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Abstract

Recently, prompt tuning (PT) has gained in-001
creasing attention as a parameter-efficient way002
of tuning pre-trained language models (PLMs).003
Despite extensively reducing the number of tun-004
able parameters and achieving satisfying per-005
formance, PT is training-inefficient due to its006
slow convergence. To improve PT’s training007
efficiency, we first make some novel observa-008
tions about the prompt transferability of “par-009
tial PLMs”, which are defined by compressing010
a PLM in depth or width. We observe that the011
soft prompts learned by different partial PLMs012
of various sizes are similar in the parameter013
space, implying that these soft prompts could014
potentially be transferred among partial PLMs.015
Inspired by these observations, we propose Fast016
Prompt Tuning (FPT), which starts by conduct-017
ing PT using a small-scale partial PLM, then018
progressively expands its depth and width until019
the full-model size. After each expansion, we020
recycle the previously learned soft prompts as021
initialization for the enlarged partial PLM and022
then proceed PT. We demonstrate the feasibility023
of FPT on 5 tasks and show that FPT could save024
over 30% training computations while achiev-025
ing comparable performance.026

1 Introduction027

The emergence of pre-trained language models028

(PLMs) has broken the glass ceiling for vari-029

ous NLP tasks (Min et al., 2021). Versatile se-030

mantic and syntactic knowledge acquired during031

pre-training could be leveraged when PLMs are032

adapted towards a specific downstream task to033

boost performance. The de facto strategy for such034

an adaptation is full-parameter fine-tuning, which035

is computationally expensive and profligate since036

it requires tuning and storing all the parameters in037

the PLM for each downstream task.038

To remedy this, several parameter-efficient tun-039

ing algorithms are proposed in place of the vanilla040

fine-tuning (Houlsby et al., 2019; Li and Liang,041
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Figure 1: Average performance growth of T5LARGE on 5
investigated tasks in this paper comparing fine-tuning
and PT. The convergence speed of PT is much slower
than fine-tuning in terms of training steps.

2021; Hu et al., 2022; Zaken et al., 2021), among 042

which prompt tuning (PT) (Lester et al., 2021) has 043

gained increasing attention recently. PT prepends 044

a few virtual tokens to the input text, these to- 045

kens are tuned during training while all the other 046

PLM parameters remain frozen. Despite its simple 047

form, PT has been demonstrated to achieve remark- 048

able performance in various NLP tasks. Especially 049

when the scale of the PLM becomes extremely 050

huge, PT could achieve comparable performance 051

to fine-tuning (Lester et al., 2021). Despite ex- 052

tensively reducing the number of tunable parame- 053

ters and achieving satisfying performance, PT is 054

criticized to be training-inefficient due to the slow 055

convergence as illustrated in Figure 1, and such in- 056

competence would limit the practical application of 057

PT. Hence in this paper, we explore how to improve 058

PT’s training efficiency. 059

Our motivation is based on novel observations 060

about the prompt transferability among “partial 061

PLMs”. Here a partial PLM is defined by com- 062

pressing a PLM in depth or width, which is im- 063

plemented by dropping several layers or masking 064

part of the connections in the feed-forward network 065

(FFN) in each Transformer (Vaswani et al., 2017) 066

layer. We observe that the soft prompts of the same 067

task learned by different partial PLMs of various 068
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Figure 2: The framework of Fast Prompt Tuning (FPT).
The top part (a,b) shows two methods to construct a
partial PLM. The bottom part (c) shows FPT’s training
process, we conduct PT on a partial PLM, progressively
expand its size and transfer the trained prompts.

