
Under review as a conference paper at ICLR 2023

Prodigy: An Expeditiously Adaptive
Parameter-Free Learner

Anonymous authors
Paper under double-blind review

Abstract

We consider the problem of estimating the learning rate in adaptive meth-
ods, such as Adagrad and Adam. We describe two techniques, Prodigy
and Resetting, to provably estimate the distance to the solution D, which
is needed to set the learning rate optimally. Our techniques are modifi-
cations of the D-Adaptation method for learning-rate-free learning. Our
methods improve upon the convergence rate of D-Adaptation by a factor
of O(

√
log(D/d0)), where d0 is the initial estimate of D. We test our

methods on 12 common logistic-regression benchmark datasets, VGG11 and
ResNet-50 training on CIFAR10, ViT training on Imagenet, LSTM training
on IWSLT14, DLRM training on Criteo dataset, VarNet on Knee MRI
dataset, as well as RoBERTa and GPT transformer training on BookWiki.
Our experimental results show that our approaches consistently outperform
D-Adaptation and reach test accuracy values close to that of hand-tuned
Adam.

1 Introduction

Optimization is an essential tool in modern machine learning, enabling efficient solutions
to large-scale problems that arise in various domains, such as computer vision, natural
language processing, and reinforcement learning. One of the key difficulties is the selection
of appropriate learning rates, which can significantly impact the convergence speed and
the quality of the final solution. Learning-rate tuning has been particularly challenging in
applications where there are multiple agents that use their own optimizer. GAN training
(Goodfellow et al., 2020), federated learning (Kairouz et al., 2021), and many other settings
make this challenge even more pronounced.

In recent years, "parameter-free" adaptive learning rate methods (Orabona & Tommasi, 2017;
Cutkosky & Orabona, 2018; Zhang et al., 2022; Carmon & Hinder, 2022; Ivgi et al., 2023)
have gained considerable attention due to their ability to automatically adjust learning rates
based on the problem structure and data characteristics. Among these, the D-Adaptation
method, introduced by (Defazio & Mishchenko, 2023), has emerged as a promising practical
approach for learning-rate-free optimization.

D-Adaptation works by maintaining a lower bound on the initial distance to solution
D = ∥x0 − x∗∥, for any x∗ in the solution set of the following problem:

min
x∈Rp

f(x).

In practice, the lower bound estimated by D-Adaptation increases rapidly during the course
of optimization, plateauing to a value close to the true D. This D quantity is the key
unknown constant needed to set the learning rate for non-smooth optimization methods,
forming the numerator of the step size:

γk+1 =
D√∑k

i=0 ∥gi∥
2
, where D = ∥x0 − x∗∥,

and the denominator is based on the Adagrad step size Duchi et al. (2011); Streeter &
McMahan (2010); Ward et al. (2019). The Gradient Descent form of D-Adaptation simply
plugs in the current lower bound at each step in place of D. This simple approach can be
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Algorithm 1 Prodigy (GD version)
1: Input: d0 > 0, x0, G ≥ 0
2: for k = 0 to n do
3: gk ∈ ∂f(xk)
4: Choose weight λk (default: λk = 1)

5: ηk =
d2kλk√

d2kG
2 +

∑k
i=0 d

2
iλ

2
i ∥gi∥

2

6: xk+1 = xk − ηkgk

7: d̂k+1 =

∑k
i=0 ηi⟨gi, x0 − xi⟩
∥xk+1 − x0∥

8: dk+1 = max(dk, d̂k+1)
9: end for

10: Return x̂n = 1
n+1

∑n
k=0 ηkxk

Algorithm 2 Prodigy (Dual Averaging version)
1: Input: d0 > 0, x0, G ≥ 0; s0 = 0 ∈ Rp

2: for k = 0 to n do
3: gk ∈ ∂f(xk)
4: λk = d2k
5: sk+1 = sk + λkgk

6: d̂k+1 =

∑k
i=0 λi⟨gi, x0 − xi⟩

∥sk+1∥
7: dk+1 = max(dk, d̂k+1)

8: γk+1 =
1√

λk+1G2 +
∑k

i=0 λi ∥gi∥2
9: xk+1 = xk − γk+1sk+1

10: end for
11: Return x̄n = 1

n+1

∑n
k=0 λkxk

applied to estimate the step size in Adam (Kingma & Ba, 2015), which yields state-of-the-art
performance across a wide-range of deep learning problems. Defazio & Mishchenko (2023)
also show that asymptotically, D-Adaptation is as fast as specifying the step size using the
true D (up to small constant factors).

In this paper, we present two novel modifications to the D-Adaptation method that enhance
its worst-case non-asymptotic convergence rate. By refining the algorithm’s adaptive learning
rate scheme, we achieve improved performance in terms of convergence speed and solution
quality. To validate our proposed modifications, we establish a lower bound for any method
that adapts to the distance-to-solution constant D. We show that our improved methods
are worst-case optimal up to constant factors among methods with exponentially bounded
iterate growth. We then conduct extensive experiments that consistently demonstrate that
the improved D-Adaptation methods adapt the learning rate much faster than the standard
D-Adaptation, leading to enhanced convergence rates and better optimization outcomes.

2 Prodigy Approach

To understand how we can improve upon D-Adaptation, let us take a closer look at some
nuggets in its analysis. In D-adapted Dual Averaging, the gradient at iteration k is scaled
with weight λk. This leads to the error term

D-adaptation error =
n∑

k=0

λ2
kγk∥gk∥2.

The theory then proceeds to upper bound this sum using the largest of all λk’s by using the
upper bound λk ≤ λn. This, however, is quite pessimistic since then λk is set to be λk = dk,
so λn can be as large as D and λk can be as small as d0. Therefore, replacing λ2

k with λ2
n

can introduce a multiplicative error of D2

d2
0

in this term.

We take a different approach and instead handle the error term using modified Adagrad-like
step sizes. In the Adagrad theory, the error term does not have any λ2

k factors, which

is exactly why Adagrad places
√∑k

i=0 ∥gi∥2 in the step-size denominator. The required
modification is then obvious: since the error terms are now d2i ∥gi∥2 instead of ∥gi∥2, the
new adaptive step size should be γk+1 = 1√∑k

i=0 d2
i ∥gi∥2

for the Dual Averaging algorithm

and ηk =
d2
k√∑k

i=0 d2
i ∥gi∥2

for the Gradient Descent algorithm. This way, we can still control

the error term of D-Adaptation but the obtained step size is provably larger since dk is
non-decreasing. Having larger step sizes while preserving the main error term is the key
reason why the new algorithms converge, as we show below, with a faster rate.
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Notice, however, that the methods might still be slow because the denominator in the step
size might grow too large over time. To remedy this, we introduce a modification for the
Gradient Descent step size by placing an extra weight λk next to the gradients:

ηk =
d2kλk√∑k

i=0 d
2
iλ

2
i ∥gi∥

2
.

In fact, the modified step size might even increase between iterations, whereas the Adagrad
step size always decreases. We will show that as long as λk does not grow too quickly, the
worst-case convergence rate is almost the same.

To have non-asymptotic theory, we also introduce in our algorithms an extra term G2 in the
denominator which upper bound the gradient norm. We define it formally in the assumption
below.
Assumption 1. We assume that the objective f is G-Lipschitz, which implies that its
gradients are bounded by G: for any x ∈ Rp and g ∈ ∂f(x), it holds ∥g∥ ≤ G.

Algorithm 1 and Algorithm 2 give Gradient Descent and the Dual Averaging variants of
our new method. In contrast to Adagrad, they estimate the product of D and G in the
denominator, so we call the proposed technique Prodigy. We give the following convergence
result for Algorithm 1:
Theorem 1. Assume f is convex and G-Lipschitz. Given any weights 1 ≤ λ0 ≤ · · · ≤ λn,
the functional gap of the average iterate of Algorithm 1 converges as

f(x̂n)− f∗ ≤
√
2λnDG

2dn+1 + dn+1 log(1 +
∑n

k=0 λ
2
k)√∑n

k=0 λkd2k
, (1)

where x̂n = 1
n+1

∑n
k=0 ηkxk is the weighted average iterate.

Notice that we have the freedom to choose any non-decreasing sequence λk as long as the
right-hand side is decreasing, e.g., by setting λk = kp with p ≥ 0. This allows us to put
much more weight on the recent gradients and get more reasonable step sizes. While it is
not guaranteed to be better in theory, it is usually quite important to do so in practice.

In contrast to the bound in Defazio & Mishchenko (2023), we bound dt+1√∑t
k=0 d2

k

instead of
dt+1∑t
k=0 dk

. This is the reason why the overall guarantee improves by a factor of
√

log2(D/d0).
For instance, if we set λk = 1 for all k and substitute the bound from Lemma 1, we get the
convergence rate

f(x̂t)− f∗ = O

(
GD log(n+ 1)

√
log2+(D/d0)√

n

)
.

where t ≤ n is chosen as the argmin from Lemma 1. Even though our theory does not
guarantee that it is beneficial to use increasing weights λk, our result is, to the best of our
knowledge, new for Adagrad-like methods. It allows for a wide range of choices in λk. For
example, if we set λk = β−kp

2 with β2 < 1 and p < 1/3, then the method is still guaranteed to
converge at the rate of O

(
1

n(1−3p)/2

)
. This is of particular interest when we study Adam-like

methods, see Appendix B for an additional discussion.

