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Abstract

Explaining predictions based on multivariate time
series data carries the additional difficulty of han-
dling not only multiple features, but also time
dependencies. It matters not only what happened,
but also when, and the same feature could have a
very different impact on a prediction depending
on this time information. Previous work has used
perturbation-based saliency methods to tackle this
issue, perturbing an input using a trainable mask
to discover which features at which times are driv-
ing the predictions. However these methods in-
troduce fixed perturbations, inspired from similar
methods on static data, while there seems to be
little motivation to do so on temporal data. In this
work, we aim to explain predictions by learning
not only masks, but also associated perturbations.
We empirically show that learning these perturba-
tions significantly improves the quality of these
explanations on time series data.

1. Introduction
Explaining neural networks predictions has received increas-
ing attention, as these models become more embedded in
many decision processes. It is indeed important to under-
stand why such models, which are intrinsically difficult to
explain and are often qualified as “black boxes”, made a
specific prediction. This information is crucial to assess
the fairness of an algorithm in impactful situations, such as
when providing a medical diagnosis (Ahuja, 2019) or com-
puting a credit score (Moscato et al., 2021). Explaining a
deep neural network’s predictions is also important to build
trust for the users of such technologies. In the medical field,
this has been proven to be a crucial step in building this trust
(LaRosa & Danks, 2018).
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Figure 1. Illustration of different perturbations on a time-series
(first plot). We aim to evaluate the importance of the third spike
here. It is very likely that this spike is unimportant, as it is a
regularity in the data, and only the last, larger spike, could mat-
ter. However, using a Gaussian blur (second plot) or replacing
the original data with an average (third plot) changes the input
significantly, which could lead an explanation method to wrongly
state that this spike is important. Our learned perturbation (last
plot) should on the other hand replace the explained data with an-
other spike, leading to little difference in the output, and therefore
correctly stating that this data is unimportant.

As a result, multiple methods to explain why a model made
a specific prediction have been recently developed. Some of
these methods, such as Lime (Ribeiro et al., 2016) or Shap
(Lundberg & Lee, 2017) explain a model’s predictions by
approximating it locally using a transparent method, in this
case a weighted linear regression. Other methods aim to
specifically explain a neural network’s output by leveraging
the back-propagation algorithm to compute the gradient of
an output w.r.t. an input (Simonyan et al., 2013). A feature
with an associated high gradient can indeed be interpreted
as important, the sign of this gradient indicating if this
feature influences the prediction positively or negatively.
Several variations of this method have also been developed
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(Sundararajan et al., 2017; Shrikumar et al., 2017).

Another important class of explanation methods is called
perturbation-based. These methods consist in perturbing a
feature or a group of features, and measuring how the result-
ing prediction changes. A greater change indicates a higher
importance of the perturbed features. Such methods include
Occlusion (Zeiler & Fergus, 2014), which masks features
to estimate their importance. Extremal Masks (Fong &
Vedaldi, 2017; Fong et al., 2019) is another perturbation-
based method, which learns a mask used to perturb the input.
We present this method in more detail in the next section.

However, while many explanation methods have been pro-
posed to explain a neural network, few have been developed
to handle multivariate time series data. Yet, this type of data
is especially important in the medical field, where the data
can be a list of timestamped medical events, or of vitals mea-
surements. There is therefore a need to adapt explanation
methods to handle this temporal element. These adaptations
currently include RETAIN (Choi et al., 2016), an attention-
based model which learns this attention over features and
time, or FIT (Tonekaboni et al., 2020), which estimates the
importance of features over time by quantifying the shift in
the predictive distribution. Another method, DynaMask
(Crabbé & Van Der Schaar, 2021), adapts perturbation-
based methods to multivariate time-series. We will present
and discuss this method further in the next section.

In this work, we aim to further adapt perturbation-based
methods to multivariate time-series driven with the follow-
ing insight. In the works of Fong & Vedaldi (2017) and
Crabbé & Van Der Schaar (2021), while the mask is learned,
the perturbation induced by this mask is fixed. For instance,
Fong & Vedaldi (2017) replaces a feature with a Gaussian
blur (a weighted average of data around the feature) depend-
ing on the value of the feature’s mask: the lower this value,
the higher the amount of blur. Crabbé & Van Der Schaar
(2021) adapts this method by blurring the data temporally.
This method seems reasonable with images, where infor-
mation can be assumed to be local, which explains why
convolutional neural networks (CNNs), which have a lim-
ited filter size, still perform very well on such data. However,
multivariate time-series can have long-term dependencies
which makes it less obvious to use a temporal Gaussian blur
as the perturbation. Instead of replacing a masked feature
with a local average, we might want to replace it using data
further away in time. But then, how should we choose the
correct perturbation formula?

This calls to replace fixed perturbations with learnable ones.
In this work, we present such a method1 and empirically
show that it significantly improves the quality of the expla-

1An implement of this work can be found at https://
github.com/josephenguehard/time_interpret

nations, evaluated on both synthetic and real-world data.
This study is organised as follows. We first present in more
detail the methods of Fong & Vedaldi (2017) and Crabbé
& Van Der Schaar (2021) in the next section. We then
present our method in the following one. We conduct sev-
eral experiments in the next section, designed to compare
our method with several baselines, and we provide elements
of discussion in the last section.

2. Background Work
In this section, we describe in more detail two methods: one
developed by Fong & Vedaldi (2017) and its adaptation to
time series by Crabbé & Van Der Schaar (2021).

