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Abstract

Large Language Models (LLMs) have demon-001
strated significant potential in transforming002
clinical applications. In this study, we investi-003
gate the efficacy of four techniques in adapting004
LLMs for clinical use-cases: continuous pre-005
training, instruct fine-tuning, NEFTune (Jain006
et al., 2023), and prompt engineering. We em-007
ploy these methods on Mistral 7B and Mixtral008
8x7B models, leveraging a large-scale clini-009
cal pretraining dataset of 50 billion tokens and010
an instruct fine-tuning dataset of 500 million011
tokens. Our evaluation across various clini-012
cal tasks reveals the impact of each technique.013
While continuous pretraining beyond 250 bil-014
lion tokens yields marginal improvements on015
its own, it establishes a strong foundation for016
instruct fine-tuning. Notably, NEFTune, de-017
signed primarily to enhance generation quality,018
surprisingly demonstrates additional gains on019
our benchmark. Complex prompt engineering020
methods further enhance performance. These021
findings show the importance of tailoring fine-022
tuning strategies and exploring innovative tech-023
niques to optimize LLM performance in the024
clinical domain.025

1 Introduction026

The advent of large language models (LLMs) has027

spurred a wave of innovation across various do-028

mains, with healthcare being a particularly promis-029

ing area for their application. LLMs have the poten-030

tial to transform clinical workflows, aid in diagno-031

sis, and enhance patient care. However, effectively032

adapting these models to the nuances and complex-033

ities of the clinical domain remains a significant034

challenge.035

Current approaches in the literature predomi-036

nantly focus on either developing specialized clini-037

cal LLMs from scratch or fine-tuning existing mod-038

els on large-scale clinical datasets. While these039

methods have shown promise, they often overlook040

the potential benefits of continuous pretraining on041

domain-specific data as a means to further enhance 042

model performance. This is due in part to the com- 043

plexities and potential instabilities associated with 044

continued training of large models. 045

In this study, we take a comprehensive approach 046

to optimizing clinical LLMs by systematically in- 047

vestigating the impact of continuous pretraining 048

on in-domain data, in conjunction with instruct 049

fine-tuning and advanced prompting strategies. We 050

focus on the Mistral-7B (Jiang et al., 2023) and 051

Mixtral-8x7B (Jiang et al., 2024) models, demon- 052

strating that continuous pretraining, while yielding 053

modest gains compared to fine-tuning and prompt- 054

ing, plays a crucial role in establishing a solid foun- 055

dation for further specialization. By carefully bal- 056

ancing in-domain clinical data with general lan- 057

guage data, we successfully mitigate instability is- 058

sues and unlock the full potential of continuous 059

pretraining for clinical LLMs. 060

Our work highlights the importance of under- 061

standing of the relationship between pretraining, 062

fine-tuning, and prompting in adapting LLMs for 063

clinical applications. By demonstrating the ef- 064

fectiveness of continuous pretraining on domain- 065

specific data, we open doors for future research 066

to further explore this underutilized technique to 067

develop more accurate, reliable, and ultimately im- 068

pactful clinical LLMs. 069

2 Related Works 070

The landscape of Large Language Models (LLMs) 071

for healthcare is evolving rapidly, with most ap- 072

proaches involving either domain-specific pretrain- 073

ing or instruction fine-tuning of general-purpose 074

models. OpenAI’s GPT-3.5 and GPT-4 (OpenAI, 075

2023), alongside Google’s Med-PaLM (Singhal 076

et al., 2023a) and Med-PaLM 2 (Singhal et al., 077

2023b) have demonstrated impressive performance 078

on medical benchmarks, despite limited trans- 079

parency regarding their training details. Other mod- 080

els, such as GatorTron (Yang et al., 2022), and 081
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PMC-LLaMA (Wu et al., 2023), have shown the082

