Under review as a conference paper at ICLR 2025

RECURRENT DRAFTER FOR FAST SPECULATIVE
DECODING IN LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present Recurrent Drafter (ReDrafter), an advanced speculative decoding ap-
proach that achieves state-of-the-art speedup for large language models (LLMs)
inference. The performance gains are driven by three key aspects: (1) leveraging a
recurrent neural network (RNN) as the draft model conditioning on LLM’s hidden
states, (2) applying a dynamic tree attention algorithm over beam search results
to eliminate duplicated prefixes in candidate sequences, and (3) training through
knowledge distillation from the LLM. ReDrafter accelerates Vicuna inference in
MT-Bench by up to 3.5x with a PyTorch implementation on Nvidia HI00 GPUs.
To demonstrate its practicality in production environments, we integrate ReDrafter
into TensorRT-LLM, reaching up to 2.5x speedup on H100 GPUs. We also val-
idated its effectiveness for on-device applications by implementing the approach
in MLX and benchmarking performance on Metal GPUs in Apple Silicon chips,
achieving up to 2.3x speedup. We summarize our experimental results in Figure[T]

1 INTRODUCTION
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Figure 1: Inference speedup on MT-bench for Vicuna models are shown for three ReDrafter im-
plementations: (left) PyTorch on Nvidia H100 GPU, (mid) TensorRT-LLM on Nvidia H100 GPU,
(right) and MLX on Apple’s M2 Ultra Metal GPU. We compare with EAGLE (L1 et al., [2024a)),
Medusa (Cai et al., 2024), and auto-regressive in PyTorch implementations.

Speculative decoding (Leviathan et al.l |2023; |Spector & Re} 2023} [Cai et al., [2024; | Bhendawade
et al.l |2024) has been investigated as a promising technique to accelerate large language model
(LLM) inference (Brown et al., 2020; Touvron et al.,2023;|Achiam et al., 2023; |Anil et al., 2023aib;
Gunter et al., [2024). It uses smaller, more efficient models (often referred to as draft models) to
predict candidate sequences, which are then verified by the LLM. The underlying idea is to allow the
LLM to focus on validating those candidates rather than generating every token sequentially. This
approach helps to mitigate the bottleneck of memory bandwidth by reducing the need for repeated
passes through the LLM. Since the draft model can introduce overhead, the reduction in LLM calls
must be sufficient to offset this cost in order to achieve a net speedup.

Recently, Medusa (Cai et al.|[2024) achieved significant speedup using small draft heads attached to
LLM’s hidden state, instead of maintaining a separate draft model. However, Medusa necessitates
multiple draft heads with distinct parameters to indicate predictive positions. Its independent predic-
tion mechanism does not leverage the sequential structure, resulting in limited predictive accuracy
and an exponentially large set of feasible candidate token sequences.
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Figure 2: ReDrafter decoding process illustration. At each inference step, LLM generates an initial
token (highlighted in green). Following this, the draft model performs a beam search (indicated by
the dashed box) using the guaranteed token and the last-layer hidden states from the LLM as inputs.
The LLM then verifies the beam, and the longest accepted prefix (highlighted in blue) is appended
to the context. This allows each step to accept multiple tokens through a single forward pass from
the LLM. The process repeats until the sequence concludes. ReDrafter ensures that the tokens it
generates are identical to those produced by the LLM (marked as gray).

In this paper, we introduce the Recurrent Drafter (ReDrafter), for fast LLM inference. Figure 2]
illustrates its generative process. ReDrafter’s performance gains are driven by three key aspects:
(1) Using a recurrent neural network (RNN) (Mikolov et al., 2010) conditioned on the LLM’s hid-
den states as the draft model harnesses local temporal dependencies, improving the accuracy of the
drafter’s predictions and effectively converting computational resources into speedups. (2) By uti-
lizing beam search to explore multiple candidate sequences and applying a dynamic tree attention
algorithm to eliminate duplicated prefixes among the candidates, we significantly reduce computa-
tional overhead. (3) Training through knowledge distillation (Zhou et al., [2023)) from LLMs im-
proves the alignment of the draft model’s predictions with those of the LLM, effectively transferring
the computational load from inference time to training time.

In a PyTorch implementation, ReDrafter accelerates Vicuna inference by up to 3.5x compared to
the autoregressive method in MT-Bench on Nvidia H100 GPUs, achieving state-of-the-art perfor-
mance. Additionally, we demonstrate the effectiveness of ReDrafter in production environments
through two key use cases. The first is a production-level deployment on TensorRT-LLM, designed
to manage high traffic with long context lengths. In this implementation, tensor parallelism and con-
tinuous batching are utilized to ensure the system efficiently handles larger volume of requests while
maintaining low latency. In this scenario, ReDrafter achieves up to 2.5x speedup on the MT-bench
benchmark. The second use case focuses on an on-device approach using MLX on Metal GPUs
within Apple Silicon chips. Despite the limited compute resources in this setup, we observed a
memory bottleneck. ReDrafter effectively mitigates this bottleneck, resulting in up to 2.3x speedup,
demonstrating its capability to optimize performance in resource-constrained environments.