Fong & Vedaldi (2017) propose a perturbation-based
method which is defined as following. A trainable mask,
with values restricted between 0 and 1, is used to generate
perturbed data, which is then passed to the neural network
to be explained in order to compute predictions. This mask
can then be trained in two different manners, that the authors
call the deletion game and the preservation game. In the
deletion game, we aim to mask as little data as possible,
while trying to reduce as much as possible the predictions,
on the targeted class, of the perturbed data, compared with
the original predictions. This objective can be defined as,
for a model f : Rn → Rp, a mask m ∈ [0, 1]n, an input
x ∈ Rn and a perturbation Φ(x,m) : Rn × [0, 1]n → Rn:

argmin
m∈[0,1]n

λ||1 − m||1 − L(f(x), f(Φ(x,m))) (1)

The value n represents the input dimension, and λ is a hy-
perparameter balancing both goals.

Secondly, in the preservation game, we aim to retain the
least amount of data that will preserve the closest predictions
compared with the original ones on the targeted class. This
objective can be defined as:

argmin
m∈[0,1]n

λ||m||1 + L(f(x), f(Φ(x,m))) (2)

Moreover, the perturbation Φ(x,m) is fixed given an input
and a mask. Fong & Vedaldi (2017) define several strategies
2:

Φ(x,m) =


m × x + (1 − m)× µ0

m × x + (1 − m)× ν∫
gσ0×(1−m)(y − x) dy

(3)

2Unintuitively, the original data is masked when m = 0. We
kept this notation as it is used in both Fong & Vedaldi (2017) and
Crabbé & Van Der Schaar (2021).
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The first strategy corresponds to replacing the original
masked value x with an average µ0, the second one consist-
ing in replacing this value with Gaussian noise: ν ∼ N (0, 1)
and the last replaces it with a Gaussian blur gσ around x,
given a maximum std σ0. Fong & Vedaldi (2017) also add
some regularisation to ensure the perturbation to be more
natural in the context of computer vision, but we leave it
out, as it is further away from our topic.

While this method was developed to explain predictions
based on images, Crabbé & Van Der Schaar (2021) adapted
it to multivariate time series. They propose as a result a
method they call DynaMask, as the learned mask contains
in this case a time dimension. The input space is now RT×n,
and we consider similarly a neural network f and a target
class c such as: fc(x) : RT×n → R. Therefore, the mask
m ∈ RT×n and the input x ∈ RT×n are also defined on this
input space.

The main contribution of Crabbé & Van Der Schaar (2021) is
to then adapt the perturbation operator Φ to account for this
temporal information. They also introduce three strategies:

Φ(x,m)t,i =


mt,i × xt,i + (1−mt,i)× µt,i

mt,i × xt,i + (1−mt,i)× µp
t,i∑T

t′=1
xt′,i×gσ(mt,i)

(t−t′)∑T
t′=1

gσ(mt,i)
(t−t′)

(4)

Where µt,i is an average of x:,i over a window W around t:

µt,i =
1

2W + 1

t+W∑
t′=t−W

xt′,i (5)

and µp
t,i is an average of x:,i over a past element up to t:

µp
t,i =

1

W + 1

t∑
t′=t−W

xt′,i (6)

Finally, the last perturbation is a temporal Gaussian blur:

gσ(mt,i)(t) = exp(− t2

2σ2
); σ(m) = σmax(1 − m) (7)

Crabbé & Van Der Schaar (2021) uses these perturbations
in a preservation game, which aims to mask the maxi-
mum amount of data while keeping close predictions com-
pared with the originals. They also leverage further work
of Fong & Vedaldi (2017): Fong et al. (2019), which re-
places Equations 1 and 2 with an area constraint. In the
preservation mode (the deletion mode can be adapted simi-
larly), the regulation λ||m||1 in Equation 2 is replaced with:

λa(m) = ||vecsort(m)−ra||2, where a is a number between
0 and 1, vecsort(m) sorts the values of m from lowest to
largest, and ra is a vector containing (1− a)× T × n zeros
followed by a× T × n. As a result, this constraint allows
the user to define how much of the data should be masked.
In practice, Crabbé & Van Der Schaar (2021) use a as a
hyperparameter, which is tuned for each data point to be
explained.

3. Method
While Crabbé & Van Der Schaar (2021) propose temporal
perturbations as adaptations of the ones defined by Fong &
Vedaldi (2017) in a computer vision context, these perturba-
tions are kept fixed and local. They are indeed defined either
as a moving average perturbation, or as a temporal Gaus-
sian blur. However, temporal data is often characterised by
long-term dependencies, and local information can therefore
be insufficient to determine the importance of a feature at
a particular time. For instance, temporal data can include
repetitive patterns, as illustrated on Figure 1, which cannot
be taken account using only temporally local information.
Moreover, while the perturbations proposed by Crabbé &
Van Der Schaar (2021) do include the possibility to include
data further away in time, by tuning the size of the window
W, or the parameter σmax for the Gaussian blur, it is not
clear how to choose such parameters nor how this would
solve the issue of long term patterns.

This insight calls for a generalised perturbation, which can
be tuned to the data we are aiming to explain. A first idea
would be to directly learn this perturbation Φ(x), without
needing a mask, by optimizing a function similar to Equa-
tion 2. However, this method is problematic as it gives
too much liberty to the perturbation model. Indeed, such
a model, incentivised to output sparse explanations, could
compress the data information into a small part of the input
space, stating that this part is important while the rest is
uninformative. On the contrary, we need to constrain the
perturbation operator to explain each part of the input data
without changing or moving it.

