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ABSTRACT

Existing Graph Transformer models primarily focus on leveraging atomic and
chemical bond properties along with basic geometric structures to learn repre-
sentations of fundamental elements in molecular graphs, such as nodes and edges.
However, higher-order structures like bond angles and torsion angles, which sig-
nificantly influence key molecular properties, have not received sufficient atten-
tion. This oversight leads to inadequate geometric conformation accuracy and
difficulties in precise local chirality determination, thereby limiting model per-
formance in molecular property prediction tasks. To address this issue, we pro-
pose the Angle Graph Transformer (AGT). AGT directly models directed bond
angles and torsion angles, introducing higher-order structural representations to
molecular graph learning for the first time. This approach enables AGT to de-
termine local chirality within molecular representations and directly predict tor-
sion angles. We introduce a novel Directed Cycle Angle Loss, allowing AGT
to predict bond angles and torsion angles from low-precision molecular confor-
mations. These properties, along with interatomic distances, are then applied to
downstream molecular property prediction tasks using a pre-trained AGT with
Hierarchical Virtual Nodes. Our model achieves new state-of-the-art (SOTA) re-
sults on the PCQM4Mv2 and OC20 IS2RE datasets. Through transfer learning,
AGT also demonstrates competitive performance on molecular property predic-
tion benchmarks including QM9, MOLPCBA, LIT-PCBA, and MoleculeNet. Fur-
ther ablation studies reveal that the conformations generated by AGT are closest to
conformations generated by Density Functional Theory (DFT) among the existing
methods, due to the constraints imposed by the bond angles and torsion angles.

1 INTRODUCTION

Transformer (Vaswani, 2017) models have expanded from natural language processing to various
domains (Dosovitskiy, 2020; |(Child et al. [2019). Due to their ability to capture long-range depen-
dencies between nodes, Transformers have been widely applied to graph data. Graph Transformers
(GTs) (Ying et al., 2021;|Hussain et al., 2022; [Feng et al., 2022; Zhou et al.,|2023)) have demonstrated
potential surpassing message-passing neural networks on diverse graph datasets, including superpix-
els, citation networks, and molecular graphs. Building upon this foundation, the Alphafold (Jumper
et al., |2021) series of works emerged, achieving remarkable results in protein structure prediction
and propelling life science research forward in a leap-like manner.

Most Graph Transformers primarily use nodes as tokens, employing global attention to facilitate
information exchange across the entire graph. In the domain of molecular graph data, 3D struc-
tural information of molecules is often closely related to molecular properties and is thus typically
encoded in the model and trained as a key attribute (Zhou et al.l 2023} [Stirk et al. [2022)). The
EGT (Hussain et al., [2022) introduces edge embeddings as tokens, enabling new pairwise infor-
mation to be updated through dedicated channels in consecutive layers. Recently, researchers have
noted the performance improvements achieved by the triangle inequality constrained interatomic
distance prediction method in AlphaFold (Jumper et al.,2021). Consequently, they proposed Uni-
Mol+ (Lu et al.| [2023)) and TGT (Hussain et al.l [2024), both utilizing axial attention to satisfy the
communication pattern where three pairwise relationships in a triangle are interconnected. These
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Figure 1: The ability to identify local chirality. The first row depicts DFT conformations. The second
and third rows show the corresponding molecular conformations from TGT distance predictor and
AGT conformations predictor. AGT can accurately generate molecules with local chirality identical
to the target conformation, whereas TGT conformations, relying solely on distance matrices, exhibit
deviations. Red arrows indicate atoms representing the centers of local chirality in the molecules.
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method overcomes the information exchange bottleneck, allowing edge embeddings to better adhere
to geometric constraints when predicting distances.

Although this triangular inequality constraint can optimize the geometric spatial structure of pre-
dicted conformations, two significant issues remain unresolved. Firstly, as described in AlphaFold
3 (Abramson et al.l [2024), merely predicting interatomic distances is insufficient to determine the
local chirality of geometric conformations. Local chirality refers to the inability of a specific part
or group within a molecule to superimpose on its mirror image through central symmetry rotation.
Local chirality is crucial for the functionality of many biomolecules, such as the active sites of
enzymes. However, Molecules with different local chirality may yield similar distance matrices,
especially in small molecule conformations, and may even produce identical distance matrices. This
limitation makes it impossible to determine the local chirality of generated conformations, increas-
ing the ambiguity in molecular representation. Secondly, conformations generated solely based on
distance matrices tend to exhibit instability in predicting torsion angles. Existing GT architectures
do not treat the torsion angle as a unified higher-order graph substructure, resulting in each torsion
angle being constructed from three separate pairwise embeddings. Consequently, small errors in
each distance prediction can accumulate multiplicatively in the torsion angle, leading to significant
deviations in the generated conformation’s torsion angles. This can cause changes in the overall
molecular conformation, affecting the prediction of molecular function.

To address these two major challenges, we propose the Angle Graph Transformer (AGT), a model
that directly models higher-order graph substructure representations such as bond angles and torsion
angles. AGT treats bond angles and torsion angles as individual tokens in the self-attention mech-
anism for direct communication, rather than aggregating node and edge representations involved in
angles as the final angle representation. This approach of directly interacting at higher-order sub-
structures enables effective global information utilization for predicting torsion angles, overcoming
the bottleneck of local information exchange in graph structures and better learning geometric con-
straints of molecular conformations. To address the inability of existing models to distinguish local
molecular chirality, AGT predicts all angles in the range of (0,27), giving the predicted angles di-
rectionality in three-dimensional space. This angular information allows the model to distinguish
arbitrary local chirality information in molecules. Additionally, we introduce a hierarchical virtual
node aggregation architecture, enabling AGT to directly aggregate information from graph substruc-
tures of different orders for prediction.