2 RELATED WORK ON SPECULATIVE DECODING

It is widely recognized that LLM generation is constrained by the memory bottleneck. Speculative
decoding mitigates this bottleneck by increasing computational intensity, utilizing a smaller draft
model to locally predict probable future tokens.

Recently, draft model design has undergone numerous iterations. |Leviathan et al.| (2023)); |Chen et al.
(2023)); |ISpector & Re| (2023)); |Sun et al.| (2024) choose to use separate draft models detached from



Under review as a conference paper at ICLR 2025

LLMs. This is a handy choice when there is an off-the-shelf model closely approximates the LLM.
For example, a common approach is to use a smaller variant from the same model family as the draft
model. If no off-the-shelf candidate is available, the draft model must be trained separately from the
LLM, with efforts focused on aligning it as closely as possible to the LLM. Additionally, deploying
two separate models adds complexity to their integration within a unified serving system.

Another thread of approaches employs a unified strategy by attaching the draft model to the LLM,
making them dependent (Stern et al., 2018} [Santilli et al 2023} |Cai et al.| [2024). This is an effi-
cient design choice when the draft model is not intended for standalone use, allowing it to leverage
additional computational resources for local prediction by conditioning on the LLM. Among these
methods, |Cai et al.| (2024) proposes to use 7" independent draft heads to predict next 7' tokens, uti-
lizing GPU’s extra parallel computing power. This excessive computational effort may not yield
proportional speedups, as independent predictions become less accurate as 7" increases, resulting in
suboptimal predictive accuracy and a lower acceptance rate from the LLM. An alternative approach
is to enhance prediction accuracy by incorporating recurrence into the draft model to capture local
dependencies (Bhendawade et al., [2024; L1 et al., [2024azb). However, the reduced parallelism due
to recurrence leads to lower GPU utilization, introducing overhead that diminishes speedup gains,
even when the acceptance rate is substantially higher.

ReDrafter uses a lightweight RNN as the draft model to predict upcoming tokens in the sequence. It
allocates computational resources to beam search, resulting in a higher acceptance rate. The inten-
sity of the beam search is controlled by the beam width and length, which can be adjusted based on
hardware capabilities and specific implementations. ReDrafter applies knowledge distillation (Xia
et al.,[2023; [Miao et al., 2023 Liu et al., [2023} |Zhou et al., 2023) from LLMs, improving inference
time efficiency by investing more resource in training time. Our empirical results reveal that Re-
Drafter utilizes compute more effectively compared to previous methods, delivering state-of-the-art
speedups across various implementations and hardware platforms.

3 REDRAFTER

3.1 DRAFT MODEL

‘ mornlng M coffee m readlng

L e e e - Figure 3: Draft. model takes LLM’s last hid-
den state h as input to forecast next few to-
‘ ‘ ‘ ‘ i kens. For brevity, we omit model parameters

START] She emoyed lhe quiet mommg slppmg coffee and and LLM hldden States before h

We outline the formulation of the draft model in Figure[3] Similar to the Medusa approach, we use
the last layer’s output of the transformer from the LLM as input to the draft model. Additionally, we
incorporate the embeddings of historical tokens as recurrent inputs to the draft head.

We use the standard RNN design to predict the next token. For instance, considering the context
“She enjoyed the”, once LLM generates the token “quiet” with last layer’s output &, the draft model
uses the embedding of token “quiet” to update its RNN hidden state and combine with output h to
predict the next token “morning”. This strategy is recurrently applied for subsequent tokens. In
this paper, we opt for a simple recurrent design to model the connections among the shared draft
heads, deferring more complex model choices to future investigations. In particular, we initialize
the hidden state of the draft model as g; = [s1, h], where s; := e; is the embedding of the last token
that LLM produced. To predict the ¢th token using the draft model, we first update its hidden state,

gt = [st,h], sy =f(Usi—1 +Wey +0),

where f is the activation function and U, W and b is the parameter for the RNN (Mikolov & Zweig,
2012). We only use one layer RNN to make the model simple. Then we apply a few layers of MLPs
with skip connections, followed by a standard softmax layer at the end. Since the parameters of the
draft heads are shared, the number of parameters remains constant even if the model is trained to
predict more than one token.
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Figure 4: Beam search produces three candidate sequences. (a) Without dynamic tree attention,
after flattening the tokens across all candidates, 15 tokens need to be sent to the LLM for verifica-
tion. (b) With dynamic tree attention, we can trim the shared prefix, reducing the total to 8 tokens
after flattening. We adjust tree attention masks accordingly to reflect token dependencies. (c) An
illustration for building the dynamic tree attention for batch size equals to 1. (Extending to batch
size larger than 1 is straighforward.) We use tensor-based, GPU-friendly algorithm to pack the beam
into a “packed beam”. The attention masks can be processed accordingly in a GPU-friendly way.