To overcome this difficulty, we take inspiration from the
perturbation operators of Crabbé & Van Der Schaar (2021)
in Equation 4. These perturbations are generally defined as
m×x+(1−m)×µ(x), where µ(x) is a function of the input.
In this work, we propose to replace these fixed functions
with a neural network (NN), and to train it in combination
with the mask. Our perturbation is therefore defined as:

Φ(x,m) = m × x + (1 − m)× NN(x)
0 ≤ m ≤ 1

(8)

By keeping m between 0 and 1, we constrain the mask to
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Figure 2. Illustration of our method. The input is passed through a neural network NN to create a perturbation. A mask m is then used to
balance the amount of perturbed data: NN(x) and unperturbed data: x, resulting in Φ(x,m). Both x and Φ(x,m) are then passed through
the model to explain f. Learnable parameters (m and NN(x)) are presented in continuous boxes, while fixed parameters (the model f) are
presented in dashed boxes. The objective of this method is to keep the predictions of the perturbed data as close as possible to the original
ones, while masking as much data as possible and to keep the perturbations NN(x) as sparse as possible. The overall goal is therefore to
identify which features are salient enough to be sufficient to recover the original predictions, when all other features are masked.

only learn how important each feature is. Moreover, we can
see that this equation can be interpreted as a generalisation
of the perturbations from Crabbé & Van Der Schaar (2021)
defined in Equation 4. The neural network in the second
component of Equation 8 can indeed, after training, output
a Gaussian blur or an average of x over a window.

In practice, we want to model NN(x) as a weighted sum
of xt,i, t ∈ {1, ...,T}. As a result, we choose this model
to be a bidirectional GRU (Cho et al., 2014). This would
correspond to a general form of a Gaussian blur or a win-
dow around each element xt,i. We also compare this
choice, in the experiment section, with a unidirectional
GRU, which would be closer to the µp

t,i average in Crabbé
& Van Der Schaar (2021).

As in Crabbé & Van Der Schaar (2021), we define the objec-
tive of the mask and the GRU combined as a preservation
game, aiming to mask as much data as possible while keep-
ing the closest predictions as possible to the original ones.
Our objective is therefore:

argmin
m,Θ∈NN

λ||m||1 + L(f(x), f(Φ(x,m))) (9)

where Θ represents the parameters of the neural network,
and L represents a loss between the original and the per-
turbed predictions. This loss can be for instance a mean
square error for regression tasks, or a cross-entropy loss for
classification tasks.

One issue that can arise from this objective is that the neu-
ral network can be rewarded to mimic the original x data.
Indeed, we can see from Equation 8 that, if m = 0, then
Φ(x,m) = NN(x). Moreover, if NN(x) ≈ x, the objective
defined in Equation 9 is approximately zero. To prevent this
behavior, we modify Equation 9 with the following one:

argmin
m,Θ∈NN

λ1||m||1 + λ2||NN(x)||1 + L(f(x), f(Φ(x,m)))

(10)

In Equation 10, we therefore force the perturbations to be
minimal, being not null only when there is an incentive to
do so. Indeed, in Equation 2, there is a balance on Φ: ||m||1
tends to make Φ uninformative, while L does the opposite.
Equation 10 differs in that sense from Equation 2, as ||m||1
tends to make Φ close to NN(x), which is not necessarily
uninformative. To entice NN(x) to be uninformative, we
add the loss ||NN(x)||1, using zero as a prior. Therefore,
breaking down the objective of Equation 10, we have:

• ||m||1 induces Φ(x) to be close to NN(x)

• ||NN(x)||1 induces Φ(x) to be close to 0 (uninforma-
tive)

• L induces f(Φ(x,m)) to be close to f(x) (informative)

We also set λ1 = λ2 = 1 in our experiments, while an
ablation study on the choice of these hyperparameters can
be found in Section 4 and Appendix A.

Moreover, contrary to Crabbé & Van Der Schaar (2021), we
do not use an area constraint ||vecsort(m) − ra||2, as it is
not clear how to choose the hyperparameter a on usually
complex data. In practice, Crabbé & Van Der Schaar (2021)
tune this hyperparameter, which is computationally expen-
sive, as it requires to train multiple masks. We propose
instead to directly train our model using Equation 10.
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4. Experiments
Following Tonekaboni et al. (2020) and Crabbé & Van
Der Schaar (2021), we perform experiments on two datasets:
a synthetic one, generated using a Hidden Markov model,
and a real-world one, MIMIC-III (Johnson et al., 2016).

4.1. Hidden Markov model experiment

We generate data using a 2-state hidden Markov model
(HMM), closely following Crabbé & Van Der Schaar (2021).
The state st can therefore be either 0 or 1, and we generate
200 states: t ∈ [1 : 200]. Moreover, the input vector
has three features, generated according to the current state:
xt ∼ N (µst ,Σst). The label yt is generated only using the
last two features, the first one being irrelevant. The choice
of which feature is used to generate the label depends on
the state:

yt ∼ (1 + exp(x2,t)
−1) if st = 0

yt ∼ (1 + exp(x3,t)
−1) if st = 1

(11)

Please refer to Crabbé & Van Der Schaar (2021) for more
details on this dataset, in particular in the choice of µst and
Σst .

We generate 1000 time series using this method, and train a
one-layer GRU (Cho et al., 2014) neural network to predict
yt using xt, which we aim to explain.

