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Abstract
Asynchronous federated learning, which enables
local clients to send their model update asyn-
chronously to the server without waiting for oth-
ers, has recently emerged for its improved effi-
ciency and scalability over traditional synchro-
nized federated learning. In this paper, we study
how the asynchronous delay affects the conver-
gence of asynchronous federated learning under
non-i.i.d. distributed data across clients. We
first analyze the convergence of a general asyn-
chronous federated learning framework under a
practical nonconvex stochastic optimization set-
ting. Our result suggests that the asynchronous
delay can largely slow down the convergence, es-
pecially when the data heterogeneity is high. To
further improve the convergence of asynchronous
federated learning with heterogeneous data dis-
tribution, we then propose a novel asynchronous
federated learning method with a cached update
calibration. Particularly, we let the server cache
the latest update for each client and reuse these
variables for calibrating the global update at each
round. We theoretically prove the convergence
acceleration for our proposed method under non-
convex stochastic settings and empirically demon-
strate its superior performances compared to stan-
dard asynchronous federated learning. More-
over, we also extend our method with a memory-
friendly adaption in which the server only main-
tains a quantized cached update for each client for
reducing the server storage overhead.

1. Introduction
Federated Learning (McMahan et al., 2017) has become an
increasingly popular large-scale machine learning paradigm
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where machine learning models are trained on multiple
edge clients guided by a central server. FedAvg (McMahan
et al., 2017), also known as Local SGD (Stich, 2018), is
one of the most popular federated optimization methods,
where each client locally performs multiple steps of SGD
updates followed by the synchronous server aggregation
of the local models. However, the traditional synchronous
aggregation scheme may cause efficiency and scalability
issues as the server need to wait for all participating clients
to complete the task before conducting the global update
step. This promotes the development of asynchronous feder-
ated learning methods such as FedAsync (Xie et al., 2019),
and FedBuff (Nguyen et al., 2022), which adopt flexible
aggregation schemes and allow clients to asynchronously
send back their model update and thus improve the overall
training efficiency and scalability.

Such an asynchronous aggregation scheme does not come
with no costs: the asynchronous delay, which describes the
fact that the delayed local model update could be computed
based on a past global model rather than the current global
model, slows down the convergence of asynchronous fed-
erated learning. Moreover, the negative impact of the asyn-
chronous delay on the convergence gets even worse when
the training data are non-i.i.d. distributed across clients.
This is intuitive since empirical observation suggests that
the global model changes more significantly in adjacent
rounds when the data heterogeneity is high. Consequently,
the asynchronous delay would cause the delayed local model
update to be more outdated and inconsistent with the current
global model, hence worsening the overall model conver-
gence. Therefore, it is crucial to tackle the data heterogene-
ity issue in asynchronous federated learning, not only for
reducing the negative impact of data heterogeneity itself but
also for reducing the impact of the asynchronous delay and
improving the overall convergence.

In this work, we rigorously study how the asynchronous de-
lay affects the convergence of asynchronous federated learn-
ing under non-i.i.d. distributed data across clients. We first
conduct the theoretical analysis of a general asynchronous
federated learning framework under a nonconvex stochastic
setting and verify that the effect brought by asynchronous
delay would be amplified by the highly non-i.i.d. distributed
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data. Inspired by the incremental gradient in SAGA (De-
fazio et al., 2014), we then develop a novel asynchronous
federated learning method, Cache-Aided Asynchronous Fed-
erated Learning (CA2FL), for improving the convergence
degradation caused by the joint effect of data heterogeneity
and asynchronous delay. In CA2FL, the server maintains the
latest update from each client and reuses this cached update
for calibrating the global update. The proposed CA2FL does
not change the local training steps on clients and only modi-
fies the global aggregation steps. Therefore, the proposed
CA2FL does not incur extra communication and computa-
tion overhead on clients, and it does not raise additional
privacy concerns than the traditional synchronous and asyn-
chronous federated learning methods. Moreover, we extend
our CA2FL to a memory-friendly adaption for further scala-
bility improvement. We summarize our contribution in this
paper as follows:

• We investigate the convergence property of the general
asynchronous federated learning framework, which
benefits from the flexible aggregation scheme with
improved efficiency and scalability, under non-i.i.d.
distributed data across clients. We demonstrate that
the asynchronous delay can theoretically slow down
the convergence and such an impact could be further
amplified by the highly non-i.i.d. distributed data.

