART DISEASE STATEMENTS N.A.

Table 3. Dataset overview for experiments with TIME WEAVER. This table outlines the key characteristics of the datasets employed in
our experiments. These datasets, encompassing Air Quality, Traffic, Electricity, and ECG, have been carefully selected to demonstrate
TIME WEAVER’s versatility across different time horizons, number of channels, and a wide range of metadata types.

forecast, synthesize a traffic volume pattern for New Year’s Day.”, which is a univariate time series. The dataset CSV file
has 48204 rows containing the traffic volume. We synthesize the traffic volume for a 96-hour window. So, to create a dataset
from the CSV file, we slide a window of length 96 with a stride of 24. This gives a total of 2001 time series samples, which
we randomly divide into train, validation, and test sets with an 80-10-10 ratio.

A.2.3. AIR QUALITY DATASET

This dataset contains hourly air pollutants data from 12 air quality monitoring stations in Beijing. The meteorological data
in each air quality site are paired with the weather data from the nearest weather station (please refer to Table 3 for more
details regarding the metadata conditions). Here, the task is to synthesize a multivariate (6 channels) time series given the
weather forecast metadata. The dataset has missing values, which we replace with the mean for both continuous metadata
and the time series. For categorical metadata, missing values exist only in the wind direction metadata feature, which we
fill using an “unknown” label. The dataset is split into train, validation, and test sets based on months. The recordings are
available from 2013 to 2017, and we have a total of 576 months, of which we randomly picked 460 as train data, 58 as
validation data, and 58 as test data. For each month, we slide a window of length 96 with a stride of 24, and this provides a
total of 12166 train time series samples, 1537 validation time series samples, and 1525 test time series samples.

A.2.4. ECG DATASET

The PTB-XL ECG dataset is a 12-channel (1000 time steps long) time series dataset with 17651 train, 2203 validation, and
2167 test samples. The dataset has annotated heart disease statements for each ECG time series. Here, the goal is to generate
ECG time series samples for a specific heart disease statement, which is our metadata. In this work, we use 8 channels
instead of 12, as shown in (Alcaraz & Strodthoff, 2023).

A.3. Architecture Description Of The Feature Extractors Used In J-FTSD

To compute our proposed J-FTSD metric, we relied on the Informer encoder architecture proposed by Zhou et al. (2021).
Specifically, we used two encoders, one for the time series and one for the metadata features, represented as ϕtime and ϕmeta,
respectively. We made the following modifications to the Informer encoder architecture:

• The raw time series was first processed using 1D convolution layers. We added positional encoding to the processed
time series before providing it as input to the self-attention layers in ϕtime. We used the same positional encoding as
suggested by Zhou et al. (2021).

• The raw metadata was processed in the same way as the metadata for the time series generation process, which is
highlighted in Sec. 4. We individually processed or tokenized the categorical and continuous metadata using linear
layers and 1D convolution layers to obtain the metadata embedding z. We added positional encoding to z before
providing z as input to the self-attention layers in ϕmeta.

• We used 1D convolution layers at the end of every self-attention layer. We used striding after every three self-attention
layers, i.e., 1D convolution layers with a stride of 2 were applied after the 3rd, 6th, . . ., self-attention layers.
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Figure 6. Contrastive Training of J-FTSD Feature Extractors Inspired By CLIP (Radford et al., 2021): This figure depicts the
contrastive learning-based training approach for the J-FTSD feature extractors ϕtime and ϕmeta, akin to the methodology used in CLIP. Here,
we consider a time series where the first half is a triangle wave and the second half is a sine wave. The categorical metadata corresponding
to this time series has the first half labeled as 1 (”triangle”) and the second half as 0 (”sine”). Patches of length Lpatch are extracted from
time series and metadata and processed through their respective feature extractors. The embeddings, zc from the metadata encoder and zx
from the time series encoder, are compared using their dot products to identify correct pairings, highlighted along the matrix diagonal
(in orange). The feature extractors are trained through contrastive learning, employing cross-entropy loss to enhance the accuracy of
matching time series data with its relevant metadata, effectively capturing the nuanced relationship between the two.