The logarithmic term log(n+ 1) is, however, not necessary and only arises due to the use of
Gradient Descent update. The Dual Averaging update, provides a tighter guarantee as given
in the next theorem.
Theorem 2. Let f be a convex and G-Lipschitz function. For Algorithm 2, it holds that:

f(xt)− f∗ ≤ 4GD√
n

√
log2+

(D
d0

)
,

where t = argmink≤n
dk+1√∑k

i=0 d2
i

and log2+(·) = 1 + log2(·).

Comparing this with the previous rate, the only difference is the removal of a multiplicative
log(n + 1) factor. This improvement, however, is mostly theoretical as Gradient Descent
typically performs better in practice than Dual Averaging. We also note that we do not have
a convergence result for Algorithm 2 with weights other than λk = d2k. This is due to the
fact that the DA analysis requires the step size to be monotonically decreasing, so we cannot
place an extra weighting factor in the numerator of γk+1.
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3 Resetting Approach

Algorithm 3 D-Adaptation with Resetting
1: Input: d0 > 0, x0, G
2: s0 = 0, r = 0, k = 0, xr,0 = x0, s0,0 = 0
3: for j = 0 to n do
4: gr,k = gj ∈ ∂f(xj)
5: sr,k+1 = sr,k + gr,k

6: γr,k+1 =
dr√

G2 +
∑k

i=0 ∥gr,i∥
2

7: d̂r,k+1 =

∑k
i=0 γi ⟨gr,i, sr,i⟩

∥sr,k+1∥
8: if d̂r,k+1 > 2dr then start a new epoch with gr,k as the first gradient of the epoch
9: dr+1 = d̂r,k+1, x0,r+1 = x0, gr+1,0 = gr,k, sr+1,1 = gr+1,0

10: γr+1,1 =
dr+1√

G2 + ∥gr+1,0∥2
11: xj+1 = xr+1,1 = xr+1,0 − γr+1,1sr,1
12: k = 0, r = r + 1
13: else
14: xj+1 = xr,k+1 = xr,0 − γr,k+1sr,k+1

15: end if
16: k = k + 1
17: end for
18: Return x̄n = 1

n+1

∑n
j=0 xj

Algorithm 3 describes a variant of D-Adaptation where the Dual Averaging process is reset
whenever the current dk estimate increases by more than a factor of 2. We call the interval
between resetting events an epoch. This resetting process has a number of other effects:

• The step-size sequence γ is also reset, resulting in larger steps right after the reset.

• The convergence of the method is proven with respect to an unweighted average of
the iterates, rather than a weighted average.

• Since the quantities tracked to compute d̂ are also reset, the value of d̂ often will
increase more rapidly than it can when using the standard D-Adaptation estimate.

This resetting variant has the advantage of being significantly simpler to analyze in the
non-asymptotic case than standard D-Adaptation or Prodigy. This makes it well suited to
be used as a basis for extensions and modifications of D-Adaptation.
Theorem 3. Under the assumption of convex and G-Lipschitz f , we have for Algorithm 3:

f(x̄n)− f∗ ≤
6DG

√
log2+(D/d0)√
n+ 1

.

This is the same rate as we established for the Dual Averaging variant of Prodigy, but we
return the average of all iterates, rather than an average computed up to some point t ≤ n,
a significant simplification. However, due to the resetting operation, this method is not
expected to work as well as Prodigy in practice.

4 Complexity Lower Bound

A lower complexity bound can be established for the Lipschitz-Convex complexity class via
a simple 1-dimensional resisting oracle. The bound depends on the "scale" of the initial
step of the algorithm, which is the size of the initial step from x0 to x1. This initial step
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is g0 · d0/
√
G2 + ∥g0∥2 for D-Adaptation, and can be though of as an algorithm-agnostic

measure of d0.

Our lower bound allows the resisting oracle to choose a constant D after seeing the iterates,
which is a much stronger oracle then required for establishing a lower bound. Ideally, a lower
bound could be established where the constant D is fixed but unknown to the algorithm,
and the actual distance to solution ∥x0 − x∗∥ ≤ D given by the oracle is allowed to depend
on the iterate sequence.

The primary consequence of this difference is that our construction only tells us that hard
problems exist for n small relative to D/d0, of the scale n < log log(D/d0). It remains an
open problem to show a lower bound for larger n.
Theorem 4. Consider any Algorithm for minimizing a convex G-Lipschitz function starting
from x0 at the origin, which has no knowledge of problem constants. At each iteration k, the
algorithm may query the gradient at a single point xk. Then for any sequence of x1,..., xn,
there exists a convex Lipschitz problem f and constant D ≥ ∥x0 − x∗∥ for all minimizers x∗
of f such that:

min
k≤n

f(xk)− f∗ ≥
DG

√
log2 log2(D/x1)

2
√
n+ 1

.

Carmon & Hinder (2022) (Sec 3.3) give a method with a matching upper bound in the
G-Lipschitz, non-stochastic case. It’s currently an open problem to find a method that avoids
any additional multiplicative log factors asymptotically, while at the same time giving a√
log(log(·)) any-time rate.

Lower complexity bounds for the average regret in the more general online learning setting
also apply here. They are of the form (Zhang et al., 2022):

1

n

n∑
k=0

⟨gk, xk − x∗⟩ = Ω

(
DG

√
log2(D/ϵ) + ϵ√
n+ 1

)
.

where ϵ is a “user-specificed constant” playing a similar role to x1. Bounds on the average
regret directly bound function value sub-optimality as

f(x̄)− f∗ ≤ 1

n+ 1

n∑
k=0

[f(xk)− f∗] ≤
1

n+ 1

n∑
k=0

⟨gk, xk − x∗⟩ ,

where x̄ = 1
n+1

∑n
k=0 xk.

4.1 Exponentially Bounded Algorithms

The lower bound construction above applies to algorithms generating sequences of iterates
growing arbitrary fast. We can obtain an interesting class of algorithms, which contains our
two D-Adaptation variants, by restricting the rate of growth.
Definition 1. An optimization algorithm is exponentially bounded if there exists a constant
d0, so that for any sequence of G-bounded gradients it returns a sequence of iterates such
that for all k:

∥xk − x0∥ ≤ 2kd0.

Theorem 5. D-Adaptation, DoG, Prodigy and D-Adaptation with resetting are exponentially
bounded.

Our new D-Adaptation variants are optimal among exponentially bounded algorithms for
this complexity class:
Theorem 6. Consider any exponentially bounded algorithm for minimizing a convex G-
Lipschitz function starting from x0, which has no knowledge of problem constants G and D.
There exists a fixed gradient oracle such that any sequence of x1,..., xn, there exists a convex
Lipschitz problem f with G = 1 and ∥x0 − x∗∥ ≤ D for all minimizing points x∗, consistent
with the gradient oracle such that:

min
k≤n

f(xk)− f∗ ≥
DG

√
log2(D/x1)

2
√
n+ 1

.
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Algorithm 4 Prodigy (Adam version)
1: Input: d0 > 0 (default 10−6), x0, β1 (default 0.9), β2 (default 0.999), ϵ (default 10−8),

γk (default 1 with cosine annealing)
2: r0 = 0, s0 = 0, m0 = 0, v0 = 0
3: for k = 0 to n do
4: gk ∈ ∂f(xk)
5: mk+1 = β1mk + (1− β1)dkgk
6: vk+1 = β2vk + (1− β2)d

2
kg

2
k

7: rk+1 =
√
β2rk + (1−

√
β2)γkd

2
k⟨gk, x0 − xk⟩

8: sk+1 =
√
β2sk + (1−

√
β2)γkd

2
kgk

9: d̂k+1 =
rk+1

∥sk+1∥1
10: dk+1 = max(dk, d̂k+1)
11: xk+1 = xk − γkdkmk+1/(

√
vk+1 + dkϵ)

12: end for

Using the simple construction from Theorem 6, we show in Appendix E that the class
of exponentially bounded methods (potentially with an exponent other than 2) covers all
Gradient Descent approaches that use an estimate of dk ≤ cD for some constant c, and use
a step size γk ≤ dk/G without line-search or other additional queries. So the only way to
achieve a log log dependence on d0 is by using a method that performs some queries that
overshoot the standard D/G step size by more than a fixed constant factor. Although using
larger step sizes is not problematic for Lipschitz functions, it comes with the risk of causing
training divergence when applied to functions whose gradients are only locally bounded by
G, which is common in machine learning settings.

5 Related Work

In this section, we review the major classes of techniques for optimizing convex Lipschitz
functions with some level of problem parameter independence.

The Polyak step size Polyak (1987) trades the knowledge of D for f∗, achieving optimal
convergence rate without additional log factors. Stable convergence requires accurate f∗
estimates. A restarting scheme converges within a multiplicative log factor of the optimal
rate Hazan & Kakade (2019). There has been substantial recent research on modifications
of the Polyak step size to make it better suited to machine learning tasks (Loizou et al.,
2021; Gower et al., 2021; Orvieto et al., 2022) but as of yet they have not seen widespread
adoption.