potential of pretraining on extensive biomedical083

corpora to add domain-specific knowledge for clin-084

ical applications.085

Instruction fine-tuning and dialogue datasets086

have also been instrumental in enhancing the zero-087

shot and few-shot generalization capabilities of088

LLMs. ChatDoctor (Li et al., 2023b) and MedAl-089

paca (Han et al., 2023), for instance, utilize med-090

ical conversations and other NLP tasks to im-091

prove LLaMA’s performance on clinical queries.092

Recent models like Clinical Camel (Toma et al.,093

2023), MediTron (Chen et al., 2023) and Med42094

(Christophe et al., 2024), based on LLaMA-2 (Tou-095

vron et al., 2023), further demonstrate the efficacy096

of this approach.097

Building on the observation that models can098

learn from prompting alone (Brown et al., 2020),099

recent research has explored techniques to enhance100

clinical capabilities without additional training.101

These methods often extend the well-known Chain-102

of-Thought prompting technique, originally intro-103

duced by (Wei et al., 2022b), to better suit clinical104

use-cases. Notably, Microsoft’s MedPrompt (Nori105

et al., 2023b) demonstrates significant improve-106

ments in GPT-4’s performance on clinical QA tasks,107

while (Garikipati et al., 2024) apply similar strate-108

gies to the Yi family of models (Young et al., 2024).109

Google has also showcased the potential of com-110

plex prompting to boost the clinical capabilities of111

their Gemini model (Saab et al., 2024). However,112

while such complex prompting techniques can im-113

prove performance on standard benchmarks, their114

practicality and scalability in real-world clinical115

applications remain to be seen116

Recent studies like LIMA (Zhou et al., 2024),117

FineWeb (Guilherme Penedo, 2024) and Phi (Li118

et al., 2023a) have highlighted the pivotal role of119

data quality in LLM training, emphasizing that120

it can often be more influential than architectural121

choices in determining model performance. High-122

quality data has been shown to significantly impact123

the model’s ability to learn meaningful represen-124

tations and generalize to new tasks. This shows125

the importance of our approach to dataset curation,126

ensuring that our models are trained on a robust127

and representative collection of clinical data.128

3 Experiments129

In this section, we present the four steps of our130

experimental framework: (1) continuous pretrain-131

ing, (2) instruct fine-tuning, (3) NEFTune, and (4) 132

complex prompt engineering. 133

3.1 Continuous Pretraining 134

Continuous pretraining involves extending the pre- 135

training phase of a large language model (LLM) 136

by exposing it to additional text data. This can 137

be particularly beneficial in domain-specific appli- 138

cations, like healthcare, where models can be fur- 139

ther trained on vast amounts of clinical literature. 140

The goal is to refine the model’s understanding of 141

domain-specific terminology, relationships, and nu- 142

ances, potentially leading to improved performance 143

on relevant tasks. In our experiments, we investi- 144

gate the impact of continuous pretraining on both 145

Mistral 7B and Mixtral 8x7B models, utilizing a 146

50-billion-token clinical dataset. 147

Continuous pretraining of large language mod- 148

els, however, is not without its challenges. Typ- 149

ically, only the weights of the LLM are openly 150

accessible, while the optimizer state remains un- 151

available. This lack of access can disrupt the train- 152

ing process, leading to instabilities and hindering 153

the model’s ability to effectively learn from the new 154

data. Additionally, the potential distribution shift 155

between the original pretraining data and the new 156

clinical data can result in catastrophic forgetting, 157

where the model loses proficiency on previously 158

learned knowledge and tasks (Li and Lee, 2024). 159

Following the work presented in (Gupta et al., 160

2023), we implement a learning rate warm-up strat- 161

egy, gradually increasing the learning rate over 1% 162

of the total training steps. Specifically, we employ 163

a linear warm-up, starting from 1/10th of our maxi- 164

mum learning rate and gradually ramping up to the 165

full value. This gradual increase helps stabilize the 166

training process and prevents drastic updates to the 167

model’s weights early on. Second, we address the 168

potential distribution shift by blending our special- 169

ized clinical data with general language data from 170

SlimPajama (Soboleva et al., 2023). This curated 171

blend results in a 65-billion-token dataset, compris- 172

ing 50 billion tokens of specialized clinical data and 173

15 billion tokens of general language data. We then 174

perform continuous pretraining on this dataset for 175

a total of 4 epochs, processing 260 billion tokens 176

and allowing the model to acquire domain-specific 177

knowledge while retaining its proficiency in gen- 178

eral language understanding. In Figure 5, we illus- 179

trate the training loss curves over both the general 180

and clinical data subsets. As depicted, our warm- 181
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up strategy and data mixture effectively mitigate182