sizes tend to be close in the parameter space, im-069

plying that these soft prompts could potentially be070

transferred among different partial PLMs.071

Inspired by the above observations, we propose072

Fast Prompt Tuning (FPT), which starts by conduct-073

ing PT using a small-scale partial PLM to obtain074

the corresponding soft prompts. After that, we075

progressively expand the partial PLM’s depth and076

width until the full-model size by rehabilitating the077

dropped layers and masked neurons. After each078

expansion, we recycle the previously learned soft079

prompts as initialization for the enlarged PLM and080

then proceed PT. Since the partial PLM requires081

fewer computations for each step, keeping the total082

training steps unchanged, we could reduce the over-083

all computations consumed, and in the meantime,084

achieve comparable PT performance. In experi-085

ments, we demonstrate the feasibility of FPT on086

5 NLP tasks. The experimental results show that087

FPT could save around 30% training computations088

and achieve satisfying downstream performance.089

2 Prompt Tuning on a Partial PLM090

2.1 Prompt Tuning091

For a given input sequence X = {x1, x2, ..., xn}092

and its target label Y , PT first converts X into a093

matrix X ∈ Rn×d, where d is the hidden size. Af-094

ter that, PT prepends l tunable soft prompt tokens095

P ∈ Rl×d before X, creating a new input matrix096

[P;X] ∈ R(l+n)×d, which is then processed by097

the PLM. The training objective is to maximize098

P(Y|[P;X]), where only P is optimized during099

training and the parameters of PLM are frozen. Al-100

though PT is applied to the entire PLM by default,101

in this section, we investigate how the performance102

would become if we conduct PT on a partial PLM, 103

i.e., only part of the parameters in the PLM partici- 104

pate in the computation. 105

2.2 Partial PLM Construction 106

Using partial parameters in a PLM is typically ap- 107

plied to reduce the inference computation for fine- 108

tuning, such as early exit (Teerapittayanon et al., 109

2016; Xin et al., 2020) and model pruning (Chen 110

et al., 2020; Sun et al., 2020), which assume that 111

the features produced by a part of a PLM may al- 112

ready suffice to classify some input examples. In 113

this paper, we investigate its application in reduc- 114

ing the training computation of PT, and propose 115

to construct partial PLMs by shrinking the origi- 116

nal PLM in both depth and width, as illustrated in 117

Figure 2 (a, b). Details are listed in appendix B. 118

Layer Dropping. Based on previous findings 119

(Clark et al., 2019; Jawahar et al., 2019) that adja- 120

cent layers in PLMs generally have similar func- 121

tionalities, we hypothesize that removing part of 122

these layers may not significantly hurt the overall 123

performance, and we propose to drop a PLM’s lay- 124

ers uniformly to construct a partial PLM consisting 125

of fewer layers than the original PLM. After that, 126

we directly build connections among the remaining 127

layers keeping the original order, which is found 128

empirically to work well although such connections 129

do not exist during pre-training. 130

FFN Reduction. Jaszczur et al. (2021) indicate 131

that only part of the neurons in the FFN layers will 132

be activated for a given input. Such a sparse activa- 133

tion phenomenon inspires us to reduce the computa- 134

tion in FFN by shrinking the width of the FFN layer. 135

Specifically, the FFN layer consists of two fully 136

connected networks with a nonlinear activation 137

function σ, and it processes an input representation 138

x ∈ Rd as: FFN(x) = σ(xW1 + b1)W2 + b2, 139

where W1 ∈ Rd×d′ and W2 ∈ Rd′×d are the 140

weight matrices, b1 ∈ Rd′ and b2 ∈ Rd are the 141

bias terms. We abandon a portion of W1 / W2’s 142

columns / rows (i.e., reducing d′) by masking the 143

neurons that are seldom activated. In practice, be- 144

fore training, we feed a few downstream examples 145

prepended by randomly initialized soft prompts 146

into the full-size PLM and record the neuron acti- 147

vation of each dimension of d′. 148

Compound Reduction. Since the above meth- 149

ods are compatible with each other, we try to com- 150

bine them to form a partial PLM smaller than the 151
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Enc./Dec. FFN MNLI QQP SQUAD2.0 RECORD XSUM Avg. ∆ FLOPsLayer Dimension (Acc) (Acc) (EM) (EM) (ROUGE-L)

