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ABSTRACT

Hierarchical Graph Neural Networks (GNNs) integrate pooling layers to gen-
erate graph representations by progressively coarsening graphs. These GNNs
are provably more expressive than traditional GNNs that solely rely on message
passing. While prior work shows that hierarchical architectures do not exhibit
empirical performance gains, these findings are based on small datasets where
structure-unaware baselines often perform well, limiting their generalizability. In
this work, we comprehensively investigate the role of graph structure in pooling-
based GNNs. Our analysis includes: (1) reproducing previous studies on larger,
more diverse datasets, (2) assessing the robustness of different architectures to
structural perturbations of the graphs at varying depths of the network layers, and
(3) comparing against structure-agnostic baselines. Our results confirm previous
findings and demonstrate that they hold across newly tested datasets, even when
graph structure is meaningful for the task. Interestingly, we observe that hierar-
chical GNNs exhibit improved performance recovery to structural perturbations
compared to their flat counterparts. These findings highlight both the potential
and limitations of pooling-based GNNs, motivating the need for more structure-
sensitive benchmarks and evaluation frameworks.

1 INTRODUCTION

Modern pooling-based GNN architectures often interleave graph convolutions with graph pooling
layers to successively reduce the graph size by exploiting structural connectivity and node features.
These hierarchical GNNs produce increasingly coarser representations at each layer, enabling the
network to capture both localized and global patterns in order to create graph-level representations
(L1u et al., 2023).

While the representations learned by hierarchical GNNs are provably more expressive than their flat
(non-pooling-based) counterparts (Bianchi & Lachi, 2023} [Lachi et al.|, [2023)), empirical evidence
indicates that pooling layers often fail to enhance predictive performance. In particular, Mesquita
et al.| (2020) show that hierarchical GNNs tend to learn homogeneous node representations in the
initial convolutions, even before the first pooling operator is applied, which they identify as the
reason why these models perform on par with both their randomized variants and flat GNNs on
graph-level tasks. However, this observation and the derived conclusions focus solely on the pooling
methods themselves, overlooking potential inherent dataset limitations. For example, most of these
datasets consist of relatively small graphs, while pooling would intuitively be expected to work better
for large graphs, where its fine-to-coarse processing approach could potentially mitigate well-known
issues in flat GNNSs, such as oversquashing. Additionally, [Errica et al.[(2022) have recently shown
that the graph structure is of limited relevance in most of these commonly benchmarked datasets
since structure-agnostic baselines already outperform GNNs. Thus, the existing analyses lack the
granularity needed to disentangle whether the observed underperformance of pooling stems from
the method itself or from dataset characteristics, such as limited structural complexity or scale.

In order to thoroughly investigate the role of data structure in the learning dynamics of pooling-based
GNNs, we conduct an extensive analysis designed to overcome potential limitations in previous
studies. Specifically, we (1) evaluate the work by Mesquita et al.| (2020) on larger and more diverse
datasets; (2) assess the robustness of different architectures to structural perturbations by permuting
graph edges at varying network depths and analyzing their impact on predictive performance; and (3)
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include comparisons with structure-agnostic baselines to test the structural dependency of common
benchmarks.

Our results indicate that common benchmarks often require limited structural information, which
can be largely captured by the initial convolutional layers. As a result, structure-agnostic baselines
frequently outperform more complex GNNs, both with and without pooling. Moreover, we find that
hierarchical GNNs do not consistently outperform flat GNNs, even when graph structure is infor-
mative. Nevertheless, they demonstrate a greater capacity to recover from structural perturbations
across tested operators and datasets, ultimately enhancing GNN robustness.

2 ASSESSING THE RELEVANCE OF GRAPH STRUCTURE

2.1 EXTENDING PRIOR ANALYSIS

Building on | Mesquita et al.| (2020), we expand the analysis to a broader range of datasets, including
both overlapping and newly introduced ones, to assess the impact of dataset choice on previous
conclusions. We illustrate this diversity in terms of graph size in Appendix [D} where we also report
our replication results. Additionally, to broaden the coverage of pooling schemes, we extend the
original study, which focuses on dense pooling operators, by also evaluating sparse pooling methods
(Knyazev et al., 2019; (Grattarola et al., [2022)). Overall, we confirm their findings on the original
settings and show that similar trends hold across the newly tested datasets and pooling schemes.