3.2 BEAM SEARCH

The draft model triggers the beam search algorithm during inference. This allows the model to
explore a variety of possible continuations given the context, ranking them by probability while
keeping track of multiple potential sequences. It helps maintaining a balance between diversity and
optimality in candidate generation.

The parameter beam width refers to the number of draft token sequences. A larger beam width
increases the likelihood that the sequence with the longest acceptable prefix is included in the beam.
This allows the LLLM to accept more tokens in each decoding step, reducing the overall number
of decoding steps required—or, equivalently, decreasing the number of calls to the LLM. While a
wider beam requires more FLOPs for beam search and for LLM verification, a powerful GPU can
process these FLOPs in parallel, minimizing the increase in wall time.

3.3 DYNAMIC TREE ATTENTION

Beam search returns draft candidates with shared prefixes. For examples, in Figure f(a), the second
candidate “morning sipping coffee and watching” and the third candidate “morning sipping coffee
on her” share a prefix “morning sipping coffee”. Sending those duplicated tokens to LLM result
in computation overhead. As a result, we remove those shared prefixes, revealing a tree structure
over beam search results. When sending de-duped candidate to LLM for verification, we modify
the attention mask to reveal dependencies among tokens (Figure {b)). We refer this mechanism as
“dynamic tree attention”.

The use of a tree structure to save computation resembles approaches seen in [Miao et al.| (2023));
Spector & Re| (2023); (Cai et al.| (2024), where similar methods were employed to avoid redundant
calculations for shared prefixes. However, unlike the use of tree structures mentioned above, we
must determine ours dynamically as it relies on individual beam search results at runtime. A standard
trie-based algorithm is slow as it is difficult to be parallelized. We notice that a unique property of our
problem is that all candidate sequences have the same length. With this insight, we discovered that
our dynamic tree attention can be efficiently constructed using standard tensor operators, a critical
aspect for leveraging modern-day accelerators with little overhead. This leads to further acceleration
of LLM inference in speculative decoding.
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The key observation is that we can find all shared prefixes in the beam search result using standard
tensor operations without building a prefix trie. We have developed functions called dedup_prefix
to identify shared prefixes, and another function pack_beam to compress a beam into a deduped,
“packed beam” (illustrated in Figure ffc)). We provide the pseudo-code for dedup_prefix in the
Appendix to provide a glimpse of how this tensor-based algorithm works. Subsequent opera-
tions can be similarly designed to use the prefixes found here to construct dynamic tree attention.
This leads to further acceleration of LLM inference in speculative decoding. The use of dynamic tree
attention is not limited to ReDrafter. It can also be used in detached speculative decoding approaches
while a separate draft model performs beam search and then apply dynamic tree attention.

3.4 SPECULATIVE DECODING WITH REDRAFTER

We briefly describe the steps of using ReDrafter for speculative decoding. In each generation step
during inference, ReDrafter alternates between using the draft model to generate tokens and calling
the LLM to verify and accept them. We start with all previously generated tokens with the last
hidden state. We employ beam search to generate a beam, consisting of a set of candidate sequences.
Subsequently, dynamic tree attention is applied to flatten and compress the beam into a packed
beam, while formulating an appropriate attention mask. LLM then proceeds with a forward pass
to compute the log probabilities for all proposed tokens. Then, we select the best candidate with
the longest accepted prefix. The selection method can range from a greedy approach (aka. token
matches), to rejection sampling. Simultaneously, LLM provides hidden states and the initial token
for the next draft model call. We append accepted tokens to the end of previously generated tokens
and run the next iteration until the stopping criteria are met. ReDrafter guarantees the generated
sequence matches LLM’s output.

3.5 REDRAFTER TRAINING WITH KNOWLEDGE DISTILLATION

ReDrafter’s efficiency is optimized when all candidate tokens are accepted. That is, draft model
make the same prediction as the LLM within its prediction range 7. A natural loss function is the
KL divergence:
I;dlilffl KL(pim (y1:7) [Parate (Y1:7) :r;ﬁn E i (y1.7) —108 Parat (Y1:7) (1)
raft draft

This implies that, instead of using the ground truth token as the label for the draft model, we should
utilize the probability predictions from the LLM, in a manner similar to traditional knowledge dis-
tillation approaches (Kim & Rushl [2016). At each position ¢ of a training sequence, we sample
Yt+1.t+7 conditioning on y;.; from LLM and optimize the following empirical loss

min Laggn = min Y —10g parare(Gr-41:047[y1:0)- 2)
Ddraft Ddraft
Other speculative decoding methods, like Medusa2 (Cai et al.| [2024), also incorporate knowledge
distillation. In contrast, ReDrafter only backpropagates through the draft model, keeping the LLM
unchanged to ensure the decoding results remain consistent. Additionally, we apply distillation
locally by having the LLM predict the next 7" tokens using the ground truth tokens as context.