instabilities, demonstrating smooth convergence183

and a steady decrease in loss throughout the train-184

ing process. This approach ensures the model’s185

overall capabilities remain robust and facilitates186

the acquisition of specialized clinical knowledge.187

3.2 Instruct Fine-Tuning188

Instruct fine-tuning is a technique that aims to align189

large language models (LLMs) with human inten-190

tions and preferences by training them on a dataset191

of instructions and their corresponding desired out-192

puts. This approach enables LLMs to better under-193

stand and respond to user prompts, improving their194

ability to generate relevant and useful responses in195

a variety of tasks.196

To facilitate effective learning from instructions,197

we adopt a structured format incorporating the key-198

words <|system|>, <|prompter|>, and <|assistant|>.199

This format explicitly delineates the roles of the200

system, the user providing the prompt, and the as-201

sistant generating the response. By clearly defining202

these relationships, we guide the model to better un-203

derstand the intent behind instructions and generate204

appropriate, medically relevant outputs205

Each sample in our instruction-tuning dataset206

is composed of three elements: a system prompt,207

a user prompt, and the corresponding model re-208

sponse. To maximize the utilization of the model’s209

available context length during training, we con-210

catenate these samples across the entire dataset.211

The training process is auto-regressive and the loss212

is solely focused on the tokens comprising the re-213

sponses. This targeted training strategy prioritizes214

the model’s ability to generate accurate and rele-215

vant answers, rather than focusing on replicating216

prompts.217

We train our models for 3 epochs using a cosine218

learning rate scheduler, which gradually decreases219

the learning rate over the course of training220

3.3 NEFTune221

NEFTune, a novel instruction fine-tuning technique222

introduced in (Jain et al., 2023), offers an alter-223

native approach to our traditional pipeline. This224

method involves injecting noise into the embed-225

ding layer during training, a process that has shown226

improvements in the quality of the model’s output227

generation. Furthermore, the introduced noise dur-228

ing training could act as a regularization method to229

stabilize the learning process. The noise vector is230

created by independently sampling each entry from231

a uniform distribution within the interval [−1, 1]. 232

This vector is then scaled by a factor determined 233

by the tunable parameter α, the sequence length L, 234

and the embedding dimension d: 235

X ′
emb ← Xemb +

(√
α

Ld

)
ϵ

During our experiments, we explored various val- 236

ues for α and discovered that the setting of α = 5 237

yielded superior results. In our study, we explore 238

NEFTune as a potential replacement for our stan- 239

dard instruct fine-tuning pipeline, investigating its 240

impact on overall performance on clinical tasks. 241

3.4 Prompt Engineering 242

In-Context Learning refers to a model’s ability to 243

understand and generate relevant responses based 244

on the context provided within a prompt. This 245

capability allows the model to leverage previous 246

examples or instructions given in the prompt to per- 247

form tasks more effectively without explicit train- 248

ing on new samples. Chain-of-Thought Reasoning 249

(Wei et al., 2023) is a technique where the model is 250

guided to generate a step-by-step explanation of its 251

thought process before arriving at an answer. This 252

approach encourages the model to articulate its rea- 253

soning, leading to more transparent and accurate 254

outcomes. In our work, we harness these capabili- 255

ties by implementing the ‘Medprompt’ prompting 256

strategy as introduced by (Nori et al., 2023b). To 257

thoroughly evaluate our models, we generate chain- 258

of-thought explanations using four distinct prompt 259

engineering methods: 260

• Chain of thought (CoT): Similar to (Kojima 261

et al., 2023), we generate chain-of-thought on 262

the evaluation dataset by appending “Let’s 263

think step-by step” to every sample. This 264

method encourages the model to systemati- 265

cally break down its thought process, leading 266

to more structured and transparent reasoning. 267

• Few shot chain of thought: In this approach, 268

we improve the model’s performance by pro- 269

viding context through static examples. Be- 270

fore generating the chain-of-thought explana- 271

tion, we prepend the samples with five pre- 272

defined few-shot examples. These examples 273

serve as a guide, helping the model to under- 274

stand and apply a consistent reasoning pattern. 275

• Dynamic few shot chain of thought: This 276

advanced method combines dynamic retrieval 277
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Figure 1: Training loss for Mixtral during continuous pretraining on the general (left) and clinical (right) subsets.

