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Abstract

Recently, prompt tuning (PT) has gained in-
creasing attention as a parameter-efficient way
of tuning pre-trained language models (PLMs).
Despite extensively reducing the number of tun-
able parameters and achieving satisfying per-
formance, PT is training-inefficient due to its
slow convergence. To improve PT’s training
efficiency, we first make some novel observa-
tions about the prompt transferability of “par-
tial PLMs”, which are defined by compressing
a PLM in depth or width. We observe that the
soft prompts learned by different partial PLMs
of various sizes are similar in the parameter
space, implying that these soft prompts could
potentially be transferred among partial PLMs.
Inspired by these observations, we propose Fast
Prompt Tuning (FPT), which starts by conduct-
ing PT using a small-scale partial PLM, then
progressively expands its depth and width until
the full-model size. After each expansion, we
recycle the previously learned soft prompts as
initialization for the enlarged partial PLM and
then proceed PT. We demonstrate the feasibility
of FPT on 5 tasks and show that FPT could save
over 30% training computations while achiev-
ing comparable performance.

1 Introduction

The emergence of pre-trained language models
(PLMs) has broken the glass ceiling for vari-
ous NLP tasks (Min et al., 2021). Versatile se-
mantic and syntactic knowledge acquired during
pre-training could be leveraged when PLMs are
adapted towards a specific downstream task to
boost performance. The de facto strategy for such
an adaptation is full-parameter fine-tuning, which
is computationally expensive and profligate since
it requires tuning and storing all the parameters in
the PLM for each downstream task.

To remedy this, several parameter-efficient tun-
ing algorithms are proposed in place of the vanilla
fine-tuning (Houlsby et al., 2019; Li and Liang,
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Figure 1: Average performance growth of TSt arce On 5
investigated tasks in this paper comparing fine-tuning
and PT. The convergence speed of PT is much slower
than fine-tuning in terms of training steps.

2021; Hu et al., 2022; Zaken et al., 2021), among
which prompt tuning (PT) (Lester et al., 2021) has
gained increasing attention recently. PT prepends
a few virtual tokens to the input text, these to-
kens are tuned during training while all the other
PLM parameters remain frozen. Despite its simple
form, PT has been demonstrated to achieve remark-
able performance in various NLP tasks. Especially
when the scale of the PLM becomes extremely
huge, PT could achieve comparable performance
to fine-tuning (Lester et al., 2021). Despite ex-
tensively reducing the number of tunable parame-
ters and achieving satisfying performance, PT is
criticized to be training-inefficient due to the slow
convergence as illustrated in Figure 1, and such in-
competence would limit the practical application of
PT. Hence in this paper, we explore how to improve
PT’s training efficiency.

Our motivation is based on novel observations
about the prompt transferability among “partial
PLMs”. Here a partial PLM is defined by com-
pressing a PLM in depth or width, which is im-
plemented by dropping several layers or masking
part of the connections in the feed-forward network
(FFN) in each Transformer (Vaswani et al., 2017)
layer. We observe that the soft prompts of the same
task learned by different partial PLMs of various



(a) Layer Dropping (b) FNN Reduction

_> L B . ® o
_> e 090 O NO
O ® 0 ® o
(c) Fast Prompt Tuning
2
NN S
Progressive Training [ ]
------ —
O
P Py Pl

Figure 2: The framework of Fast Prompt Tuning (FPT).
The top part (a,b) shows two methods to construct a
partial PLM. The bottom part (c) shows FPT’s training
process, we conduct PT on a partial PLM, progressively
expand its size and transfer the trained prompts.

sizes tend to be close in the parameter space, im-
plying that these soft prompts could potentially be
transferred among different partial PLMs.
Inspired by the above observations, we propose
Fast Prompt Tuning (FPT), which starts by conduct-
ing PT using a small-scale partial PLM to obtain
the corresponding soft prompts. After that, we
progressively expand the partial PLM’s depth and
width until the full-model size by rehabilitating the
dropped layers and masked neurons. After each
expansion, we recycle the previously learned soft
prompts as initialization for the enlarged PLM and
then proceed PT. Since the partial PLM requires
fewer computations for each step, keeping the total
training steps unchanged, we could reduce the over-
all computations consumed, and in the meantime,
achieve comparable PT performance. In experi-
ments, we demonstrate the feasibility of FPT on
5 NLP tasks. The experimental results show that
FPT could save around 30% training computations
and achieve satisfying downstream performance.