Based on these contributions, our proposed AGT model surpasses the TGT model on quantum chem-
istry datasets including PCQM4Mv2, OC20 IS2RE, and QM9, achieving new state-of-the-art re-
sults. We also demonstrate effectiveness of AGT in transfer learning, achieving new SOTA results
on molecular property prediction datasets MOLPCBA, MOLHIYV, and the drug discovery dataset
LIT-PCBA benchmark. This indicates that the geometric features extracted by our trained confor-
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mations predictor can be applied to new downstream molecular graph tasks. Results from ablation
studies indicate that AGT-generated conformations have discriminative ability in local chirality and
are more accurate.

2 RELATED WORK

2.1 ANGLE PREDICTION IN MOLECULAR CONFORMATION OPTIMIZATION

The incorporation of angular constraints, including bond angles and torsion angles, in molecular
conformations has been progressively applied in recent works. GEOMOL (Ganea et al., 2021) was
among the earlier methods to introduce torsion angle constraints in three-dimensional conformation
generation. TorsionNet (Rai et al.|[2022)) employed deep neural networks to predict torsional energy
distributions of small molecules with quantum mechanical-level accuracy. Subsequently, Torsional
diffusion (Jing et al., [2022) proposed a diffusion model framework operating in the torsion angle
space. DiffPack (Zhang et al., 2024)) learned the joint distribution of side-chain torsion angles by
diffusing and denoising in the protein side-chain torsion angle space, while Tora3D (Zhang et al.,
2023)) predicted a set of torsion angles for rotatable bonds using an interpretable autoregressive
method and reconstructed 3D conformations using energy guidance. AUTODIFF (Li et al., [2024al)
designed a molecular assembly strategy called conformational motifs to mitigate issues with skewed
bond or torsion angles. Our method draws inspiration from the aforementioned works, incorporating
angular constraints as a crucial component in rationalizing conformation generation. Notably, while
existing works have utilized angular information, they have not addressed the ability to discriminate
local chirality. AGT is the first to achieve this using angular information.

2.2 PREDICTIVE MOLECULAR STRUCTURAL PRE-TRAINING

AlphaFold (Jumper et al,, 2021 employs a Transformer architecture for predictive structural pre-
training on vast protein datasets. In the analogous field of small molecule structural pre-training,
models based on Graph Transformers (GTs) are at the forefront of research. Previous works such
as GraphTrans (Wu et al., 2021), GSA (Rashedi et al.l 2009), GROVER (Rong et al., [2020), and
GPS (Rampasek et al.} 2022)) utilized hybrid approaches combining Transformers and Graph Neural
Networks (GNNs) to enhance model expressiveness. In contrast, pure GTs instead directly inputting
nodes or substructures as tokens into the Transformer for training. The two most representative ar-
chitectures in this category are exemplified by Graphormer (Ying et al., 2021 [Shi et al.| 2022)) and
EGT (Hussain et al [2022)). Graphormer-type models primarily use atoms as tokens, implicitly
encoding chemical bond and spatial structure information as additional atom embeddings through
positional encoding and attention bias. Notable works in this category include Unimol (Zhou et al.|
2023), GEM-2 (Liu et al., [2022a), and Transformer-M (Luo et al.,[2022). The other category, rep-
resented by the EGT backbone model, is characterized by direct modeling of edges. These models
treat edge embeddings as Transformer tokens and employ global attention for information exchange
between node and edge tokens. All three aforementioned approaches have seen the emergence of
works applying triangular inequality attention, such as GPS++ (Masters et al., 2022), Unimol+ (Lu
et al.|2023)), and TGT (Hussain et al.,[2024). This distance constraint can be equivalently regarded
as the interaction of specific axial edge markers in attention. While these methods have achieved ex-
cellent performance, they remain limited to edges, the simplest second-order substructure in graphs
(composed of two nodes and the connection between them). Naturally, we consider constructing to-
kens on higher-order substructures (such as third-order bond angles and fourth-order torsion angles)
and using attention mechanisms for communication.

3 METHOD

AGT initially obtains low-precision 3D conformations using cost-effective methods, i.e., RDKit.
Subsequently, it employs a conformer predictor to learn target conformations from these low-
precision structures such as high-precision equilibrium conformations optimized through DFT. Fi-
nally, the learned conformations are input into the task predictor to forecast molecular properties.
The overall training process closely resembles that of TGT. While TGT models direct communi-
cation between two pairwise elements through triangular inequality attention mechanisms, it lacks
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(a) AGT Interaction Module (b) AGT Network Architecture

Figure 2: (a) AGT Interaction Module. Index Match denotes the selection of corresponding edge
embeddings based on the indices of nodes where angle substructures are located. Expand refers to
the dimension augmentation to accommodate torsion angle indices. (b) AGT Network Architecture.
Angle Attention take angle substructures as tokens and uses multi-head self-attention mechanism to
update the representation.

modeling of higher-order substructures and cannot accurately discriminate local chirality and angles
in the geometric conformation space. AGT addresses these limitations of TGT’s edge-only mod-
eling by introducing modeling of higher-order substructures, specifically bond angles and torsion
angles. This enhancement enables AGT to achieve greater expressive power.

3.1 AGT ARCHITECTURE

The AGT model can be denoted as (y, D, B, T) = f(X, E, D, B,T;#). The AGT model utilizes
atomic features (X € R™* d= where n is the number of atoms and d,, is the atom feature dimension),
edge features (E € R™*"*d where d, is the edge feature dimension), and 3D conformational
information including the complete distance matrix (D € R™*™), all bond angles (B € R™, n,
is the number of bond angles), and torsion angles (T" € R™*, n; is the number of torsion angles)
within the molecule to predict molecular properties y and update 3D conformational information
using learnable parameters 6. The model has L blocks, with (1), e, () and ¢() representing the
I-th block’s outputs.