PT 24 / 24 2,816 86.07 87.26 76.09 81.46 26.65 71.51 - 100%

LD
6 / 6 2,816 60.34 78.29 48.14 24.75 17.40 45.78 -25.73 30%

12 / 12 2,816 63.90 80.64 52.87 39.09 19.69 51.24 -20.27 54%
18 / 18 2,816 81.41 86.05 63.97 59.87 22.51 62.76 -8.75 77%

FR
24 / 24 704 78.18 85.19 66.68 62.90 22.46 63.08 -8.43 58%
24 / 24 1,408 82.62 86.45 72.65 74.59 24.61 68.19 -3.32 72%
24 / 24 2,112 84.93 86.77 74.73 79.52 26.12 70.41 -1.10 86%

CR
6 / 6 704 62.53 78.38 48.62 23.99 16.49 46.00 -25.51 20%

12 / 12 1,408 64.09 78.91 50.90 29.50 18.88 48.45 -23.06 40%
18 / 18 2,112 80.63 86.32 63.42 58.97 22.18 62.30 -9.21 66%

Table 1: Average results for partial PLM PT on T5LARGE with layer dropping (LD), FFN Reduction (FR), and
compound reduction (CR). ∆ denotes the performance degeneration compared with vanilla PT of each setting.

original PLM in both depth and width.152

2.3 Observations153

To explore PT’s performance on a partial PLM,154

we conduct experiments on T5LARGE (Raffel et al.,155

2020). We choose 5 representative NLP datasets156

in English, covering the tasks of natural lan-157

guage inference (MNLI (Williams et al., 2018)),158

paraphrase (QQP (link)), reading comprehen-159

sion (SQUAD2.0 (Rajpurkar et al., 2018) and160

RECORD (Zhang et al., 2018)), and summariza-161

tion (XSUM (Narayan et al., 2018)). For both layer162

dropping and FFN reduction, we evaluate the per-163

formance when we reduce the number of Trans-164

former layers or FFN intermediate dimension to165

{1
4 ,

1
2 ,

3
4}. We train all models using the same steps166

and the details are described in appendix B.167

Overall Performance. The overall results are168

shown in Table 1. We observe that for each method,169

despite abandoning a large portion of param-170

eters, a partial PLM reserves most of the PT171

performance of the full-size PLM. As expected,172

the performance becomes better when more param-173

eters are retained. In addition, we find that the174

performance drop is less sensitive to FFN reduc-175

tion than layer dropping. Specifically, there is only176

1.10% performance drop on average when 25%177

neurons are masked. These results indicate that178

the resulting partial PLM still retains most of the179

functionalities of the original PLM.180

Prompt Embedding Visualization. Taking a181

step further, we visualize the learned prompt182

embeddings of different partial PLMs using t-183

SNE (Van der Maaten and Hinton, 2008) in Fig-184

ure 3, and describe the details in appendix C. We185

observe that for the same task, the soft prompts186

obtained by different partial PLMs tend to form187

MNLI
QQP
SQuAD2.0
ReCoRD
XSum

Figure 3: Visualization of 5 investigated tasks’ soft
prompts of different partial PLMs. A marker with a
larger size means the performance of the corresponding
soft prompts on the partial PLM is better.

a compact cluster in the parameter space. This 188

phenomenon implies that the soft prompts corre- 189

sponding to the same task (1) have a great potential 190

of transferring among different partial PLMs, and 191

(2) could serve as a better initialization that leads 192

to faster convergence. Apart from the visualiza- 193

tion, we further report the cosine similarity of the 194

learned prompts in appendix D to verify the above 195

phenomenon from another aspect. 196

3 Fast Prompt Tuning 197

In this section, we propose Fast Prompt Tuning 198

(FPT), which aims at accelerating PT via progres- 199

sive training (Gong et al., 2019). Progressive 200

training is typically leveraged for improving pre- 201

training efficiency, instead, we focus on its applica- 202

tion in PLM’s downstream adaptation. 203

3.1 Methodology 204

Formally speaking, as visualized in Figure 2 (c), we 205

split the original PT training process into N stages. 206

We start with a small-size partial PLM M1 and 207
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Method MNLI QQP SQUAD2.0 RECORD XSUM Avg. FLOPs Improve↑(Acc) (Acc) (EM) (EM) (ROUGE-L)