2 Prompt Tuning on a Partial PLM

2.1 Prompt Tuning

For a given input sequence X = {1, z2,..., T}
and its target label ), PT first converts X" into a
matrix X € R™*4 where d is the hidden size. Af-
ter that, PT prepends [ tunable soft prompt tokens
P ¢ R™*? before X, creating a new input matrix
[P; X] € R4 which is then processed by
the PLM. The training objective is to maximize
P(Y|[P;X]), where only P is optimized during
training and the parameters of PLM are frozen. Al-
though PT is applied to the entire PLM by default,
in this section, we investigate how the performance

would become if we conduct PT on a partial PLM,
i.e., only part of the parameters in the PLM partici-
pate in the computation.

2.2 Partial PLM Construction

Using partial parameters in a PLM is typically ap-
plied to reduce the inference computation for fine-
tuning, such as early exit (Teerapittayanon et al.,
2016; Xin et al., 2020) and model pruning (Chen
et al., 2020; Sun et al., 2020), which assume that
the features produced by a part of a PLM may al-
ready suffice to classify some input examples. In
this paper, we investigate its application in reduc-
ing the training computation of PT, and propose
to construct partial PLMs by shrinking the origi-
nal PLM in both depth and width, as illustrated in
Figure 2 (a, b). Details are listed in appendix B.

Layer Dropping. Based on previous findings
(Clark et al., 2019; Jawahar et al., 2019) that adja-
cent layers in PLMs generally have similar func-
tionalities, we hypothesize that removing part of
these layers may not significantly hurt the overall
performance, and we propose to drop a PLM’s lay-
ers uniformly to construct a partial PLM consisting
of fewer layers than the original PLM. After that,
we directly build connections among the remaining
layers keeping the original order, which is found
empirically to work well although such connections
do not exist during pre-training.

FFN Reduction. Jaszczur et al. (2021) indicate
that only part of the neurons in the FFN layers will
be activated for a given input. Such a sparse activa-
tion phenomenon inspires us to reduce the computa-
tion in FFN by shrinking the width of the FFN layer.
Specifically, the FFN layer consists of two fully
connected networks with a nonlinear activation
function o, and it processes an input representation
x € R? as: FEN(x) = o(xW; + b))W, + by,
where W, € R4 and W, € RZ*4 are the
weight matrices, by € R? and by € R? are the
bias terms. We abandon a portion of W7 / W5’s
columns / rows (i.e., reducing d') by masking the
neurons that are seldom activated. In practice, be-
fore training, we feed a few downstream examples
prepended by randomly initialized soft prompts
into the full-size PLM and record the neuron acti-
vation of each dimension of d’.

Compound Reduction. Since the above meth-
ods are compatible with each other, we try to com-
bine them to form a partial PLM smaller than the



Enc./Dec. FFN MNLI QQP SQUAD2.0 RECORD XSuM
Layer Dimension | (Acc) (Acc) (EM) (EM) (ROUGE-.L) | Av& A FLOPs
PT | 24/24 2816 86.07 87.26 76.09 81.46 26.65 71.51 - 100%
676 2816 6034 78.29 4814 2475 17.40 4578 2573 30%
LD | 12/12 2816 63.90  80.64 52.87 39.09 19.69 5124 2027 54%
18/18 2816 8141  86.05 63.97 59.87 2251 6276 875  T1%
24724 704 7818 85.19 66.68 62.90 2246 63.08 843  58%
FR | 24/24 1,408 82.62 86.45 72.65 74.59 24.61 68.19 332  72%
24/24 2,112 84.93  86.77 74.73 79.52 26.12 7041 -1.10  86%
676 704 6253 78.38 18.62 23.99 16.49 4600 2551 20%
CR | 12/12 1408 64.09 7891 50.90 29.50 18.88 4845 -23.06  40%
18/18 2,112 80.63  86.32 63.42 58.97 22.18 6230 921  66%

Table 1: Average results for partial PLM PT on T5;azce With layer dropping (LD), FFN Reduction (FR), and
compound reduction (CR). A denotes the performance degeneration compared with vanilla PT of each setting.

original PLM in both depth and width.