The Initialization of Substructure Atom representations are composed of the atom’s inherent prop-
erties, while edge representations are formed by the chemical bond properties, the types of atoms at
both ends, and the bond length. We opted against modeling substructures using arbitrary combina-
tions of three and four nodes for two reasons. Firstly, unconstrained interactions among triplets and
quadruplets would escalate the computational complexity to O(N?), which is prohibitive for any
graph. Secondly, randomly modeled substructures often lack physical significance. Therefore, we
adopted an approach that considers only substructures with actual significance in AGT. We identi-
fied nodes of triplets and quadruplets connected by consecutive chemical bonds, which correspond
to bond angles and torsion angles as higher-order substructures. This approach ensures that sub-
structure features are closely tied to chemical bonds, significantly influencing molecular properties.
Simultaneously, the number of higher-order substructures obtained is substantially smaller than the
total number of triplets and quadruplets in the complete graph. Consequently, the additional com-
putational complexity introduced in the model generally does not exceed O(N?).

AGT Interaction Module We have redesigned the information interaction mechanism between sub-
structures of different orders, resulting in structural representations that satisfy angular constraints.
First, we compute the axial attention for each of the two edges independently. Subsequently, the
bond angle embedding is obtained by using the indices of the two edges forming the angle to locate
the corresponding positions and summing the embeddings. Similarly, for dihedral angle updates,
we use the indices of three consecutive edges that form the torsion angle to locate and sum the
corresponding torsion angle embeddings. This approach allows for a hierarchical update of repre-
sentations of different structural levels in the graph, progressing from atoms to chemical bonds, then
to bond angles, and finally to torsion angles. This hierarchical method enables better integration of
substructure features that carry chemical significance. The updates of atom and edge representations
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in the AGT Module are as follows:
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The representation of bond angles and torsion angles is achieved by adding the corresponding edge
representations to their respective indices:
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where Wg ) e Rdoxdn , W}l’h) € R%*dn_Both bond angles and torsion angles utilize the edge
representations from the current layer for aggregation, allowing for an efficient use of atomic and
edge representations from the previous layer. The method of edge representation aggregation can
lead to varying effects, the results of which are presented in the ablation studies. Following the
AGT Module, different order substructures are updated using distinct mechanisms. Similar to TGT,
atomic representations are updated using an FFN layer, while edge representations are updated
through triplet interaction. For bond angles and torsion angles, we employ self-attention layers
to update them independently. This approach aims to facilitate direct information exchange among
higher-order substructures across the entire molecular graph without relying on atomic or edge rep-
resentations. These updates can be formulated as follows:
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Directed Cycle Angle Loss (DCA loss) AGT extends molecular geometry prediction from full dis-
tance matrices to include both bond angles and torsion angles, relying on these angles to determine
local molecular chirality. By definition, when local molecular chirality changes, at least one torsion
angle or bond angle will change, given a fixed direction (e.g., counterclockwise). Sometimes, this
change takes a symmetric form from o to 2 — 0. Methods that only predict interatomic distances
cannot uniquely determine bond and torsion angles in the counterclockwise direction, as both o and
27 — o can satisfy the same distance matrix in 3D space. Previous works on predicting angles often
neglected the direction of angles, simply constraining angles to the range of O to 7. This limitation
results in learned representations that fail to fully capture chiral variations. Another challenge lies
in the cyclic nature of angle prediction, which differs from distance prediction. To address these,
AGT employs a directed circular binning loss to compute angle loss, more accurately reflecting the
proximity between predicted and true values. The specific loss can be expressed as:

N N
Lpca = min ( - Z qilog(pi), — Z qi10g(P(i+1) mod N))~ (6)
i=1 =1

Where ¢; is ground truth angle distribution, p; is the predicted angle distribution and /N is the number
of bins. We extends the angle range to (0, 27) and designates the counterclockwise direction as
primary, enabling representation of all local chirality change scenarios. When the prediction is
close to 27 while the true value is near O (or vice versa), the shifted distribution will yield a small
loss, correctly reflecting the proximity of these two angles. This improvement ensures that the loss
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Figure 3: The three stages of AGT training.

function behaves more reasonably when dealing with angles near the boundaries, avoiding excessive
penalization of angle values that are actually very close. It also naturally handles cases that cross
the 0/27 boundary.

Hierarchical Virtual Node Recent studies (Li et al| [2024b; | Xing et al.) have demonstrated that
employing virtual nodes in graph data helps mitigate information bottlenecks and over-globalizating
issues. Previous research on molecular property prediction was either an aggregated representation
of all atoms or the use of atomic level virtual nodes as the final output. However, merging atomic
representations often leads to information compression, potentially resulting in the loss of critical
structural details and overlooking the contributions of specific structural elements to molecular prop-
erties. Using atomic level virtual nodes solely may inadequately represent the complex interactions
between atoms in three-dimensional space. To address these limitations and directly capture the
impact of substructures, we propose an extended virtual node method in AGT called hierarchical
virtual nodes. For each type of substructure, AGT constructs a virtual node to interact with the same
type of substructure tokens. Subsequently, for property prediction tasks, we construct a molecule-
level virtual node connected to the four substructure virtual nodes, serving as the final output for
prediction. We employ hierarchical virtual nodes only during the pre-training phase.

3.2 MODEL TRAINING

training procedure of AGT includes three stages for molecular property prediction task. First, in the
conformation prediction stage, a conformation predictor is trained to predict the accurate molecular
conformations based on low-precision 3D molecular structures. Second, during the pre-training
stage, a task predictor is employed to predicts molecular properties from the pre-training dataset.
This predictor also receives noisy conformational structures as input and denoise conformational
structures. Finally, in the fine-tuning stage, the frozen, pre-trained conformation predictor and task
predictor are fine-tuned on downstream datasets.

Conformer Prediction Stage We train the AGT conformation predictor to predict all pairwise in-
teratomic distances, bond angles, and torsion angles within a molecule. The conformation predictor
takes a low-precision 3D conformation as input (typically an RDKit conformation) and outputs all
pairwise interatomic distances, bond angles, and torsion angles. Angles are invariant to translation
and rotation, and their values have a fixed range. Inspired by TGT, we predict binned angles in-
stead of continuous values, as torsion angle structures are typically less stable than chemical bonds
and more susceptible to rapid changes due to molecular energy fluctuations. The AGT employs
cross-entropy loss for pairwise atomic distances and the Directed Cycle Angle Loss for angles.