As we know the true salient features with this dataset, we
evaluate our explanation methods by comparing the sim-
ilarity between salient features produced by each method
and the ground truth. To do so, we use standard classi-
fication metrics: area under recall (AUR) and area under
precision (AUP). We also use two metrics introduced by
Crabbé & Van Der Schaar (2021): Information: Im(a) =
−
∑

(t,i)∈a ln(1−mt,i) which is analogous to the Shannon
information content. A higher value indicates a more in-
formative mask. The second metric is the mask entropy:
Sm(a) = −

∑
(t,y)∈a mt,i lnmt,i+(1−mt,i) ln(1−m(t,i))

which is analogous to Shannon entropy. In both metrics, a
corresponds to the true salient features.

We compare our method with the following ones: DeepLift
(Shrikumar et al., 2017), DynaMask (Crabbé & Van
Der Schaar, 2021), Integrated Gradients (IG) (Sundararajan
et al., 2017), GradientShap (Lundberg & Lee, 2017), Fit
(Tjoa & Guan, 2020), Lime (Ribeiro et al., 2016), Aug-
mented Occlusion (Tonekaboni et al., 2020), Occlusion
(Zeiler & Fergus, 2014) and Retain (Choi et al., 2016). Fur-
thermore, our method uses a bidirectional GRU for the
perturbation model.

Method AUP ↑ AUR ↑ I ↑ S ↓
DeepLift 0.920 (0.019) 0.454 (0.011) 359 (9.55) 145 (0.949)
DynaMask 0.711 (0.020) 0.763 (0.026) 954 (50.0) 45.4 (0.781)
IG 0.918 (0.019) 0.454 (0.011) 359 (11.6) 146 (0.871)
GradientShap 0.849 (0.030) 0.414 (0.015) 335 (14.8) 138 (2.44)
Fit 0.421 (0.013) 0.549 (0.017) 436 (22.7) 164 (2.79)
Lime 0.932 (0.017) 0.438 (0.008) 347 (8.46) 143 (1.47)
Occlusion 0.866 (0.032) 0.393 (0.006) 322 (14.6) 137 (1.90)
Aug Occlusion 0.755 (0.043) 0.388 (0.025) 364 (9.02) 165 (1.42)
Retain 0.645 (0.088) 0.334 (0.013) 206 (21.2) 138 (5.85)

Ours 0.885 (0.030) 0.781 (0.013) 1536 (79.0) 34.1 (3,70)

Table 1. Results of each explanation method compared with ours.
For each metric, ↑ indicates that higher is better, and ↓ that lower
is better. Mean and std are reported over 5 folds.

We present our results in Table 1. These results3 show that,
although our method performs slightly lower than some
baselines in terms of AUP, it significantly outperforms all
other methods by every other metric. In particular, while it
slightly outperforms DynaMask in terms of AUR, it yields
better results in terms of AUP, Information and Entropy.
These results therefore seem to indicate that using learn-
able perturbations should be preferred compared with fixed
one when explaining predictions based on multivariate time
series data.

Ablation study on the lambdas. We perform here an ab-
lation study to determine which values of λ1 and λ2 should
be used in Equation 10. We therefore run our experiment
using various values of λ1 and λ2. We report our results on
Table 2.

λ1

0.01 0.1 1 10 100

λ2

0.01 0.51 - 0.81 0.76 - 0.44 0.78 - 0.09 0.35 - 0.17 0.39 - 0.18
0.1 0.51 - 0.91 0.65 - 0.83 0.95 - 0.08 0.32 - 0.16 0.37 - 0.20
1 0.51 - 0.89 0.63 - 0.83 0.89 - 0.75 0.30 - 0.16 0.35 - 0.18

10 0.48 - 0.90 0.65 - 0.83 0.89 - 0.74 0.99 - 0.26 0.41 - 0.19
100 0.49 - 0.90 0.65 - 0.84 0.90 - 0.74 0.99 - 0.27 0.37 - 0.17

Table 2. Influence of λ1 and λ2 from Equation 10 on the results of
the HMM experiment. For each pair of parameters, 2 values are
reported: AUP - AUR. The average result over 5 runs is reported.

This table show that first λ1 needs to be close to 1 to yield
good results. Indeed, a low value means lower regularisa-
tion, therefore retaining a lot of unimportant features. A high
value, on the other hand, forces m to be mostly 0, yielding
most features to be considered unimportant. Moreover, λ2

needs to be at least 1 to force NN(x) to learn uninformative
perturbations. Otherwise, there is only a weak mechanism
to prevent NN from producing an output similar to x.

3In Tables 1 and 4, some results differ from Crabbé & Van
Der Schaar (2021) due to a few issues in their original implemen-
tation. Please refer to issues 4, 8 and 9 in https://github.
com/JonathanCrabbe/Dynamask/issues.
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Learning perturbations as a deletion game. We also
explore here learning perturbation using Equation 1, mask-
ing as little data as possible while changing the model’s
predictions as much as possible. However, we cannot di-
rectly use Equation 1 for two reasons. First, the term
−L(f(x), f(Φ(x,m))) is hard to optimize, as it entices
f(Φ(x,m)) to be “far” from f(x) while there is no clar-
ity on what “far” should be here. For this reason, we replace
this objective with L(f(0), f(Φ(x,m))), enticing the pre-
dictions to be close to predictions made using 0, uninforma-
tive, as an input. Second, we need to add the term ||NN(x)||1
in the loss. This results in the following objective:

argmin
m,Θ∈NN

λ1||1−m||1+λ2||NN(x)||1+L(f(0), f(Φ(x,m)))

(12)

We present our results on Table 3, comparing the preser-
vation and the deletion modes. While the second setting
outperforms the first one in terms of AUR, it performs poorly
according to every other metrics. This might be due to the
use of L(f(0), f(Φ(x,m))), which amounts to learning a
“change” in the predictions. This is a less straightforward
objective compared with the preservation mode, which aims
to retain the original predictions.