• At the end of the self-attention layers of both ϕtime and ϕmeta, we flattened the outputs and projected the outputs to a
lower-dimensional space using linear layers. We used the Gaussian Error Linear Unit (GELU) activation, similar to the
Informer architecture.

Now, we describe the choice of Lpatch for each dataset. As explained in Sec. 5, we chose Lpatch based on the minimum
horizon required for a patch to contain metadata-specific features. For each dataset, the values of Lpatch and the embedding
size (the output dimension of the feature extractors) are tabulated in Table 4.

DATASET Lpatch EMBEDDING SIZE
AIR QUALITY 64 128
ECG 256 256
ELECTRICITY 64 48
TRAFFIC 64 48

Table 4. Choice of the patch and embedding sizes. In this table, we list the choices of the patch size Lpatch and the embedding size used
for each dataset in our experiments.

Specifically, we chose the embedding size such that given a time series sample x ∈ RL×F , where L is the horizon, and F is
the number of channels in the time series, the embedding size should be smaller than F × Lpatch. This is to ensure that we
are reducing the dimensionality of the time series patch.

Now, we list the hyperparameter choices used for training the feature extractors in Table 5. These include the number
of patches from a single time series sample Npatch, learning rate, etc, and the design choices in terms of the number of
self-attention layers, number of transformer heads, etc.

Fig. 6 provides a pictorial representation of the contrastive learning framework used to train the feature extractors ϕtime and
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DESIGN PARAMETER VALUE
EMBEDDING SIZE (dmodel) 128
ATTENTION HEADS (nheads) 8
SELF-ATTENTION LAYERS 8
DROPOUT 0.05
ACTIVATION GELU

Npatch 2
LEARNING RATE 10−4

Table 5. Hyperparameters for the feature extractors.

ϕmeta. The training process ensures that the time series samples with similar paired metadata have similar projections in the
latent space.

A.4. TIME WEAVER Architecture Design

As mentioned in Sec. 4, TIME WEAVER has two denoiser backbones - CSDI (Tashiro et al., 2021) and SSSD (Alcaraz &
Strodthoff, 2023). In this section, we describe the architecture changes we introduced to the CSDI and the SSSD backbones
to extend their capabilities to metadata-specific time series generation.

A.4.1. TIME WEAVER-CSDI

Gated activation unit
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Conv1x1 Conv1x1+

Input to
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and expand+
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embedding of 
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Metadata embedding
 

Input Conv1D Permute

Figure 7. TIME WEAVER-CSDI architecture: This figure shows our changes to the original conditional CSDI model (Tashiro et al.,
2021). We use this model as our denoiser (θdenoiser) in our architecture, with metadata preprocessing fixed as in Fig. 3. Changes to the
original architecture are colored in red.

Consider a batch of time series samples of size (Nbatch, F, L), where Nbatch represents the number of samples per batch, F
represents the number of channels in the time series, and L represents the horizon. The paired metadata is represented as
ccat ⊕ ccont, where the shape of ccat is (Nbatch, L,Kcat) and the shape of ccont is (Nbatch, L,Kcont).

• Input time series projection: We first transformed the input time series batch to (Nbatch × F, 1, L) and applied 1D
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DESIGN PARAMETER VALUE
POSITION EMBEDDING 128
FEATURE OR CHANNEL EMBEDDING 16
DIFFUSION STEP EMBEDDING 256
EMBEDDING SIZE (dmeta) 256
ATTENTION HEADS (nheads) 16
METADATA ENCODER (θcondn) EMBEDDING SIZE 256
METADATA ENCODER (θcondn) ATTENTION HEADS 8
METADATA ENCODER (θcondn) SELF-ATTENTION LAYERS 2
LEARNING RATE 10−4

Table 6. Hyperparameters for TIME WEAVER-CSDI architecture.

convolution layers with dmeta filters to obtain a projection of shape (Nbatch × F, dmeta, L). We then reshaped the
projection from (Nbatch × F, dmeta, L) to (Nbatch, dmeta, F, L).