Coin-betting Orabona & Tommasi (2017); McMahan & Orabona (2014); Cutkosky & Orabona
(2018); Zhang et al. (2022); Orabona & Pál (2021) is a family of approaches from the online
learning setting which are also applicable for convex non-smooth optimization. They work by
establishing a relationship by duality between regret minimization and wealth-maximization.
Existing approaches for wealth-maximization can then be mapped to algorithms for regret
minimization. Coin-betting approaches give convergence rates for an equal-weighted average
of the iterates of the form:

f(x̄n)− f∗ = O

(
DG

√
log (1 +D/d0)√

n+ 1

)
.

Standard D-Adaptation obtains asymptotic rates without the log factor, but was otherwise
(theoretically) slower in finite time, as it had a log(·) rather than a

√
log(·) dependence on

D/d0:

f(x̂n)− f∗ ≤
16 log2+(dn+1/d0)

n+ 1
D

√√√√ n∑
k=0

∥gk∥2 ≤
16DG log2+(D/d0)√

n+ 1
.

Our two new variants close this gap, giving the same sqrt-log dependence as coin betting.

The DoG method (Ivgi et al., 2023), based on the bisection approach of Carmon & Hinder
(2022), is the only other approach that we are aware of that estimates D in an online fashion.
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Figure 1: VGG11 and ResNet-50 training on CIFAR10. Left: test accuracy (%), middle:
train loss, right: step sizes. “Prodigy” is used as given in Algorithm 4. As expected, Prodigy
estimates a larger step size than D-Adaptation, which helps it reach test accuracy closer to
the one of Adam.

DoG estimates D by r̄k: r̄k = maxi≤k ∥xi − x0∥. Ivgi et al. (2023) use this quantity as a
plug-in estimate for the numerator of the step size, similar to D-Adaptation’s approach.
This approach can divergence in theory, but with additional modifications to the step size,
the "tamed" T-DoG method is shown to converge. It has a log+(D/d0) dependence on the
initial sub-optimally of the D estimate, so our approach improves on this dependence by a√
log+(D/do) factor.

Malitsky & Mishchenko (2020) proposed AdGD, a method for convex optimization that does
not require any hyperparameters and has a rate that is at least as good as that of the optimally
tuned Gradient Descent. However, AdGD requires the objective to be locally smooth, which
hinders its use in many practical problems. Latafat et al. (2023) partially addressed this gap
by proposing a proximal extension, but the case of non-smooth differentiable functions has
remained unstudied.

6 Experiments

We test our methods on convex logistic regression as well as deep learning problems. In all
deep learning experiments, the Prodigy method is used as presented in Algorithm 4, whose
derivation is explained in Appendix B. We provide detailed descriptions of our experiments
in Appendix A and discuss the results here.

Logistic regression. We performed 1,000 steps for each dataset, using a randomized x0

and plot the results of 10 seeds. We ran both DA and SGD variants of each method. Each
plot shows the accuracy of the average iterate for each method. Due to limited space, we
provide the results in Appendix A.1. In short, our proposed algorithms greatly out-perform
regular D-Adaptation. Our weighted SGD variant of D-Adaptation is faster consistently
across each dataset. Additionally, it adapts faster than the DoG method (Ivgi et al., 2023)
on 10 of the 12 problems.

CIFAR10. For neural network experiments , we consider training on CIFAR10 (Krizhevsky,
2009) with batch size 256, where D-Adapted Adam has a gap of a few percent compared
to the standard Adam. We use cosine annealing with initial step size 1 for all Adam-based
methods and initial step size 10−3 for Adam itself. The considered networks are VGG11
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Figure 2: Adam-family experiments.

(Simonyan & Zisserman, 2014) and ResNet-50 (He et al., 2016)1. To simplify the experiment,
we do not use weight decay, so both networks slightly overfit and do not reach high test
accuracy values. All methods were run using same 8 random seeds.

We show the results in Figure 1. As we can see, this gap is closed by Prodigy, which is
achieved by the larger estimates of the step size.

nanoGPT transformer. We also train a 6-layer transformer network from nanoGPT2 on
the Shakespeare dataset, with the results provided and discussed in Appendix A.

6.1 Large-scale Adam experiments

To validate the performance on large-scale practical applications directly against D-
Adaptation, we ran the subset of the experiments from Defazio & Mishchenko (2023) that
use the Adam optimizer. Methods without coordinate adaptivity are known to underperform
on these problems and so we exclude SGD and DoG from these comparisons.

LSTM, RoBERTa, GPT, DLRM, VarNet. On the smallest problem of LSTM training,
Prodigy appears to converge significantly faster in training loss and slightly overfits in test

1VGG11 and ResNet-50 implementation along with the data loaders were taken from https:
//github.com/kuangliu/pytorch-cifar

2https://github.com/karpathy/nanoGPT
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Figure 3: Adam-family experiments.

loss compared to the baselines. For RoBERTa (Liu et al., 2019) and GPT (Radford et al.,
2019) training on BookWiki, Prodigy matches the performance of the baseline with only
negligible differences. For the application problems, DLRM (Naumov et al., 2019) on the
Criteo Kaggle Display Advertising dataset, and fastMRI VarNet (Zbontar et al., 2018),
Prodigy again closely matches the baselines.

ViT training. Defazio & Mishchenko (2023) present a negative result for training vision
transformer (Dosovitskiy et al., 2021), where D-Adaptation significantly underperforms tuned
Adam. We were able to reproduce this gap across a wide range of weight-decay values,
although this problem has high run-to-run variance of 1-2% of test accuracy, which makes
comparison difficult. We can see that Prodigy almost closes the gap between tuned Adam
and D-Adaptation, giving a test accuracy of 74.63% compared to 75.4% for Adam, and more
than 2% higher than D-Adaptation. See Figure 6.1 for the results.

7 Conclusion

We have presented two new methods for learning rate adaptation that improve upon the
adaptation rate of the state-of-the-art D-Adaptation method. Prodigy, a form of weighted
D-Adaptation, was shown to adapt faster than other known methods across a range of
experiments. The second method, D-Adaptation with resetting, is shown to achieve the same
theoretical rate as Prodigy with a much simpler theory than Prodigy or even D-Adaptation.
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A Extra experimental details and discussion

A.1 Logistic regression experiments
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Figure 4: Convex multiclass classification problems. Error bars show a range of 1 standard
error above and below the mean of the 10 seeds.

Logistic regression. For the convex setting, we ran a set of classification experiments.
For each dataset, we used the multi-margin loss (Weston & Watkins, 1999), a multi-class
generalization of the hinge loss. This non-smooth loss results in bounded gradients, which
is required by our theory. We perform full-batch rather that stochastic optimization, for
two reasons. Firstly, it matches the assumptions of our theory. Secondly, fast learning rate
adaptation is more crucial for full-batch optimization than stochastic optimization as fewer
total steps will be performed.

A.2 Neural networks

CIFAR10. For DoG and L-DoG, we compute the polynomial-averaging iterate and then
report the best of the average and the last iterate. We average with γ = 8, see (Ivgi et al.,
2023) for the details. While DoG produces larger step size estimate than Prodigy (see the
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Figure 5: The test (left) and train (middle) loss curves as well as the estimated stepsize
(right) when training a 6-layer nanoGPT transformer on the Shakespeare dataset.

right column in Figure 1, this is counterbalanced by the larger denominator in DoG. We also
tried to modify DoG to use Adam-like step sizes but our heuristic modification diverged on
this problem. We also observed that among DoG and its layer-wise version, L-DoG, there is
no clear winner as the former performed better on VGG11 and the latter was better when
training ResNet-50.

nanoGPT. For all methods, we use batch size 256, clip the gradients to have norm not
exceeding 1 and use float16 numbers. We use AdamW with hyperparameters given in the
repository, i.e., β2 = 0.99, weight decay 0.1, stepsize 10−3, cosine annealing with warmup
over 100 steps. The same weight decay value and cosine annealing is used for Prodigy
and D-Adapted Adam, except that the latter two methods use stepsize 1. We accumulate
minibatches of size 12 into a batch of size 480. We tuned the weight decay for DoG and
L-DoG and found the value 10−4 to work well for this problem. We ran each method with 8
random seeds and report the average as well as one-standard-deviation confidence intervals.

See Figure 5 for the results. In terms of the test loss, all methods are roughly equivalent
except that DoG and L-DoG were slower to reach the best value of roughly 1.5. For the train
loss, Prodigy was on par with tuned AdamW and slightly better than D-Adapted Adam.
Surprisingly, the estimated step size in Prodigy was very consistent across the 8 random
seeds.

ViT training. We tested several values of weight decay on top of the 0.1 value reported by
Defazio & Mishchenko (2023). Using weight decay 0.05 instead of 0.1 significantly improved
performance of each variant, and so we present results for both the baselines and Prodigy at
that value.