Pre-training Stage In the pre-training phase, AGT train the AGT task predictor on noisy ground
truth 3D conformations. This approach ensures that the task predictor is robust to noise in both input
distances and angles, enabling it to adapt to approximate conformations output by the conformation
predictor, which still contain noise and errors. During pre-training, we maintain predictions for
pairwise interatomic distances, bond angles, and torsion angles. This auxiliary task encourages
different order substructure representations to denoise the 3D structure, optimizing various order
substructure representations through self-supervised signals from the molecular structure itself. We
combine distance prediction loss and angle prediction loss as secondary objectives with the primary



Under review as a conference paper at ICLR 2025

Table 1: Results on PCQM4MV?2 valid set.

Model | #param. | #layers | MAE (meV)]
MLP-Fingerprint (Hu et al., 2022) 16.1M - 173.5
GCN (Kipf & Welling, 2016) 2.0M - 137.9
GIN (Xu et al.,[2018) 3.8M - 119.5
GINEV2 (Brossard et al.} [2020) 13.2M - 116.7
GCN-VN (Kipf & Welling} 20165 Gilmer et al.; 2017) 4.9M - 115.3
GIN-VN (Xu et al., 2018}, |Gilmer et al.,[2017) 6.7M - 108.3
DeeperGCN-VN (Li et al.,[2020) 25.5M 12 102.1
TokenGT (Kim et al.,[2022) 48.5M 12 91.0
EGT (Hussain et al.,[2022) 89.3M 18 86.9
GRPE (Park et al.) 46.2M 18 86.7
Graphormer (Ying et al.| 2021} |Shi et al.| [2022) 47.1M 12 86.4
GraphGPS (Liu et al.) 13.8M 16 85.2
GEM-2 (Liu et al.}|2022al) 32.1M 12 79.3
GPS++ (Masters et al.,|2022) 44.3M 16 78.1
Transformer-M (Luo et al.,|2022) 6OM 18 77.2
Uni-Mol+ (Lu et al.,[2023) 7™M 18 69.3
TGT (Hussain et al., 2024) 203M 24 67.1
127M 12 69.1
AGT 241M 2 66.2

tasks from the pre-training dataset in a multi-task learning framework to jointly train AGT’s task
predictor. Furthermore, AGT employs hierarchical substructure virtual nodes for joint prediction
in molecular property prediction, facilitating the association between substructures and molecular
properties.

Fine-tune Stage In the fine-tuning phase, AGT employs a frozen, pre-trained conformation predic-
tor to generate DFT conformations from RDKit conformations, thereby obtaining high-precision 3D
structural features of molecules. During this process, the conformation predictor operates in stochas-
tic mode with active dropout (Hussain et al.,|2024). Subsequently, the predicted bond angles, torsion
angles, and distances serve as input to the task predictor. The fine-tuning process combines the pri-
mary objective of the downstream dataset’s task with auxiliary optimization functions for distance
and angle. We utilize the model-generated atomic distance matrix, bond angles, and torsion angles
as input, requiring the model to predict the same substructures generated by the DFT conformation,
as well as the target objectives of the current dataset.

4 EXPERIMENTS

The experimental section aims to validate the effectiveness of our proposed model and methods in
addressing existing challenges. We first demonstrate the performance and scalability of AGT on
large-scale quantum chemistry datasets, PCQM4Mv2 (Hu et al., 2022) and OC20 (Chanussot et al.},
2021). We then evaluate the transfer learning capabilities of the AGT model in both the conformer
prediction and pre-training stages. We also conduct ablation studies on several key components of
AGT and analyze different approaches to AGT’s aggregated angle representation. Finally, quanti-
tative analysis and visualization of conformer accuracy demonstrate that our proposed AGT model,
compared to TGT, can distinguish chirality and more accurately predict bond angles and torsion an-
gles, generating conformers that more closely resemble high-precision DFT conformers. The model
is implemented using the PyTorch (Paszke et al.,|2019) library. We perform mixed-precision train-
ing on 2 nodes, each equipped with 8 NVIDIA Tesla A100 GPUs (80GB RAM/GPU) and 16-core
2.6GHz Intel Xeon CPUs (320GB RAM per node).

4.1 LARGE-SCALE QUANTUM CHEMICAL PREDICTION

PCQM4Mv2 PCQM4Mv2, part of the OGB-LSC graph property prediction challenge, contains
over 3.7 million molecules. The dataset task is to predict the HOMO-LUMO gap. The performance
of the distance predictor is tuned on a random 5% subset of the training data, which we refer to as
validation-3d. Training the AGT model requires approximately 38 A100 GPU days, a 20% increase
compared to the 32 A100 GPU days for TGT training, but still less than the 40 A100 GPU days
required for UniMol+. Experimental results, expressed as Mean Absolute Error (MAE) in meV, are
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Table 2: Performance on OC20 IS2RE validation set.

Energy MAE (meV)| EwT (%)1
Model 1D 00D 00D OO0D AVG. D 00D OO0D 00D AVG.
Ads. Cat. Both Ads. Cat. Both
SchNet (Schiitt et al.||2017) 646.5 707.4 647.5 662.6 666.0 2.96 222 3.03 2.38 2.65

DimeNet++ (Gasteiger et al.|[2020) | 563.6  712.7 561.2 649.2 621.7 425 2.48 4.40 2.56 3.42
GemNet-T (Gasteiger et al.| |2021) 556.1 734.2 565.9 696.4  638.2 451 224 4.37 2.38 3.38

SphereNet (Liu et al.| 2022b) 563.2 668.2 559.0 619.0 602.4 4.56 2.70 4.59 2.70 3.64
Graphormer-3D (Shi et al.}2022) 4329 585.0 444.1 529.9 498.0 - - - -

GNS (Godwin et al.||b) 540.0 650.0 550.0 590.0 582.5 - - - -

GNS+NN (Godwin et al.} b) 470.0 510.0 480.0 460.0 480.0 - - - - -
EquiFormer (Liao & Smidt) 4222 542.0 423.1 4754 465.7 7.23 3.77 7.13 4.10 5.56
EquiFormer+NN (Liao & Smidt) 415.6 497.6 416.5 4344 441.0 7.47 4.64 7.19 4.84 6.04
DRFormer (Wang et al.}[2023) 418.7 486.3 432.1 4332 442.5 8.39 5.42 8.12 5.44 6.84
Uni-Mol+ (Lu et al.} 2023) 379.5 452.6 401.1 402.1 408.8 11.1 6.71 9.90 6.68 8.61
TGT (Hussain et al.|[2024) 381.3 4454 391.7 393.6 403.0 11.1 6.87 10.47 6.80 8.82
AGT ‘ 377.2 441.3 384.6 3949 3995 ‘ 11.2 6.95 1126  6.79 8.99

Table 3: Results (MAE({)) on the QM9 dataset.