Mode AUP ↑ AUR ↑ I ↑ S ↓
Preservation 0.885 (0.030) 0.781 (0.013) 1536 (79.0) 34.1 (3,70)
Deletion 0.346 (0.0034) 0.863 (0.012) 1079 (41.5) 68.0 (5.07)

Table 3. Comparison of using the preservation mode vs deletion
mode on the HMM experiment. The average result over 5 runs is
reported.

4.2. MIMIC-III experiment

We evaluate our method on the real-world MIMIC-III
dataset, following the works of Tonekaboni et al. (2020)
and Crabbé & Van Der Schaar (2021). MIMIC-III consists
of patients in intensive-care units (ICU), for which a num-
ber of vital signs and lab test results have been regularly
measured. The task is here to predict in-hospital mortality
of each patient based on 48 hours of data, discretised over
each hour. Missing values are imputed using the previous
available ones. If there is no previous feature, a standard
value is imputed.

We train a one layer GRU with a hidden size of 200 to pre-
dict this in-hospital mortality, and we aim to explain this
model. In this dataset, the true salient features are unknown,
and we need to provide different metrics to evaluate our
method. Following Crabbé & Van Der Schaar (2021), we
compare the original predictions to ones where a certain
proportion of the features have been masked. We replace
masked features either with an average over time of this

Method Acc ↓ Comp ↑ CE ↑ Suff ↓
DeepLift 0.988 (0.002) -4.36E-4 (0.001) 0.097 (0.006) 2.86E-3 (0.001)
DynaMask 0.990 (0.001) 2.21E-4 (0.001) 0.097 (0.005) 2.99E-3 (0.001)
IG 0.988 (0.003) 2.24E-4 (0.002) 0.098 (0.006) 2.21E-3 (0.001)
GradientShap 0.987 (0.004) -2.19E-3 (0.001) 0.095 (0.006) 3.99E-3 (0.001)
Lime 0.996 (0.001) -7.36E-4 (0.001) 0.094 (0.005) 3.39E-3 (0.001)
Occlusion 0.988 (0.001) -1.93E-3 (0.001) 0.095 (0.005) 4.57E-3 (0.001)
Aug Occlusion 0.989 (0.001) 4.59E-4 (0.001) 0.098 (0.005) 1.90E-3 (0.002)
Retain 0.989 (0.001) -3.79E-3 (0.001) 0.093 (0.005) 7.70E-3 (0.001)

Ours 0.981 (0.004) 1.53E-2 (0.004) 0.118 (0.008) -1.19E-2 (0.004)

Table 4. Results of each explanation method compared with ours,
by masking 20% of the data and replacing masked features with an
average over time: xt,i =

1
T

∑
t xt,i. For each metric, ↑ indicates

that higher is better, and ↓ that lower is better. Mean and std are
reported over 5 folds.

feature: xt,i = 1
T

∑
t xt,i, where T = 48 (hours) or with

zeros: xt,i = 0. We use two metrics proposed by Crabbé &
Van Der Schaar (2021), and we also draw from the work of
Shrikumar et al. (2017) and DeYoung et al. (2019) and pro-
pose three additional metrics. These resulting four metrics
are then:

• Accuracy (Acc): We mask the most salient features
and compute the resulting accuracy using this masked
data. A lower accuracy means that important fea-
tures to make accurate predictions have been removed.
Therefore, lower is better with this metric.

• Cross-Entropy (CE): We mask the most salient fea-
tures and compute the cross-entropy between predic-
tions made with this masked data with the original one.
A higher value indicates that the predictions have more
significantly changed and that important features have
been removed. Higher is better with this metric.

• Comprehensiveness (Comp): We mask the most
salient features and compute the average change of
the predicted class probability compared with the orig-
inal one. Higher is better with this metric.

• Sufficiency (Suff): We only keep the most salient
features, and compute the average change of the pre-
dicted class probability compared with the original one.
Lower is better with this metric.

Similar to our previous experiment, we use a bidirec-
tional GRU as our perturbation model. We compare our
method against DeepLift (Shrikumar et al., 2017), Dyna-
Mask (Crabbé & Van Der Schaar, 2021), Integrated Gradi-
ents (IG) (Sundararajan et al., 2017), GradientShap (Lund-
berg & Lee, 2017), Lime (Ribeiro et al., 2016), Augmented
Occlusion (Tonekaboni et al., 2020), Occlusion (Zeiler &
Fergus, 2014) and Retain (Choi et al., 2016).