T5LARGE

PT 86.07 87.26 76.09 81.46 26.65 71.51 100% -
FPTLD 85.72 86.51 75.89 80.23 26.27 70.92 72% 0.11
FPTFR 86.49 87.11 76.26 81.07 26.55 71.50 83% 0.49
FPTCR 85.13 86.40 75.63 81.00 26.21 70.87 65% 0.38

T5XL

PT 89.00 88.20 81.08 88.48 30.53 75.46 100% -
FPTLD 88.99 88.09 82.18 88.06 30.52 75.57 86% 0.78
FPTFR 88.84 88.21 81.74 88.46 30.52 75.55 84% 0.76
FPTCR 89.18 87.34 80.88 87.82 30.43 75.13 74% 0.48

Table 2: Performance of the vanilla PT and three variants of our method. FPTLD, FPTFR, and FPTCR refer to
constructing partial PLMs by layer dropping, FFN reduction, and compound reduction. The “FLOPs” column
shows the average relative FLOPs consumed on 5 tasks compared with the full-size PLM. The column “Improve↑”
denotes the performance improvement of each FPT∗ method over PT when PT uses the same FLOPs as FPT∗.

then progressively rehabilitate its depth and width208

until the full-size model MN, creating a series of209

partial PLMs {Mi}N−1
i=1 with growing sizes. The210

architectures of the partial PLMs are constructed211

using the same method in § 2.2.212

During each training stage i, we conduct PT213

on a partial PLM Mi and obtain the learned soft214

prompts Pi. Based on the observation that Mi215

retains a large portion of functionalities of the full-216

size PLM MN, we conjecture that Mi could serve217

as a perfect substitute for MN and learn how to218

deal with the downstream task. In addition, con-219

sidering that the soft prompts learned by differ-220

ent partial PLMs are close in the parameter space,221

we could transfer the knowledge learned by Mi222

to Mi+1 through recycling Pi. Specifically, af-223

ter each model expansion, we directly use Pi as224

initialization for training Mi+1 in the next stage.225

Since for each partial PLM, fewer parameters par-226

ticipate in both the forward and backward process,227

the computations could be reduced. Keeping the228

total number of training steps the same, FPT could229

accelerate training compared with the vanilla PT.230

3.2 Experiments and Analyses231

We follow most of the experimental settings in232

§ 2 and also describe the training details in ap-233

pendix B. We report FLOPs for the vanilla PT and234

FPT to compare training efficiency. We evaluate235

both T5LARGE and T5XL (a larger T5 model) on236

each task and train for 30k and 15k steps, respec-237

tively. We test FPT’s performance when we pro-238

gressively expand the model’s depth, width, and239

both of them. Unless otherwise specified, for most240

of FPT’s methods, we split the training process into241

4 stages. Each of the first three stages takes 20%242

steps, while the last stage takes 40% steps.243

Results. We list the results in Table 2, from 244

which we observe that (1) on average, all three vari- 245

ants of FPT achieve comparable performance with 246

PT and utilize fewer computations (e.g., FPTCR 247

saves around 30% FLOPs). On several tasks (e.g., 248

MNLI and SQUAD2.0), FPT even exceeds PT’s 249

performance; (2) combining both layer dropping 250

and FFN reduction (i.e., FPTCR) is more training- 251

efficient. However, we also observe that saving 252

more computations generally leads to poorer per- 253

formance. Among all three variants of FPT, FPTFR 254

strikes the best balance between the performance 255

and training efficiency; (3) moreover, we compare 256

both PT and FPT’s performance when PT con- 257

sumes the same computations as each variant of 258

FPT. As reflected in the column “Improve↑”, con- 259

trolling the training computations the same, our 260

FPT outperforms PT, and the improvement is more 261

significant for T5XL than T5LARGE, showing that 262

FPT has a great potential to apply to large-scale 263

PLMs. We also verify the effectiveness of our par- 264

tial model construction designs in appendix E, and 265

show in appendix F that the performance of FPT is 266

not sensitive to the duration of each training stage. 267

We leave the explorations on other tasks and the 268

effect of training budgets as future work. 269

4 Conclusion 270

In this work, towards improving PT’s training ef- 271

ficiency, we first make several insightful observa- 272