Hyperparameter
Mistral 7B Mixtral 8x7B

Pretraining Fine-tuning NEFTune Pretraining Fine-tuning NEFTune

Learning Rate Scheduler Linear Warmup - Cosine Linear Warmup - Cosine
Max Learning Rate 7× 10−6 5× 10−6 5× 10−6 7× 10−6 1× 10−6 1× 10−6

Beta (0.9, 0.95) (0.9, 0.95)
Alpha - - 5 - - 5
Weight Decay 0.1 0.1
Number of Steps 79,259 6,089 6,089 37,344 2,589 2,589

Table 1: Hyperparameters for Pretraining, Fine-tuning, and NEFTune on Mistral 7B and Mixtral 8x7B Models

and chain-of-thought generation. Initially,278

we create chain-of-thought reasoning for279

multiple-choice question-answering datasets280

and store these in a Milvus vector database281

(Wang et al., 2021). We then embed the282

training questions using gte-small embedding283

model (Li et al., 2023c). During evaluation,284

we retrieve the five most semantically similar285

training examples based on cosine similarity286

in the embedding space. These retrieved ex-287

amples are used as few-shot examples, provid-288

ing relevant context to the model for generat-289

ing more accurate explanations.290

• Dynamic few shot chain of thought ensem-291

ble (CoT-En): Building on the dynamic few-292

shot approach, this method introduces vari-293

ability and robustness. Here, we shuffle the294

few-shot examples and the multiple-choice295

options, generating the chain-of-thought rea-296

soning five times with a temperature setting of297

0.2. This ensemble technique aims to produce298

a diverse set of reasonings.299

3.5 Hardware infrastructure.300

Our experiments were conducted on a high-301

performance computing cluster, utilizing a max-302

imum of 10 nodes, each equipped with 8 NVIDIA303

H100 GPUs, for the continuous pretraining phase. 304

For the subsequent fine-tuning stages, we employed 305

4 nodes of the same configuration. To efficiently 306

train our large-scale models, we leveraged Py- 307

Torch’s Fully Sharded Data Parallel (FSDP) (Zhao 308

et al., 2023) framework, which enables distributed 309

training across multiple GPUs while minimizing 310

memory footprint. Additionally, we employed 311

bfloat16 precision throughout our training pipeline. 312

4 Datasets 313

In this section, we detail our approach to construct- 314

ing both the pretraining and fine-tuning datasets. 315

Our primary objective is to curate datasets that op- 316

timize model performance while maintaining the 317

highest standards of quality and relevance to the 318

clinical domain. 319

4.1 Pretraining Dataset 320

Our pretraining corpus comprises a mix of biology 321

and healthcare data from publicly available sources, 322

including full-text research articles, abstracts, open 323

textbooks, and Wikipedia articles. We excluded 324

data containing personally identifiable information 325

as well as data without a permissive license for 326

commercial use. 327

Pretraining data for large language models 328
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(LLMs) typically requires several normalization329