We present on Tables 4 and 5 results with our method com-
pared with different baselines, computing our metrics by
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Method Acc ↓ Comp ↑ CE ↑ Suff ↓
DeepLift 0.972 (0.003) -1.19E-3 (0.007) 0.125 (0.014) -6.92E-3 (0.006)
DynaMask 0.975 (0.002) -1.27E-3 (0.004) 0.106 (0.009) 6.57E-3 (0.012)
IG 0.972 (0.003) 1.24E-4 (0.007) 0.127 (0.015) -7.61E-3 (0.006)
GradientShap 0.968 (0.006) -6.28E-3 (0.004) 0.128 (0.017) 6.61E-4 (0.005)
Lime 0.983 (0.003) -5.22E-3 (0.004) 0.093 (0.008) -2.23E-3 (0.019)
Occlusion 0.971 (0.003) -4.03E-3 (0.003) 0.122 (0.008) -4.97E-3 (0.008)
Aug Occlusion 0.972 (0.003) -6.88E-4 (0.004) 0.121 (0.009) -4.62E-3 (0.011)
Retain 0.971 (0.003) -8.01E-3 (0.006) 0.0123 (0.009) 4.90E-4 (0.007)

Ours 0.943 (0.008) 1.09E-1 (0.023) 0.318 (0.057) -6.94E-2 (0.006)

Table 5. Results of each explanation method compared with ours,
by masking 20% of the data and replacing masked features with
zeros: xt,i = 0. For each metric, ↑ indicates that higher is better,
and ↓ that lower is better. Mean and std are reported over 5 folds.
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Figure 3. Cross Entropy replacing masked data with an aver-
age. We present here the results in terms of cross-entropy by
masking between 10% and 60% of the data for each patient, and
replacing the masked data with the overall average over time for
each feature: xt,i =

1
T

∑
t xt,i. For clarity, we only plot a subset

of the baselines. Higher is better with this metric.

masking 20% of the data, and replacing these features with
either an average over time (Table 4) or zeros (Table 5). We
also plot on Figures 3 and 4 the cross-entropy (CE) metrics
by masking different proportion of the data, and replacing
masked data with either an average over time (Figure 3)
or zeros (Figure 4). We also perform ablation studies in
Appendix A and provide more results in Appendix B.

Our results show that our method significantly outperforms
every other method on every metric, both using the average
over time or zeros as masked data. This also indicates that
using learned perturbations is preferable to using fixed ones
when explaining predictions on multivariate time series data.

Choice of the perturbation generator. While our method
seems to perform well compared with existing baselines,
we want here to study the impact of the choice of NN in
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Figure 4. Cross Entropy replacing masked data with zeros. We
present here the results in terms of cross-entropy by masking
between 10% and 60% of the data for each patient, and replacing
the masked data with zeros: xt,i = 0. For clarity, we only plot a
subset of the baselines. Higher is better with this metric.

Method Acc ↓ Comp ↑ CE ↑ Suff ↓
Zeros 0.981 (0.003) 1.36E-2 (0.001) 0.116 (0.004) -1.02E-2 (0.002)
GRU 0.980 (0.004) 1.76E-2 (0.001) 0.122 (0.004) -1.37E-2 (0.002)
Bi-GRU 0.981 (0.004) 1.53E-2 (0.004) 0.118 (0.008) -1.19E-2 (0.004)

Table 6. Comparison of different perturbation models, masking
20% of the data and replacing masked features with an average
over time: xt,i = 1

T

∑
t xt,i. For each metric, ↑ indicates that

higher is better, and ↓ that lower is better. Mean and std are
reported over 5 folds.

Equation 8. In this study, we propose the following models:

• Zero: NN(x) is set to zero everywhere. Equation 8 is
then simply: Φ(x,m) = m × x.

• GRU: We use a one layer GRU model: NN(x) =
GRU(x), which corresponds to a generalisation of the
fixed perturbation µp

t,i in Crabbé & Van Der Schaar
(2021).

• Bi-GRU: Finally, we use a one layer bidirectional GRU
NN(x) = bi-GRU(x), which corresponds to a general-
isation of the fixed perturbation µt,i in Crabbé & Van
Der Schaar (2021).

We present our results on MIMIC-III on Tables 6 and 7,
replacing 20% of the data with either an overall average
of each feature over time (Table 6), or with zeros (Table
7). We use the same metrics as with our main MIMIC-III
experiments. As with the main experiment, we provide
more results, masking different proportions of the data, in
Appendix B.
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Method Acc ↓ CE ↑ Comp ↑ Suff ↓
Zeros 0.951 (0.005) 9.64E-2 (0.013) 0.305 (0.015) -6.79E-2 (0.002)
GRU 0.943 (0.007) 1.22E-1 (0.008) 0.344 (0.017) -7.40E-2 (0.001)
Bi-GRU 0.943 (0.008) 1.09E-1 (0.023) 0.318 (0.057) -6.94E-2 (0.006)

Table 7. Comparison of different perturbation models, masking
20% of the data and replacing masked features with zeros: xt,i =
0. For each metric, ↑ indicates that higher is better, and ↓ that
lower is better. Mean and std are reported over 5 folds.

Our results are interesting on several accounts. Firstly, the
Zeros method, which simply perturbs the data by masking
non salient features: Φ(x,m) = m × x, performs signifi-
cantly better than all other baselines, including DynaMask
with fixed perturbations. As each measure in our dataset is
normalised, masking one measure with the Zeros method
amounts to replacing it with its average over the entire
dataset. On the other hand, DynaMask replaced mask data
with its average over time for each individual patient. This
good performance of Zeros could be therefore explained by
the fact that many measures do not vary much over time.
As a result, replacing masked data with an overall average
would be much more informative than replacing it with an
average over time for each patient.

Secondly, while using the bidirectional GRU perturbation
yields better results than Zeros, it is itself outperformed
by our method with the unidirectional GRU perturbation.
Moreover, using this unidirectional GRU also yields more
stable results with a lower standard deviation. Our intuition
was that a bidirectional GRU would yield better results, as
it would be able to produce outputs based on past and future
events. However, it seems that modeling perturbations ig-
noring future events seems to yield better and more stable
results. We used a Bi-GRU to produce our results in Tables
4 and 5, as it corresponds to our original intuition, but we
also recommend testing different types of neural networks
for best performance when applying our method.