MNLI

2.3 Observations

To explore PT’s performance on a partial PLM,
we conduct experiments on T51,zcr (Raffel et al.,
2020). We choose 5 representative NLP datasets
in English, covering the tasks of natural lan-
guage inference (MNLI (Williams et al., 2018)),
paraphrase (QQP (link)), reading comprehen-
sion (SQUAD2.0 (Rajpurkar et al., 2018) and
RECORD (Zhang et al., 2018)), and summariza-
tion (XSUM (Narayan et al., 2018)). For both layer
dropping and FFN reduction, we evaluate the per-
formance when we reduce the number of Trans-
former layers or FFN intermediate dimension to
{1, 1,3} We train all models using the same steps
and the details are described in appendix B.
Overall Performance. The overall results are
shown in Table 1. We observe that for each method,
despite abandoning a large portion of param-
eters, a partial PLM reserves most of the PT
performance of the full-size PLM. As expected,
the performance becomes better when more param-
eters are retained. In addition, we find that the
performance drop is less sensitive to FFN reduc-
tion than layer dropping. Specifically, there is only
1.10% performance drop on average when 25%
neurons are masked. These results indicate that
the resulting partial PLM still retains most of the
functionalities of the original PLM.

Prompt Embedding Visualization. Taking a
step further, we visualize the learned prompt
embeddings of different partial PLMs using t-
SNE (Van der Maaten and Hinton, 2008) in Fig-
ure 3, and describe the details in appendix C. We
observe that for the same task, the soft prompts
obtained by different partial PLMs tend to form
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Figure 3: Visualization of 5 investigated tasks’ soft
prompts of different partial PLMs. A marker with a
larger size means the performance of the corresponding
soft prompts on the partial PLM is better.

a compact cluster in the parameter space. This
phenomenon implies that the soft prompts corre-
sponding to the same task (1) have a great potential
of transferring among different partial PLMs, and
(2) could serve as a better initialization that leads
to faster convergence. Apart from the visualiza-
tion, we further report the cosine similarity of the
learned prompts in appendix D to verify the above
phenomenon from another aspect.

3 Fast Prompt Tuning

In this section, we propose Fast Prompt Tuning
(FPT), which aims at accelerating PT via progres-
sive training (Gong et al., 2019). Progressive
training is typically leveraged for improving pre-
training efficiency, instead, we focus on its applica-
tion in PLM’s downstream adaptation.

3.1 Methodology

Formally speaking, as visualized in Figure 2 (c), we
split the original PT training process into N stages.
We start with a small-size partial PLM M and


https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs

MNLI QQP SQUAD2.0 RECORD XSuM
Method (Acc)  (Acc) (EM) (EM) (ROUGE-L) Avg. | FLOPs | Improvef

PT 86.07 87.26 76.09 81.46 26.65 71.51 | 100% -
T FPTip | 85.72  86.51 75.89 80.23 26.27 70.92 72% 0.11
LARGE | FPTrr | 86.49  87.11 76.26 81.07 26.55 71.50 83% 0.49
FPTcr | 85.13  86.40 75.63 81.00 26.21 70.87 | 65% 0.38

PT 89.00  88.20 81.08 88.48 30.53 75.46 | 100% -
TS FPTp | 88.99  88.09 82.18 88.06 30.52 75.57 86% 0.78
X FPTer | 88.84  88.21 81.74 88.46 30.52 75.55 84% 0.76
FPTck | 89.18 87.34 80.88 87.82 30.43 75.13 | 74% 0.48

Table 2: Performance of the vanilla PT and three variants of our method. FPT;p, FPTgr, and FPTcy refer to
constructing partial PLMs by layer dropping, FFN reduction, and compound reduction. The “FLOPs” column
shows the average relative FLOPs consumed on 5 tasks compared with the full-size PLM. The column “Improve?”
denotes the performance improvement of each FPT, method over PT when PT uses the same FLOPs as FPT,.

then progressively rehabilitate its depth and width
until the full-size model My, creating a series of
partial PLMs {M; ?1;11 with growing sizes. The
architectures of the partial PLMs are constructed
using the same method in § 2.2.