• Metadata projection: Simultaneously, we converted each categorical metadata feature in ccat into one-hot encoding
and further processed using θcat

token. Similarly, we processed the continuous metadata, ccont, using θcont
token. Both ccat

and ccont were projected to latent representations of shape (Nbatch, L, dcat) and (Nbatch, L, dcont), respectively. These
latent representations were concatenated along the final axis and processed using the self-attention layer θcondn. At the
end of this preprocessing, the categorical and continuous metadata were projected to a latent representation of shape
(Nbatch, L, dmeta). We then broadcasted and reshaped the projected metadata to (Nbatch, dmeta, F, L).

• Diffusion step representation: The CSDI architecture represents the diffusion step using a 128-dimensional representa-
tion, which is projected to dmeta. We broadcasted and reshaped the diffusion step representation to (Nbatch, dmeta, F, L).

• Then, we added the input time series projection, metadata projection, and diffusion step representation. This sum was
passed to the temporal and feature transformer layers in the first residual layer.

• We provided the projected metadata as input to all the residual layers in the same manner.

These modifications are highlighted in red in Fig. 7. For the diffusion process, our experiments with TIME WEAVER-CSDI
used 200 diffusion steps with the noise variance schedule values of β1 = 0.0001 and βT = 0.1.

Now, we list the architectural choices and the corresponding hyperparameter choices in Table 6. The number of residual
layers used varies for each dataset. For the Air Quality dataset, we used 10 residual layers. Similarly, for the Traffic,
Electricity, and ECG datasets, we used 8, 6, and 10 residual layers respectively.

A.4.2. TIME WEAVER-SSSD

The TIME WEAVER-SSSD model is based on the structured state-space diffusion (SSSD) model (Alcaraz & Strodthoff,
2022) which was originally designed for imputation tasks. The SSSD model is built on the DiffWave (Kong et al., 2021)
architecture. Unlike the DiffWave model, SSSD utilizes the structured state-space model (SSM) (Gu et al., 2022), which
connects the input sequence u(t) to the output sequence y(t) via the hidden state x(t). This relation can be explicitly given
as:

x′(t) = Ax(t) +Bu(t) and y(t) = Cx(t) +Du(t).

Here, A,B,C, and D are learnable transition matrices. Gu et al. (2022) propose stacking several SSM blocks together
to create a Structured State Space sequence model (S4). These SSM blocks are connected with normalization layers and
point-wise FC layers in a way that resembles the transformer architecture. This architectural change is done to capture
long-term dependencies in time series data. Alcaraz & Strodthoff (2023) adjust this architecture to take label input, a binary
vector of length 71. As shown in Fig. 8, we replaced this label input with the metadata embeddings obtained from our
metadata preprocessing block to incorporate more complex metadata modalities.

For the diffusion process, our experiments with TIME WEAVER-SSSD used 200 diffusion steps with the noise variance
schedule values of β1 = 0.0001 and βT = 0.02.
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Figure 8. TIME WEAVER-SSSD architecture: This figure shows our changes to the original conditional SSSD model (Alcaraz &
Strodthoff, 2023). We use this model as the denoiser (θdenoiser) in our architecture, with metadata preprocessing being fixed as in Fig. 3.
Changes to the original architecture are highlighted in red.

Now, we provide the list of design choices and hyperparameters used in the TIME WEAVER-SSSD model in Table 7.

DESIGN PARAMETER VALUE
RESIDUAL LAYER CHANNELS 256
SKIP CHANNELS 16
DIFFUSION STEP EMBEDDING INPUT CHANNELS 128
DIFFUSION STEP EMBEDDING MID CHANNELS 512
DIFFUSION STEP EMBEDDING OUTPUT CHANNELS 512
S4 LAYER STATE DIMENSION 64
S4 LAYER DROPOUT 0.0
IS S4 LAYER BIDIRECTIONAL TRUE

USE LAYER NORMALIZATION TRUE

METADATA ENCODER (θcondn) EMBEDDING SIZE 256
METADATA ENCODER (θcondn) ATTENTION HEADS 8
METADATA ENCODER (θcondn) SELF-ATTENTION LAYERS 2
LEARNING RATE 10−4

Table 7. Hyperparameters for the TIME WEAVER-SSSD architecture.