Analysis of salient features. We present on Figure 5 the
most salient features, averaged over every positive patient,
to determine which factors are most important when deter-
mining in-hospital mortality.

This averaged feature importance indicates a few salient fea-
tures: anion gap, bicarbonate level, platelet count, systolic
blood pressure and respiratory rate. This seems to be con-
sistent with the literature, which has highlighted the impor-
tance of these features, conducting studies on the saliency of
bicarbonate levels (Lim et al., 2019), platelet count (Zhang
et al., 2014) and systolic blood pressure (Kondo et al., 2011).
The influence of anion gap on in-hospital mortality is less
clear, with conflicting studies on this subject (Glasmacher
& Stones, 2015). On the other hand, the respiratory rate
is often neglected despite being an important predictor of

Figure 5. Importance of each feature to predict in-hospital mor-
tality. For each feature, we present its average importance over
time and over multiple patients, using our method with a GRU
perturbation network. We infer from these results that anion gap,
bicarbonate level, platelet count, systolic blood pressure and res-
piratory rate are most important for our model when making a
prediction. We also plot a 95% confidence interval around these
averages.

serious events (Cretikos et al., 2008).

However, although the 95% confidence interval associated
with these features importances is small due to a large num-
ber of patients, there remains a large corresponding standard
deviation. We can therefore infer that the importance of each
feature greatly depends on each patient. It is indeed possi-
ble that a measure such as the systolic blood pressure, for
instance, only matters when it is outside of a normal range.
As a result, its importance will greatly vary depending on
each patient’s condition. This demonstrates the superiority
of perturbation-based methods compared to directly using a
simpler interpretable model such as a decision tree instead
of a neural network to predict in-hospital mortality. Indeed,
such methods can only infer feature importance on average,
and not explain each prediction individually.

In addition to determining which feature is salient, our
method can also infer when it is salient. As a result, we
present on Figure 6 the average over positive patients of the
importance of all features at each hour. This figure shows
that later measurements have a larger impact on the outcome
compared with earlier data. To evaluate the accuracy of this
finding, we also plot on Figure 7 the positive rate over (true
or false) positive patients, when masking earlier measures
on one hand, and later measures on the other hand. We
can see that masking early features has a minimal impact
on the predictions, while masking late features has on the
contrary a dramatic impact on the outcome. As a result, it
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Figure 6. Average feature importance over time to predict in-
hospital mortality. We average every feature’s importance on
all positive patients, over each of the 48 hours of measurement
in hospital. We display the mean with a 95% confidence interval.
Our results show that later measures are most important predictor
of in-hospital mortality.

seems that, when predicting in-hospital mortality, the last
measurements of each patient is more important to make a
prediction, rather than the overall evolution of the patient.

5. Conclusion
In this work, we have presented an extension of Fong &
Vedaldi (2017) and Crabbé & Van Der Schaar (2021) to
better explain multivariate time series predictions using a
perturbation-based saliency method. Our main intuition is
that the choice made by Crabbé & Van Der Schaar (2021)
of fixed perturbations is less adapted to temporal data due
to the possibility of long-term dependencies.

Our results show that using learned perturbations yields bet-
ter explanations compared with existing methods, including
the DynaMask one with fixed perturbations. We have also
studied the choice of the neural network to model the per-
turbation and found that, on the in-hospital mortality task
of MIMIC-III, a unidirectional GRU yields better and more
stable results than the bidirectional one.

Using our method, we have also been able to derive some
insights on the neural network predicting in-hospital mortal-
ity: which features are on average most important, as well
as which measures in time. Precise temporal attributions
could be derived similarly for each patient, giving further
insight on this model’s behavior.

Moreover, an inherent limitation to perturbation-based meth-
ods such as ours is that it is not able to specify the direction
of an explanation. As such, it can measure if a specific fea-

Figure 7. Positive rate over positive patients by masking first
or last data points. We compare the influence of the first or last
data points in time by masking them successively. We observe that
masking latter points in time yields a much lower positive rate than
masking former ones. Masking the last 12 measures indeed results
in every positive patient predicted as negative.

ture is important, but cannot distinguish between features
having a positive or a negative influence on the prediction.
Adapting our method to tackle this issue would prove very
beneficial for applications in healthcare.
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A. Addition studies using the Mimic3 dataset
First, we perform here an ablation study to determine which values of λ1 and λ2 should be used in Equation 10 on the
Mimic3 dataset, similarly to the one done on HMM in Section 4. We run our experiment using various values of λ1 and λ2,
running on 5 different seed for each pair of parameters. We report our results on Table 8.

This table shows similarly that a high value of λ2 should be chosen, to force NN(x) to learn uninformative perturbations.
Interestingly, using a low value of λ1 yields stronger results on Mimic3, indicating that constraining too much m to be close
to 0 is not necessarily a good option. However, this setting does not yield good results on the HMM dataset, therefore our
method should be carefully evaluated when used on low values of λ1.