4 EXPERIMENT

We conduct experiments in experimental and production-ready environments, using Vicuna 7B, 13B,
33B models as base LLMs. First, using PyTorch, we compare ReDrafter with state-of-the-art spec-
ulative decoding methods on an Nvidia HI00 GPU in Section f.1] Next, we validate ReDrafter’s
performance gain in a production-ready environment on an inference server using TensorRT-LLM
on H100, leveraging tensor parallelism and continuous batching in Sectiond.2] Moreover, we inves-
tigate the on-device deployment of ReDrafter on Metal GPU using MLX, demonstrating its ability
to accelerate on-device inference with limited computational resources in Section 4.3

Additionally, we conduct ablation studies using PyTorch. In Section we explore ReDrafter’s
performance trade-offs when adjusting beam width and batch size. We evaluate the benefits of
dynamic tree attention in Section[d.4.2)and examine performance improvements through knowledge
distillation in Section d.4.3]
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Table 1: Speedup and Tokens/Step on MT-Bench and AlpacaEval.
MT-bench, temperature=0

Method Vicuna 7B Vicuna 13B Vicuna 33B
Speedup Tokens/Step Speedup Tokens/Step Speedup Tokens/Step
Medusa 2.39x 2.55 2.40x 2.61 2.51x 2.53
EAGLE 2.69x 3.96 2.74x 4.00 2.80x 3.71
ReDrafter 2.80x 4.20 2.80x 4.21 2.61x 3.87
MT-bench, temperature=1
Method Vicuna 7B Vicuna 13B Vicuna 33B
Speedup Tokens/Step Speedup Tokens/Step Speedup Tokens/Step
Medusa 2.33x 2.55 2.36x 2.61 2.52x 2.59
EAGLE 2.31x 3.51 2.27x 3.55 2.63x 3.48
ReDrafter 3.50x 5.31 3.51x 5.29 3.27x 4.69
AlpacaEval, temperature=0
Method Vicuna 7B Vicuna 13B Vicuna 33B
Speedup Tokens/Step Speedup Tokens/Step Speedup Tokens/Step
Medusa 2.19x 242 2.26x 2.45 2.31x 2.31
EAGLE 2.43x 3.61 2.49x 3.62 2.59x 3.29
ReDrafter 2.69x 4.06 2.78x 4.02 2.43x 3.61
AlpacaEval, temperature=1
Method Vicuna 7B Vicuna 13B Vicuna 33B
Speedup Tokens/Step Speedup Tokens/Step Speedup Tokens/Step
Medusa 2.26x 242 2.24x 2.50 2.34x 2.43
EAGLE 2.20x 3.29 2.16x 3.34 2.41x 3.16
ReDrafter 3.53x 5.31 3.50x 5.22 3.32x 4.71

4.1 PYTORCH BENCHMARK

We compare ReDrafter with Medusa (Cai et al., 2024) and EAGLE (L1 et al.,|2024a) using PyTorch.
For each method, we report speedups relative to auto-regressive decoding, as well as the average
number of tokens accepted by LLM per generation step (Tokens/Step) on MT-Bench (Zheng et al.,
2024) and Alpaca (Dubois et al., 2024). We conduct experiments at two different temperatures, 0
and 1. Temperature=0 represents the greedy approach (i.e., token matches), while temperature=1
corresponds to rejection sampling.

Table [T compares different methods. When temperature equals to 1, ReDrafter outperforms Medusa
and EAGLE across all LLMs and evaluation datasets, achieving both the highest speedup and highest
Tokens/Step. When temperature is 0, ReDrafter attains the highest speedup and Tokens/Step with
Vicuna 7B and 13B. For 33B, ReDrafter achieves the highest Tokens/Step, though its speedup is
slightly lower than EAGLE’s. Notably, ReDrafter achieves approximately 30% greater speedup
at temperature 1 compared to temperature 0. This improved performance at temperature 1 can be
attributed to the rejection sampling mechanism. At higher temperatures, the distributions of the
LLM and draft model become smoother, increasing the likelihood of draft tokens being accepted by
rejection sampling.

Figure [3] illustrates that ReDrafter consistently performs well across all model sizes and dataset
categories in both MT-Bench and Alpaca. There’s a gap between Tokens/Second and speedup,
which is anticipated and arises from the overhead associated with the speculative decoding process.

4.2 TENSORRT-LLM-BASED CUDA SERVING

To integrate our invention into production-ready environments, we developed a TensoRT-LLM im-
plementation to address high traffic and support long context. We demonstrate significantly im-
proved the CUDA serving performance using Nvidia HI00 GPUs.
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Figure 5: ReDrafter speedup and Tokens/Step on subcategories in MT-Bench and AlpacaEval.

Table 2: TensorRT-LLM experiments on MT-bench with continuous batching at varying request
rates, using fixed settings of TP=1, beam width=6, beam length=5, and temperature=1.