tions by conducting PT on partial PLMs, and then 273

propose FPT based on the observations. The results 274

on 5 datasets demonstrate the feasibility of FPT in 275

saving the training computations. Being the first 276

attempt towards accelerating PT, we encourage fu- 277

ture work to design more sophisticated algorithms 278

to further improve PT’s training efficiency. 279
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Appendices511

A Related Work512

Prompt Tuning. PLMs have achieved excellent513

performance on many NLP tasks relying on their514

powerful natural language understanding and gen-515

eration capabilities (Devlin et al., 2019; Liu et al.,516

2019; Yang et al., 2019). However, with the emer-517

gence of large-scale PLMs like T5 (Raffel et al.,518

2020) and GPT-3 (Brown et al., 2020), tuning all519

the parameters of a PLM (i.e., full-parameter fine-520

tuning), which requires huge storage and mem-521

ory costs, is not flexible for real-world applica-522

tions on massive downstream tasks. Therefore,523

parameter-efficient tuning methods (Houlsby et al.,524

2019; Mahabadi et al., 2021; Hu et al., 2022; Zaken525

et al., 2021; He et al., 2022; Rücklé et al., 2021)526

attract more and more attention, among which527

prompt tuning (PT) (Lester et al., 2021) is a sim-528

ple and effective one. By prepending a few train-529

able embeddings before the input sequence, PT can530

achieve comparable performance to full-parameter531

fine-tuning. With the size of PLM getting larger,532

the performance of PT gets closer to vanilla fine-533

tuning (Lester et al., 2021), showing great potential534

to utilize extremely large PLMs in future. How-535

ever, due to the slow convergence shown in Fig-536

ure 1, PT’s training efficiency becomes a serious537

drawback and may limit its practical application.538

Progressive Training. Considering that pre-539

training usually requires tremendous computational540

resources, researchers propose progressive train-541

ing to improve the training efficiency (Gong et al.,542

2019). Progressive training starts training using a543

shallow model, and gradually grows the depth of544

the model along the training process by replicat-545

ing existing layers (parameter recycling). In this546

way, the pre-training efficiency can be improved547

a lot. To further improve training efficiency, later548

works propose to progressively grow PLMs in both549

depth and width (Gu et al., 2021), and design better550

initialization methods to inherit the functionality551

of existing models (Chen et al., 2021). Instead of552

leveraging progressive training during the process553

of pre-training, we apply it to PLM’s downstream554

adaptation, with a focus on PT. Furthermore, con-555

ventional progressive training duplicates existing556

parameters to grow a PLM’s size until the full-557

model’s size. Instead, we have already obtained558

a full-size PLM, and propose to construct partial559

models with growing sizes by dropping / masking560

existing parameters. 561

B Implementation Details 562

Our implementation is based on PyTorch (Paszke 563

et al., 2019) and transformers (Wolf et al., 2020). 564

The experiments are conducted with 8 NVIDIA 565

32GB V100 GPUs, and each experiment requires 566

fewer than 10 hours to finish. 567

Partial PLM Construction. As mentioned in 568

§ 2.2, we design three methods to construct par- 569

tial PLMs. Specifically, for layer dropping, we 570

select layers uniformly. For example, to select 3 571

layers out of a 24-layer PLM, we will select layer 572

{1, 12, 24} to construct the partial PLM. For FFN 573

reduction, to estimate the activation of each neu- 574

ron (dimension) in FFN layer l, we first randomly 575

sample 1, 000 examples to form a small dataset D. 576

We prepend each example X (without the label) in 577

D with randomly initialized soft prompts and feed 578

it into the full-size PLM to obtain the input repre- 579

sentation xl of FFN layer. After that, we obtain the 580

activation score of each neuron using the follow- 581

ing equation S =
∑

X∈D
∑|X |

i=1

∣∣σ(xl
iW

l
1 + bl1)

