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Abstract001

Large language models (LLMs) can suggest002
missing elements from items listed in a prompt,003
which can be used for list completion or similar004
item recommendation. However, their perfor-005
mance degrades when they are exposed to too006
many items, as they start to suggest items al-007
ready included in the input list. This occurs at008
around 100 items for mid-2024 flagship LLMs.009
We evaluate this phenomenon on both synthetic010
problems (e.g., finding missing numbers in a011
given range of shuffled integers) and realistic012
movie recommendation scenarios. We refer to013
this issue as attention overflow, as avoiding rep-014
etition requires attending to all items simultane-015
ously. Although iterative loops can mitigate this016
problem, their costs increase with the repetition017
rate, affecting the language models’ ability to018
derive novelty from lengthy inputs.019

1 Introduction020

Large language models (LLMs) boast ever-growing021

context windows, enabling new potential applica-022

tions. However, the theoretical context length is not023

a sufficient indication of a model’s real performance024

with a given input size (Liu et al., 2024). Multiple025

benchmarks have been proposed to stress-test the ac-026

tual ability of language models to reason over long027

contexts. These tasks either involve pure retrieval028

or a form of reasoning requiring the identification029

of a few relevant portions from a large context.030

We question the effective context window of lan-031

guage models from an opposite angle: asking them032

to provide the only relevant elements that are not033

in a large input. We formulate this as a missing034

item prediction task. Missing item prediction has035

multiple applications, notably in conversational036

recommendation, where users can provide a list037

of items (e.g. movies) they liked and ask for new038

suggestions. This task involves a form of inductive039

reasoning, in contrast to the deductive reasoning040

typically explored in long context stress tests. More041

importantly, it requires comparing a representation 042

to the whole input, and we notice that this is diffi- 043

cult for current LLMs, which leads to the prediction 044

of items already in the input (repetition). 045

Missing item prediction is also relevant when 046

models are asked to generate long lists. We ob- 047

served repetitions in this scenario1, but we focus on 048

the movie recommendation use case, where users 049

provide the movies they have watched, and we also 050

create synthetic examples, notably number ranges 051

with a missing element. We quantify the repetition 052

phenomenon with existing off-the-shelf language 053

models and investigate whether fine-tuning can eas- 054

ily address this problem. The created datasets are 055

publicly available2. 056

2 Related work 057

Repetitions in language modeling We study a 058

form of repetitions, a well-identified problem in 059

language models (Keskar et al., 2019), which can 060

sometimes lead to text degeneration, where models 061

repeat the same token indefinitely (Fu et al., 2021). 062

Repetition penalties were proposed to alleviate this 063

issue (Keskar et al., 2019), but they operate at the 064

token level and cannot scale to large contexts where 065

all tokens are already represented. Repetitions also 066

exist in more subtle ways, as Chiang and Lee (2024) 067

showed that chain-of-thought reasoning contains 068

redundant content. 069

LLM context length stress tests Our work is 070

also related to context window stress testing and 071

language modeling-based recommendation. Pre- 072

vious work has studied the ability of attention mech- 073

anisms to identify what is present in long contexts, 074

but not what is missing. The Long-Range Arena 075

(Tay et al., 2021) provides the first systematic analy- 076

sis of the long-range processing capabilities of text 077

1For example, asking Claude Sonnet 3.5 200 movies re-
leased in 2022 leads to numerous repetitions: [artifact]

2[data:HF-datasets ]

1

https://claude.site/artifacts/67f091d2-4ab5-4b88-9fce-b4114ade666e
https://redacted
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(a) Zero-shot missing number prediction
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(b) Zero-shot missing movie prediction

Figure 1: Zero-shot test accuracy and repetition rate with increasing itemset sizes.

