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Abstract

Accurate three-dimensional positioning of particles is a critical task in microscopic
particle research, with one of the main challenges being the measurement of particle
depths. We present a novel approach for precise three-dimensional (3D) localiza-
tion and autofocus of microscopic particles by integrating Depth-from-Defocus
(DfD) techniques with deep learning. Our method combines You Only Look
Once (YOLO) for lateral position detection with Generative Adversarial Networks
(GANSs) for autofocus, providing an efficient, noise-resistant, and real-time solution.
Validated on synthetic datasets, static particle fields, and dynamic scenarios, the
method achieved 99.9% accuracy on synthetic datasets and performed robustly on
polystyrene particles, red blood cells, and plankton. Our algorithm can process a
single multi-target image in 0.008 seconds, enabling real-time applications. Future
work includes integrating Diffusion Models and the latest version of YOLO to
enhance depth estimation and detection accuracy. Additionally, we are developing a
user-friendly pipeline equipped with a graphical user interface (GUI) to make these
advanced tools accessible to researchers across different disciplines, even those
without prior deep learning expertise. This evolving pipeline will be continuously
updated to improve precision and efficiency, making it a powerful and accessible
tool for high-precision particle analysis in a wide range of scientific applications.

1 Introduction & Related Work

Particle field positioning is a crucial aspect across various domains, such as biomedical sciences,
material science, and environmental engineering [1] [2]. In biomedical research, for example, precise
three-dimensional localization of microscopic particles is essential for analyzing cellular behavior
and developing drug delivery systems. Similarly, monitoring microparticles in water bodies is
fundamental to environmental engineering. However, accurately determining the three-dimensional
spatial information of particles, especially along the depth axis, remains a significant challenge. In
practical applications, the lateral position of particles can often be obtained using centroid localization
or object segmentation algorithms, but measuring the depth information is far more challenging [3]
[4]. Researchers have proposed various approaches to overcome this difficulty, such as multi-particle
imaging, accurate calibration for visual measurement, and digital holography [5-9]. Nevertheless,
these methods face limitations in terms of adaptability to complex environments, high hardware
requirements, and the trade-off between localization accuracy and computational efficiency. Depth-
from-Defocus (DfD) is a technique that estimates depth by analyzing the extent of defocus in
an image, originally proposed by Pentland in 1987 [10]. DfD has since been widely applied in
depth measurement tasks, however, traditional DfD methods are prone to ambiguities, particularly
when dealing with complex particle fields, resulting in unsatisfactory precision. [11-13] To improve
localization accuracy, recent studies have incorporated deep learning into 3D localization tasks.
Different Convolutional Neural Networks (CNNs) based models have been employed to enhance the
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Figure 1: The workflow of the proposed method. (Step A) training neural network. (Step B) flow
chart of the particle field positioning and autofocusing

precision of detecting blurred images [14-17], while Generative Adversarial Networks (GANs) have
shown promise in autofocus tasks [18-25]. Against this backdrop, we propose a novel method for 3D
localization and autofocus of particle fields based on DfD and deep learning. This approach combines
the YOLO object detection network and GANSs to achieve lateral position detection and depth-wise
focusing of particles. Specifically, we utilize DfD to capture defocused images of particles, which
are then processed by the YOLO version 5 (YOLOVS) network for automatic recognition of the 3D
positions. Additionally, we employ Cycle-GAN and Pix2pix-GAN to achieve autofocus, resulting in
clear particle imaging. Our method has demonstrated excellent results in accuracy and efficiency.

2 Methods

2.1 Workflow and Components of the Proposed Method

Our proposed method for precise 3D particle field localization, as shown in figure 1, combines the
DfD with YOLOVS. During the training preparation stage, we used the annotation tool Labellmg [26]
for preprocessing of the training images. Using Labellmg, we annotated the object categories and
positional information within the images. In this process, depth was treated as the category name, and
bounding boxes were manually drawn for each sample with a known depth. The lateral position was
automatically obtained through these bounding boxes, and the relevant information was converted
into XML files, which were used to prepare YOLOVS for training. Additionally, we trained a GAN
to obtain clear, focused images of particles. Defocused images were designated as Domain A, and
focused images were designated as Domain B, which were used for effective GAN training. The
trained YOLOVS network outputs the 3D positions of particles, while the GAN, once well-trained,
generates focused images of the particle fields. By seamlessly integrating YOLOVS and GAN, our
proposed method achieves accurate, efficient, and noise-resistant 3D localization and autofocus of
particle fields, representing a significant advancement in this area.