A.5. GAN Baselines

A.5.1. MAIN GAN BASELINES

For our main GAN baselines, we use Pulse2Pulse GAN (Thambawita et al., 2021) and WaveGAN (Donahue et al., 2019).
Since these approaches are not fundamentally conditional, we added additional layers to enable conditional generation.

• For the Electricity and ECG datasets, we used the implementation provided by (Thambawita et al., 2021) and (Alcaraz
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& Strodthoff, 2023). Since these datasets only have categorical metadata, we represented each categorical label
by a fixed embedding. This fixed embedding is added to the output of each layer in the generator after the batch
normalization layers. Similarly, we add the fixed embedding to the output of each layer in the discriminator. To
learn the conditional distribution, along with predicting whether a sample is real or fake, we also predict the logit of
each categorical metadata, similar to (Odena et al., 2017). In our training experiments, we noticed that predicting the
metadata category for the fake sample results in poor-quality samples. Hence, during training, we only predict the
category for the real samples.

• For the Air Quality and Traffic datasets, we appended the inputs to the generator and discriminator with the metadata
conditions.

For all the datasets except the Air Quality dataset, we used min-max normalization to transform the time series samples to
lie between -1 and 1. For the Air Quality dataset, we used the standard zero mean, unit variance normalization.

A.5.2. WAVEGAN IMPLEMENTATION DETAILS

We train the WaveGAN model for all the datasets with a learning rate of 10−4 and store the checkpoints after every
100 epochs. We sample a 48-dimensional random vector for the Electricity, Air Quality, and Traffic datasets and a 100-
dimensional random vector for the ECG dataset. This vector serves as the noise input to the generator. We used the
PyTorch implementation (Link to the repo) and the code from (Alcaraz & Strodthoff, 2023) to implement WaveGAN.
We adjusted the number of parameters in the generator and discriminator to roughly match the size of our TIME WEAVER
models.

• For the Air Quality dataset, the total number of trainable parameters in the GAN model is 15.2 million, and the
generator has 8.51 million trainable parameters.

• For the Traffic dataset, the total number of trainable parameters in the GAN model is 13.7 million, and the generator
has 7.017 million trainable parameters.

• For the Electricity dataset, the total number of trainable parameters in the GAN model is 13.3 million, and the generator
had 7.17 million parameters.

• For the ECG dataset, the total number of trainable parameters in the GAN model is 40.9 million, and the generator has
21.36 million parameters.

We chose the checkpoints that provided lower values of J-FTSD on the test data set.

A.5.3. PULSE2PULSE GAN IMPLEMENTATION DETAILS

We train the Pulse2Pulse GAN model in the same manner as WaveGAN for all the datasets, with a learning rate of 10−4,
and store the checkpoints after every 100 epochs. Here, the noise input to the generator has the same dimensions as the time
series sample that we want to generate. We adjusted the number of parameters in the generator and discriminator to roughly
match the size of our TIME WEAVER models.

• For the Air Quality and Traffic datasets, the total number of trainable parameters in the GAN model is 14.1 million,
and the generator has 7.45 million trainable parameters.

• For the Electricity dataset, the total number of trainable parameters in the GAN model is 16.9 million, and the generator
has 8.4 million parameters.

• For the ECG dataset, the total number of trainable parameters in the GAN model is 43 million, and the generator has
23.47 million parameters.