Request Rate Queries Per Second (QPS)

Model QPS=0.1 QPS=0.5 QPS=1.0
ms/token Speedup ms/token Speedup ms/token Speedup
V7B 241 2.09x 2.48 2.11x 276 1.57x
V 13B 3.41 2.31x 3.61 1.71x 5.43 1.22x
V 33B 5.93 2.56x 8.41 1.49x 20.04 1.37x

In production, we run an inference service across multiple GPUs to handle concurrent user re-
quests. To maintain service quality amid fluctuating traffic, latency and throughput are key metrics.
Additionally, users typically focus on the latency of the first and last generated tokens. Previous
works (Kwon et al.| 2023}, [Kumar et al., 2024} [Zhao et al, 2024) introduced techniques such as
continuous batching to meet these demands. Given that TensorRT-LLM incorporates these methods,
we use our own TensorRT-LLM implementation on 8 GPUs to empirically evaluate the performance
improvements achieved with ReDrafter, demonstrated in Tablem

We observe that ReDrafter significantly enhances the performance across all levels of Queries Per
Second (QPS). At QPS 0.1, the speedup ranges from an impressive 2.09x to 2.56x, comparing with
the highly optimized auto-regressive baseline in TensorRT-LLM. When QPS raise to 1, the speedup
dropped to 1.22x to 1.57x. This is expected, since higher QPS leads to a larger dynamic batch size,
pushing the system to a compute limit. We conduct an in-depth investigation of this phenomenon in
an experimental environment in Section {.4.1]

Another requirement for a production system is support for long context. To achieve this, serving
systems often shard the model across multiple GPUs, even when it could fit in a single GPU’s
DRAM, to free up memory for the context. In LLM serving, this sharding is typically done through
tensor parallelism (TP, Shoeybi et al.| (2019); Karakus et al.| (2021); (2021); |Gao et al.
(2022)). We empirically examine the overhead associated with TP. Table [3|presents TensorRT-LLM
Tokens Per Second and Speedup with varying TPs on MT-Bench. We disable continuous batching
and set the batch size to 1 to eliminate traffic variability.
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Table 3: TensorRT-LLM experiments on MT-bench using static batching with varying tensor paral-
lelism (TP). We fix batch size=1, beam width=6, beam length=5, and temperature=1.

# Tensor Parallelism (TP) of LLM
Model TP=1 TP=2 TP=4
TPS  Speedup TPS  Speedup TPS  Speedup

V7B  323.12 2.19x 373.27 1.82x  403.87 1.68x
V13B 198.64 2.30x  251.55 1.89x 312.79 1.84x
V33B 97.50 2.51x 137.47 2.15x 171.11 1.93x

Table 4: MLX experiments with varying beam width (BW). We fix temperature=0, batch size=1,
beam length=4. See for more experimental setup details.

. BW=1 BW=2 BW=3 BW=4
Chips Model
TPS  Speedup Tokens/Step TPS  Speedup Tokens/Step TPS  Speedup Tokens/Step TPS  Speedup Tokens/Step
MIMax V7B 2822 132 2.15 27.69 1.30x 2.38 27.54 1.29x 244 20.16  0.94x 2.44
VB 57.14 1.43x 2.15 60.24 1.51x 2.38 60.40  1.52x 2.44 30.05  0.75x 2.44
M2Ultra V I13B 41.94 1.87x 2.53 43.52 1.94x 2.82 4355  1.94x 2.82 21.83  0.97x 2.94
V33B 115 1.97x 2.17 1.22 2.08x 2.33 1.28 2.19x 247 133 2.28x 2.56

For TP=1, ReDrafter accelerates generation by 2.19x to 2.51x, while for TP=4, the speedup ranges
from 1.68x to 1.93x. The speedup is less pronounced with higher TPs, when LLM forward pass
becomes faster, while the RNN draft model is not fully optimized with TP. The overhead for the
draft model constitutes a larger proportion of the overall wall-time, leading to less salient speedup.

Additionally, the observed speedup is not as significant as in the PyTorch experiments (3.27x to
3.50x) in Section[d.T|using the same checkpoint. This discrepancy arises because applying TP to the
RNN draft model increases the number of all-gather operations when collecting intermediate tensors
from multiple GPUs during beam search, incurring higher overhead compared to PyTorch. Addi-
tionally, the AR implementation in TensorRT-LLM is highly optimized, which limits the potential
speedup achieved by ReDrafter.

4.3 MLX-BASED ON DEVICE INFERENCE

The increasing memory, bandwidth, and computational power of personal devices make it a promis-
ing avenue for deploying Al assistants locally. While it’s well-known that on-device GPUs have
less computational power and bandwidth compared to CUDA-based systems, the on-device sce-
nario is simpler, with a single user interacting with a locally deployed LLM. This setup provides an
opportunity to harness available computational resources for speculative decoding.