Method | n a € €r A, ZPVE C,

GraphM VP (Liu et al.) 0.031 0.070 28.5 263 469 1.63 0.033
GEM (Fang et al.,[2022) 0.034 0.081 33.8 277 521 1.73 0.035
3D Infomax (Stark et al.,|2022) 0.034 0.075 29.8 257 488 1.67 0.033
3D-MGP (Jiao et al.,[2023) 0.020 0.057 21.3 182 37.1 1.38 0.026
Schnet (Schiitt et al., )2017) 0.033 0.235 41.0 340 63.0 1.7 0.033
PhysNet (Unke & Meuwlyl [2019) 0.053 0.062 329 247 425 1.39 0.028
Cormorant (Anderson et al.,[2019) 0.038 0.085 340 38.0 61.0 2.03 0.026
DimeNet++ (Gasteiger et al., [2020) 0.030 0.044 246 195 326 1.21 0.023
PaiNN (Schiitt et al.,|2021) 0.012 0.045 27.6 204 457 1.28 0.024
EGNN (Satorras et al.,[2021) 0.029 0.071 29.0 250 48.0 1.55 0.031
NoisyNode (Godwin et al. |a) 0.025 0.052 204 18.6 28.6 1.16 0.025
SphereNet (Liu et al.;[2022b) 0.025 0.053 22.8 189 31.1 1.12 0.024
SEGNN (Brandstetter et al.) 0.023 0.060 240 21.0 420 1.62 0.031
EQGAT (Le et al.[[2022) 0.011 0.053 20.0 160 320 2.00 0.024
SE(3)-T (Fuchs et al.,[2020) 0.051 0.142 350 330 53.0 - 0.052
TorchMD-Net (Tholke & De Fabritiis,2022) | 0.011 0.059 203 17.5 36.1 1.84 0.026
Equiformer (Liao & Smidt) 0.011 0.046 150 140 30.0 1.26 0.023
Transformer-M (Luo et al.,[2022) 0.037 0.041 175 162 274 1.18 0.022
TGT (Hussain et al.,[2024) 0.025 0.040 9.9 97 174 1.18 0.020
AGT \ 0.019 0.037 8.8 91 164 1.14  0.020

presented in Table 1. We observe that the 24-layer AGT model achieves the best performance on
the PCQM4Myv?2 dataset, surpassing the previous state-of-the-art TGT model by 0.9 meV. Notably,
local chirality primarily affects molecular spatial configuration rather than electronic structure, so the
prediction target (HOMO-LUMO gap) in PCQM4Mv2 has limited correlation with molecular local
chirality. The enhanced local chirality expression capability of the AGT model compared to the TGT
model provides minimal assistance in this task. Nevertheless, AGT still outperforms TGT on this
dataset through more accurate prediction of torsion angles. The 24-layer AGT currently ranks first
on the PCQM4Myv?2 leaderboard, surpassing all baseline models, demonstrating the effectiveness of
our proposed model. The 12-layer AGT model also exhibits strong performance, second only to the
24-layer TGT and AGT. The gap between the 12-layer and 24-layer AGT suggests that effectively
encoding higher-order substructures on graphs requires deeper model architectures and larger model
capacities.

Open Catalyst 2020 IS2RE The Open Catalyst 2020 Challenge aims to predict the adsorption
energy of molecules on catalyst surfaces using machine learning. We conduct experiments on the
IS2RE (Initial Structure to Relaxed Energy) task. The IS2RE dataset provides initial DFT structures
of crystals and adsorbates, which interact to reach a relaxed structure when measuring relaxed energy
of the system. Following TGT’s experimental configuration, we crop/sample based on the distance
to adsorbate atoms, limiting the number of atoms to a maximum of 64. Training the model requires
approximately 38 A100 GPU days. Due to additional angle constraint optimization, it requires
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Table 4: LIT-PCBA results. Table 5: Result on MOLPCBA and MOLHIV.
Model ROéVE'UTg;t(W | Model | MOLPCBA | MOLHIV
; ° | Test AP(%)1 | Test ROC-AUC(%)1
NaiveBayes {ebb et al 2010} 730 DeeperGON-VN (Li etal|2020) | 2842 043 7942020
SVM (Hearst et al.||1998) 734 - -
. . 1 PNA (Corso et al.[[2020) 28.38 (0.35) 79.05(1.32)
RandomForest (Breiman![2001) 62.0 == 1
XGB Chen & Cusstna D016l 726 DGN (Beaini et al.[|2021) 28.85 (0.30) 79.700.97)
oost {Chen & Cuestrin; ! : GINE-VN (Brossard et al.|[2020} 29.17 015, 77.1001.50)
GCN (Kipf & Welling] 2016} 723 PHC-GNN (Ce et al.][2021] 29.47 (0.26) 79.341 16)
Sﬁg&vﬁlﬁ@f elt "%222‘”7’ ;25 GIN-VN preqriy (Gilmer et aLl2017) | 29.02 (0.7, 77070110,
- aieta ) ! . Graphormer (Ying et al.|[2021}) 31.40 (0.34) 80.51(9.53)
EGT (Hussain et al.|[2022} 78.9 EGT (Hussain et al.] 2027} 29.61 (0.24) 80.60(0.65)
GEM (Fang et al.[[2022) 78.4 TGT (Hussain et al.|[2024) 31.67 (031) 80.71(0.48)
GEM-2 (Ciu et al.|[2022a} 81.5
EGT+RDKit (Hussain et al.|[2024) 81.2 AGT | 317902 | 81.06039)
TGT (Hussain et al.{[2024) 81.5
AGT | 81.8

Table 6: Distance and angle prediction performance of different edge-angle interaction mechanisms
and training times on PCQM4Myv2.