and cleaning steps to make it suitable for train-330

ing. However, since we have controlled the input331

sources and limited them to trusted sources, our332

pretraining pipeline primarily involves five major333

steps: 1) document parsing, 2) low-length filtering,334

3) document-level deduplication, 4) exact dedupli-335

cation, and 5) data chunking.336

Document parsing involves either scraping web-337

pages or extracting text from research articles.338

Once the text is extracted from all sources, we339

remove sources with insufficient information by340

applying a length threshold filter. As our data mix341

mainly consists of full-text research articles, there342

is a high likelihood of document-level duplication343

with different DOI IDs. To address this, we used344

the MinHash (Broder, 1997) deduplication tech-345

nique with a similarity threshold of 0.85: for each346

document, we compute a sketch and measure its ap-347

proximate similarity with other documents, remov-348

ing pairs with high overlap. We perform MinHash349

deduplication using 9,000 hashes per document,350

calculated over 5-grams and divided into 15 buck-351

ets of 400 hashes each.352

Document-level deduplication removes similar353

documents across different data sources, but there354

could still be some text duplication within the doc-355

uments. Therefore, we additionally employed an356

exact deduplication step (Lee et al., 2021) to elim-357

inate identical text segments from the dataset. As358

advised in the original literature, we ran the exact359

deduplication twice with length thresholds of 400360

and 100 bytes, since duplicates may persist even361

after the first pass. Finally, the entire dataset is362

tokenized, concatenated, and split into chunks with363

a predefined context length for continuous pretrain-364

ing.365

4.2 Finetuning Dataset366

Our instruction-tuning dataset is a curated blend367

of open-source medical question-answering data,368

sourced primarily from medical forums like Stack369

Exchange, rich in expert discussions and patient370

inquiries. We also integrate relevant medical seg-371

ments extracted from general domain datasets, en-372

suring a diverse representation of medical subfields373

and contexts. This comprehensive dataset provides374

a solid foundation for training our model to accu-375

rately understand and generate medically relevant376

content.377

To improve the chain-of-thought capabilities of378

the fine-tuned model, we generate chain-of-thought 379

explanations for datasets that benefit from reason- 380

ing chains. After generating these reasoning chains, 381

we discard those that do not correspond with the 382

correct answers and use these samples as zero-shot 383

examples. We employ the Mixtral-Instruct model 384

for both generating and verifying the reasoning 385

chains. For more details on the composition of the 386

finetuning dataset, please refer to Table 3. 387

5 Evaluations 388

To rigorously assess the efficacy of our fine-tuning 389

approaches, we focus on a comprehensive evalua- 390

tion of the models’ capabilities across a spectrum 391

of clinical question-answering (QA) tasks. We 392

employ a diverse suite of QA datasets, including 393

MedQA (Jin et al., 2020), USMLE sample exam 394

and self-assessment (Nori et al., 2023a; Han et al., 395

2023), MMLU (medical subset)(Hendrycks et al., 396

2021), and MedMCQA(Pal et al., 2022), to ensure 397

a thorough and representative assessment of model 398

performance in various clinical scenarios. 399

Our evaluation methodology uses the EleutherAI 400

Harness framework (Gao et al., 2021), which fo- 401

cuses on the likelihood of a model generating each 402

proposed answer rather than directly evaluating the 403

generated text itself. To enhance the granularity 404

and relevance of our analysis, we introduce modi- 405

fications to the Harness codebase. Instead of com- 406

puting the likelihood of generating only the answer 407

choice labels (a, b, c, or d), we extend the compu- 408

tation to encompass the likelihood of generating 409

the complete answer text. This modification pro- 410

vides a more detailed understanding of the model’s 411

performance, as it takes into account the entire an- 412

swer generation process, including the ability to 413

articulate reasoning and justify the selected answer 414

choice. 415

To evaluate the efficacy of MedPrompt prompt- 416

ing strategies, we integrate these prompts into the 417

Harness framework. This involves generating rea- 418

soning chains based on the prompts and then using 419

Harness to assess the likelihood of the model pro- 420

ducing the final answer derived from these chains. 421

This approach allows us to evaluate the impact of 422

specific prompting techniques on the model’s abil- 423

ity to reason through complex clinical scenarios. 424

Throughout our evaluation, we report accuracy 425

as the primary metric across all tables, providing 426

a clear and interpretable measure of the models’ 427

proficiency in clinical QA tasks. 428
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# of parameters MedQA USMLE MMLU MedMCQA
BioMistral (Labrak et al., 2024) 7B 45.09 46.67 63.63 44.58

Clinical Camel (Toma et al., 2023) 70B 53.42 54.35 69.75 47.01
MediTron (Chen et al., 2023) 70B 51.14 57.31 68.26 42.36

Med42 (Christophe et al., 2024) 70B 61.52 72.01 76.71 60.93
Mistral 7b Instruct 7B 42.89 48.18 62.75 43.32
Mistral 7b F (ours) 7B 54.28 62.63 68.30 58.11
Mistral 7b N (ours) 7B 60.72 61.97 70.35 58.57