B Deriving Adam-like Step Sizes

To derive an Adam-like method, which should use exponential moving average for the step
size, we want to approximate Adam’s update of the exponential moving average of squared
gradients: vk+1 = β2vk + (1− β2)g

2
k = (1− β2)

∑k
i=0 β

k−i
2 g2i , where g2k is the coordinate-wise

square of the gradient gk. We can achieve this using exponential weights, λk = β
−k/2
2 , which

after substituting the definition of ηk give us the following identity:

d4k
η2k

=
d2k
λ2
k

G2 +

k∑
i=0

d2i
λ2
i

λ2
k

∥gi∥2 =
d2k
λ2
k

G2 + d2k∥gk∥2 +
k−1∑
i=0

βk−i
2 d2i ∥gi∥2.

This can be seen as computing an exponential moving average of dkgk rather than gk itself.
This is our first observation. In addition, in Appendix C.5, we provide a coordinate-wise
version of Algorithm 2 and study its convergence properties. Based on the theory presented
there, the denominator for d̂k+1 should use the ℓ1 norm of the weighted gradient sum. Thus,
combining this insight with the design of Algorithm 1, we obtain the following expression for
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the Adam estimate of D:

d̂k+1 =

∑k
i=0 λid

2
i ⟨gi, x0 − xi⟩

∥
∑k

i=0 λid2i gi∥1
=

∑k
i=0 β

(k−i)/2
2 d2i ⟨gi, x0 − xi⟩

∥
∑k

i=0 β
(k−i)/2
2 d2i gi∥1

.

The update uses exponential moving average as well, although it is more conservative as it
uses

√
β2 instead of β2. Note that there is an extra of (1− β2) in the update for vk, which

can be optionally compensated for by using the bias correction discussed by Kingma & Ba
(2015). These update rules are summarized in Algorithm 4. This is the main algorithm that
we study numerically in the next section.

C Analysis of Prodigy

As a reminder, we use the notation log2+(a) = 1 + log2(a) to denote the logarithm that is
lower bounded by 1 for any a ≥ 1.

C.1 Useful propositions

Proposition 1 (Lemma A.2 in Levy et al. (2018)). For any sequence of nonnegative real
numbers a0, . . . , an √√√√ n∑

k=0

ai ≤
n∑

k=0

ak√∑k
i=0 ai

≤ 2

√√√√ n∑
k=0

ai. (2)

Proof. For completeness, we prove both statements here. Notice that for any α ∈ [0, 1], it
holds 1−

√
1− α ≤ α ≤ 2(1−

√
1− α). Substituting α = ak∑k

i=0 ai
gives

1−
√

1− ak∑k
i=0 ai

≤ ak∑k
i=0 ai

≤ 2

1−
√
1− ak∑k

i=0 ai

 .

If we multiply all sides by
√∑k

i=0 ai, the inequality above becomes√√√√ k∑
i=0

ai −

√√√√k−1∑
i=0

ai ≤
ak√∑k
i=0 ai

≤ 2


√√√√ k∑

i=0

ai −

√√√√k−1∑
i=0

ai

 .

Summing over k = 0, . . . , n, we get the stated bound.

Proposition 2. For any sequence of nonnegative numbers a0, . . . , an and A > 0, it holds
n∑

k=0

ak

A+
∑k

i=0 ai
≤ log

(
A+

n∑
k=0

ak

)
− log(A). (3)

Proof. If ai = 0 for some i, we can simply ignore the corresponding summands, so let us
assume that ai > 0 for all i. For any t > 0 it holds 1/(1 + t) ≤ log(1 + 1/t). Substituting
t = Sk/ak, where Sk = A+

∑k−1
i=0 ai for k > 0 and S0 = A, we get

1

1 + Sk

ak

=
ak

ak + Sk
=

ak

A+
∑k

i=0 ai
≤ log(1 + ak/Sk) = log(Sk+1)− log(Sk).

Summing this over k from 0 to n, we get
n∑

k=0

ak

A+
∑k

i=0 ai
≤

n∑
k=0

(log(Sk+1)− log(Sk)) = log(Sn+1)− log(S0)

= log

(
A+

n∑
k=0

ak

)
− log(A).

This is exactly what we wanted to prove.
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Lemma 1. Let d0 ≤ d1 ≤ · · · ≤ dN be positive numbers and assume N ≥ 2 log2+(
dN

d0
), where

log2+(·) = 1 + log2(·). Then,

min
t<N

dt+1√∑t
k=0 d

2
k

≤
4
√
log2+

(
dN

d0

)
√
N

.

C.2 Proof of Lemma 1

Proof. Following the proof in Ivgi et al. (2023), we define K =
⌈
log2

(
dN

d0

)⌉
and n =

⌊
N
K

⌋
.

Consider a partitioning of the sequence t ≤ N into half-open intervals Ik = [nk, n(k + 1))
for k = 0 to K − 1. We want to show that there is at least one interval such that dk changes
by at most a factor of 2 on that interval. We will use proof by contradiction.

Suppose that for all intervals, dnk < 1
2dn(k+1). Then dk at least doubles in every interval,

and so:
d0 <

1

2
dn <

1

4
d2n · · · <

1

2K
dnK <

1

2K
dN ,

which implies that dN/d0 > 2K and so K < log2 (dN/d0) which contradictions our definition
K =

⌈
log2

(
dN

d0

)⌉
. Therefore, there exists some k̂ such that dnk̂ ≥ 1

2dn(k̂+1). We can now
proceed with proving the Lemma by considering the summation over interval Ik̂ only:

min
t<N

dt+1√∑t
k=0 d

2
k

≤
dn(k̂+1)√∑n(k̂+1)−1
k=0 d2k

≤
dn(k̂+1)√∑n(k̂+1)−1

k=nk̂
d2k

≤
dn(k̂+1)√∑n(k̂+1)−1

k=nk̂
d2
nk̂

=
dn(k̂+1)√

nd2
nk̂

≤
dn(k̂+1)√
1
4nd

2
n(k̂+1)

=
2√
n
=

2√⌊
N
K

⌋
≤ 2√

N
K − 1

≤ 2√
N

log2(dN/d0)+1 − 1
=

2
√

log2+
(
dN

d0

)√
N − log2+

(
dN

d0

)
N≥2 log2+(

dN
d0

)

≤
4
√
log2+

(
dN

d0

)
√
N

.

C.3 GD Analysis

Lemma 2. Assume that d0 ≤ D. Then, the estimate dk in Algorithm 1 satisfies dk ≤ D for
all k.

Proof. By optimality of f∗, we have f(xk)− f∗ ≥ 0, so

0 ≤
n∑

k=0

ηk(f(xk)− f∗) ≤
n∑

k=0

ηk⟨gk, xk − x∗⟩ =
n∑

k=0

ηk⟨gk, x0 − x∗⟩+
n∑

k=0

ηk⟨gk, xk − x0⟩.

Collecting the gradients in the first sum together and using Cauchy-Schwarz inequality, we
obtain

0 ≤
n∑

k=0

ηk(f(xk)− f∗) ≤ ⟨x0 − xn+1, x0 − x∗⟩+
n∑

k=0

ηk⟨gk, xk − x0⟩

≤ ∥x0 − xn+1∥∥x0 − x∗∥+
n∑

k=0

ηk⟨gk, xk − x0⟩. (4)

Using the definition of d̂n+1, this is equivalent to 0 ≤ (D− d̂n+1)∥x0 − xn+1∥, which implies
d̂n+1 ≤ D. Therefore, since d0 ≤ D, we can show by induction dn+1 ≤ D as well.
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Lemma 3. The following inequality holds for the iterates of Algorithm 1:

∥xn+1 − x0∥ ≤ 2dn+1 +
1

2dn+1

n∑
k=0

η2k∥gk∥2.

Proof. Let us rewrite d̂n+1 in a slightly different manner:

d̂n+1∥xn+1 − x0∥
def
=

n∑
k=0

⟨xk − xk+1, x0 − xk⟩

=

n∑
k=0

1

2

(
∥xk+1 − x0∥2 − ∥xk − xk+1∥2 − ∥xk − x0∥2

)
=

1

2
∥xn+1 − x0∥2 −

1

2

n∑
k=0

∥xk − xk+1∥2.

Combining this with the property d̂n+1 ≤ dn+1, we derive

1

2
∥xn+1 − x0∥2 −

1

2

n∑
k=0

∥xk − xk+1∥2 = d̂n+1 ∥xn+1 − x0∥ ≤ dn+1 ∥xn+1 − x0∥ .

Applying inequality 2αβ ≤ α2+β2 with α2 = 2d2n+1 and β2 = 1
2∥xn+1−x0∥2 and plugging-in

the bound above, we establish

2dn+1∥xn+1 − x0∥ = 2αβ ≤ α2 + β2 = 2d2n+1 +
1

2
∥xn+1 − x0∥2

≤ 2d2n+1 + dn+1∥xn+1 − x0∥+
1

2

n∑
k=0

∥xk − xk+1∥2.

Rearranging the terms, we obtain

dn+1∥xn+1 − x0∥ ≤ 2d2n+1 +
1

2

n∑
k=0

∥xk − xk+1∥2 = 2d2n+1 +
1

2

n∑
k=0

η2k∥gk∥2.