encoders, focusing mainly on algorithmic reason-078

ing and retrieval tasks. BABILong (Kuratov et al.,079

2024) uses bAbi reasoning tasks (Weston et al.,080

2016) and interleaves relevant text with irrelevant081

input. FlenQA (Levy et al., 2024) applies a similar082

process to the RuleTaker (Clark et al., 2020) de-083

ductive logical reasoning task. Ruler (Hsieh et al.,084

2024) uses simple algorithmic/retrieval tasks.085

Recommendation with LLMs Our study is also086

related to LLM usage for collaborative filtering087

(Sileo et al., 2022), where users enumerate a list088

of items to communicate their tastes. LLMs can089

also be used in content-based recommendations,090

where users explicitly mention what they are look-091

ing for (Wu et al., 2023). Here, we do not address092

the fine-grained relevance of the recommendations093

(providing an item that users do not already know).094

Repetition is also related to the novelty metric095

in recommender systems evaluation (Vargas and096

Castells, 2011).097

3 Missing item prediction098

We formalize the task of missing item prediction099

as follows: Given a set X (randomly shuffled) of N100

elements, guess the element y that is missing in X .101

This is technically an induction task that can be un- 102

derdetermined but we can construct relatively easy 103

X,y pairs with easily identifiable itemsets S (num- 104

bers from 0 to 1024, letters, chemical elements...) 105

and randomly removing one element y from S to 106

get X . We can use two evaluation metrics: 107

Accuracy the rate at which a language model re- 108

turns the expected missing element. 109

Repetition rate the rate at which a language 110

model returns an element that is already in X . 111

Repetitions are always mistakes. For easily iden- 112

tifiable sets, ideal behavior is perfect accuracy and 113

no repetition. But even in cases where the structure 114

of S is under-determined, language models per- 115

forming missing item prediction should not repeat 116

elements from X . 117

To construct an example of the missing item 118

prediction task, we select an itemset S , select a ran- 119

dom element y, and present a scrambled version of 120

X=S\{y} in a prompt explicitly asking the model 121

to guess a missing element. We provide the follow- 122

ing itemsets: 123

Movies We select a user from the MovieLens 1M 124

dataset who watched more than 2048 movies. 125

Numbers Numbers in numerical form (1...1024). 126

We exclude set extrema from the choice of y for 127

2
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(a) Llama-3 zero-shot missing number prediction on multiple domains
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(b) Llama-3 fine-tuned on missing number prediction

Figure 2: Llama-3-8B-Instruct Accuracy on various itemsets with increasing itemset sizes, without any fine-tuning
(a) and after fine-tuning on the numbers itemset.

numerical itemsets.128

Numbers-english We use the same numbers but129

converted in English using the num2word library3.130

An example with the Numbers itemset of size 8131

is QUESTION: Find the missing element in 5, 7, 1,132

3, 6, 8, 4. ANSWER: 2.133

4 Experiments134

We use the same prompt template for all models:135

Guess the missing item from this list: {X}. Di-
rectly answer with only one item. Item format
should match the list format. Provide no expla-
nation. Answer format: "{item}."

136

To construct this prompt template, we iterated on137

Llama-3-8B-Instruct with the numbers itemset val-138

idation data until we obtained a satisfactory output139

format. We normalize the outputs with punctuation140

removal and lowercasing to compute repetition rate141

and accuracy, and perform exact matches to com-142

pute accuracy and repetition rate.143

We use powers of 2 starting from 16 as itemset144

sizes. This ensures that there are enough items to145

3https://github.com/savoirfairelinux/num2words

guess the itemset structure. We generate 200 train 146

examples and 100/100 validation test examples per 147

itemset size and itemset type. 148

4.1 Zero-shot evaluation 149

We evaluate off-the-shelf instruction-tuned lan- 150

guage models via OpenRouter API. We evaluate 151

Llama3-Instruct 8B and 70B, Gemini 1.5 Flash and 152

Pro, GPT-4o, and Claude 3.5 Sonnet with the de- 153

fault hyperparameters. 154

Figure 1 shows the evolution of Accuracy and 155

Repetition metrics with different itemsets sizes for 156

numeric numbers and movies missing item predic- 157

tion tasks. Most language models solve the missing 158

number prediction task with relatively high accu- 159

racy with less than 128 items. Increasing model 160

size improves accuracy, as Gemini Pro and Llama- 161

3-70B outperform their smaller counterparts. How- 162

ever, the repetition rates shoot up and the accuracy 163

decreases in all models after 256 items. 164

We cannot interpret the low accuracy of the 165

movie item prediction tasks as a failure because 166

the models can predict relevant movies that are not 167

y. However, we can interpret the growing repeti- 168

tion rate as a failure, which can frustrate users who 169

3

https://github.com/savoirfairelinux/num2words


could expect better recommendations as they pro-170

vide more examples, which limits the accuracy of171

conversational recommender systems that do not172

filter their output to prevent repetitions.173

4.2 Fine-tuning174

We now investigate whether fine-tuning can easily175

address this issue. We fine-tune Llama-3 Instruct 8B176

using Unsloth default configuration 4 (4bit quantiza-177

tion, LoRA (Dettmers et al., 2024) with dimension178

16, 1 epoch with a learning rate of 2e-4). We fine-179

tune on 500 numeric items of a size below 256 and180

evaluate on the test set in-domain and out-domain.181

Figure 2 shows that fine-tuning improves missing182

item prediction on in-domain data, but does not gen-183

eralize to larger itemsets nor to different domains,184

which might indicate a limit of current attention185

architectures that may not be solved with data only.186

4.3 Contrastive evaluation187

We also evaluated the ability of LLama-3-8B-188

Instruct to tell whether an element is present or not189

in the list by randomly sampling either the missing190

element or a random element from a prompt.191

{X}. Is "{item}" in the previous list? Pro-
vide no explanation, directly answer with only
"Yes." or "No."