Mistral 7b P + F (ours) 7B 58.36 63.84 72.28 60.84
Mistral 7b P +N (ours) 7B 62.69 63.98 73.45 59.79

Mixtral 8x7b Instruct 46.7B 52.55 65.99 75.78 53.74
Mixtral 8x7b F (ours) 46.7B 62.60 72.68 79.10 62.85
Mixtral 8x7b N (ours) 46.7B 66.93 70.05 79.57 64.64

Mixtral 8x7b P + F (ours) 46.7B 67.09 73.57 79.92 65.29
Mixtral 8x7b P +N (ours) 46.7B 68.34 72.82 79.84 65.34

Table 2: Accuracy over multiple clinical QA tasks. F stands for Instruct-Finetuning, P stands for Pretraining,
and N stands for NEFTune. We show that our models improve on all tasks as we gradually add more training
techniques.

Figure 2: Evolution of MedQA accuracy for Mistral-7b and Mixtral 8x7b base models as well as our instructed
versions of Mistral-7b during continuous pretraining. Pˆt: Continuous Pretrained with variable numbers of tokens
t, F : Instruct Finetuned. We show that, while base model accuracy remains consistent, applying instruct-finetuning
leads to notable improvements.

6 Results429

In this section, we present the results of our experi-430

ments, revealing key insights into the effectiveness431

of different training approaches for clinical lan-432

guage models.433

Non-instructed models can’t be evaluated on434

QA tasks. Throughout our continuous pretrain-435

ing process, we saved multiple checkpoints and as-436

sessed their performance on our clinical QA bench-437

marks. Given the absence of instruction fine-tuning,438

we opted for a no-prompt evaluation format. As439

illustrated in Figure 2, a slight performance de-440

cline is observed between the base model (with 441

no pretraining) and the initial checkpoints. While 442

subsequent checkpoints exhibit gradual improve- 443

ment with increased exposure to clinical data, their 444

performance consistently trails behind the origi- 445

nal base model. This observation underscores the 446

critical role of instruction fine-tuning in equipping 447

LLMs with the necessary skills to effectively com- 448

prehend and respond to questions in the clinical 449

domain. 450

Instruct Fine-tuning Specializes the Model for 451

QA Data The remarkable leap in performance 452
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observed in Table 2 after instruct fine-tuning453