It remains to divide this inequality by dn+1 to get the desired claim.

Lemma 4. Assuming the weights λ0, . . . , λn are positive, it holds for the iterates of Algo-
rithm 1:

n∑
k=0

d4kλ
2
k∥gk∥2

d2kG
2 +

∑k
i=0 d

2
iλ

2
i ∥gi∥2

≤ d2n log

(
1 +

n∑
k=0

λ2
k

)
. (5)

Proof. The lemma follows straightforwardly from Proposition 2 by substituting ak =
d2
k

d2
n
λ2
k∥gk∥2 for k from 0 to n:

n∑
k=0

d4kλ
2
k∥gk∥2

d2kG
2 +

∑k
i=0 d

2
iλ

2
i ∥gi∥2

= d2n

n∑
k=0

d2
k

d2
n
λ2
k∥gk∥2

G2 +
∑k

i=0
d2
i

d2
k
λ2
i ∥gi∥2

dk≤dn

≤ d2n

n∑
k=0

d2
k

d2
n
λ2
k∥gk∥2

G2 +
∑k

i=0
d2
i

d2
n
λ2
i ∥gi∥2

(3)
≤ d2n

(
log

(
G2 +

n∑
k=0

d2k
d2n

λ2
k∥gk∥2

)
− log(G2)

)

≤ d2n log

(
1 +

n∑
k=0

λ2
k

)
,

where in the last step we used d2
k

d2
n
λ2
k∥gk∥2 ≤ λ2

kG
2.
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Let us restate Theorem 1:
Theorem 7 (Same as Theorem 1). Given any weights 1 ≤ λ0 ≤ · · ·λn, the functional gap
of the average iterate of Algorithm 1 converges as

f(x̂n)− f∗ ≤
√
2λnDG

2dn+1 + dn+1 log(1 +
∑n

k=0 λ
2
k)√∑n

k=0 λkd2k
.

Proof. The first steps in the proof follow the same lines as the theory in Defazio & Mishchenko
(2023), but we still provide them for completeness.

Firstly, let us continue developing the bound proved in the proof of Lemma 2:
n∑

k=0

ηk(f(xk)− f∗) ≤ ∥x0 − xn+1∥D +

n∑
k=0

ηk⟨gk, xk − x0⟩

= ∥x0 − xn+1∥D +

n∑
k=0

⟨xk − xk+1, xk − x0⟩

= ∥x0 − xn+1∥D +
1

2

n∑
k=0

[
∥xk − xk+1∥2 + ∥xk − x0∥2 − ∥xk+1 − x0∥2

]
≤ ∥x0 − xn+1∥D +

1

2

n∑
k=0

∥xk − xk+1∥2.

We upper bound the first term with the help of Lemma 3:
n∑

k=0

ηk(f(xk)− f∗) ≤ 2Ddn+1 +
D

2dn+1

n∑
k=0

η2k∥gk∥2 +
1

2

n∑
k=0

η2k∥gk∥2.

Since by Lemma 2, 1 ≤ D
dn+1

, we can simplify it to
n∑

k=0

ηk(f(xk)− f∗) ≤ 2Ddn+1 +
D

dn+1

n∑
k=0

η2k∥gk∥2

= 2Ddn+1 +
D

dn+1

n∑
k=0

d4kλ
2
k

d2kG
2 +

∑k
i=0 d

2
iλ

2
i ∥gi∥2

∥gk∥2

(5)
≤ 2Ddn+1 +

D

dn+1
d2n log

(
1 +

n∑
k=0

λ2
k

)
.

Using the convexity of f , we can apply Jensen’s inequality on the iterate x̂n to get

f(x̂n)− f∗ ≤ 1∑n
k=0 ηk

n∑
k=0

ηk(f(xk)− f∗) ≤
2Ddn+1 +

D
dn+1

d2n log(1 +
∑n

k=0 λ
2
k)∑n

k=0 ηk

≤ D
2dn+1 + dn+1 log(1 +

∑n
k=0 λ

2
k)∑n

k=0 ηk
. (6)

Notice that

ηk =
d2kλk√

d2kG
2 +

∑k
i=0 d

2
iλ

2
i ∥gi∥

2
≥ d2kλk

G
√
d2k +

∑k
i=0 d

2
iλ

2
i

≥ d2kλk

G
√
2λn

√∑k
i=0 d

2
iλi

.

Sum over k from 0 to n and using λi ≤ λn gives
n∑

k=0

ηk ≥ 1√
2λnG

n∑
k=0

d2kλk√∑k
i=0 d

2
iλi

(2)
≥ 1√

2λnG

√√√√ n∑
k=0

d2kλk.

Hence,

f(x̂n)− f∗
(6)
≤
√
2λnDG

dn+1√∑n
k=0 d

2
kλk

(
2 + log

(
1 +

n∑
k=0

λ2
k

))
.
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Corollary 1. Consider Algorithm 1 with n ≥ 2 log2

(
2D
d0

)
and define t =

argmink≤n
dk√∑k
i=0 d2

i

. If we choose weights λk = 1, then it holds

f(x̂t)− f∗ ≤ 4
√
2DG

2 + log(n+ 2)√
n

√
log2

(
2D

d0

)
.

Proof. Substituting λk in the bound of Theorem 1, we get for any n

f(x̂n)− f∗
(6)
≤

√
2DG

dn+1√∑n
k=0 d

2
k

log (n+ 2) .

Using the definition of t, the result of Lemma 1 and the property dn ≤ D, we obtain

f(x̂t)− f∗ ≤
√
2DGmin

k≤n

dk+1√∑k
i=0 d

2
i

(2 + log (n+ 2))

≤ 4
√
2DG

2 + log(n+ 2)√
n

√
log2

(
2D

d0

)
.

Corollary 2. Choose any p ≥ 0 ans set the weights to be λk = (k + 1)p. Then,

f(x̂n)− f∗ = O
(
DG

√
p+ 1 log(n+ 1)√

n+ 1

)
.

Proof. Since the sequence d0, d1, . . . is non-decreasing and upper bounded by D, there exists
an index n̂ such that dk ≤ 2dn̂ for any k ≥ n̂. Moreover, we have for n ≥ 2(n̂+ 1)

n∑
k=n̂

λk ≥ 1

p+ 1

(
(n+ 1)p+1 − (n̂+ 1)p+1

)
≥ 1

2(p+ 1)
(n+ 1)p+1

and

n∑
k=0

λ2
k =

n+1∑
k=1

k2p ≤
∫ n+2

2

x2pdx ≤ 1

2p+ 1
(n+ 2)2p+1 − 1 ≤ (n+ 2)2p+1 − 1.

Let us plug this into the bound of Theorem 1 for n ≥ 2(n̂+ 1):

f(x̂n)− f∗ ≤
√
2λnDG

dn+1√∑n
k=0 d

2
kλk

(
2 + log

(
1 +

n∑
k=0

λ2
k

))

≤
2dn̂
√
2(n+ 1)pDG√
d2n̂
∑n

k=n̂ λk

(2 + (2p+ 1) log(n+ 2))

≤ 4
√
p+ 1DG√
n+ 1

(2 + (2p+ 1) log(n+ 2)) = O
(
DG

√
p+ 1 log(n+ 1)√

n+ 1

)
,

which matches our claim.

Notice that the bound in Corollary 2 does not depend on D/d0. This is only possible
asymptotically for a large enough k and a similar bound without weights was presented by
Defazio & Mishchenko (2023).
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C.4 DA Analysis

Lemma 5. Considering Algorithm 2, we have

∥sn+1∥ ≤ 2dn+1

γn+1
+

∑n
k=0 γkλ

2
k∥gk∥2

2dn+1
.

Proof. When studying Dual Averaging, we need to introduce an extra sequence that lower
bounds dn:

dn+1
def
=

γn+1 ∥sn+1∥2 −
∑n

k=0 γkλ
2
k ∥gk∥

2

2∥sn+1∥
.

Let us show that d̂n+1 ≥ dn+1 by comparing their numerators:

d̂n+1∥sn+1∥ =

n∑
k=0

λk⟨gk, x0 − xk⟩ =
n∑

k=0

λkγk⟨gk, sk⟩ =
n∑

k=0

γk⟨sk+1 − sk, sk⟩

=

n∑
k=0

γk
2

[
∥sk+1∥2 − ∥sk+1 − sk∥2 − ∥sk∥2

]
=

γn
2
∥sn+1∥2 +

1

2

n∑
k=0

(γk − γk+1)∥sk+1∥2 −
1

2

n∑
k=0

γkλ
2
k∥gk∥2

γk≥γk+1

≥ γn+1

2
∥sn+1∥2 −

1

2

n∑
k=0

γkλ
2
k∥gk∥2

= dn+1∥sn+1∥.

Using the definition of dn+1, and the property dn+1 ≤ d̂n+1 ≤ dn+1, we derive

γn+1

2
∥sn+1∥2 −

1

2

n∑
k=0

γkλ
2
k ∥gk∥

2
= dn+1 ∥sn+1∥ ≤ dn+1 ∥sn+1∥ .