2.2 Experimental Setup

Our experimental setup included capturing microscopic images of polystyrene particles using a
commercial microscope (XSP-37XF, Shanghai Optical Instrument Factory, China). These particles
were chosen due to their average diameter of approximately 10 microns and a refractive index of
1.587. In the experiments, a 40x objective lens was used to capture microscopic images of these
particles, and a precision vertical translation stage was used to obtain images at different depths.
During imaging, the particles were placed under Olympus immersion oil. Additionally, our method
was tested on other particle fields, such as plankton and red blood cells, with more details about data
acquisition available in [19].



Table 1. Comparisons of the training time and the parameters under different conditions.

“Training Parameters

Number of particles Epochs Time (h) P R mAP

200 0.946 0.748 0.944 0.905
3361 300 1.358 0.858 0.917 0.926
600 2.758 0.864 0.935 0.905

200 L1611 0.872 0.900 0.922
5955 300 2,533 0.893 0.931 0.956
600 4.721 0.873 0.934 0.932

200 3.074 0.882 0.920 0.955
12874 300 4.599 0.888 0.921 0.955
600 9.128 0.882 0.935 0.957

2.3 YOLO and GAN

YOLO is a real-time object detection system that has shown great potential for accurate detection
of object positions. For our analysis, YOLOVS, the latest version of YOLO at the time, was used
for its rapid detection and high precision. It employs a single-stage neural network to detect target
positions directly. The model used in our study was a modified version of YOLOvSs, which has
the smallest feature map depth and width in the YOLO series. Detailed network structures can be
found in [27-30]. In our research, we employed two types of GANs to adapt to different conditions:
Cycle-GAN and Pix2pix-GAN. Their structures and corresponding parameters can be found in [31].

2.4 Performance Evaluation

The trained model’s ability to detect target particles was evaluated using precision (P), recall (R),
average jprecision (AP), and mean average precision (mAP) [32]. Precision (P) is calculated as

= TH-%’ where T P represents the number of correctly detected particles (True Positives), and
F'P represents the number of false detections (False Positives), measuring the accuracy of the model
in detecting targets. Recall (R) is defined as R = TP:';%, where F'N represents the number of
particles that were not detected (False Negatives), indicating the model’s ability to detect all target
instances. Average precision (AP) is computed by calculating the area under the precision-recall
curve: AP = fol P(R) dR, while mean average precision (mAP) is given by mAP = + Zf\il AP;,
providing an overall evaluation of the model’s performance across all categories.

2.5 YOLOVS5s Loss Function

The YOLOvS5s model uses a loss function consisting of three components: bounding box regression
loss (box-loss), classification loss (cls-loss), and objectness loss (obj-loss) [33]. During training,
monitoring the loss curve helps determine whether the network model is converging steadily as
iterations increase. The experimental results, shown in the figure 2’s A section, show that the
number of iterations increased, the loss values decreased when training and validating the model on
polystyrene particles, indicating that the network achieved stable convergence, as shown in table 1.

3 Results of 3D Localization Method and Autofocus

3.1 Validation on Synthetic Dataset, Static, and Dynamic Scenarios

We first validated the proposed 3D localization method on a synthetic dataset. The synthetic dataset
was generated using MicroSIG, a 3D ray-tracing-based synthetic image generator proposed by
Rossi [34], to simulate the 3D distribution of particles. The trained YOLOvVS network effectively
predicted the 3D positions of the particles, with depth information encoded through color coding.
The experimental results showed, as illustrated in figure 2’s B section, that YOLOVS5 achieved an
accuracy of 99.9% on the synthetic dataset, with most particle positions being accurately predicted,
and only a few particles showing errors due to interference. As shown in figure 2’s C section, in the
static particle field, we applied the method to polystyrene particles and red blood cells, achieving
validation accuracies of 99% and 97.8%, respectively. Even in the presence of overlapping particles
or background noise, our method demonstrated high robustness, successfully detecting and localizing
most particles. By capturing video of polystyrene particles moving in oil, we further verified the 3D
localization capability of the trained YOLOVS5 network in dynamic scenarios. The processing time
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Figure 2: A. The variation curves of the loss values; B. Application of proposed method to the
datasets generated by MicroSIF; C. Typical microscopic images of the particle field; D. The motions
of particles in the chamber.

for each frame was approximately 0.008 seconds, meeting the requirements for real-time detection.
Additionally, experimental results with plankton samples showed good detection performance, with
all plankton samples successfully detected and accurately localized, as shown in figure 2’s D section.
The 3D movement trajectories of plankton provide data support for further behavioral research. It
should be noted that in some cases, contaminants with similar color and morphology to plankton may
be misidentified as plankton, resulting in detection errors.