During each training stage ¢, we conduct PT
on a partial PLM M and obtain the learned soft
prompts P;. Based on the observation that M;
retains a large portion of functionalities of the full-
size PLM My, we conjecture that M; could serve
as a perfect substitute for My and learn how to
deal with the downstream task. In addition, con-
sidering that the soft prompts learned by differ-
ent partial PLMs are close in the parameter space,
we could transfer the knowledge learned by M;
to M, through recycling P;. Specifically, af-
ter each model expansion, we directly use P; as
initialization for training M, in the next stage.
Since for each partial PLM, fewer parameters par-
ticipate in both the forward and backward process,
the computations could be reduced. Keeping the
total number of training steps the same, FPT could
accelerate training compared with the vanilla PT.

3.2 [Experiments and Analyses

We follow most of the experimental settings in
§ 2 and also describe the training details in ap-
pendix B. We report FLOPs for the vanilla PT and
FPT to compare training efficiency. We evaluate
both T51arce and TS5y, (a larger TS model) on
each task and train for 30k and 15k steps, respec-
tively. We test FPT’s performance when we pro-
gressively expand the model’s depth, width, and
both of them. Unless otherwise specified, for most
of FPT’s methods, we split the training process into
4 stages. Each of the first three stages takes 20%
steps, while the last stage takes 40% steps.

Results. We list the results in Table 2, from
which we observe that (1) on average, all three vari-
ants of FPT achieve comparable performance with
PT and utilize fewer computations (e.g., FPTcr
saves around 30% FLOPs). On several tasks (e.g.,
MNLI and SQUAD2.0), FPT even exceeds PT’s
performance; (2) combining both layer dropping
and FFN reduction (i.e., FPTcR) is more training-
efficient. However, we also observe that saving
more computations generally leads to poorer per-
formance. Among all three variants of FPT, FPTgr
strikes the best balance between the performance
and training efficiency; (3) moreover, we compare
both PT and FPT’s performance when PT con-
sumes the same computations as each variant of
FPT. As reflected in the column “Improve{”, con-
trolling the training computations the same, our
FPT outperforms PT, and the improvement is more
significant for T5y; than T51arce, showing that
FPT has a great potential to apply to large-scale
PLMs. We also verify the effectiveness of our par-
tial model construction designs in appendix E, and
show in appendix F that the performance of FPT is
not sensitive to the duration of each training stage.
We leave the explorations on other tasks and the
effect of training budgets as future work.

4 Conclusion

In this work, towards improving PT’s training ef-
ficiency, we first make several insightful observa-
tions by conducting PT on partial PLMs, and then
propose FPT based on the observations. The results
on 5 datasets demonstrate the feasibility of FPT in
saving the training computations. Being the first
attempt towards accelerating PT, we encourage fu-
ture work to design more sophisticated algorithms
to further improve PT’s training efficiency.
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Appendices
A Related Work

Prompt Tuning. PLMs have achieved excellent
performance on many NLP tasks relying on their
powerful natural language understanding and gen-
eration capabilities (Devlin et al., 2019; Liu et al.,
2019; Yang et al., 2019). However, with the emer-
gence of large-scale PLMs like TS (Raffel et al.,
2020) and GPT-3 (Brown et al., 2020), tuning all
the parameters of a PLM (i.e., full-parameter fine-
tuning), which requires huge storage and mem-
ory costs, is not flexible for real-world applica-
tions on massive downstream tasks. Therefore,
parameter-efficient tuning methods (Houlsby et al.,
2019; Mahabadi et al., 2021; Hu et al., 2022; Zaken
et al., 2021; He et al., 2022; Riicklé et al., 2021)
attract more and more attention, among which
prompt tuning (PT) (Lester et al., 2021) is a sim-
ple and effective one. By prepending a few train-
able embeddings before the input sequence, PT can
achieve comparable performance to full-parameter
fine-tuning. With the size of PLM getting larger,
the performance of PT gets closer to vanilla fine-
tuning (Lester et al., 2021), showing great potential
to utilize extremely large PLMs in future. How-
ever, due to the slow convergence shown in Fig-
ure 1, PT’s training efficiency becomes a serious
drawback and may limit its practical application.