Using inequality 2αβ ≤ α2 +β2 with α2 =
2d2

n+1

γn+1
and β2 = γn+1

2 ∥sn+1∥2 and then the bound
above, we establish

2dn+1∥sn+1∥ = 2αβ ≤ α2 + β2 =
2d2n+1

γn+1
+

γn+1

2
∥sn+1∥2

≤
2d2n+1

γn+1
+ dn+1∥sn+1∥+

1

2

n∑
k=0

γkλ
2
k∥gk∥2.

Rearranging the terms, we obtain

dn+1∥sn+1∥ ≤
2d2n+1

γn+1
+

1

2

n∑
k=0

γkλ
2
k∥gk∥2.

It remains to divide both sides by dn+1.

Lemma 6. The Dual Averaging algorithm (Algorithm 2) satisfies
n∑

k=0

λk(f(xk)− f∗) ≤ (D − d̂n+1)∥sn+1∥. (7)

Proof. Summing inequality f(xk)− f∗ ≤ ⟨gk, xk − x∗⟩ with weights λk, we get
n∑

k=0

λk(f(xk)− f∗) ≤
n∑

k=0

λk⟨gk, xk − x∗⟩ =
n∑

k=0

λk⟨gk, x0 − x∗⟩+
n∑

k=0

λk⟨gk, xk − x0⟩.
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Using Cauchy-Schwarz on the first product in the right-hand side and then telescoping the
second sum, we obtain

n∑
k=0

λk(f(xk)− f∗) ≤ ∥sn+1∥∥x0 − x∗∥+
n∑

k=0

λk⟨gk, xk − x0⟩

= ∥sn+1∥D − d̂n+1∥sn+1∥.

Next, we restate and prove Theorem 2:
Theorem 8 (Same as Theorem 2). For Algorithm 2, it holds that:

f(xt)− f∗ ≤ 4GD√
n

√
log2

(2D
d0

)
,

where t = argmink≤n
dk+1√∑k

i=0 d2
i

.

Proof. Let us sum inequality λk(f(xk)− f∗) ≥ 0 and then apply Lemma 6:

0 ≤
n∑

k=0

λk(f(xk)− f∗)
(7)
≤ (D − d̂n+1)∥sn+1∥.

Clearly, this implies that d̂n+1 ≤ D, and by induction it follows that dn+1 ≤ D as well. Now
let us upper bound the functional values:
n∑

k=0

λk(f(xk)− f∗)
(7)
≤ D∥sn+1∥ −

n∑
k=0

γkλk⟨gk, sk⟩

= D∥sn+1∥ −
n∑

k=0

γk⟨sk+1 − sk, sk⟩

= D∥sn+1∥+
1

2

n∑
k=0

γk
(
∥sk+1 − sk∥2 + ∥sk∥2 − ∥sk+1∥2

)
= D∥sn+1∥+

1

2

n∑
k=0

γk∥sk+1 − sk∥2 +
1

2

n∑
k=0

(γk − γk−1)∥sk∥2 −
γn
2
∥sn+1∥2.

We can drop the last two terms since γk ≤ γk−1:
n∑

k=0

λk(f(xk)− f∗) ≤ D∥sn+1∥+
1

2

n∑
k=0

γk∥sk+1 − sk∥2

= D∥sn+1∥+
1

2

n∑
k=0

γkλ
2
k∥gk∥2.

The first term in the right-hand side is readily bounded by Lemma 5:
n∑

k=0

λk(f(xk)− f∗) ≤ D∥sn+1∥+
1

2

n∑
k=0

γkλ
2
k∥gk∥2

≤ 2Ddn+1

γn+1
+

D

2dn+1

n∑
k=0

γkλ
2
k∥gk∥2 +

1

2

n∑
k=0

γkλ
2
k∥gk∥2

dn+1≤D

≤ 2Ddn+1

γn+1
+

D

dn+1

n∑
k=0

γkλ
2
k∥gk∥2

λk≤λn

≤ 2Ddn+1

γn+1
+

D

dn+1
λn

n∑
k=0

γkλk∥gk∥2.
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Algorithm 5 Prodigy (Coordinate-wise Dual Averaging version)
1: Input: d0 > 0, x0, G∞ ≥ 0; s0 = 0 ∈ Rp, a0 = 0 ∈ Rp

2: for k = 0 to n do
3: gk ∈ ∂f(xk)
4: λk = d2k
5: sk+1 = sk + λkgk

6: d̂k+1 =

∑k
i=0 λi⟨gi, x0 − xi⟩

∥sk+1∥1
7: dk+1 = max(dk, d̂k+1)

8: a2k+1 = λk+1G
2
∞ +

∑k
i=0 λig

2
i ▷ Coordinate-wise square

9: Ak+1 = diag(ak+1)
10: xk+1 = xk −A−1

k+1sk+1

11: end for
12: Return x̄n = 1

n+1

∑n
k=0 λkxk

Then, apply Proposition 1:
n∑

k=0

λk(f(xk)− f∗) ≤
2D

γn+1
+

D

dn+1
λn

n∑
k=0

γkλk∥gk∥2

=
2D

γn+1
+

D

dn+1
λn

n∑
k=0

1√
λkG2 +

∑k−1
i=0 λi∥gi∥2

λk∥gk∥2

≤ 2D

γn+1
+

D

dn+1
λn

n∑
k=0

1√
λk∥gk∥2 +

∑k−1
i=0 λi∥gi∥2

λk∥gk∥2

(2)
≤ 2D

γn+1
+

2D

dn+1
λn

√√√√ n∑
k=0

λk∥gk∥2.

Let us now plug-in λk = d2k and bound each gradient norm using ∥gk∥ ≤ G:

n∑
k=0

λk(f(xk)− f∗) ≤ 4Ddn+1

√√√√ n∑
k=0

d2k∥gk∥2 ≤ 4GDdn+1

√√√√ n∑
k=0

d2k.

Thus, we get the following convergence rate:

f(xt)− f∗ ≤
4GDdt+1

√∑t
k=0 d

2
k∑t

k=0 d
2
k

=
4GDdt+1√∑t

k=0 d
2
k

= min
t′<n

4GDdt′+1√∑t′

k=0 d
2
k

≤ 4GD√
n

√
log2+

(D
d0

)
.

C.5 Coordinate-wise Prodigy

Here we study Algorithm 5. The theory in this section follows closely the analysis in
Section C.4. There are only a few minor differences such as the use of weighted norms, which
we define as ⟨x, y⟩A−1 = x⊤A−1y for any matrix A ≽ 0. In addition, we use ℓ∞ norm for
the distance term and for the gradients, see the assumption below.
Assumption 2. The gradients are upper bounded coordinate-wise: ∥gk∥∞ ≤ G∞.

We begin with the analogue of Lemma 5:
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Lemma 7. It holds for the iterates of Algorithm 5:

∥sn+1∥1 ≤ 2dn+1∥an+1∥1 +
1

2dn+1

n∑
k=0

λ2
k∥gk∥2A−1

k

.

Proof. As in the proof of Lemma 5, let us introduce an extra sequence dn:

dn+1
def
=

∥sn+1∥2A−1
n+1

−
∑n

k=0 λ
2
k ∥gk∥

2
A−1

k

2∥sn+1∥1
.

The next step is to show that d̂n+1 ≥ dn+1 by comparing the numerators:

d̂n+1∥sn+1∥1 =

n∑
k=0

λk⟨gk, x0 − xk⟩ =
n∑

k=0

λk⟨gk, sk⟩A−1
k

=

n∑
k=0

⟨sk+1 − sk, sk⟩A−1
k

=

n∑
k=0

1

2

[
∥sk+1∥2A−1

k

− ∥sk+1 − sk∥2A−1
k

− ∥sk∥2A−1
k

]
=

1

2
∥sn+1∥2A−1

n
+

1

2

n∑
k=0

∥sk+1∥2A−1
k −A−1

k+1

− 1

2

n∑
k=0

λ2
k∥gk∥2A−1

k

A−1
k ≽A−1

k+1

≥ 1

2
∥sn+1∥2A−1

n+1

− 1

2

n∑
k=0

λ2
k∥gk∥2A−1

k

= dn+1∥sn+1∥1.

Using the definition of dn+1, and the property dn+1 ≤ d̂n+1 ≤ dn+1, we derive

1

2
∥sn+1∥2A−1

n+1
− 1

2

n∑
k=0

λ2
k ∥gk∥

2
A−1

k
= dn+1 ∥sn+1∥1 ≤ dn+1 ∥sn+1∥1 .

Using inequality 2αβ ≤ α2 + β2 with α2 = 2d2n+1a(n+1)i and β2 = 1
2a(n+1)i

s2(n+1)i for
i = 1, . . . , p and then the bound above, we establish

2dn+1∥sn+1∥1 =

p∑
i=1

dn+1|s(n+1)i| ≤
p∑

i=1

(
2d2n+1a(n+1)i +

1

2a(n+1)i
s2(n+1)i

)
= 2d2n+1∥an+1∥1 +

1

2
∥sn+1∥A−1

n+1

≤ 2d2n+1∥an+1∥1 + dn+1∥sn+1∥1 +
1

2

n∑
k=0

λ2
k∥gk∥2A−1

k

.