∣∣, 582

where W l
1, b

l
1 are the parameters in FFN layer l, 583

and |X | denotes the sequence length. The neurons 584

(dimensions) with smaller activation score (i.e., sel- 585

dom activated) will be masked. Note that the T5 586

model is composed of both an encoder and a de- 587

coder, due to the difference of the input length and 588

output length on various tasks, the computation 589

overload of the encoder and decoder may vary a 590

lot. Therefore, for the tasks (MNLI and QQP) that 591

have a lighter computation overload on the decoder 592

(i.e., small output length), shrinking the decoder 593

model size has little impact on saving the computa- 594

tional costs, hence we retain the whole decoder un- 595

der this setting; for other three tasks (SQUAD2.0, 596

RECORD and XSUM), the output length on de- 597

coder is much longer and we conduct partial PLM 598

construction on both the encoder and decoder. We 599

calculate FLOPs for each experiment using the pt- 600

flops tool 1, and report the average FLOPs of 5 601

tasks in Table 1 and Table 2. 602

Partial PLM Prompt Tuning. We use T5LARGE 603

for our experiments of partial PLM PT. Following 604

Lester et al. (2021), we leverage the LM-adapted 605

version of T5 checkpoints, which are additionally 606

trained for 100k steps. The adapted version of T5 607

1https://github.com/sovrasov/
flops-counter.pytorch
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Partial PLMs Layer Dropping FFN Reduction Compound Reduction Training Steps
Lenc/Ldec d′ Lenc/Ldec d′ Lenc/Ldec d′

T5LARGE

M1 6 / 6 2,816 24 / 24 704 6 / 6 704 6,000
M2 12 / 12 2,816 24 / 24 1,408 12 / 12 1,408 6,000
M3 18 / 18 2,816 24 / 24 2,112 18 / 18 2,112 6,000
M4 24 / 24 2,816 24 / 24 2,816 24 / 24 2,816 12,000

T5XL

M1 18 / 18 5,120 24 / 24 1,280 18 / 18 1,280 4,000
M2 18 / 18 5,120 24 / 24 2,560 18 / 18 2,560 4,000
M3 18 / 18 5,120 24 / 24 3,840 18 / 18 3,840 4,000
M4 24 / 24 5,120 24 / 24 5,120 24 / 24 5,120 8,000

Table 3: Architecture details of the partial PLMs on the three construction methods for both T5LARGE and T5XL.
Lenc and Ldec denote the number of layers of the encoder and decoder of the partial model Mi, respectively. We
also list the training steps for each stage in the last column.