Progressive Training. Considering that pre-
training usually requires tremendous computational
resources, researchers propose progressive train-
ing to improve the training efficiency (Gong et al.,
2019). Progressive training starts training using a
shallow model, and gradually grows the depth of
the model along the training process by replicat-
ing existing layers (parameter recycling). In this
way, the pre-training efficiency can be improved
a lot. To further improve training efficiency, later
works propose to progressively grow PLMs in both
depth and width (Gu et al., 2021), and design better
initialization methods to inherit the functionality
of existing models (Chen et al., 2021). Instead of
leveraging progressive training during the process
of pre-training, we apply it to PLM’s downstream
adaptation, with a focus on PT. Furthermore, con-
ventional progressive training duplicates existing
parameters to grow a PLM’s size until the full-
model’s size. Instead, we have already obtained
a full-size PLM, and propose to construct partial
models with growing sizes by dropping / masking

existing parameters.

B Implementation Details

Our implementation is based on PyTorch (Paszke
et al., 2019) and transformers (Wolf et al., 2020).
The experiments are conducted with 8 NVIDIA
32GB V100 GPUs, and each experiment requires
fewer than 10 hours to finish.

Partial PLM Construction. As mentioned in
§ 2.2, we design three methods to construct par-
tial PLMs. Specifically, for layer dropping, we
select layers uniformly. For example, to select 3
layers out of a 24-layer PLM, we will select layer
{1,12, 24} to construct the partial PLM. For FFN
reduction, to estimate the activation of each neu-
ron (dimension) in FEN layer [, we first randomly
sample 1,000 examples to form a small dataset D.
We prepend each example X’ (without the label) in
D with randomly initialized soft prompts and feed
it into the full-size PLM to obtain the input repre-
sentation &' of FFN layer. After that, we obtain the
activation score of each neuron using the follow-
ing equation S = )y .p Zlﬂ |a(miW1l + bl1)|,
where W/, bl are the parameters in FFN layer [,
and | X'| denotes the sequence length. The neurons
(dimensions) with smaller activation score (i.e., sel-
dom activated) will be masked. Note that the TS5
model is composed of both an encoder and a de-
coder, due to the difference of the input length and
output length on various tasks, the computation
overload of the encoder and decoder may vary a
lot. Therefore, for the tasks (MNLI and QQP) that
have a lighter computation overload on the decoder
(i.e., small output length), shrinking the decoder
model size has little impact on saving the computa-
tional costs, hence we retain the whole decoder un-
der this setting; for other three tasks (SQUAD?2.0,
RECORD and XSuUM), the output length on de-
coder is much longer and we conduct partial PLM
construction on both the encoder and decoder. We
calculate FLOPs for each experiment using the pt-
flops tool !, and report the average FLOPs of 5
tasks in Table 1 and Table 2.

Partial PLM Prompt Tuning. We use TS5y rcx
for our experiments of partial PLM PT. Following
Lester et al. (2021), we leverage the LM-adapted
version of TS checkpoints, which are additionally
trained for 100k steps. The adapted version of T5

"https://github.com/sovrasov/
flops—counter.pytorch
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. Layer Dropping FFN Reduction Compound Reduction ..

Partial PLMs Lene/Laee 7 Lenc/Ldec d Lene/Laee d Training Steps

M,y 6/6 2,816 24 /24 704 6/6 704 6,000

Ts Mo 12/12 2,816 24 /24 1,408 12/12 1,408 6,000

PRRGE M3 18/18 2,816 24 /24 2,112 18/18 2,112 6,000

My 24 /24 2,816 24 /24 2,816 24 /24 2,816 12,000

M 18/18 5,120 24 /24 1,280 18/18 1,280 4,000

Ts Mo 18/18 5,120 24 /24 2,560 18/18 2,560 4,000

XL Ms 18/18 5,120 24 /24 3,840 18/18 3,840 4,000

My 24 /24 5,120 24 /24 5,120 24 /24 5,120 8,000

Table 3: Architecture details of the partial PLMs on the three construction methods for both T5;arcz and TS5y:.
Lepc and Lge. denote the number of layers of the encoder and decoder of the partial model M, respectively. We
also list the training steps for each stage in the last column.