We benchmarked ReDrafter on Metal GPUs in Apple Silicon chips, specifically the M1 Max and
the more powerful M2 Ultra, using an MLX implementation. Table |4/ shows promising speedups
of 1.37x on M1 Max and higher speedup on M2 Ultra, demonstrating ReDrafter’s viability for
on-device use case. We omitted experiments for the 13B and 33B models on the M1 Max, as they
exceeded the device’s memory capacity. In the following, we briefly discuss the experimental results
related to beam width, while leaving the implementation details, supplementary results, and other
key insights for interested readers in Appendix [A.2]

Results in Table [4] show that while higher beam widths consistently yield more tokens per step
and reduce the number of LLM calls, the optimal speedup is achieved at lower beam widths. For
example, the best performance occurs at BW=1 on the M1 Max for the 7B model, and BW=3 on
the M2 Ultra for both the 7B and 13B models. As discussed in Section a wider beam requires
more floating-point operations (FLOPs) for the LLM to verify the draft tokens. While a powerful
GPU can process these FLOPs in parallel, once the computation cost reaches the hardware’s limit,
the performance gain from speculative decoding diminishes. This explains why the optimal speedup
for the M1 Max is achieved at BW=1, whereas for the M2 Ultra, it occurs at BW=3, highlighting
the greater computational power of M2 Ultra. However, performance declines at BW=4 for both
devices due to the increased cost of verifying draft tokens.
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Table 5: Compare per-request tokens/second (TPS), system tokens/second (TPS x BSZ) for Re-
Drafter Vicuna 7B with different beam widths (BW) and batch sizes (BSZ) on MT-Bench.

BSZ Bw=1 BW=2 BW=4 BW=8 BW=16 Bw=32 BW=64
TPS TPSxBSZ TPS TPSxBSZ TPS TPSxBSZ TPS TPSxBSZ TPS TPSxBSZ TPS TPSxBSZ TPS TPSxBSZ

1 62.55 62.55 73.32 73.32 80.47 80.47 88.31 88.31 100.16 100.16 104.51 104.51 110.64 110.64
2 58.56 117.13 70.25 140.49 75.77 151.54 86.64 173.29 99.45 198.90 107.52 215.04 111.42 222.83
4 57.51 230.03 67.42 269.67 74.77 299.09 81.95 327.81 97.13 388.51 99.11 396.46 8523 340.94
8 53.14 425.14 60.48 483.85 69.49 555.90 81.14 649.11 83.44 667.52 73.41 587.30 54.19 43348
10 53.61 536.14 58.79 587.85 66.29 662.88 71.55 715.48 73.57 735.68 65.31 653.10 44.23 442.25
20 45.16 903.20 49.05 980.95 57.35 1146.95 53.87 1077.45 48.76 975.14 35.66 713.17 23.28 465.70
40 32.69 1307.65  33.59 1343.41 36.68 1467.04 34.33 1373.08 26.43 1057.20 19.15 766.03 12.09 483.58

80 18.94 151540 2045 1636.36 19.65 1571.89  OOM OOM OOM OOM OOM OOM OOM OOM

We observed the TPS drops sharply from 43.55 to 1.33 when the model size increases from 13B to
33B, yet a significant speedup is still achieved. Our conjecture is that the 33B model encounters
a memory/IO bottleneck due to the increased model size, causing inference to be dominated by
memory swapping and data transfer, which significantly reduces TPS. With the investigation above,
we believe ReDrafter holds significant potential for further improvement as on-device hardware
continues to evolve. However, for larger models, compression techniques like quantization may be
necessary to achieve acceptable latency.

4.4  ABLATION STUDY IN PYTORCH

4.4.1 BEAM WIDTH AND BATCH SI1ZE

In ReDrafter, beam width and batch size are two critical factors for leveraging redundant computa-
tional resources. While increasing either may push the system to its computational limits, they im-
pact the system differently: a larger beam width raises the likelihood of generating draft sequences
that are more likely to be accepted, whereas a larger batch size improves overall system throughput.

We examine the trade-offs between beam width and batch size by conducting a grid search on both
parameters on an Nvidia HI00 GPU using MT-Bench, with Vicuna-7B as the LLM. We measured
tokens-per-second per request (TPS) to assess latency (the inverse of latency) and tokens-per-second
per request multiplied by batch size (TPS xBSZ) to evaluate overall system throughput. The results
are summarized in Table

When beam width is held constant and batch size increases, TPS initially remains stable but even-
tually declines, while TPS x BSZ continues to rise. This shows that increasing batch size improves
GPU utilization and enables more efficient batch processing, despite fewer resources being allocated
to each individual request. The TPS drop occurs earlier at higher beam widths due to the additional
computational cost. At a batch size of 80, out-of-memory (OOM) errors occur at larger beam widths,
indicating limited memory capacity.

The optimal configurations for per-request TPS and TPS x BSZ vary. The highest per-request TPS,
around 110, is achieved with a beam width of 64 and a batch size of 1 or 2, while the highest
TPS xBSZ, approximately 1636, is reached with a beam width of 2 and a batch size of 80. This
underscores the importance of tuning beam width and batch size based on specific use cases. For
scenarios prioritizing low latency, a larger beam width with a smaller batch size is recommended.
Conversely, if high throughput is the main goal, a larger batch size paired with a moderate beam
width is more effective.