has been demonstrated to achieve stable and better608

PT performance. For the implementation of PT, we609

set the prompt length to 20 and randomly initial-610

ize the soft prompts. The optimizer is chosen as611

Adafactor (Shazeer and Stern, 2018) and the learn-612

ing rate is set to 0.3. We choose a batch size of 32613

and the greedy decoding to generate the predictions.614

The training steps are set to 30k to ensure that PT615

will not get stuck in a local optimum. We run all the616

experiments 3 times with different random seeds617

and report the average results.618

Fast Prompt Tuning. For the implementations619

of FPT, we train T5LARGE / T5XL with a total step of620

30k / 15k. The number of training steps of T5XL is621

chosen smaller than T5LARGE since we find empiri-622

cally that T5XL converges faster than T5LARGE. As623

mentioned in § 3.2, unless otherwise specified, we624

split the whole training process into 4 stages. Each625

of the first three stages takes 20% of the training626

steps, while the last stage (full-model PT) takes627

40% training stages. Except for layer dropping628

on T5XL, we find that a partial PLM, with fewer629

than 12 layers in either the encoder or decoder,630

achieves poor PT performance. Therefore, we only631

use two training stages where the first stage takes632

60% training steps and the second stage takes 40%633

training steps. More detailed settings about the634

partial model construction are shown in Table 3.635

The experiments with T5LARGE are run three times636

with different random seeds and the average re-637

sults are reported while experiments with T5XL are638

conducted once due to their huge computation con-639

sumption.640

C Prompt Embedding Visualization641

In Figure 3, we visualize the soft prompts of differ-642

ent partial PLMs and tasks in Table 1. The embed-643

ding used for visualization is derived by averaging 644

soft prompt along the token length dimension. As 645

described in § 2.3, we run each experiment three 646

times with different random seeds to get stable re- 647

sults. Therefore, we plot 30 points (3 runs × (9 648

partial PLM + 1 full-size PLM)) for each task in 649

Figure 3. And the size of the marker in the fig- 650

ure denotes the performance of the soft prompts 651

on corresponding partial PLMs. Larger size indi- 652

cates better performance. We can observe that soft 653

prompts with better performance will be easier to 654

form a compact cluster. 655

D Prompt Embedding Similarity 656

To further gain insights on the transferability of the 657

soft prompts learned by T5LARGE’s different partial 658

PLMs defined in Table 3, in addition to the visual- 659

ization conducted in § 2.3, we calculate the average 660

cosine similarity of the soft prompts corresponding 661

to different tasks in Table 4. Specifically, for differ- 662

ent partial PLMs M1,M2, ...,MN−1 and the full- 663

size PLM MN, we conduct PT with each model 664

Mi on the task Tj and obtain the corresponding 665

soft prompts Pj
i ∈ Rl×d. Then we average Pj

i 666

along the token length dimension, and get a vec- 667

tor Pj
i ∈ Rd. After that, we calculate S(T P

j , T F
k ) 668

(average cosine similarity between (1) task j’s par- 669

tial PLMs’ prompts and (2) task k’s full PLM’s 670

prompts) using the following metric: 671

S(T P
j , T F

k ) =
1

N − 1

N−1∑
i=1

P
j
i ·P

k
N

∥Pj
i∥∥P

k
N∥

(1) 672

From the results in Table 4, we observe that the 673

highest similarity is achieved when j = k, showing 674

that the prompts of the partial PLMs are closer 675

to the same task’s prompts of the full-size model. 676

This phenomenon is aligned with the observation 677

8



T P
T F

MNLI QQP SQUAD2.0 RECORD XSUM

MNLI 0.249 0.131 0.175 0.109 0.139
QQP 0.145 0.177 0.135 0.103 0.126
SQUAD2.0 0.202 0.143 0.286 0.190 0.202
RECORD 0.167 0.119 0.219 0.224 0.195
XSUM 0.164 0.128 0.237 0.188 0.301

Table 4: Average prompt similarity (S(T P
j , T F

k )) among different tasks. The highest score in each row is high-
lighted.

Selection Method Performance Relative FLOPs

Layer Dropping

Uniform 70.92 72%Last 69.91

FFN Reduction

Activation 71.50 84%Random 66.80

Table 5: Average performance on 5 investigated tasks
using different strategies of layer dropping and FFN
reduction on T5LARGE.