highlights the efficacy of this approach in align-454

ing LLMs with the specific demands of clinical455

question-answering tasks. While this outcome is456

not surprising or novel, it reaffirms the established457

effectiveness of fine-tuning methodologies in adapt-458

ing models to specific domains. By exposing the459

models to a curated dataset of instructions and cor-460

responding answers, we effectively specialize both461

Mistral and Mixtral to formulate answers in the462

clinical domain. This targeted training approach en-463

hances the models’ ability to understand the intent464

behind questions, use the knowledge acquired dur-465

ing pretraining, and generate accurate, relevant, and466

informative responses. The substantial gains ob-467

served across all benchmarks show the critical role468

of instruct fine-tuning in bridging the gap between469

general language understanding and specialized470

clinical expertise, ultimately empowering LLMs to471

excel in medical question answering.472

Continuous Pretraining Shows Consistent Per-473

formance Gains To assess the impact of contin-474

uous pretraining on downstream performance, we475

conducted a comprehensive evaluation by instruct-476

fine-tuning various checkpoints saved during the477

pretraining process. Figure 2 illustrates the per-478

formance trajectory of these models as they are479

exposed to increasing amounts of pretraining data.480

Initially, the gains are relatively minor, particularly481

within the first 100 billion tokens. However, as482

the models continue to learn from the vast corpus483

of clinical text, we observe a gradual and steady484

improvement in their performance across a range485

of QA benchmarks.486

This trend suggests that continuous pretraining487

serves as a valuable foundation, gradually enhanc-488

ing the model’s understanding of clinical concepts489

and terminology. As the models assimilate more490

domain-specific knowledge, they become better491

equipped to leverage the instruction data during492

fine-tuning, ultimately leading to superior perfor-493

mance on clinical QA tasks.494

Table 2 provides a detailed breakdown of the495

performance gains achieved through continuous496

pretraining across various benchmarks. Notably,497

our continuously pretrained models consistently498

outperform state-of-the-art models, including the499

instruct-tuned versions of both Mistral and Mixtral.500

These results underscore the efficacy of continuous501

pretraining in equipping LLMs with the necessary502

domain knowledge to excel in clinical applications.503

The magnitude of these gains, however, varies 504

across model sizes. Mistral-7B demonstrates signif- 505

icant improvement, while the larger Mixtral 8x7B 506

model exhibits more marginal, yet still consistent, 507

benefits. This suggests that while continuous pre- 508

training remains valuable for larger models, its im- 509

pact may be less pronounced compared to smaller 510

counterparts, potentially due to the diminishing 511

returns of additional data for already extensive ar- 512

chitectures. These findings demonstrate the impor- 513

tance of carefully weighing the computational costs 514

and performance benefits of continuous pretraining, 515

particularly for larger LLMs. 516

Adding noise helps finetuning. In our exper- 517

iments, we observed an intriguing phenomenon 518

with the NEFTune technique, originally proposed 519

in (Jain et al., 2023). While the authors demon- 520

strated that NEFTune applied to LLaMA-2 7B 521

maintained Harness accuracy across several QA 522

tasks, we show in Table 2, that for Mistral-7B, 523

it not only preserved but, in most cases, even im- 524

proved the model’s performance. This performance 525

increase was consistent across both the base model 526

and the continuously pretrained model. This re- 527

sult is particularly surprising as NEFTune was pri- 528

marily designed to enhance generation quality, not 529

necessarily benchmark accuracy. We hypothesize 530

that the injection of noise during training might act 531

as a form of regularization, preventing overfitting 532

and leading to better generalization on downstream 533

tasks. However, the exact mechanisms behind this 534

improvement warrant further investigation. This 535

result suggests that the benefits of NEFTune extend 536

beyond its intended purpose, potentially influenc- 537

ing the model’s ability to reason and select the most 538

likely answer. 539

Prompt Engineering makes the difference. Fig- 540

ure 3 showcases the potential of MedPrompt as 541

a viable alternative to traditional fine-tuning and 542

pretraining techniques. By incorporating Chain-of- 543

Thought (CoT) prompting and KNN CoT ensem- 544

bles, we achieve substantial performance gains for 545

the Mixtral-Instruct model on various clinical QA 546

tasks. The effectiveness of MedPrompt is consis- 547

tently observed across different model configura- 548

tions: fine-tuned models outperform their non-fine- 549

tuned counterparts, and pretraining followed by 550

fine-tuning further amplifies these improvements. 551

Notably, by employing MedPrompt with CoT and 552

KNN CoT ensembles, we elevate MedQA accuracy 553
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Figure 3: Evolution of MedQA accuracy using MedPrompt over different versions of Mixtral.