A.5.4. ADDITIONAL GAN BASELINES

In addition to WaveGAN (Donahue et al., 2019) and Pulse2Pulse GAN (Thambawita et al., 2021) models, we experimented
with TTS-GAN (Li et al., 2022) and the well-established TimeGAN (Yoon et al., 2019) models. Unfortunately, we were
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unable to train these models to generate quality samples. These models were likely challenged by higher input time series
lengths than their original implementation. For example, TimeGAN and TTS-GAN consider time steps up to 24 and 188,
respectively, while we consider time steps up to 1000. A similar problem was also faced by Alcaraz & Strodthoff (2023).
We include our training examples after 10000 epochs for the Air Quality and Traffic datasets in Fig. 9.
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Figure 9. TimeGAN and TTS-GAN failed to generate realistic samples after 10000 epochs. This figure shows the samples generated
from the test dataset after 100, 1000, and 10000 training epochs, where row 1 and row 2 correspond to TTS-GAN and TimeGAN,
respectively. We can see that both models fail to generate high-quality realistic samples.

A.6. Evaluation Metrics

In this section, we briefly describe the details regarding the evaluation metrics, i.e., TSTR (train on synthetic test on real)
and J-FTSD.

A.6.1. J-FTSD DETAILS

For the Electricity, Air Quality, and Traffic datasets, the horizon is 96, i.e., L = 96. So, we consider time series and metadata
patches of length Lpatch = 64. Consequently, we obtain the time series and the metadata embeddings for these patches using
ϕtime and ϕmeta, respectively. We compute the J-FTSD metric from these embeddings using Eq. (6). For the ECG dataset,
since the horizon is 1000, Lpatch is set to 256.

One important detail is that the feature extractors, ϕtime, and ϕmeta, are trained on the entire dataset. This was done to ensure
that the feature extractors could effectively obtain the metadata-specific features, improving the evaluation process. For
example, if the feature extractors were trained only on the train and validation sets, they would not be able to detect unique
trends in the test set.

A.6.2. TRAIN ON SYNTHETIC TEST ON REAL (TSTR) METRIC DESCRIPTION

For TSTR, we use a standard ResNet 1D (He et al., 2016) architecture. We pick the most physically relevant categorical
metadata category for the classification task for each dataset. To this end, we performed the following classification tasks:
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• Classification over 12 months in the Electricity dataset. We trained the classifier with cross-entropy loss for 30 epochs
with a learning rate of 10−4.

• Classification over 71 heart disease statements in the ECG dataset. We note that for a given time series sample, more
than one class could be active. So, we trained a classifier with binary cross-entropy loss for 200 epochs with a learning
rate of 10−4.

• Classification over 11 coarse weather descriptions in the Traffic dataset. We treat the classification task here as a
multi-class, multi-label classification problem. So, we trained a classifier with binary cross-entropy loss for 250 epochs
with a learning rate of 10−4.

• Classification over 12 weather stations for the Air Quality dataset. We used the cross-entropy loss for 500 epochs with
a learning rate of 10−4.

Here, we note that with the pre-trained diffusion model, we generated the synthetic train, validation, and test datasets. The
classifier is trained on the synthetic train dataset, and the checkpoints are stored with the synthetic validation dataset. We
finally evaluated the model on the real test dataset. We use the Area Under the Receiver Operating Characteristic Curve
(ROC AUC) as the TSTR metric.

A.7. Additional Quantitative Results

This section provides additional quantitative results and ablation studies for TIME WEAVER and J-FTSD.

A.7.1. PERFORMANCE COMPARISON BETWEEN TIME WEAVER AND GAN MODELS IN THE PRESENCE AND
ABSENCE OF METADATA

We perform an ablation study to compare the performance of TIME WEAVER and GAN in the presence and absence of
metadata for the Air Quality and Electricity datasets. We observe the FTSD metric (Frechet Distance without the metadata
embedding) for TIME WEAVER-CSDI and WaveGAN (Donahue et al., 2019). The FTSD metric measures the real and
generated time series datasets’ distributional similarity. First, we note that in the absence of metadata, WaveGAN provides
lower FTSD for the Air Quality dataset, and TIME WEAVER-CSDI provides lower FTSD for the Electricity dataset. However,
in the presence of metadata, TIME WEAVER-CSDI outperforms WaveGAN in both datasets. The quantitative results are
tabulated in Table 8. This result aligns with our key insight that GANs perform poorly with continuous conditions. However,
diffusion-based approaches such as TIME WEAVER can handle any arbitrary combination of categorical, continuous, and
time-varying metadata conditions.