Rearranging the terms, we get

dn+1∥sn+1∥1 ≤ 2d2n+1∥an+1∥1 +
1

2

n∑
k=0

λ2
k∥gk∥2A−1

k

.

It remains to divide both sides by dn+1.

The next lemma is similar to Lemma 7 except that it uses ℓ∞ norm for the distance to a
solution and ℓ1 norm for the weighted gradient sum sn.
Lemma 8. The coordinate-wise version of Prodigy (Algorithm 5) satisfies

n∑
k=0

λk(f(xk)− f∗) ≤ (D∞ − d̂n+1)∥sn+1∥1, (8)

where D∞ = ∥x0 − x∗∥∞.
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Proof. Summing inequality f(xk)− f∗ ≤ ⟨gk, xk − x∗⟩ with weights λk, we get
n∑

k=0

λk(f(xk)− f∗) ≤
n∑

k=0

λk⟨gk, xk − x∗⟩ =
n∑

k=0

λk⟨gk, x0 − x∗⟩+
n∑

k=0

λk⟨gk, xk − x0⟩.

Using Hölder’s inequality on the first product in the right-hand side and then telescoping
the second sum, we obtain

n∑
k=0

λk(f(xk)− f∗) ≤ ∥sn+1∥1∥x0 − x∗∥∞ +

n∑
k=0

λk⟨gk, xk − x0⟩

= ∥sn+1∥1D∞ − d̂n+1∥sn+1∥.
The use of ℓ1 norm for the term sn+1 above is motivated by the fact that it naturally arises
in other parts of the theory.

Theorem 9. Algorithm 5 converges with the rate

f(xt)− f∗ ≤ 4pG∞D∞√
n

√
log2+

(D∞

d0

)
,

where t = argmink≤n
dk+1√∑k

i=0 d2
i

.

Proof. From Lemma 8, we get

0 ≤
n∑

k=0

λk(f(xk)− f∗)
(8)
≤ (D∞ − d̂n+1)∥sn+1∥1,

so we can prove by induction that dn+1 ≤ D∞. Using the same bounds as before, we get for
the average iterate
n∑

k=0

λk(f(xk)− f∗) ≤ D∞∥sn+1∥1 −
n∑

k=0

λk⟨gk, x0 − xk⟩

= D∞∥sn+1∥1 +
1

2

n∑
k=0

λ2
k∥gk∥2A−1

k

+
1

2

n∑
k=0

∥sk∥2A−1
k −A−1

k+1

− 1

2
∥sn+1∥2A−1

n+1

≤ D∞∥sn+1∥1 +
1

2

n∑
k=0

λ2
k∥gk∥2A−1

k

.

Let us plug in the bound from Lemma 7:
n∑

k=0

λk(f(xk)− f∗) ≤ 2D∞dn+1∥an+1∥1 +
D∞

2dn+1

n∑
k=0

λ2
k∥gk∥2A−1

k

+
1

2

n∑
k=0

λ2
k∥gk∥2A−1

k

dn+1≤D∞
≤ 2D∞dn+1∥an+1∥1 +

D∞

dn+1

n∑
k=0

λ2
k∥gk∥2A−1

k

λk≤λn

≤ 2D∞dn+1∥an+1∥1 +
D∞

dn+1
λn

n∑
k=0

λk∥gk∥2A−1
k

.

We now apply Proposition 1, substitute λk = d2k, and use g2kj ≤ G2
∞:

n∑
k=0

d2k(f(xk)− f∗) ≤ 2D∞dn+1∥an+1∥1 +
D∞

dn+1
λn

p∑
j=1

n∑
k=0

λkg
2
kj√

d2kG
2
∞ +

∑k−1
i=0 λig2ij

≤ 2D∞dn+1∥an+1∥1 +
2D∞

dn+1
λn

p∑
j=1

√√√√ n∑
k=0

λkg2kj

≤ 4D∞dn+1pG∞

√√√√ n∑
k=0

d2k.
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Using Lemma 1, we get the rate for t = argmint′≤n
dt′+1√∑t′

k=0 d2
k

:

f(xt)− f∗ ≤ 4pG∞D∞√
n

√
log2+

(D∞

d0

)
.

D Analysis of D-Adaptation with Resetting

In Algorithm 3 the r counter tracks the epoch. Let nr represent the number of steps
performed in epoch r. Let R ≤ log2+(D/d0) denote the total number of epochs performed
before the algorithm returns, where D = ∥x0 − x∗∥.
Lemma 9. Consider the steps within a single epoch, dropping the r index, we have that the
norm of sn+1 is bounded by:

∥sn+1∥ ≤ 5G
√
n+ 1. (9)

Proof. We start with Lemma 5 from Defazio & Mishchenko (2023), which applies within an
epoch in our case since the gamma decreases within epochs:

−
n∑

k=0

γk ⟨gk, sk⟩ ≤ −γn
2

∥sn+1∥2 +
n∑

k=0

γk
2

∥gk∥2 .

Note that we have used a slightly tightened version, where γn rather than γn+1, appears on
the right, which easily follows by not using γn+1 ≤ γn on the last step of their telescoping.

Using the definition of d̂n+1 and the property d̂n+1 ≤ 2d, we have:

γn
2

∥sn+1∥2 −
n∑

k=0

γk
2

∥gk∥2 = d̂n+1 ∥sn+1∥ ≤ 2d ∥sn+1∥ .

Using inequality 2αβ ≤ α2 + β2 with α2 = 4d2

γn
and β2 = γn

4 ∥sn+1∥2 and then the bound
above, we establish

2αβ = 2d∥sn+1∥ ≤ 4d2

γn
+

γn
4
∥sn+1∥2

≤ 4d2

γn
+ d∥sn+1∥+

1

2

n∑
k=0

γk∥gk∥2.

Rearranging the terms, we obtain

d∥sn+1∥ ≤ 4d2

γn
+

n∑
k=0

γk
2
∥gk∥2.

It remains to divide this inequality by d to get:

∥sn+1∥ ≤ 4d

γn
+

1

d

n∑
k=0

γk
2
∥gk∥2.

Now plugging in γn = d/
√
G2 +

∑n−1
k=0 ∥gk∥2, and using the AdaGradNorm error bound:

∥sn+1∥ ≤ 4

√√√√G2 +

n∑
k=0

∥gk∥2 +
1

2

n∑
k=0

∥gk∥2√
G2 +

∑k−1
i=0 ∥gi∥2

≤ 4

√√√√G2 +

n−1∑
k=0

∥gk∥2 +

√√√√ n∑
k=0

∥gk∥2

≤ 5G
√
n+ 1.
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Lemma 10. For epoch r we have:
nr∑
k=0

(f(xk,r)− f∗) ≤ 6DG
√
nr + 1.

Proof. Starting from the bound in Defazio & Mishchenko (2023):
nr∑
k=0

(f(xk,r)− f∗) ≤ D ∥sn+1,r∥+
1

2

nr∑
k=0

γk,r ∥gk,r∥2 −
1

2
γnr+1,r ∥snr+1,r∥2 .

Then we apply Lemma 9:
nr∑
k=0

(f(xk,r)− f∗) ≤ 5DG
√
nr + 1 +

1

2

nr∑
k=0

γk,r ∥gk,r∥2 −
1

2
γnr+1,r ∥snr+1,r∥2 .

Using the AdaGradNorm bound 1
2

∑nr

k=0 γk,r ∥gk,r∥
2 ≤ D

√∑nr

k=0 ∥gr,k∥
2 ≤ DG

√
nr + 1.

and further dropping the − 1
2γnr+1,r ∥snr+1,r∥2 term gives the result.

Theorem 10. For Algorithm 3, it holds that:

f(x̄n)− f∗ ≤
6DG

√
log2+(D/d0)√
n+ 1

.

Proof. Starting from Lemma 10, for epoch r it holds that:
nr∑
k=0

(f(xk,r)− f∗) ≤ 6DG
√
nr + 1.

We sum over epochs up to the final epoch R:

n∑
k=0

(f(xk)− f∗) ≤ 6DG

R∑
r=1

√
nr + 1.

Jensen’s inequality tells us that for concave φ:∑R
r=1 arφ(xr)∑R

r=1 ar
≤ φ

(∑R
r=1 arxr∑R
r=1 ar

)
.

Applying to our case, we use φ(x) =
√
x, ar = 1,

∑R
r=1 ar = R, and xr = nr+1:∑R

r=1 φ(xr)

R
≤ φ

(∑R
r=1 nr+1

R

)
,

so ∑R
r=1

√
nr + 1

R
≤
√

n+ 1

R
,

which we rearrange into

∴
R∑

r=1

√
nr + 1 ≤

√
R(n+ 1).

Noting that R ≤ log2+(D/d0):
n∑

k=0

(f(xk)− f∗) ≤ 6DG
√

(n+ 1) log2+(D/d0).