has been demonstrated to achieve stable and better
PT performance. For the implementation of PT, we
set the prompt length to 20 and randomly initial-
ize the soft prompts. The optimizer is chosen as
Adafactor (Shazeer and Stern, 2018) and the learn-
ing rate is set to 0.3. We choose a batch size of 32
and the greedy decoding to generate the predictions.
The training steps are set to 30k to ensure that PT
will not get stuck in a local optimum. We run all the
experiments 3 times with different random seeds
and report the average results.

Fast Prompt Tuning. For the implementations
of FPT, we train T5arce / T5x1, with a total step of
30k / 15k. The number of training steps of TS5y, is
chosen smaller than T51arce since we find empiri-
cally that T5y;, converges faster than TS5 arce. As
mentioned in § 3.2, unless otherwise specified, we
split the whole training process into 4 stages. Each
of the first three stages takes 20% of the training
steps, while the last stage (full-model PT) takes
40% training stages. Except for layer dropping
on TS5y, we find that a partial PLM, with fewer
than 12 layers in either the encoder or decoder,
achieves poor PT performance. Therefore, we only
use two training stages where the first stage takes
60% training steps and the second stage takes 40%
training steps. More detailed settings about the
partial model construction are shown in Table 3.
The experiments with TS5y arcr are run three times
with different random seeds and the average re-
sults are reported while experiments with T5y;, are
conducted once due to their huge computation con-
sumption.

C Prompt Embedding Visualization

In Figure 3, we visualize the soft prompts of differ-
ent partial PLMs and tasks in Table 1. The embed-

ding used for visualization is derived by averaging
soft prompt along the token length dimension. As
described in § 2.3, we run each experiment three
times with different random seeds to get stable re-
sults. Therefore, we plot 30 points (3 runs x (9
partial PLM + 1 full-size PLM)) for each task in
Figure 3. And the size of the marker in the fig-
ure denotes the performance of the soft prompts
on corresponding partial PLMs. Larger size indi-
cates better performance. We can observe that soft
prompts with better performance will be easier to
form a compact cluster.

D Prompt Embedding Similarity

To further gain insights on the transferability of the
soft prompts learned by T51arce’s different partial
PLM:s defined in Table 3, in addition to the visual-
ization conducted in § 2.3, we calculate the average
cosine similarity of the soft prompts corresponding
to different tasks in Table 4. Specifically, for differ-
ent partial PLMs M1, Mo, ..., Mn_1 and the full-
size PLM My, we conduct PT with each model
M; on the task 7; and obtain the corresponding
soft prompts Pg € R*4. Then we average Pg
along the token length dimension, and get a vec-
tor P; € R% After that, we calculate S (7;-P T
(average cosine similarity between (1) task j’s par-
tial PLMs’ prompts and (2) task k’s full PLM’s
prompts) using the following metric:

N-1 =—=j ==k

1 P/ . P

ST = oy 2 =
N=1= PPyl

From the results in Table 4, we observe that the
highest similarity is achieved when j = k, showing
that the prompts of the partial PLMs are closer
to the same task’s prompts of the full-size model.
This phenomenon is aligned with the observation



F
- T MNLI | QQP | SQUAD2.0 | RECORD | XSuM
MNLI 0.249 | 0.131 0.175 0.109 0.139
QQP 0.145 | 0.177 0.135 0.103 0.126
SQUAD2.0 | 0.202 | 0.143 0.286 0.190 0.202
RECORD 0.167 | 0.119 0.219 0.224 0.195
XSuM 0.164 | 0.128 0.237 0.188 0.301

Table 4: Average prompt similarity (S (7}P , T;F')) among different tasks. The highest score in each row is high-

lighted.