2.2 ISOLATING STRUCTURAL INFORMATION: GRAPH RANDOMIZATION EXPERIMENT

While Mesquita et al.|(2020) analyzed pooling by replacing hierarchical operators with randomized
counterparts, we take a complementary approach by directly randomizing the input graph structure,
i.e., randomize edge connectivity by replacing the groundtruth edge indices with uniformly random
ones (more details in Appendix [B). This allows us to disentangle the role of structural information
from the effect of pooling operators themselves.

Experimental Design. In our setup, we follow the standard network architecture used by[Mesquita
et al.|(2020), in which the input graph G is passed through an initial convolution layer before entering
L pooling blocks. Each block consists of a convolution layer followed by a pooling operator. The
pooled graph undergoes a final convolution, and the resulting representation is fed into a two-layer
MLP for graph classification. As depicted in Figure[I} we randomly permute all the edges of each
graph at different depths within the architecture, including a baseline with no randomization:

* REGULAR: The original edge connectivity is used, no randomization is applied.

* RANDOM-0: Edges in G are randomized before the initial convolution layer. This corre-
sponds to predicting without any information on graph structure.

* RANDOM-1: Edges in G are randomized after the initial convolution. Only the first con-
volution uses the original graph structure.

* RANDOM-2: Edges in G are randomized after the second convolution, i.e., after the con-
volution of the first pooling block.

* RANDOM-3: Edges in the pooled graph G’ are randomized after the third convolution,
i.e., after the first convolution of the second pooling block.
For 1,..., L:
g-» Conv Layer — Conv Layer — Pooling Layer —> Conv Layer — MLP Classifier

L-bRANDOM-O L-bRANDOM-l LVRANDOM-2,...,L+1

Figure 1: Schematic visualization of the experiment setup.

Model Choice. To ensure broad coverage of potential hierarchical GNN schemes, we again in-
clude both sparse and dense pooling operators. In particular, we choose Top-K pooling (Gao &
Ji, 2019) as a sparse and simple scheme, and MinCutPool (Bianchi et al.l |2020) as a dense and
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Figure 2: F1 score for binary tasks and macro F1 score for multi-class tasks + std for different
randomization schemes across six datasets. Scores are normalized such that the REGULAR model
has a performance of 1.0.

more powerful method. As a non-pooling baseline, we employ a standard GCN (Kipf & Welling,
2017). Importantly, as in the study of Mesquita et al.|(2020), our aim is not to evaluate the absolute
performance of these models, but to compare their relative performance when the input graph is
randomized at different stages in the network. Therefore, we do not perform hyperparameter tuning.

Comparison to Structure-Unaware Baselines. Following previous work by [Errica et al.| (2022),
we isolate the effect of graph structure on model performance by evaluating structure-unaware base-
lines. Specifically, we use an MLP and a GNN with only self-loops for message passing. Note that
for datasets without node features, the LocalDegreeProfile (LDP) (Cai & Wang|, 2018)) is added as
a feature vector for these baselines. Additionally, we introduce NOD-EDG, which leverages the
number of nodes and edges as features for Gradient Boosted Decision Trees (Friedman, 2001)) to
make non-linear predictions based on this simple 2D feature space.

Setup. We train the aforementioned models with 20 random seeds and test each of the random-
ization stages described above. We consider nine popular benchmarking datasets spanning differ-
ent sizes and application domains: MalNet-Tiny, REDDIT-MULTI-12K, DD, CIFAR10, EXPWLI,
COLLAB, PROTEINS, NCI1 and IMDB-BINARY (Dwivedi et al.,[2023}Morris et al.,[2020} [Freitas
et al., 2021} Bianchi & Lachil [2023). Further details regarding used datasets and our implementation
can be found in Appendix [Aland