4.4.2 DYNAMIC TREE ATTENTION

As outlined in Section [3.3] dynamic tree attention significantly reducing computational cost by de-
duplicating draft tokens. We study its effectiveness and demonstrate empirical results in Figure[6]

The computational gain from using train attention is determined by the compression ratio, which
is the number of tokens in the beam divided by the number of tokens in the packed beam. We
conducted an empirical study on MT-Bench, using Vicuna 7B as the LLM, with a fixed batch size
of 1, beam length of 5 and varying the beam width from 5 to 70. This results in token counts per
beam ranging from 25 to 350. We then measured the average number of tokens in the packed beam
after applying dynamic tree attention. As shown in Figure[6] (left), dynamic tree attention effectively
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reduces the number of draft tokens by 30% to 60%. It also demonstrates a consistent compression
ratio across different beam sizes, with the ratio remaining predictable even in extreme cases (99th
and 1st percentiles).

We demonstrate that dynamic tree attention can further enhance performance under computational
constraints. We fix beam length to 5, beam width to 45, and tune batch size to push the compute limit,
Figurel6](right) shows that when the batch size is below 4, computational resources are abundant, and
there is no significant difference in TPS or TPS xBSZ. However, when the batch size exceeds 4, we
encounter a computational bottleneck. In this scenario, ReDrafter with dynamic tree attention (RD
w TA) significantly outperforms ReDrafter without tree attention, delivering higher throughput and
more tokens per second. In practical deployment, both speed and throughput should be considered
to make balanced decisions.

4.4.3 KNOWLEDGE DISTILLATION

Table 6: Compare Speedup and Average Accepted Tokens Per Step (Tokens/Step) for ReDrafter
using Vicuna 7B with and w/o distillation. Batch size is 1.

Distillation BW=1 BW=2 BW=4 BW=16 BW=64
Speedup Tokens/Step Speedup Tokens/Step Speedup Tokens/Step Speedup Tokens/Step Speedup Tokens/Step

N 1.47 221 1.52 2.31 1.54 2.48 1.80 2.87 1.99 3.30

Y 1.54 2.35 1.60 2.50 1.72 2.73 1.92 3.09 2.18 3.58

As discussed in Sectiorn[3.3] a more effective objective for training draft models is to align with LLM
predictions through knowledge distillation, rather than simply fitting ground-truth tokens. To test
this hypothesis, we trained one draft model using a distilled dataset and another using ground-truth
tokens, both based on Vicuna 7B. The distilled dataset was created by having the LLM generates
5 future tokens at each position of the ground-truth response using a temperature of 0. Table []
shows that distillation lead to an approximate 10% increase in the speedup and the average accepted
tokens per step. This demonstrates that training with distillation offers a tangible performance boost,
improving both generation efficiency and predictive accuracy.

5 FUTURE WORK

ReDrafter sets the stage for pushing the speedup limits of speculative decoding across various hard-
ware and implementations through its novel design, utilizing an RNN draft model along with tailored
training and inference algorithms. While achieving state-of-the-art performance, we identify areas
for further improvement, such as enhancing draft model training through more advanced distilla-
tion techniques, and optimizing implementation to ensure consistent performance gains and less
overhead. We leave those to future work.
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A APPENDIX

A.1 GPU-FRIENDLY DYNAMIC TREE ATTENTION IMPLEMENTATION

In Listing [I] we demonstrate the GPU-friendly implementation of the function dedup_prefix
from Section [3.3] with five lines of code. We assume batch size equals to 1 in this example for
brevity. Extending to batch size greater than 1 is straight-forward by pre-pending an extra batch size
dimension in tensors.

The function processes the initial tensor beam, generating the prefix_tree tensor as its output. In
this tensor, prefix_tree[i] [j]=k indicates that the candidate at the smallest index k& shares an
identical prefix beam[i] [:j+1]. For instance, prefix_tree[2] [1]=0 signifies a shared prefix
“morning sipping” between beam [0] and beam([2] from the example in Figure[d] It is possible to
condense tokens where prefix_tree[i] [J]<4i.

Listing 1: An example inplementation for dedup_prefix.

def dedup_prefix (beam) :
"""For each prefix in each candidate, find the smallest candidate
index that shares the same prefix.

Args:
- beam: (beam_width, beam_length) input beam.
Returns:

- prefix_tree: [beam_width, beam_length] prefix_tree[i] []j]=k
indicates that candidate sequences i and k in share the same
prefix, or, in other words, beam[i][:]j+1]== beam[k][:]j+1]

Examples:

beam = tensor([[91, 92, 93, 95],
[91, 92, 94, 96],
[91, 92, 93, 9711)
prefix_tree = tensor([[0, 0O, 0, 07,
o, o, 1, 11,
(0, 0, 0, 271
beam_length = beam.shape[l]
prefix_target = torch.arange(l, beam_ length+1l)
# Build a square boolean matrix matches.
# If matches[i][]J][k]==True, then the k-th token of the i-th sequence
is the same as the k—-th token in the j-th sequence.
# So, i and j are in range [0,beam_width), k in [0,beam_length).
matches = beam[:, :, None]==beam[:, None, :]
seqg_matches = (torch.cumsum(matches, dim=2)
== prefix_target [None, None, :])
# The previous candidate with smallest index that shares the same
prefix.
prefix_tree = torch.argmax (seq _matches, dim=2)
return prefix_tree

A.2 BENCHMARK RECURRENT DRAFTING, A FAST SPECULATIVE DECODING METHOD, IN
MLX

A.2.1 OPTIMAL SPEEDUP AND GPU POTENTIAL

To gain detailed insights into the behavior of Recurrent Drafting on Apple Silicon chips, we need to
analyze the speedup in relation to two key inference-time parameters: beam width and beam length
in the drafter beam search.