3.2 Implementation and Performance Evaluation of Autofocus

To achieve particle autofocus, we used two types of Generative Adversarial Networks (GANs):
Cycle-GAN and Pix2Pix-GAN. In static particle fields, due to the large amount of data available for
polystyrene particles and red blood cells, Cycle-GAN performed well and was able to convert particle
images at different depths into clear, focused images. However, for plankton samples, due to the
limited amount of data, Cycle-GAN struggled to handle these samples effectively, and therefore, we
used Pix2Pix-GAN. By employing data augmentation, we generated paired defocused and focused
images and trained Pix2Pix-GAN to achieve autofocus for plankton. The experimental results showed
that the Structural Similarity Index (SSIM) [35-37] between GAN-generated autofocus images and
real images was approximately 0.95, confirming the feasibility and effectiveness of this method in
complex scenarios.

4 Summary and Future Work

In this paper, we proposed a method for 3D particle localization and autofocus that combines
YOLOVS5 with GANS, validated on synthetic datasets, static, and dynamic particle fields. Experimental
results demonstrated our method’s accuracy, robustness, and excellent performance across these
scenarios. By leveraging YOLOVS for 3D position detection and GANs for autofocus, we achieved
efficient, noise-resistant, and real-time 3D localization and focusing. However, challenges such
as misidentification of contaminants and depth estimation errors for overlapping particles remain
for future improvement. To enhance performance, we are integrating newer YOLO versions and
Diffusion Models to improve depth estimation and detection accuracy. Diffusion Models can refine
depth estimation and image quality, while the advanced YOLO framework aims to boost detection
precision and efficiency. We plan to develop a user-friendly pipeline with a graphical user interface
(UD) to make these tools accessible for researchers without deep learning expertise. The UI will
enable users to run analyses and visualize results interactively, without needing in-depth technical
knowledge. Continuous updates will further improve accuracy and efficiency, making it an evolving
tool for particle field research.
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Answer: [Yes]

Justification: The paper specifies the details of the experimental setup, including data acquisi-
tion, data splits, and model hyperparameters. The choice of optimizer and its configurations
are also provided, ensuring that the experimental results can be fully understood. Further
details are provided in the supplemental material and the accompanying GitHub repository
(Section 2.1 and 2.2).”

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
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https://nips.cc/public/guides/CodeSubmissionPolicy

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The paper focuses on the qualitative performance of the Vision-Cell framework
in sparse data environments and does not include statistical significance measures such
as error bars. The experiments are designed to demonstrate the framework’s ability to
generate high-quality 3D reconstructions rather than to assess variability or uncertainty
across multiple runs.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper specifies the type of compute resources used, including an RTX
4060 GPU and later two A100 GPUs for more complex model training. Memory limitations
encountered with the RTX 4060 GPU are also discussed, along with the time required for
training tasks. Further details, such as memory usage and time of execution, are provided in
the supplemental material (see Section 4).

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
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10.

11.

Answer: [Yes]

Justification: he research conducted in this paper fully conforms with the NeurIPS Code
of Ethics. All experiments and data used in this study are from publicly available sources
or obtained through ethical means, with no human or animal subjects involved. The paper
adheres to the principles of transparency, fairness, and societal responsibility outlined in the
Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses the positive societal impacts of the Vision-Cell framework,
particularly in its potential to advance biological and medical research by enabling high-
precision 3D cell reconstructions with minimal physical damage to samples. This could
lead to breakthroughs in fields such as neuroscience and structural biology. The paper also
considers the broader implications of deep learning in biological research but does not
foresee any direct negative societal impacts, as the work is foundational and not tied to
applications with ethical risks.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release any data or models that pose a high risk for misuse.
The Vision-Cell framework focuses on biological data with no foreseeable ethical concerns
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related to privacy, security, or malicious use. Therefore, no specific safeguards are necessary
for the release of this work.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper uses publicly available datasets and models, all of which are properly
credited in the references section. We have explicitly mentioned the license and terms of

use for these assets where applicable (see Section X for details), and no scraped data from
restricted sources were used

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The Vision-Cell framework introduced in this paper is a new asset, and detailed
documentation is provided alongside the code and models, including instructions for usage,
training, and evaluation. The assets are released via a GitHub repository with a structured
template to ensure easy reproducibility (see Section 3.3).

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.
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* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

15.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: ,

Justification: The paper does not involve crowdsourcing or research with human subjects, as
it focuses on computational experiments using biological data obtained through non-human
means

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:

Justification: The paper does not involve research with human subjects, and therefore, IRB
approval or equivalent is not applicable.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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