No No Total Topological Axial Geometric
Angle Edge-Angle Edge-Angle Edge-Angle Edge-Angle Edge-Angle
Attention  Interaction Interaction Interaction Interaction Interaction

Dist. Cross-Ent.(]) 1.204 1.202 1.179 1.171 1.164 1.151
Angle Cross-Ent.({) - 1.375 1.307 1.283 1.310 1.268
Time/Epoch({) 1.00 1.17 1.43 1.21 1.36 1.24

slightly more training time compared to TGT, but still significantly less than the 112 GPU days used
by UniMol+.

Results for the IS2RE task are presented in Table 2] expressed as MAE (in meV) and Energy within
Threshold (EwT) at 20 meV. The table shows that AGT achieves state-of-the-art (SOTA) perfor-
mance on most subsets of the IS2RE evaluation dataset without significantly increasing computa-
tional resources. Specifically, it outperforms current methods on the ID (In Domain) and OOD (Out
of Domain) Adsorbates and Catalyst subsets, while performing comparably to TGT on the OOD
Both subset. Overall, our AGT model demonstrates superior average performance compared to the
SOTA TGT model, securing its position as the best-performing direct method on the OC20 IS2RE
task.

4.2 TRANSFER LEARNING

Our model learns two distinct forms of knowledge in two stages during large-scale training on the
PCQM4Myv?2 dataset. In the conformer prediction stage, the conformer predictor learns geometric
information by predicting high-precision conformations. In the pre-training stage, the task predictor
learns the quantum chemical properties of molecules by predicting the HOMO-LUMO gap. There-
fore, in this section, we validate the transfer learning effectiveness of these two types of knowledge
learned by AGT.

Finetuning on QM9 We fine-tuned the task predictor of PCQM4Mv2 in the QM9 data set. This
dataset allows the use of precise 3D conformational information during inference, so the task pre-
dictor only needs to train. We report the fine-tuning performance on a subset of 7 tasks out of 12 in
QMO. As shown in Table [3| AGT achieves state-of-the-art results and, like TGT, significantly out-
performs other models in predicting HOMO(eg ), LUMO(e,), and HOMO-LUMO gap(A.) - three
tasks directly related to the pre-training task. Notably, AGT surpasses TGT in 6 of these tasks and
performs comparably in the remaining one. This demonstrates that AGT’s utilization of geometric
information more effectively facilitates positive knowledge transfer to these tasks.

Molecular Property Prediction For the MOLPCBA (Hu et al., [2020) and MOLHIV molecular
property prediction and LIT-PCBA (Tran-Nguyen et al.,|2020) drug discovery benchmarks, we pro-
vide predictions of interatomic distances, bond angles, and torsion angles. These datasets lack
ground truth 3D information. Therefore, we employ AGT’s pre-trained conformer predictor as
a frozen feature extractor. Results for MOLPCBA and MOLHIV are presented in Table [5] For
MOLPCBA, the test mean Average Precision (%) is reported for a multi-task setting predicting 128
different binary molecular properties. For MOLHIV, the test ROC-AUC (%) is reported, indicating
the model’s ability to predict whether a molecule inhibits HIV virus replication or not. As shown in
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Table 7: Ablation Study on PCQM4Mv2.
AGT Directed Hiera.  Mode Distribution Val.

Att. CyCIe Virtual @Distancm pAngle) MAE\L
Module Loss Node (meV)

- - - - 73.6

v - - - 71.3

v v - - 70.8

v v v 1:1 70.3

v v v 1:2 70.7

v v N 2:1 69.8

v v v 4:1 69.1

v v v 8:1 70.4

the table, using the conformer predictor from the pre-trained AGT model yields the best results, sur-
passing TGT and significantly outperforming other pre-trained models. For the LIT-PCBA dataset,
we report the average ROC-AUC (%) across 7 separate tasks predicting protein interactions in Ta-
ble ] We observe that AGT surpasses other pre-trained models, achieving state-of-the-art results.
These experiments indicate that our pre-trained AGT’s conformer predictor can provide more valu-
able 3D information to the task predictor for downstream tasks compared to RDKit coordinates,
even when trained on a different dataset.

Ablation Study Table[6]compares the impact of different interaction methods between substructures
of various orders in the AGT module on interatomic distance prediction, angle prediction in confor-
mations, and training time. We use cross-entropy loss on the PCQM4Mv?2 validation-3D set as the
metric for distances and angles. Total edge-angle interaction refers to information exchange between
bond angle and torsion angle structures with all pairwise embeddings. Axial edge-angle interaction
involves interaction with pairwise embeddings that share common atoms with the endpoints of angle
structures. Topological edge-angle interaction selects pairwise embeddings corresponding to edges
in the 2D molecular topology graph for interaction. Geometric edge-angle interaction communicates
with pairwise embeddings corresponding to the edges of the triangle containing the bond angle and
the edges of the tetrahedron containing the torsion angle. We observe that geometric edge-angle in-
teraction performs best in both distance and angle predictions, with a relatively low time cost among
all variants. Notably, total edge-angle interaction is the most time-consuming but performs poorly,
while axial edge-angle interaction, which reduces interaction objects, improves prediction perfor-
mance. This suggests that interaction between higher-order and lower-order substructures requires
finding the most relevant representations.