The parameter beam width refers to the number of draft token sequences. A larger beam width
increases the likelihood that the sequence with the longest acceptable prefix is included in the beam.
This allows the LLM to accept more tokens in each decoding step, reducing the overall number of
decoding steps required—or, equivalently, decreasing the number of calls to the LLM.
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However, a wider beam requires more FLOPs for the LLM to verify the draft tokens. While a
powerful GPU can process these FLOPs in parallel, minimizing the increase in wall time, it also
implies higher power consumption and computational cost.

The parameter beam length refers to the number of steps in the beam search algorithm, the number
of calls to the RNN draft model, or equivalently, the length of the draft token sequences in the
beam. A longer beam increases the length of the prefix that can be accepted, reducing the number
of decoding steps or calls to the LLM. However, this length is constrained by the token sequence
length used during the training of the RNN draft model.

Figure [7illustrates the speedup in relation to beam width and beam length on the M1 Max and M2
Ultra. We can observe that optimal speedup (colored in yellow) is achieved when the beam length
is close to the length of the training sequences used for the RNN draft model. This maximizes the
predictive power of the RNN. However, the optimal speedup is not necessarily achieved at the exact
training length of 5; it can occur at a slightly shorter length, such as 4, since the RNN may not
always accurately predict the 5th token.

We also observe that the optimal speedup is achieved with narrower beams—1 for the M1 Max and
3 for the M2 Ultra. In contrast, our experiments on A100 and H100 GPUs using PyTorch show that
the optimal speedup is achieved with beam widths of 50 or more. This discrepancy is due to the
inherent performance gap between server-grade GPUs and mobile GPUs, which is expected. It also
explains why the M2 Ultra can handle a wider optimal beam of 3, compared to the M1 Max’s 1, as
the M2 Ultra is equipped with a more powerful GPU.

floatl6 Temperature=0 float16 Temperature=0
beam shape=(1,5) 29.307 tokens/sec speedup=1.373 beam shape=(3,4) 60.397 tokens/sec speedup=1.516

speedup

Figure 7: Tokens Per Second and Speedup of ReDrafter with Vicuna 7B on M1 Max and M2 Ultra.

A.2.2 PERFORMANCE TUNING: MLX AND APPLE SILICON

Before starting the MLX implementation, we had experience with PyTorch and TensorRT-LLM.
However, working on our first MLX project revealed that many lessons we learned from program-
ming CUDA no longer apply to MLX and Apple Silicon. Below, we share some of the key lessons
learned from this journey.

Use Native Dtype and Low-Bits

Our benchmark code explores various factors, including data types (dtype). From our exploration,
running autoregression and recurrent drafting in floatl6 is consistently faster than in bfloat1é6.
We also observed that both f1oat16 and bfloat16 outperform float32, as they use less memory
access bandwidth. Similarly, as reported by other studies, 4-bit quantization significantly accelerates
MLX programs compared to £1loat16.

MLX Does Lazy Evaluation

While PyTorch programs execute eagerly, MLX programs run lazily. In MLX, the Python code
may appear to be executing tensor operations sequentially, but these operations might not actually
run until the final result is printed. This lazy execution extends beyond numerical operations; even
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loading model parameters from the filesystem into tensors in memory is done lazily. To ensure that a
model is fully loaded before benchmarking the inference algorithm, you must call m1x.core.eval
(model.parameters ()) before invoking the model.

Don’t Break the JIT Compilation

Lazy evaluation in MLX allows it to silently trace tensor operation calls and compile these traces
just-in-time into Metal GPU kernels for improved runtime performance. While this provides conve-
nience, it can also influence how we program. For example, during a comparison of the execution
time between MLX functions and their PyTorch counterparts, we noticed that one MLX function
consumed a disproportionately large fraction of the total running time, whereas its PyTorch equiv-
alent did not. We discovered that this function involved numerous calls to array.item (). MLX
had to compile the Python code before each of these calls, causing the code to be split into many
segments, which significantly slowed down the execution time.

Measure Performance in All Levels of Details

The Instruments app, included with Xcode, provides visualization of CPU threads and Metal GPU
operations, similar to NVIDIA Nsight. This tool helps developers gain a general understanding of
potential bottlenecks in their code. to capture detailed performance metrics, we developed custom
utilities to measure and log the execution time of individual functions.
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