3 EXPERIMENTAL RESULTS

In this section, we present our main results. Figure [2]shows the line plots achieved by GCN, Top-K
pooling, and MinCutPool for each dataset and for each randomization experiment. Note that the F1
score on the y-axis is normalized by the performance of the non-randomized variant (REGULAR),
such that its corresponding entry is always 1. Table[T]demonstrates the performance of hierarchical
and flat GNNs as well as the structure-agnostic baselines on the REGULAR experiment. We report
the F1 score of the positive class for binary classification tasks and the macro F1 score in the multi-
class classification setting. In what follows, we discuss our main experimental findings.
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Table 1: F1 score for binary tasks and macro F1 score for multi-class tasks (avg £ std over 20 runs)
of tested models with no randomization. Best performing model(s) by at least one std (two-way)
is bolded. Missing entries indicate running times longer than 3 days. LDP is used for MLP and
GNN-SL in datasets with no node features (MalNet-T, RDT-12K, EXPWL1, COLLAB, IMDB-B).

MalNet-T RDT-12K DD CIFAR10 EXPWL1 COLLAB PROT. NCI1 IMDB-B
Top-K 5874+ 11.0 275+65 683+£55 324+17 6884223 640+33 622+42 693+88 63.1+72
MinCut - - 71.4+47 396+05 895+47 731+£21 653+62 785+25 71.2+54
GCN 535+13 415+24 703+45 378+04 978+15 649+24 678+6.7 774+21 63.0+38
MLP 873+£13 453+18 639+85 425+10 946+3.6 73.6+22 588+6.1 623+£27 7T1.3+55

GNN-SL 89.3+09 468+17 692+43 459+0.7 968+28 752+22 584+60 63.1+39 71.8+6.3
NOD-EDG 746+19 333+14 73.6+44 10.1+£0.6 659+22 71.7+16 692+42 626+23 68.0£25

In most datasets, structure is either uninformative or can be learned after the initial convo-
lutions. For DD and PROTEINS (Figures and 2(b)), we find that randomizations at different
depths do not significantly affect performance. This suggests that node features or basic graph
statistics, such as the number of nodes and edges, suffice for strong performance, as indicated by the
NOD-EDG baseline in Table In contrast, for EXPWL1, CIFAR10, COLLAB, and NCI1 (Figures
ROH2®), the RANDOM-0 version shows a notable drop in performance, highlighting the impor-
tance of graph structure. However, as randomization is applied at later stages in the network, the
original performance is gradually restored, indicating that the graph structure is captured early in the
convolutional layers, consistent with Mesquita et al.|(2020). These findings are further supported by
additional results in Appendix [C|

Structure-agnostic baselines already achieve comparable, and in some cases superior, perfor-
mance compared to GNNs. In Table|l| we observe that structure-unaware architectures perform
exceptionally well, ranking among the best models in eight out of nine datasets. Notably, the NOD-
EDG baseline achieves strong performance across several datasets, despite not leveraging explicit
graph topology or node features (whereas MLP and GNN-SL either use the available node features
or are enriched with LDP features).

Hierarchical GNNs are not superior to flat GNNs even when graph structure is informative.
As shown in Table[T} hierarchical GNNs do not outperform flat GNNs or simpler baselines, even on
datasets where structural information is relevant (e.g., NCI1).

Pooling may make GNNs more robust towards perturbations in graph structure. For datasets
where the structure is informative, Figures 2(F) pooling-based methods consistently show better
relative performance compared to flat GNNs when the graph structure is randomized. The perfor-
mance achieved for RANDOM-0 is markedly better for Top-K and MinCut, and predictive accuracy
is recovered in earlier randomization levels, whereas the GCN often fails to reach the performance
of the REGULAR variant. This may suggest that pooling operators, by aggregating information in a
fine-to-coarse fashion, are less sensitive to local perturbations, potentially enabling them to recon-
struct the original graph representation. However, further investigation is needed to fully understand
and confirm this effect, which we leave for future work.