• To tackle the convergence degradation caused by the
joint effect of data heterogeneity and asynchronous
delay, we propose a novel asynchronous federated
aggregation method with cached update calibrations
(CA2FL) in which the server maintains cache updates
for each client and reuse the cached update for global
aggregation calibration. We prove that with the help
of cached updates, our proposed method can signifi-
cantly improve the convergence rate under nonconvex
stochastic settings. Empirical experiments on bench-
mark datasets and models verify the effectiveness of
the proposed method.

• We extend our proposed CA2FL to a memory-friendly
cached update calibration method, MF-CA2FL, where
the server only maintains the quantized cached update
instead of the full-size one. We show that MF-CA2FL
can achieve very similar performance and final accu-
racy as CA2FL, with much fewer memory costs.

2. Preliminaries
Federated learning framework. In general federated
learning framework, we aim to minimize the following ob-
jective through N local clients:

min
x∈Rd

f(x) :=
1

N

N∑
i=1

Fi(x) =
1

N

N∑
i=1

Eξ∼Di [Fi(x; ξi)], (2.1)

where x represents the model parameters with d dimen-
sions, Fi(x) = Eξ∼Di [Fi(x, ξi)] represents the local loss

function corresponding to client i and let Di denotes the
local data distribution on client i. In this work, we focus on
the non-convex optimization problem with heterogeneous
data distributions, i.e., Fi are non-convex and the local data
distributions Di and Dj are non-i.i.d. distributed for dif-
ferent client i and j. FedAvg (McMahan et al., 2017) is a
popular synchronous optimization algorithm to solve Eq.
2.1, where each participating client performs local SGD up-
dates, and the server performs global averaging steps after
receiving all the updates from assigned clients.

General asynchronous federated learning framework.
Asynchronous federated learning has been introduced to
facilitate efficiency and scalability for clients in solving Eq.
2.1 asynchronously. In asynchronous federated learning,
clients are allowed to train and synchronize local models
at their own pace. Several works such as FedAsync (Xie
et al., 2019) and FedBuff (Nguyen et al., 2022) have ex-
plored different aspects of asynchronous federated learning.
Specifically, FedAsync (Xie et al., 2019) studied an algo-
rithm that the server would immediately update the global
model once it receives a local model from an arbitrary client
while aggregating individual client updates may cause some
privacy issues. FedBuff (Nguyen et al., 2022) studied an
asynchronous federated learning method with differential
privacy and secure aggregation consideration, thus we gener-
alize FedBuff (without differential privacy) into this frame-
work. We summarize a general asynchronous federated
learning framework in Appendix B, which is structured by
enabling the server to collect several clients’ updates for
updating one step of a global model.

Heterogeneous across clients. Several works (Karim-
ireddy et al., 2020b;a; Acar et al., 2021; Wang et al., 2020b)
have shown that synchronized federated learning methods
suffer from convergence and empirical degradation when
data is heterogeneously distributed across local clients. In
particular, the model variation may be more significant when
only a subset of clients contribute to a round of global up-
dates. This issue of model inconsistency also occurs in asyn-
chronous federated learning and may even become worse
with the existing of gradient delay τ it , since the model used
for local gradient computation is usually different from the
current global model, which makes local updates less rep-
resentative of the global update direction. This intuition
has also been studied in the convergence rate under stochas-
tic non-convex settings for general asynchronous federated
learning as informally stated below.

Theorem 2.1 (Informal, formal statement and proof in
Appendix B). Assume that ∀i ∈ [N ], Fi is smooth
under a common assumption. Let σ2 and σ2

g be
the stochastic and global variance, and let τmax =
maxt∈[T ],i∈St

{τ it} < ∞ be the maximum gradient de-
lay, define f∗ = argminx f(x) and f0 = f(x1) . If
picking the local learning rate η = Θ(

√
KM) and
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ηl = Θ(1/
√
TK), then the global rounds of Algorithm

2 satisfy 1
T

∑T
t=1 E[∥∇f(xt)∥2] = O

( [(f0−f∗)+σ2]√
TKM

)
+

O
(σ2+Kσ2

g

TK

)
+O

( √
K√
TM

σ2
g

)
+O

(Kτ2
maxσ

2
g+τ2

maxσ
2

T

)
.