λ1

0.01 0.1 1 10 100

λ2

0.01 0.926 - 0.348 0.965 - 0.160 0.968 - 0.186 0.968 - 0.165 0.956 - 0.169
0.1 0.893 - 0.503 0.935 - 0.328 0.961 - 0.166 0.961 - 0.261 0.936 - 0.271
1 0.881- 0.534 0.899 - 0.491 0.947 - 0.284 0.957 - 0.191 0.960 - 0.261

10 0.857 - 0.540 0.905 - 0.480 0.940 - 0.372 0.950 - 0.266 0.964 - 0.163
100 0.862 - 0.542 0.910 - 0.472 0.950 - 0.362 0.946 - 0.289 0.956 - 0.173

Table 8. Influence of λ1 and λ2 from Equation 10 on the results of the Mimic3 experiment. or each pair of parameters, 2 values are
reported: Accuracy - Cross-entropy. For accuracy, lower is better, while higher is better for cross-entropy. Each metric is computed by
masking 20 % of the data and replacing masked features with zeros: xt,i = 0. The average result over 5 runs is reported.

Second, we learn perturbations as a deletion game, similarly to the experiment conducted on the HMM dataset in Section 4.
As such, we use Equation 12 in this experiment. We report our results on Table 9.

Similarly to the HMM experiment, this table shows that the deletion mode performs poorly compared with the preservation
one. The latter mode should therefore be preferred to the former.

Mode Acc ↓ Comp ↑ CE ↑ Suff ↓
Preservation 0.943 (0.008) 1.09E-1 (0.023) 0.318 (0.057) -6.94E-2 (0.006)
Deletion 0.977 (0.003) -0.025 (0.009) 0.079 (0.012) 0.053 (0.013)

Table 9. Comparison of using the preservation mode vs deletion mode on the Mimic3 experiment. The average result over 5 runs is
reported.
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B. Additional results on the in-hospital mortality experiment
We present below more results on the in-hospital mortality experiment, based on the MIMIC-III dataset. Results in terms of
accuracy, comprehensiveness and sufficiency can be found on Figures 8, 9, 10, 11, 12 and 13.

We also provide here more results of the ablation study, comparing using Zeros, a GRU or a BiGRU as a perturbation model.
Results in terms of accuracy, cross-entropy, comprehensiveness and sufficiency can be found on Figures 14, 15, 18, 19, 20
and 21.
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Figure 8. Accuracy, masking between 10% and 60% of the
data for each patient, and replacing the masked data with the
overall average over time for each feature: xt,i =

1
T

∑
t xt,i.

For clarity, we only plot a subset of the baselines. Lower is
better with this metric.
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Figure 9. Accuracy, masking between 10% and 60% of the
data for each patient, and replacing the masked data with
zeros: xt,i = 0. For clarity, we only plot a subset of the
baselines. Lower is better with this metric.
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Figure 10. Comprehensiveness, masking between 10% and
60% of the data for each patient, and replacing the masked
data with the overall average over time for each feature: xt,i =
1
T

∑
t xt,i. For clarity, we only plot a subset of the baselines.

Higher is better with this metric.
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Figure 11. Comprehensiveness, masking between 10% and
60% of the data for each patient, and replacing the masked
data with zeros: xt,i = 0. For clarity, we only plot a subset of
the baselines. Higher is better with this metric.

12



Learning Perturbations to Explain Time Series Predictions

0.1 0.2 0.3 0.4 0.5 0.6

0.015

0.010

0.005

0.000

0.005

deep_lift
dyna_mask
occlusion
ours

Figure 12. Sufficiency, masking between 10% and 60% of the
data for each patient, and replacing the masked data with the
overall average over time for each feature: xt,i =

1
T

∑
t xt,i.

For clarity, we only plot a subset of the baselines. Lower is
better with this metric.
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Figure 13. Sufficiency, masking between 10% and 60% of the
data for each patient, and replacing the masked data with zeros:
xt,i = 0. For clarity, we only plot a subset of the baselines.
Lower is better with this metric.
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Figure 14. Accuracy results, masking between 10% and 60%
of the data for each patient, and replacing the masked data
with the overall average over time for each feature: xt,i =
1
T

∑
t xt,i. Lower is better with this metric.
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Figure 15. Accuracy results, masking between 10% and 60%
of the data for each patient, and replacing the masked data
with zeros: xt,i = 0. Lower is better with this metric.

0.1 0.2 0.3 0.4 0.5 0.6

0.1075

0.1100

0.1125

0.1150

0.1175

0.1200

0.1225

0.1250
Zeros
GRU
BiGRU

Figure 16. Cross-entropy results, masking between 10% and
60% of the data for each patient, and replacing the masked
data with the overall average over time for each feature: xt,i =
1
T

∑
t xt,i. Higher is better with this metric.

0.1 0.2 0.3 0.4 0.5 0.6
0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

Zeros
GRU
BiGRU

Figure 17. Cross-entropy results, masking between 10% and
60% of the data for each patient, and replacing the masked
data with zeros: xt,i = 0. Higher is better with this metric.
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Figure 18. Comprehensiveness results, masking between 10%
and 60% of the data for each patient, and replacing the masked
data with the overall average over time for each feature: xt,i =
1
T

∑
t xt,i. Higher is better with this metric.
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Figure 19. Comprehensiveness results, masking between 10%
and 60% of the data for each patient, and replacing the masked
data with zeros: xt,i = 0. Higher is better with this metric.
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Figure 20. Sufficiency results, masking between 10% and 60%
of the data for each patient, and replacing the masked data
with the overall average over time for each feature: xt,i =
1
T

∑
t xt,i. Lower is better with this metric.
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Figure 21. Sufficiency results, masking between 10% and 60%
of the data for each patient, and replacing the masked data
with zeros: xt,i = 0. Lower is better with this metric.
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