Table[7)presents an ablation study on our three main optimization designs and the ratio of distance to
angle loss in the objective function. The results are from a 12-layer AGT model on PCQM4Mv2. We
observe that the addition of the AGT module brings significant improvements. When learning angle
information, the Directed Cycle Angle Loss helps reduce optimization difficulty for the model. The
hierarchical virtual nodes in the task predictor serve as intermediate representations, aggregating and
transmitting features from different levels of graph structures, providing a richer information basis
for the final prediction task. Lastly, we experimented with different ratios of distance loss to angle
loss and found that the model performs best when the ratio is 1:4.

5 CONCLUSION

In this work, we introduce the AGT architecture, which directly models higher-order substructures
such as bond angles and torsion angles in molecular graphs, significantly enhancing the expressive-
ness and accuracy of molecular geometry modeling. We propose efficient interaction mechanisms
between substructures of different orders and an angle objective function optimized for local chi-
rality. Furthermore, we employ hierarchical virtual nodes in the task predictor, mitigating informa-
tion compression of critical structures and neglect of geometric structures in property prediction.
Through extensive experiments, we demonstrate state-of-the-art prediction accuracy on quantum
chemistry datasets, as well as the transfer learning capabilities of both the conformation predictor
and task predictor. In future work, we plan to explore inequality relationships and dynamic change
representations of higher-order substructures in spatial stereochemistry, enabling more effective and
rational geometric constraints for structural predictions.

10
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A DENSITY FUNCTIONAL THEORY FOR MOLECULAR CONFORMATION
PREDICTION

Density Functional Theory (DFT) (Kohn et al.l 1996} |Or1o et al., [2009) is a first-principles compu-
tational method based on quantum mechanics that plays a crucial role in molecular conformation
generation and property prediction. DFT describes many-electron systems through electron den-
sity rather than wave functions, significantly reducing computational complexity. Its theoretical
foundation rests on the Hohenberg-Kohn theorem, which proves that all properties of a system’s
ground state can be uniquely determined by the electron density. In practical applications, the com-
plex many-electron problem is transformed into more tractable single-electron problems through
the Kohn-Sham equations. In molecular conformation generation, DFT can obtain precise three-
dimensional conformations of molecules by solving electronic structure equations. This process in-
cludes optimizing molecular geometry, calculating bond lengths, bond angles, and dihedral angles,
determining the lowest energy conformation, and predicting electron distribution within molecules.
The molecular conformations generated by DFT possess high accuracy and are often used as bench-
marks for the evaluation of other conformation generation methods. This high precision stems from
its rigorous quantum mechanical theoretical foundation, which can accurately describe electronic
effects, chemical bonding properties, and intramolecular interactions in molecules. However, DFT
calculations also have limitations, such as high computational cost and difficulty in handling large
molecular systems. In modern molecular design, DFT often complements machine learning meth-
ods (Schiitt et al.,|2017; |Axelrod & Gomez-Bombarelli, [2022; [Smith et al.} 2020). Machine learning
models can quickly predict molecular properties and initial conformations, while DFT is used to gen-
erate high-precision reference conformations and validate results. This combination leverages the
advantages of both methods: the efficiency of machine learning and the high accuracy of DFT. With
improvements in computational power and algorithms, DFT’s applications in molecular science re-
search will continue to expand, providing crucial support for drug design, materials development,
and other fields.

B THE ACCURACY OF CONFORMATION PREDICTOR IN ANGLES AND
DISTANCES

To demonstrate the accuracy of AGT in geometric conformation prediction, we convert distances and
angles to continuous unbounded values. Following the strategy employed in TGT (Hussain et al.,
2024]), we train two small refinement networks for distances and angles respectively. These networks
accept clipped and binned values as input and output continuous, unbounded values. We train these
networks using MAE loss and employ random inference to obtain the median of the output distances.
We compare the accuracy of individual pairwise distances and angles on the validation-3D split
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of the PCQM4Myv2 dataset (i.e., data unseen during training), based on MAE, RMSE (Root Mean
Square Error), and percentage errors within different thresholds as shown in Table[§|and Table[9] Our
findings indicate that in terms of distances, our AGT predictor outperforms TGT across all metrics.
Regarding angles, AGT significantly surpasses both RDKit and TGT in bond angle prediction and
substantially leads in torsion angle prediction. This suggests that through angle constraints, AGT’s
conformation predictor can more accurately predict the underlying structure of molecules compared
to the distance predictor in TGT.

Table 8: Accuracy of pairwise distances in terms of MAE|, RMSE| and percent error within a
threshold (EwTT).

Model | MAE (A) RMSE (A) | EwT-02A(%) EwT-0.1A(%) EwT-0.05A(%) EwT-0.01A(%)
RDKit 0.248 0.541 73.33 66.65 56.90 26.79
TGT + Refiner | 0.152 0.378 80.53 75.68 70.80 54.54
AGT + Refiner | 0.131 0.327 86.74 78.51 74.09 57.17

Table 9: Accuracy of bond angles and torsion angles in terms of MAE], RMSE| and percent error
within a threshold (EwT?).

Model | Bond Angles | Torsion Angles
‘ MAE (rad) RMSE (rad) EwT-7/16 rad (%) ‘ MAE (rad) RMSE (rad) EwT-7/16 rad (%)
RDKit 0.239 0.575 71.43 0.694 1.145 33.62
TGT + Refiner 0.225 0.431 76.26 0.563 0.713 41.89
AGT + Refiner 0.191 0.380 82.31 0.329 0.490 60.51

C EXPERIMENTAL DETAILS

The hyperparameters used for each dataset are presented in Table[Cl For PCQM4Mv2 and OC20 we
list the hyperparameters for both the conformation and the task predictor models and both training
and finetuning. For QM9, we only list the hyperparameters for finetuning. For MOLPCBA, LIT-
PCBA, and MOLHIV we only show the hyperparameters for training from scratch. The missing
hyperparameters do not apply to the corresponding dataset or model. For QM9 no secondary dis-
tance and angle denoising objective is used. For LIT-PCBA, O triplet interaction heads indicate that
an EGT is used without any triplet interaction module.