4 CONCLUSION

In this work, we address the conflicting theoretical and empirical evidence regarding the utility of
pooling schemes in graph-level tasks. We replicate previous results and extend them to larger and
more diverse datasets. We observe that graph pooling has minimal impact on performance, support-
ing critiques of its practical relevance in common datasets. By isolating the effect of graph structure
on the performance of pooling and non-pooling GNNs, we show that many popular benchmarks re-
quire limited structural information, with structure-agnostic models performing on par with, or even
outperforming, GNNs. The widespread use of these datasets limits progress in understanding the
true utility of pooling. Future work should focus on developing and validating large-scale bench-
marks that better capture complex topologies. Notably, our analysis offers preliminary evidence that
hierarchical GNNs may be more robust to graph structure perturbations, highlighting an exciting
avenue for future research.
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A  DATASET DETAILS

Table [2| summarizes the characteristics of the datasets used in this study, including both datasets
from|Mesquita et al.|(2020) and additional ones introduced in our experiments. Note that for datasets
without node features, the LocalDegreeProfile (Cai & Wang] 2018)) is added as a feature vector for
the MLP and GNN-SL baselines. Further details on each dataset are provided in the remainder of
this section.

Table 2: Summary of dataset statistics and application domains

Domain Dataset # Graphs Avg Nodes Avg Edges # Features # Classes Class ImbalancdT]
Histopathology METABRIC 611 1,410.61 8,309.50 32 2 Slight Imbalance
Computer Science  MalNet-Tiny 4,814 1,371.19 1,314.40 0 5 Balanced
EXPWLI1 3,000 77 93 1 2 Balanced
Social REDDIT-12K 11,929 391.41 456.89 0 11  Slight Imbalance
COLLAB 5,000 74.49 2,457.22 0 3 Slight Imbalance
IMDB-Binary 1,000 19.77 96.53 0 2 Balanced
Computer Vision CIFAR10 60,000 117.63 470.53 3 10 Balanced
Molecular NCI1 4,110 29.87 32.30 37 2 Balanced
Bioinformatics DD 1,178 284.32 715.66 89 2 Slight Imbalance
PROTEINS 1,113 39.06 72.82 3 2 Slight Imbalance

METABRIC: This is a popular digital pathology dataset, consisting of cell graphs derived from
stained tissue samples of breast cancer patients. Nodes in these graphs represent relevant cells
within the tumor microenvironment, while edges capture spatial or functional relationships between
them (Danenberg et al., 2022). The graphs are large and highly variable in size and the graph-level
task is to predict the estrogen receptor status. Although METABRIC is not a standard benchmarking
dataset, it is included here due to the relevance of hierarchical graph pooling in digital pathology
settings.

MalNet-Tiny: The MalNet dataset is a collection of function call graphs of malicious software that
has been created to serve as a truly large and diverse benchmarking dataset for graph representation
learning (Freitas et al) [2021). While the original dataset contains 1.2 million graphs averaging
15,000 nodes and 35,000 edges per graph, the authors also introduced a more manageable version
called MalNet-Tiny, where the largest graph has 5,000 nodes and each graph belongs to one out of
five malware types. We use this smaller dataset due to computational constraints in this work.

EXPWLI1: The EXPWLI1 dataset is specifically designed to evaluate the expressive power of GNNs
in relation to the Weisfeiler-Lehman (WL) test (Bianchi & Lachi, 2023). Each graph represents a
propositional formula. Variables and literals are represented as nodes, whereas edges represent the
logical relationships. Nodes contain a single feature indicating whether they correspond to a clause
or literals (Abboud et al.| 2021). The predictive task is to determine whether a given formula is
satisfiable or unsatisfiable. Given the dataset’s construction, GNNs as expressive as the WL1 test
are expected to achieve near 100% classification accuracy.

REDDIT-MULTI-12K: Each graph represents a discussion thread on the popular social news web-
site Reddit. Nodes correspond to users and edges are drawn between users that responded to one
other’s comment. The graph-level task consists of predicting the topic (subreddit) the discussion
originated from (Morris et al.| 2020).

COLLAB: The graphs represent ego-networks of scientists conducting research within the fields of
high energy physics, condensed matter physics, or astrophysics. The task is to predict the research
domain based on the graph’s topology (Morris et al., | 2020).

IMDB-Binary: Similar to COLLAB, this dataset is constructed as the ego-network of actors based
on IMDB data (Morris et al., 2020). The task is to predict the genre of a movie (action or romance)
in which the actor in question participated.