APPROACH AIR QUALITY ELECTRICITY

WITHOUT
METADATA

WITH
METADATA

WITHOUT
METADATA

WITH
METADATA

WAVEGAN (DONAHUE ET AL., 2019) 1.40±0.045 2.62±0.001 5.26±0.025 0.92±0.005
TIME WEAVER-CSDI 2.98±0.097 0.51±0.016 0.57±0.019 0.29±0.001

Table 8. TIME WEAVER outperforms GANs for metadata-specific time series generation for complex metadata. Here, we show a
quantitative comparison between the performance of TIME WEAVER and GAN models in the presence and absence of metadata. We
use the FTSD metric (Frechet Distance without metadata embeddings) for this comparison. We evaluate TIME WEAVER-CSDI and
WaveGAN (Donahue et al., 2019) on the Air Quality and Electricity datasets. The key observation is that in the presence of metadata,
TIME WEAVER-CSDI significantly outperforms WaveGAN (Donahue et al., 2019) on the FTSD metric. This indicates TIME WEAVER’s
ability to handle any arbitrary combination of categorical, continuous, and time-varying metadata.

A.7.2. PERFORMANCE COMPARISON BETWEEN TIME WEAVER AND DIFFUSION MODEL WITH U-NET 1D DENOISER

In addition to GANs, we compare the performance of TIME WEAVER against diffusion models with U-Net 1D (Ronneberger
et al., 2015) as the denoiser backbone. We choose U-Net 1D as U-Net is the most commonly used denoiser in image and
video synthesis. This comparison aims to highlight the requirement of time series-specific modifications to the denoiser to
obtain high-quality samples. Table 9 shows the quantitative comparison between U-Net 1D and the best-performing TIME
WEAVER model for all datasets. We choose the best-performing TIME WEAVER model using the TSTR metric in Table 2.
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TSTR (↑)
APPROACH AIR QUALITY ECG TRAFFIC ELECTRICITY

U-NET 1D (RONNEBERGER ET AL., 2015) 0.66±0.01 0.71±0.01 0.65±0.02 0.78±0.003
TIME WEAVER 0.77±0.01 0.85±0.007 0.66±0.06 0.78±0.001

J-FTSD (↓)
AIR QUALITY ECG TRAFFIC ELECTRICITY

U-NET 1D (RONNEBERGER ET AL., 2015) 7.32±0.04 12.47±0.07 0.19±0.01 0.64±0.003
TIME WEAVER 2.2±0.07 5.43±0.1 0.53±0.01 0.6±0.003

Table 9. TIME WEAVER outperforms the diffusion model with a U-Net 1D denoiser backbone. Here, we show quantitative results for
the comparison between the best-performing TIME WEAVER model and the diffusion model baseline with U-Net 1D as the denoiser
backbone. Overall, we observe that TIME WEAVER significantly outperforms the U-Net 1D baseline by around 9% on the TSTR metric
and around 17% on the J-FTSD metric on average. This superior performance highlights the necessity for time series-specific changes to
the denoiser backbone in diffusion models. For example, TIME WEAVER-CSDI contains feature and temporal transformer layers that
can learn the required correlation between the input metadata and the generated time series channels, as well as the correlation between
different time stamps. Meanwhile, U-Net, a popular denoiser used for image and video generation, cannot effectively capture the temporal
and channel-wise correlation between the metadata and time series.