Selection Method | Performance | Relative FLOPs

Layer Dropping

Uniform 70.92

Last ‘ 69.91 ‘ 2%
FFN Reduction

Activation 71.50

Random ‘ 66.80 ‘ 84%

Table 5: Average performance on 5 investigated tasks
using different strategies of layer dropping and FFN
reduction on T5:zrcr.

in Figure 3, implying that on the same task, the
soft prompts learned by partial PLMs could be
potentially transferred to the full-size PLM.

E Effect of Partial Model Construction
Designs for FPT

We construct a partial PLM by dropping a few lay-
ers or masking some neurons. As mentioned in
§ 2.2, for layer dropping, we retain the layers uni-
formly; for FFN reduction, we mask the neurons
that are less likely to be activated. How to select the
retained parameters is essential to the performance
of FPT. To demonstrate this, in Table 5, we experi-
ment FPT with another strategy for layer dropping
and FFN reduction, respectively.

For layer dropping, we compare our strategy of
dropping layers uniformly (denoted as Uniform)
with dropping the last few layers (denoted as Last).
For both methods, we retain the same number of
layers. For example, in order to select 3 layers
from a 24-layer PLM, the Uniform strategy will
retain the layer {1, 12,24}, and the Last strategy
will retain the layer {1, 2, 3}. From Table 5, we can
derive that the Uniform strategy is slightly better
than the Last strategy. We hypothesize the rea-
son is that the overall functionalities of a PLM are
uniformly distributed among different layers, and
adjacent layers tend to have similar functionalities.
Therefore, retaining layers uniformly tends to re-

serve more functionalities than only retaining the
first few layers.

For FFN reduction, we compare our strategy
of masking neurons based on the activation score
(denoted as Activation) with randomly masking
neurons (denoted as Random). For the Activation
strategy, we feed 1000 samples prepended by ran-
domly initialized soft prompts into the PLM, and
then record the activation score of neurons along
each dimension. The results in Table 5 show that
the Activation strategy significantly outperforms
the Random strategy, demonstrating the effective-
ness of our method. Randomly masking neurons
may abandon those highly activated (most informa-
tive) ones, which hinders PT’s convergence. We
also find empirically the activation score of each
neuron in FFN layer may vary a lot across dif-
ferent tasks, which means different neurons may
respond differently to the input. This phenomenon
also implies that there may exist some “functional
partitions” in the FFN layers of PLMs.

F Effect of Duration for Each Training
Stage

To show the effects of the duration of each training
stage, following Gong et al. (2019), we conduct
experiments on MNLI using T5parce With three
proposed variants of FPT, and evaluate the effects
of training duration for the last two stages.

Specifically, for layer dropping of FPT, we con-
duct PT on the 18-layer partial PLM for 15k steps,
and save the learned soft prompts every 3k steps
to get 15/3 = 5 sets of soft prompts. Then using
each of these 5 soft prompts as the initialization,
we conduct PT with the full-size PLM for 3k steps.
We report the validation performance and compare
FPT with the vanilla PT. For FFN reduction and
compound reduction of FPT, we conduct similar ex-
periments except that we start from a partial PLM
using different construction methods.

The results are shown in Figure 4, from which
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Figure 4: The validation performance on MNLI with different training duration for the last two stages. We conduct
this ablation study for each of the three variants of FPT. We compare our FPT with different expanding time (red
line) with the vanilla PT (blue line) and PT without model expansion ( line). Each red dot is connected with

a yellow dot by a dashed line, indicating it is initialized by the yellow dot and optimized by conducting PT on
full-size PLM.

we can see that expanding the partial PLM’s size
and then conducting PT (i.e., the red line) performs
better than only conducting PT on the partial PLM
(i.e., the yellow line). In addition, comparing our
FPT (i.e., the red line) with the vanilla PT (i.e., the
blue line), there is a specific threshold s of train-
ing steps, if we expand the partial PLM before s/,
the training efficiency can be improved compared
with the vanilla PT; however, after s’, expanding
the partial PLM and continuing PT on it does not
bring consistent improvement over the vanilla PT.
In general, expanding the partial PLM between 3k
steps and 12k steps works well for all three variants
of FPT, indicating that within a reasonably broad
range, the performance improvement of FPT is not
sensitive to the duration of each training stage. We
aim to explore how to decide the optimal duration
for each training stage in future to make our FPT
more practical.
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