'For binary labels, slight imbalance is at most 20%-80%. For multi-class, the ratio between the smallest
and the largest class is at most 1-to-5.
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Superpixel CIFAR10: Graphs for the CIFAR10 dataset are constructed by segmenting each image
into superpixels using the SLIC algorithm (Achanta et al.;,|2012), which produces compact and dense
regions. Each superpixel is treated as a node, with edges connecting adjacent superpixels. The task
is to classify each graph into one of ten categories (Dwivedi et al., [2023).

NCI1: The NCII dataset consists of molecules collected from anti-cancer screen tests. Each atom
corresponds to a node in the graph and atom types as well as other chemical information are rep-
resented as node features. Edges naturally denote the bonds between atoms (Morris et al.l [2020).
The task is predicting whether a given molecule is active or inactive in a cancer-screening test (Wale
et al., 2008)).

DD: The graphs encode protein structures, where nodes represent amino acids and edges denote
spatial proximity between them (Morris et al., 2020). The graph-level task is to predict whether a
given protein is an enzyme.

PROTEINS: In this dataset, nodes represent structural elements of proteins, such as helices, and
sheets, while their features encode chemical and physical properties. Edges connect neighbors in
the amino acid sequence or physical space (Borgwardt et al.| 2005} Morris et al2020). The task is
to predict whether a given protein graph corresponds to an enzyme.

B EXPERIMENT DESIGN DETAILS

All neural networks followed the standardized architecture shown in Figure[I] For common bench-
marking datasets, we adopted the layer and hidden dimension settings from Mesquita et al.| (2020),
with minor adaptations for new datasets (see Table [3). The Adam optimizer was employed with
early stopping. The initial learning rate was set to 0.001 and was progressively halved after 10
epochs of validation loss stagnation.

Table 3: Number of layers, hidden dimension, batch size for each dataset and model combination.
We largely adopt parameter settings from [Mesquita et al.| (2020), with minor adaptations for new
datasets.

Top-K MinCut GCN MLP

METABRIC 6,128,8 6,64,8 6,128,8 6,64,8
MalNet-Tiny 5,128,32 - 5,128,32  5,64,32
REDDIT-12K 4,64,64 4,64,16 4,64,64  4,32,64
DD 3,64,32  3,64,16  3,64,32  3,32,32
CIFAR10 4,64,256 4,64,512 4,64,256 4,32,256
EXPWL1 3,64,32  3,64,32 3,64,32  3,32,32
COLLAB 3,64,64 3,64,16 3,64,64  3,32,64
PROTEINS 3,64,64  3,64,16 3,064,064 3,32,64
NCI1 3,64,64 3,32,16 3,64,64 3,32,64
IMDB-BINARY 2,64, 8 3,32,16  2,64,8 2,32,8

We use PyTorch Geometric (Fey & Lenssen, 2019)) for our experiments, representing the structural
connectivity of a graph with a matrix E € R?*®|, where |E| is the total number of edges. Each
column in this matrix specifies an edge, with the two rows indicating the source and target nodes,
respectively. To randomize the graph structure for the experiment presented in Section [2] we draw
two rows of node indices independently and uniformly at random, keeping the number of edges in
the randomized graph the same as in the original graph, i.e., E; ~ U[1, |E|] fori € {0,1}.

The randomization described above applies to experiments from RANDOM-0 to RANDOM-2. How-
ever, in the RANDOM-3 experiment, the graph structure is randomized after the initial pooling layer.
Since all employed pooling schemes focus on clustering nodes, the number of edges in the pooled
graph, |E’|, is unknown prior to training and can vary across graphs and models. Therefore, to pre-
vent adding more edges than in the original graph, we estimate | E’| based on the pooling scheme’s

behavior and the density of the unpooled graph, defined as density = N(Kfa‘_l) , where NV is the

number of nodes.
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For MinCutPool, each graph is initially mapped to a standardized size with N,,,, nodes, where
Ninaz 1S the number of nodes in the largest graph. The pooling layer reduces the number of nodes
to N’ = Nyaz X k, where k is the pooling ratio. The number of edges in the pooled graph is then

N'(N’—1)
2

estimated as |E'| = x density, where density is calculated based on the original graph.