APPROACH AIR QUALITY TRAFFIC ELECTRICITY

WAVEGAN (DONAHUE ET AL., 2019) 4.56±1.64 4.00±0.66 3.79±4.55
PULSE2PULSE (THAMBAWITA ET AL., 2021) 5.45±2.14 4.86±1.16 3.54±3.63
TIME WEAVER-CSDI 2.50±1.12 1.34±0.99 2.05±1.64
TIME WEAVER-SSSD 3.88±2.20 1.10±1.00 2.61±2.36

Table 10. Our proposed J-FTSD metric correlates with the Dynamic Time Warping metric (Itakura, 1975). This table shows the
Dynamic Time Warping (DTW) metric computed between the real and generated time series samples for the Air Quality, Electricity, and
Traffic datasets. Note that for the DTW metric computed between real and generated time series samples, lower values indicate higher
similarity between the two samples. Comparing with the J-FTSD values in Table 2, we note that lower values of J-FTSD correspond
to lower values of DTW. This further affirms the validity of our proposed J-FTSD metric. Additionally, note that our proposed TIME

WEAVER models provide the lowest DTW for all the datasets.

Overall, we observe that TIME WEAVER significantly outperforms the U-Net 1D baseline by around 9% on the TSTR metric
on average. Similarly, TIME WEAVER outperforms the U-Net 1D baseline by around 17% on the J-FTSD metric.

A.7.3. CORRELATION BETWEEN OUR PROPOSED J-FTSD METRIC AND THE DYNAMIC TIME WARPING METRIC

Dynamic Time Warping (DTW) (Itakura, 1975) is a similarity metric between two different time series samples. Dynamic
Time Warping looks for the temporal alignment that minimizes the Euclidean distance between two aligned time series
samples. Lower values of DTW indicate high similarity between the two time series samples. As a metric to evaluate
metadata-specific time series generation models, DTW works effectively when there is only one time series per metadata
condition. In this case, we can compare the single real time series with the generated time series for the same metadata to
check if the metadata-specific features are retained. If there are multiple time series per metadata condition (which is the
case in the ECG dataset), DTW might not be the most effective solution. In our experiments, we note that there is only one
time series sample per metadata condition in the Air Quality, Electricity, and Traffic datasets. For these datasets, we observe
that, among different approaches used in our experiments, lower values of J-FTSD correspond to lower values of DTW. The
quantitative results are provided in Table 10. This further affirms the validity of our proposed J-FTSD metric.

A.8. Training and Inference Complexity

In this section, we provide a quantitative analysis of the training and inference complexities of our proposed TIME WEAVER
models. For training complexity, we show how the J-FTSD metric varies over epochs during training in Fig. 10. We note
that TIME WEAVER provides a faster rate of decrease of J-FTSD when compared to GANs.
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Figure 10. TIME WEAVER provides a better rate of decrease of J-FTSD during training than GANs. Here, we show how J-FTSD
changes over epochs during the training phase for the Air Quality dataset. For this experiment, we compare TIME WEAVER-CSDI against
WaveGAN. We observe that TIME WEAVER-CSDI provides a much higher rate of decrease of J-FTSD when compared to WaveGAN,
indicating better training.

For the inference complexity, we provide a theoretical discussion on the time complexity of TIME WEAVER in Sec. 6.
Additionally, we provide the measured inference latency for TIME WEAVER variants in Table 11. From Table 11, it can be
seen that the inference latency for TIME WEAVER-CSDI is much lower than the inference latency for TIME WEAVER-SSSD
for generating a single sample. However, we note that TIME WEAVER-SSSD is more suitable for batched generation as
TIME WEAVER-CSDI drastically limits the maximum allowable batch size due to the forward pass through its feature
transformer layers.

INFERENCE LATENCY (S)
AIR QUALITY ECG TRAFFIC ELECTRICITY

TIME WEAVER-CSDI 3.42±0.303 10.90±0.236 2.63±0.288 1.68±0.271
TIME WEAVER-SSSD 6.15±0.302 64.30±0.085 5.07±0.299 3.93±0.299

Table 11. Inference latency of TIME WEAVER models for generating one sample. In this table, we show the inference latency in
seconds for our proposed TIME WEAVER models for all datasets. We compute the mean inference latency and the standard deviation for
generating one sample over ten runs. The inference experiments were performed on a single NVIDIA RTX A5000 GPU.