Applying Jensen’s inequality to obtain a bound on the average iterate completes the proof.
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E Lower Complexity Theory

Theorem 11. Consider any Algorithm for minimizing a convex G-Lipschitz function starting
from x0 at the origin, which has no knowledge of problem constants. At each iteration k, the
algorithm may query the gradient at a single point xk. Then for any sequence of x1,..., xn,
there exists a convex Lipschitz problem f and constant D ≥ ∥x0 − x∗∥ for all minimizers x∗
of f such that:

min
k≤n

f(xk)− f∗ ≥
DG

√
log2 log2(D/x1)

2
√
n+ 1

.

Proof. Firstly let g0 = −1. We consider two cases. Case 1) Suppose that xk ≤ 1
22

2n+1

x1 for
all k. Then define

x∗ = 22
n+1

x1,

so that |x0 − x∗| = D = 22
n+1

x1. Our construction uses the gradient sequence gk = −1 for
all k. This corresponds to the function:

f(x) = |x− x∗| .

Note that for all query points x, the gradient is negative, and only the left arm of the absolute
value function is seen by the algorithm, so the function appears linear for all test points.
Using this construction, we have:

min
k≤n

[f(xk)− f∗] = min
k≤n

(x∗ − xk)

= 22
n+1

x1 −max
k≤n

xk

≥ 22
n+1

x1 −
1

2
22

n+1

x1

≥ 1

2
Dn.

Now note that: √
log log2(D/x1) =

√
log2 log2(2

2n+1) =
√
n+ 1.

So combining these two results:

min
k≤n

f(xk)− f∗ ≥ 1

2
DG

=
DG

√
log2 log2(D/x1)

2
√
n+ 1

.

Case 2). Otherwise, there exists a k such that xk+1 ≥ 1
22

2n+1

x1. Then we will fix x∗ to be
in the interval I = [22

n+1

x1, 2
2n+2

x1]. Our gradient oracle will return g(xk) = sign(xk − x∗),
and the corresponding function is f(x) = |x− x∗|. Since the problem can only become
harder with less information, we may assume that the algorithm knows the end points of the
interval I, and we treat xk as the first query point in the interval. Without loss of generality
we further assume k = 2 since any larger value just gives fewer query points and thus a worse
bound.

For the resisting oracle, we can use the same resisting oracle as would be used for binary
search, but applied to the logarithm of the points. For root finding on an interval [a, b] the
lower complexity bound for t steps is know to be (Sikorski, 1982):

|x− x∗| ≥
1

2t+1
|b− a| .
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and so since we are taking n− 1 steps (since we start at x2):

|log2 xn − log2 x∗| ≥
1

2n

(
log2 2

2n+2

x1 − log2 2
2n+1

x1

)
≥ 1

2n
(
2n+2 − 2n+1

)
=

1

2n
(
2 · 2n+1 − 2n+1

)
=

2n+1

2n

= 2.

Therefore either xn ≤ 1
4x∗ or xn ≥ 4x∗. Therefore:

f(xk)− f∗ ≥ min

{∣∣∣∣14x∗ − x∗

∣∣∣∣ , |4x∗ − x∗|
}

=
3

4
x∗ =

3

4
DG.

Note that D ≤ 22
n+2

x1, so:√
log log2(D/x1) ≤

√
log2 log2(2

2n+2) =
√
n+ 2,

therefore, 1 ≥
√
log log2(D/x1)√

n+ 2
,

and so multiplying the two bounds gives:

min
k≤n

f(xk)− f∗ ≥
3DG

√
log2 log2(D/x1)

4
√
n+ 2

≥
DG

√
log2 log2(D/x1)

2
√
n+ 1

.

Theorem 12. Consider any exponentially bounded algorithm for minimizing a convex G-
Lipschitz function starting from x0, which has no knowledge of problem constants G and D.
There exists a fixed gradient oracle such that any sequence of x1,..., xn, there exists a convex
Lipschitz problem f with G = 1 and ∥x0 − x∗∥ ≤ D for all minimizing points x∗, consistent
with the gradient oracle such that:

min
k≤n

f(xk)− f∗ ≥
DG

√
log2(D/x1)

2
√
n+ 1

.

Proof. We consider the construction of a 1D oracle for this problem. Our oracle returns
g0 = −1 and f(xk) = −xk for all queries. Without loss of generality we assume that xk > 0
for all k ≥ 1, and G = 1.

For each step k ≥ 1 we define:
x∗ = 2n+1x1,

and thus D = |x0 − x∗| = 2k+1x1. and our construction uses the following function value
and gradient sequence

f(x) = |x− x∗|+ x∗.

Note that for all query points x, the gradient is negative, and only the left arm of the absolute
value function is seen by the algorithm, so the function appears linear for all test points.
Using this construction, we have:

min
k≤n

[f(xk)− f∗] = min
k≤n

(x∗ − xk)

= 2n+1x1 −max
k≤n

xk

≥ 2 · 2nx1 − 2nx1

= 2nx1

=
1

2
Dn.
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Now note that: √
log2(Dn/x1) =

√
log2(2

n+1)

=
√
n+ 1.

So:

1 ≥
√

log2(Dn/x1)√
n+ 1

.

Combining these two results:

min
k≤n

f(xk)− f∗ ≥ 1

2
D =

1

2
DG

=
1
2DG

√
log2(D/x1)√
n+ 1

.

Theorem 13. D-Adaptation, DoG, Prodigy and D-Adaptation with resetting are exponentially
bounded.

Proof. Consider the D lower bound from D-Adaptation:

d̂n+1 =

∑n
k=0 λkγk ⟨gk, sk⟩

∥sn+1∥
,

with:

sn+1 =

n∑
k=0

dkgk.

Recall that
n∑

k=0

λkγk ⟨gk, sk⟩ ≤ γn+1 ∥sn+1∥2 .

Note also that γn+1 ≤ 1
G . So:

dn+1 ≤
1
G ∥sn+1∥2

∥sn+1∥
≤ 1

G

∥∥∥∥∥
n∑

k=0

dkgk

∥∥∥∥∥ ≤
n∑

k=0

dk.

So the sequence dn is upper bounded by the sequence:

an =

{∑n−1
k=0 ak n ≥ 1

d0 n = 0
.

This sequence has the following closed form:

an+1 = 2nd0 for n ≥ 1.

We can prove this by induction. The base case is by definition a1 = a0. Then

an+1 =

n∑
k=0

ak =

n−1∑
k=0

ak + an = an + an = 2an = 2nd0.

Note that for both the Dual Averaging form and the GD form we have, we have:

∥xn+1 − x0∥ ≤

∥∥∥∥∥ 1G
n∑

k=0

dkgk

∥∥∥∥∥ ≤
n∑

k=0

dk ≤ dn+1 ≤ 2nd0.

It follows that D-Adaptation is exponentially bounded. The same argument applies to the
resetting variant since the resetting operation does not increase the rate of accumulation of
d.

For Prodigy, note that:
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γn+1 ≤ 1√
d2n+1G

2
=

1

dn+1G
.

Therefore

dn+1 ≤
1

dn+1G
∥sn+1∥2

∥sn+1∥
≤ 1

dn+1G

∥∥∥∥∥
n∑

k=0

d2kgk

∥∥∥∥∥ ≤ 1

dn+1

n∑
k=0

d2k ≤ 1

dn+1

n∑
k=0

dkdn+1

≤
n∑

k=0

dk.

The rest of the argument follows the D-Adaptation case, with:

∥xn+1 − x0∥ ≤

∥∥∥∥∥ 1

dnG

n∑
k=0

d2kgk

∥∥∥∥∥ ≤
n∑

k=0

dk ≤ dn+1 ≤ 2nd0.

For DoG, recall the basic DoG step is gradient descent with step sizes:

γk =
r̄k√

G2 +
∑k

i=0 ∥gi∥
2
.

Using the triangle inequality we have:
∥xk+1 − x0∥ = ∥xk − γkgk − x0∥

≤ ∥xk − x0∥+ γk∥gk∥

≤ ∥xk − x0∥+
r̄k√
G2

∥gk∥

≤ ∥xk − x0∥+ r̄k

≤ 2r̄k.

Chaining gives the result.

Proposition 3. Suppose that dk ≤ cD and γk ≤ dk/G. then:
∥xk − x0∥ ≤ (2c+ 1)

n ∥x1 − x0∥ .

Proof. Without loss of generality assume that G = 1. Firstly, note that using the absolute
value function as constructed in Theorem 6, it’s clear that there is always exists a function
with Dk ≤ 2 ∥xk − x∗∥ at step k consistent with the sequence of gradients seen so far.
Therefore, it must hold that

dk ≤ cDk ≤ 2c ∥xk − x0∥ .

We prove the result by induction. For the base case, trivially:

∥x1 − x0∥ ≤ (2c+ 1)
1 ∥x1 − x0∥ .

For the inductive case:
∥xk+1 − x0∥ = ∥xk − γkgk − x0∥

≤ ∥xk − x0∥+ γk∥gk∥

≤ ∥xk − x0∥+
cDk

G
∥gk∥

≤ ∥xk − x0∥+ cDk

≤ (2c+ 1) ∥xk − x0∥
≤ (2c+ 1)

n+1 ∥x1 − x0∥ .
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