In the case of Top-K pooling, the number of nodes in the pooled graph, N’, is determined individ-
ually for each graph, as the scheme is adaptive. The number of edges |E’| is then computed in the
same way as in MinCutPool using the estimated N’ and densiry.

C ADDITIONAL RESULTS: OTHER DATASETS

Graph structure largely irrelevant, but results vary by model type
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Figure 3: F1 score for binary tasks and macro F1 score for multi-class tasks + std for different
randomization schemes across datasets. Scores are normalized such that the REGULAR model has
a performance of 1.0. Missing entries indicate running times longer than 3 days.

For the MalNet-Tiny and IMDB datasets (Figures and [3(b)), graph structure has minimal rel-
evance, as the RANDOM-0 results are comparable to those of the REGULAR experiment. This
indicates that models can achieve reasonable performance by relying solely on graph-level features
such as the number of nodes and edges, given the absence of node attributes in both datasets. This
interpretation is further supported by the performance of the NOD-EDG baseline in Table[I} More-
over, REDDIT-MULTI-12K (Figure serves as an additional example of a large dataset where
the graph structure is learned in the early layers of the network. Note that we could not evaluate
MinCutPool for all randomization levels due to computational constraints.

D ADDITIONAL RESULTS: REPLICATION OF MESQUITA ET AL.|(2020)

Mesquita et al.|(2020) test the three dense graph pooling schemes of DiffPool (Ying et al., |2018),
Graph Memory Networks (Khasahmadi et al.l |2020), and MinCut (Bianchi et al., 2020) as well
as a non-trainable scheme Graclus (Dhillon et al., 2007) on eight datasets. This experiment was
inherently limited in scope, encompassing relatively small datasets from similar application domains
and primarily focusing on dense pooling schemes (Bianchi & Lachi, [2023).

To validate and extend the findings of Mesquita et al.| (2020)), we replicate their experiments on a
broader range of larger datasets from diverse application domains, where pooling layers may better
exploit structural properties. Specifically, we include METABRIC, MalNet-Tiny, REDDIT-MULTI-
12K, CIFAR10, and COLLAB, while retaining DD and NCII from the original study. Figure [
compares the newly added datasets (blue) with those from the original study (gray) based on the
average number of nodes and edges per graph.
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Figure 4: Dataset overview visualizing the distribution of nodes and edges. Datasets colored in blue
are newly added while datasets in gray are included in Mesquita et al.| (2020).

Table 4: Accuracy (avg =+ std) of pooling schemes compared to their randomized variants over 10
runs. Accuracies in bold are statistically significantly (p-value < 0.05) better than their counterpart.
Missing numbers indicate OOM or running times longer than 3 days.

METABRIC MalNet-Tiny REDDIT-12K DD CIFAR10 COLLAB NCI1
Top-K 795+44 56.4 £ 10.8 269 £ 6.1 735+63 328+13 694+32 774128
Randomized  77.4 £+ 0.0 67.5+5.9 36.8 + 1.9 747+£55 379+11 722428 70.0+2.1
HGP-SL 79.5 £5.1 - - 74.1 £3.1 - 748 +13 709+23
Randomized — 80.2 4.7 - - 752 +45 - 725+1.8 685+33
MinCut 79.3 +£4.0 - - 755+23 33.6+125 759422 793422
Randomized ~ 79.0 £5.6 - - 76.1+34 391+£13 739£27 79725

Including larger datasets motivates the use of more scalable operators to efficiently replicate the
experiment. Therefore, we consider two sparse pooling schemes: Top-K (Gao & Ji, [2019) and
HGP-SL (Zhang et al.}, 2019). We also consider MinCut Pooling (Bianchi et al., 2020), a popular

and relatively efficient dense pooling scheme from the original study.

Table [] presents the accuracy of the three pooling schemes versus their randomized counterparts.
For most dataset-operator combinations, the randomized variants perform on par or better than the
original scheme. Thus, we largely replicate the results found by [Mesquita et al.| (2020). Top-K on
NCI1 and HGP-SL on the COLLAB dataset present the only two exceptions for which one could
argue that the original pooling operates perform better than their randomized counterparts.
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