A.9. Discussion On The Causal Relationship Between Time Series And Metadata

In this section, we present an interesting observation relevant to TIME WEAVER’s ability to retain the causal effects of the
input metadata on the generated time series. We consider the Air Quality dataset, where physical models exist that indicate
the effect of rainfall (metadata) on the particulate matter levels (one of the time series channels). We show that TIME
WEAVER generates particulate matter levels that adhere to this effect through qualitative examples in Fig. 11. However, we
note that this is not rigorous proof of causality.
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Figure 11. TIME WEAVER retains causal relationships between the input metadata and the generated time series. In this figure,
we showcase TIME WEAVER’s ability to retain essential causal relationships between metadata and generated time series for the Air
Quality dataset. In particular, we consider the effects of rainfall (metadata) on the particulate matter levels (PM2.5, one of the channels in
the generated time series). We show two instances from the dataset with a sudden spike in rainfall. In both rows, the left image shows
the rainfall level metadata and the center image shows the PM2.5 time series corresponding to the rainfall metadata from the dataset.
The right image shows the generated PM2.5 time series channel for the rainfall metadata input. Observe that the sudden spike in the
particulate matter level is faithfully replicated in the generated samples.

A.10. Discussion On The Feature Extractors Used In The J-FTSD Metric

In this section, we analyze the embeddings from the feature extractors used to compute J-FTSD. Note that these feature
extractors (ϕtime and ϕmeta) are learned using a contrastive learning-based training approach similar to CLIP (Radford et al.,
2021). The feature extractors are jointly trained (check Alg. 1) to maximize the similarity between a time series embedding
and its paired metadata embedding. This results in the clustering of time series embeddings for time series samples that
have similar paired metadata. We test this observation on the ECG and the Air Quality datasets and show low-dimensional
visualization of the time series embeddings in Fig. 12.

We use t-SNE on the time series embeddings for dimensionality reduction. For the ECG dataset, we observe that time
series samples corresponding to the most common heart disease statement get clustered together. This is shown in Fig. 12.
Similarly, for the Air Quality dataset, we observe that the time series samples get clustered into 4 clusters. However,
the dataset has a combination of categorical metadata conditions such as stations, years, months, etc, and continuous
metadata conditions such as temperature, pressure, rain levels, etc. This complexity in metadata conditions inhibits us from
interpreting the clusters, as in the case of the ECG dataset. Therefore, our critical insight is that the contrastive learning
approach results in the clustering of the time series embeddings corresponding to similar paired metadata. However, the
interpretability of the clusters is non-trivial for arbitrary combinations of categorical, continuous, and time-varying metadata
conditions.
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ECG Dataset Air Quality Dataset

Figure 12. Interpretability of the time series embeddings obtained from J-FTSD’s time series encoder. In this figure, we show the
clustering of time series embeddings obtained from the time series feature extractor ϕtime. We use t-SNE on the time series embeddings for
dimensionality reduction. Note that the feature extractors (ϕtime and ϕmeta) are trained jointly using a contrastive learning-based approach
(check Alg. 1). We show results for clustering on two datasets - ECG and Air Quality. For the ECG dataset, we showcase that the samples
corresponding to the most common disease get clustered together. For the Air Quality dataset, we show that the time series embeddings
get clustered into 4 clusters. However, due to the complexity of the metadata conditions (a combination of categorical and time-varying
continuous conditions), we cannot interpret the clusters as in the case of the ECG dataset.

A.11. Additional Qualitative Results

In this section, we provide additional qualitative results generated using TIME WEAVER.
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Figure 13. Generated time series samples from the Electricity dataset

25



Time Weaver: A Conditional Time Series Generation Model

Figure 14. Qualitative Results from the TIME WEAVER-CSDI model for the Traffic dataset

Figure 15. Qualitative results from the TIME WEAVER-CSDI model for the Air Quality dataset
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Figure 16. Real time series samples from the ECG dataset
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Figure 17. Generated time series samples from the ECG dataset
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