in Figure 3, implying that on the same task, the678

soft prompts learned by partial PLMs could be679

potentially transferred to the full-size PLM.680

E Effect of Partial Model Construction681

Designs for FPT682

We construct a partial PLM by dropping a few lay-683

ers or masking some neurons. As mentioned in684

§ 2.2, for layer dropping, we retain the layers uni-685

formly; for FFN reduction, we mask the neurons686

that are less likely to be activated. How to select the687

retained parameters is essential to the performance688

of FPT. To demonstrate this, in Table 5, we experi-689

ment FPT with another strategy for layer dropping690

and FFN reduction, respectively.691

For layer dropping, we compare our strategy of692

dropping layers uniformly (denoted as Uniform)693

with dropping the last few layers (denoted as Last).694

For both methods, we retain the same number of695

layers. For example, in order to select 3 layers696

from a 24-layer PLM, the Uniform strategy will697

retain the layer {1, 12, 24}, and the Last strategy698

will retain the layer {1, 2, 3}. From Table 5, we can699

derive that the Uniform strategy is slightly better700

than the Last strategy. We hypothesize the rea-701

son is that the overall functionalities of a PLM are702

uniformly distributed among different layers, and703

adjacent layers tend to have similar functionalities.704

Therefore, retaining layers uniformly tends to re-705

serve more functionalities than only retaining the 706

first few layers. 707

For FFN reduction, we compare our strategy 708

of masking neurons based on the activation score 709

(denoted as Activation) with randomly masking 710

neurons (denoted as Random). For the Activation 711

strategy, we feed 1000 samples prepended by ran- 712

domly initialized soft prompts into the PLM, and 713

then record the activation score of neurons along 714

each dimension. The results in Table 5 show that 715

the Activation strategy significantly outperforms 716

the Random strategy, demonstrating the effective- 717

ness of our method. Randomly masking neurons 718

may abandon those highly activated (most informa- 719

tive) ones, which hinders PT’s convergence. We 720

also find empirically the activation score of each 721

neuron in FFN layer may vary a lot across dif- 722

ferent tasks, which means different neurons may 723

respond differently to the input. This phenomenon 724

also implies that there may exist some “functional 725

partitions” in the FFN layers of PLMs. 726

F Effect of Duration for Each Training 727

Stage 728

To show the effects of the duration of each training 729

stage, following Gong et al. (2019), we conduct 730

experiments on MNLI using T5LARGE with three 731

proposed variants of FPT, and evaluate the effects 732

of training duration for the last two stages. 733

Specifically, for layer dropping of FPT, we con- 734

duct PT on the 18-layer partial PLM for 15k steps, 735

and save the learned soft prompts every 3k steps 736

to get 15/3 = 5 sets of soft prompts. Then using 737

each of these 5 soft prompts as the initialization, 738

we conduct PT with the full-size PLM for 3k steps. 739

We report the validation performance and compare 740

FPT with the vanilla PT. For FFN reduction and 741

compound reduction of FPT, we conduct similar ex- 742

periments except that we start from a partial PLM 743

using different construction methods. 744

The results are shown in Figure 4, from which 745
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Figure 4: The validation performance on MNLI with different training duration for the last two stages. We conduct
this ablation study for each of the three variants of FPT. We compare our FPT with different expanding time (red
line) with the vanilla PT (blue line) and PT without model expansion (yellow line). Each red dot is connected with
a yellow dot by a dashed line, indicating it is initialized by the yellow dot and optimized by conducting PT on
full-size PLM.

we can see that expanding the partial PLM’s size746

and then conducting PT (i.e., the red line) performs747

better than only conducting PT on the partial PLM748

(i.e., the yellow line). In addition, comparing our749

FPT (i.e., the red line) with the vanilla PT (i.e., the750

blue line), there is a specific threshold s′ of train-751

ing steps, if we expand the partial PLM before s′,752

the training efficiency can be improved compared753

with the vanilla PT; however, after s′, expanding754

the partial PLM and continuing PT on it does not755

bring consistent improvement over the vanilla PT.756

In general, expanding the partial PLM between 3k757

steps and 12k steps works well for all three variants758

of FPT, indicating that within a reasonably broad759

range, the performance improvement of FPT is not760

sensitive to the duration of each training stage. We761

aim to explore how to decide the optimal duration762

for each training stage in future to make our FPT763

more practical.764
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