To provide the conformation predictor with initial 3D information, we utilize RDKit (Landrum,
2013)) to extract 3D coordinates and apply MM Force Field Optimization (Halgren,|1996). Due to the
absence of Ground Truth 3D coordinates in the the PCQM4Myv?2 validation set, we randomly divide
the training set into train-3D and validation-3D splits, with the latter containing 5% of the training
data. Hyperparameters of the conformation predictor are fine-tuned by monitoring the average cross-
entropy loss of binned distance and angle prediction on the validation-3D split, which is found to
be a good indicator of downstream performance. The input noise level is adjusted by evaluating the
finetuned performance on the validation set. We get the best results by using an average of 50 sample
predictions during stochastic inference. Other training configurations not mentioned are based on
TGT (Hussain et al., [2024).

D LIT-PCBA ADDITIONAL RESULTS

We also show a breakdown of the LIT-PCBA results for the individual protein targets in Table
Notice that, AGT outperforms other models in ALDH1, FEN1, PKM2, and VDR. Despite the low
number of positive samples, AGT ranked second among all models on GBA and KAT2A, surpassing
TGT (Hussain et al., |2024) on all proteins target.
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Table 10: Hyperparameters for each dataset.

H " PCQM4Mv2 0C20 QM9 MOLPCBA | LIT-PCBA | MOLHIV
yperparameters Conf. Pred. ‘ Task Pred. | Conf. Pred. ‘ Task Pred. | Task Pred. Task Pred. Task Pred. | Task Pred.
# Layers 24 24 24 14 24 12 8 12
Node Embed. Dim 768 768 768 768 768 768 1024 768
Edge Embed. Dim 256 256 256 512 256 32 256 32
Angle Embed. Dim 128 128 128 256 128 32 128 32
# Attn. Heads 64 64 64 64 64 32 64 32
# Triplet Heads 16 16 16 16 16 4 0 4
Node FFN Dim. 768 768 1536 768 768 768 2048 768
Edge FFN Dim. 256 256 512 512 256 32 512 32
Angle FFN Dim. 128 128 256 256 128 32 256 32
Max. Hops Enc. 32 32 - - 32 32 32 32
Activation GELU GELU GELU GELU GELU GELU GELU GELU
Input Dist. Enc. RBF RBF Fourier Fourier RBF RBF RBF RBF
Source Dropout 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
Triplet Dropout 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0
Path Dropout 0.2 0.2 0.2 0.1 0.2 0.1 0.1 0.1
Node Activ. Dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Edge Activ. Dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Angle Activ. Dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Input 3D Noise - 0.2 - 0.6 0.0 - - -
Input Noise Smooth. - 1.0 - 1.0 0.0 - - -
Optimizer Adam Adam Adam Adam Adam Adam Adam Adam
Batch Size 1024 2048 256 256 - 256 1024 256
Max. LR 0.001 0.0015 0.001 0.001 - 4% 1074 5x 1074 3 x 1074
Min. LR 10-¢ 10-¢ 0.001 10-¢ - 1078 5x 1077 1078
‘Warmup Steps 30000 20000 8000 16000 - 5000 600 5000
Total Training Steps 60000 350000 30000 100000 - 30000 1200 30000
Grad. Clip. Norm 5.0 5.0 5.0 5.0 5.0 5.0 2.0 5.0
Conf. Loss Weight - 0.1 - 3.0 0.0 0.05 0.1 0.05
# Angle Bins 256 512 256 512 - 512 512 512
# Dist. Bins 256 512 256 512 - 512 512 512
Dist. Bins Range 8 8 16 16 - 8 8 8
FT Batch Size - 2048 - 1024 2048 - -
FT Warmup Steps - 3000 - 0 3000 - -
FT Total Steps - 50000 - 12000 150000 - -
FT Max. LR - 2x 1074 - 10-° 2x107* - -
FT Min. LR - 1076 - 107° 1076 - -
FT Conf. Loss Weight - 0.1 - 2.0 0.1 - -

Table 11: LIT-PCBA results in terms of ROC-AUCY (%).

‘ ALDHI FEN1 GBA KAT2A MAPK1PKM2 VDR  Average

No. active 7,168 369 166 194 308 546 884

No. inactive 137,965 355,402 296,052 348,548 62,629 245,523 355,388
NaiveBayes (Webb et al., [2010) 69.3 87.6 70.9 65.9 68.6 68.4 804  73.0
SVM (Hearst et al.,[1998) 76.0 87.7 77.8 61.2 66.5 75.3 69.7 734

RandomForest (Breiman, 2001) 74.1 65.7 59.9 53.7 579 58.1 64.4 62.0
XGBoost (Chen & Guestrin,[2016) | 75.0 88.8 83.0 50.0 59.3 73.7 78.2 72.6

GCN (Kipf & Welling, 2016) 73.0 89.7 73.5 62.1 66.8 63.6 773 72.3
GAT (Velickovic et al.,|2017) 73.9 88.8 77.6 66.2 69.7 72.4 78.0 75.2
FP-GNN (Cai et al.;[2022) 76.6 88.9 75.1 63.2 771 73.2 77.4 75.9
EGT (Hussain et al., 2022) 78,7(2) 92.9(1) 75.4(4) 72.8(1) 75.3(3) 76.5(2) 80.7(2) 78.9
GEM (Fang et al| 2022) 7720, 9140 82.1n 7400, 71.00 7460, 7851, 784
GEM-2 (Liu et al., 20223.) 80.2(0‘2) 94.5(0,3) 85.6(2) 76.3(1) 73.3(1) 78.2((),4) 82.3(0,5) 81.5
EGT+RDKit (Hussain et al., 2024) 80.2(0_2) 95.2(0_3) 84.5(4) 74.3(1) 73.5(1) 78.0(0,2) 82.8(0_3) 81.2
TGT (Hussain et al., 2024) 80.6(0‘3) 95.5(0,3) 84.4(3) 74.6(2) 74.3(0,7) 78.4(0,2) 82.9(0,3) 81.5
AGT | 80.702) 95.603 84.83 74.80) 75.009 78.603 83.104) 817
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