192

Figure 3 shows the evolution of accuracy with193

growing itemset sizes. Llama-3-8B-Instruct main-194

tains 75% accuracy below 1024 items5. This shows195

that once the item is explicitly present in the query,196

the model is much better at identifying it. These197

results are lower than the Needle in a Haystack198

evaluation scores of Llama-3 (Zhang et al., 2024),199

which is due to the high similarity between items.200

This suggests that context-length stress testing is201

harder when many prompt elements are similar to202

each other, which makes existing (Kuratov et al.,203

2024) problem lengthening strategies too easy to204

get around.205

4https://colab.research.google.com/drive/
135ced7oHytdxu3N2DNe1Z0kqjyYIkDXp?usp=sharing

5All examples fit in the 8K context window of Llama 3.
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Figure 3: Zero-shot contrastive accuracy with Lllama-
3-8B-Instruct on the Numbers itemset.

5 Analysis 206

To solve missing item prediction, a model must gen- 207

erate a plausible candidate and verify its absence 208

from the input list. Our contrastive experiments 209

show that verifying a single item is much easier 210

than generating a novel one. We hypothesize an at- 211

tention overflow: as the list grows, the mechanism 212

for verifying absence against all items simultane- 213

ously becomes overloaded. We visualize this with 214

the contrastive task (Appendix A). When an item 215

is present, attention focuses on it. When absent, 216

attention diffuses across the input, as if searching 217

for a match. This supports the idea that generat- 218

ing a novel item requires a distributed verification 219

that fails with long lists, causing repetitions. This 220

issue appears fundamental, affecting models with 221

standard (8k) and extended context windows alike, 222

pointing to an architectural bottleneck in handling 223

exhaustive, non-local comparisons rather than a 224

side-effect of context extension techniques. 225

6 Conclusion 226

We introduce a new missing item prediction dataset 227

and show that repetitions occur in plausible recom- 228

mendation tasks and synthetic list completion. Our 229

findings highlight a limitation in the ability of cur- 230

rent LLMs to check for exhaustivity. Our examples 231

show that language models can repeat context el- 232

ements when asked to produce novel content from 233

a long list, with issues arising from as few as a hun- 234

dred items. This contrasts with other long-context 235

benchmarks where failures appear at much larger 236

scales. We attribute this to an attention overflow, 237

where the model fails to compare a generated can- 238

didate against all input items simultaneously. While 239

in-model solutions are challenging, a practical mit- 240

igation could involve offloading verification to an 241

external code interpreter. Our dataset is publicly 242

available to support future work on this problem. 243

4

https://colab.research.google.com/drive/135ced7oHytdxu3N2DNe1Z0kqjyYIkDXp?usp=sharing
https://colab.research.google.com/drive/135ced7oHytdxu3N2DNe1Z0kqjyYIkDXp?usp=sharing


Limitations244

Our study has several limitations. The range of item-245

sets and models could be expanded for broader gen-246

eralizability. Our fine-tuning experiments were lim-247

ited, and more systematic prompt engineering might248

yield different results. We also lack a human base-249

line for comparison, though the task’s difficulty for250

unaided humans would strongly depend on factors251

like time and available tools. The movie recommen-252

dation task simplifies real-world scenarios. While253

we provide initial evidence from attention visualiza-254

tions (Appendix A), a more granular analysis of spe-255

cific heads and layers is needed. Addressing these256

limitations would provide a more comprehensive un-257

derstanding of the attention overflow phenomenon.258
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A Attention Visualization337

To better understand the attention overflow phenomenon, we visualize the heads-wise averaged attention338

from the input item tokens to the final answer tokens during the contrastive evaluation task with Qwen 3 4B339

(Yang et al., 2025), which we chose because of its small size. We change the prompt to force the attention340

scan to occur within a single token. The prompt in Section 4.3 has multiple tokens between the set and341

the queried token, so that the computation can be distributed over multiple steps, which makes it much342

harder to visualize the attention in an interpretable manner.343

You will receive a set S followed by a number N. Directly output Yes if N is in S, and No if not. S:
{set}. N: {word}

344

Figure 4 shows the attention patterns for a list of 100 and 99 numbers:345
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(b) Attention when the queried item (sixty-one) is absent from the input list. Attention is diffuse, spreading across multiple
locations as the model searches for the item. This distributed search is more complex and prone to failure than focused retrieval.

Figure 4: Average attention from input list tokens to the answer token ("Yes" or "No") in the contrastive task. We
exclude boundary elements from the visualization as they naturally attract more attention. We also exclude first
and last layers from the visualization.

As shown, when the item is present (Figure 4a), the model’s attention is highly localized to that specific346

item in the context. However, when the item is absent (Figure 4b), the attention becomes diffuse and spreads347

out over many items in the list. This suggests the model is performing a broad, less efficient search across the348

context. We hypothesize that the generative task (finding the missing item) requires this diffuse, all-items-349

at-once verification, which becomes intractable as the list size increases, leading to overflow and repetition.350
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