from 52.55% with the baseline Mixtral-Instruct554

model to a value exceeding 75%. These results555

not only show the potential of advanced prompting556

strategies like MedPrompt to significantly enhance557

LLM performance in clinical applications without558

requiring computationally expensive fine-tuning559

or pretraining procedures, but also highlight the560

crucial role of pretraining in establishing a strong561

foundation for further improvement.562

7 Conclusion and Discussions563

In this study, we have systematically investigated564

the impact of continuous pretraining on in-domain565

clinical data, in conjunction with instruct fine-566

tuning and advanced prompting strategies, on567

the performance of LLMs in clinical question-568

answering tasks. Our findings demonstrate that569

continuous pretraining, while yielding modest im-570

provements compared to other techniques, remains571

a valuable tool for enhancing LLM performance572

in the clinical domain. While continuous pretrain-573

ing can often be challenging due to instability is-574

sues, we have shown that by carefully balancing575

in-domain clinical data with general language data,576

we can effectively mitigate these challenges and577

achieve consistent performance gains.578

Furthermore, we have demonstrated that the ben-579

efits of continuous pretraining extend beyond the580

initial training phase, as it lays a solid foundation581

for subsequent instruct fine-tuning and the appli-582

cation of complex prompting techniques like Med-583

Prompt. The synergy between continuous pretrain-584

ing and these additional methods results in state-585

of-the-art performance on a variety of clinical QA586

benchmarks, outperforming existing models like587

the instruct-tuned versions of Mistral and Mixtral.588

Our research opens up several avenues for future589

exploration. Further ablation studies could exam-590

ine the effects of different domain data sources, 591

beyond the clinical realm, on LLM performance. 592

Additionally, a more comprehensive analysis of the 593

optimal data mix for continuous pretraining, includ- 594

ing varying proportions of in-domain and general 595

language data, could yield valuable insights for 596

maximizing the benefits of this technique. 597

This study provides a comprehensive framework 598

for optimizing clinical LLM performance. Our 599

findings offer valuable insights for future research 600

and development efforts aimed at leveraging LLMs 601

to address challenges and opportunities presented 602

by the healthcare domain. 603

8 Limitations 604

While our research offers valuable insights into 605

optimizing clinical LLMs, it is not without limita- 606

tions. Primarily, our study focused on a specific 607

set of models (Mistral and Mixtral) and a limited 608

number of clinical QA datasets. While we strive for 609

diversity in our benchmark selection, the generaliz- 610

ability of our findings to other LLM architectures 611

or clinical tasks remains an open question. 612

Additionally, the computational resources re- 613

quired for continuous pretraining, particularly for 614

larger models, may pose a barrier for widespread 615

adoption. Further investigation into more efficient 616

pretraining methods could address this limitation. 617

Finally, while our evaluation framework pro- 618

vides a comprehensive assessment of model perfor- 619

mance on QA tasks, it does not fully capture the nu- 620

ances of real-world clinical applications, where fac- 621

tors like explainability, bias mitigation, and safety 622

are paramount. Future research should explore 623

these aspects in greater detail to ensure the respon- 624

sible and effective deployment of LLMs in health- 625

care settings. 626
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A Appendix: Supplementary Materials928

A.1 Finetuning Dataset Mix929

Dataset # Samples Mixture ratio (%)

Medical domain
MedMCQA (Pal et al., 2022) 180,462 23.49
Medical Flashcards (Han et al., 2023) 30,106 3.92
StackExchange (Lambert et al., 2023) 64,246 8.36
MedQA (USMLE) (Jin et al., 2020) 11,290 1.47
CORD-19 (Wang et al., 2020) 17,721 2.31
PubMedQA (Jin et al., 2019) 499 0.06
HeadQA (Vilares and Gómez-Rodríguez, 2019) 2,657 0.35
MediQA (Han et al., 2023) 1,950 0.25
SciQ (Johannes Welbl, 2017) 11,679 1.52
PubMed Causal (Han et al., 2023) 2,169 0.28
OpenGPT 66,026 8.59
MedQUAD (Ben Abacha and Demner-Fushman, 2019) 14,553 1.89
MMLU (Hendrycks et al., 2021) 244 0.03
Niv2* (Wang et al., 2022) 11,447 1.49
Pubhealth (Kotonya and Toni, 2020) 9,804 1.28

Total 424,853 55.29

General domain
SlimOrca T0 (Lian et al., 2023; Sanh et al., 2022) 109,235 14.22
SlimOrca Flan (Lian et al., 2023; Longpre et al., 2023) 109,169 14.21
SlimOrca CoT (Lian et al., 2023; Wei et al., 2022a) 74,172 9.65
Ultrachat (Ding et al., 2023) 50,953 6.63

Total 343,529 44.71
† The following categories were included: “academia", “bioinformatics”, “biology", “cogsci", “fitness", “health".
‡ Only samples in English were used.
$ The following subjects were included: “anatomy", “clinical knowledge", “college medicine", “medical genetics",

“professional medicine", “college biology", “high-school biology", “professional psychology", “high-school psychology",

“human sexuality", “human aging", “nutrition", and “virology".

* Samples from 47 tasks (from over 1,000 tasks) related to science, healthcare and medicine were included.

Table 3: Summary of subsets of the data used for fine-tuning the models. Note that medical-domain data correspond
to approximately 60% of the entire dataset.
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A.2 Prompt formats 930

Figure 4: Zero-shot prompt format on a sample from MedQA

Figure 5: Chain-of-thought prompt format on a sample from MedQA
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