Remark 2.2. Theorem 2.1 presents the informal convergence
analysis for Algorithm 2 w.r.t. global communication round
T , local steps K and the update accumulation amount M .
From Theorem 2.1, it can be seen that the maximum delay
τmax term indeed affects the overall convergence of the asyn-
chronous federated learning algorithm. Particularly, the last
term involves joint effect term O(Kτ2maxσ

2
g/T ) where the

global variance σ2
g and the maximum delay τmax are multi-

plied together 1. This implies that the convergence degrada-
tion brought by the asynchronous delay τmax is amplified by
the high data heterogeneity (large σg). If data are i.i.d. dis-
tributed across clients, i.e., σg = 0, then O(Kτ2maxσ

2
g/T )

term vanishes to 0. On the other hand, if data are non-i.i.d.
distributed, i.e., σg ̸= 0, the term O(Kτ2maxσ

2
g/T ) will

largely slow down the overall convergence (in fact, when
T ≤ KM , this term would become the dominant term in
the convergence rate). This verifies our intuition that the
data heterogeneity can worsen the impact of asynchronous
delay and jointly deteriorate the convergence, which moti-
vates us to develop a novel method for reducing such joint
effects and improving the convergence for asynchronous
federated learning.

3. Proposed Method: CA2FL
To address the challenges of data heterogeneity and gradi-
ent delay across clients and achieve better convergence in
asynchronous federated learning, we propose a novel Cache-
Aided Asynchronous FL (CA2FL) method. The proposed
CA2FL enables the server to maintain and reuse the cached
updates for global update calibration. Algorithm 1 summa-
rizes our proposed CA2FL. In general, the CA2FL largely
follows the Asynchronous FL framework in Algorithm 2,
while the main difference between our proposed CA2FL
and Algorithm 2 lies primarily in the global update steps.
Specifically, we introduce a global calibration process in
Line 9 and incorporate steps for cached variable updating
shown in Line 11-12.

Global calibration. In CA2FL, the server maintains a latest
cached update for each client, and reuses this cached update
as an approximation of each client’s contribution to the cur-
rent round’s update. Specifically, at global round t, denote
hi
t as the latest cached variable for client i and ht as the

global cached variable which is the average of hi
t among

all clients, i.e., ht =
1
N

∑N
i=1 h

i
t, let St represent a set of

1It is worth noting that our dependency of τmax is on the same
order as FedBuff (Nguyen et al., 2022), and we can further obtain
a linear dependency of τmax as in Koloskova et al. (2022) with
adapting on the learning rate.

clients in which the server received the update at round t.
The server updates the global model to xt+1 by using a cali-
brated variable vt, which is a linear combination in terms of
the global cached variable ht and the latest received model
update difference ∆i

t−τ i
t

and hi
t.

Cached variable update. The server then updates hi
t based

on whether received the update from client i or not (Line
11 in Algorithm 1): if the server received ∆i

t−τ i
t

from client
i, then the server updates the cached variable for it, i.e.,
hi
t+1 = ∆i

t−τ i
t
, otherwise the server keeps the state variable

unchanged as hi
t+1 = hi

t. This update rule for cached
variable enforces the server maintains the latest ∆i

t−τ i
t

for
each client for global update calibration.

Algorithm 1 Cached-Aided Asynchronous FL
Input: initial point x1, local step size ηl, global stepsize η,
server concurrency Mc, server updates after receive M
updates from clients

1: Initialize sampled set with |M1| = Mc clients, send
server initial model x1 to active clients

2: repeat
3: Initialize St = ∅, clients inMt perform local SGD

updates based on Algorithm 3
4: if receive client update then
5: Server receive client update ∆it

t−τ i
t

from client it:

∆t ← ∆t +∆it
t−τ i

t

6: m← m+ 1, St ← St ∪ {it}
7: end if
8: if m = M then
9: Update vt = ht+

1
|St|

∑
i∈St

(∆i
t−τ i

t
−hi

t), where

ht =
1
N

∑N
i=1 h

i
t

10: Update global model xt+1 = xt + ηvt

11: Update clients’ cached variables: for j /∈
St,hj

t+1 = hj
t , for i ∈ St,hi

t+1 = ∆it
t−τ i

t

12: Reset m← 0, t← t+ 1
13: Sample client St+1 ⊆ [N ]/Mt ∪ St, update

Mt+1 ← Mt/St ∪ St+1, and broadcast global
model xt to clients in St+1

14: end if
15: until Convergence

Discussion. The design for the calibration and cached vari-
ables felt somewhat similar to SAGA (Defazio et al., 2014),
a well-recognized stochastic variance-reduction method that
stores previously computed gradients and leverages them
for reducing the gradient variance.

Our design looks like a special form of SAGA by treating
model update difference ∆i

t−τ i
t

as gradients and applied
globally over different clients. However, it is important
to note that our method does not adhere to the properties
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of unbiased incremental gradients that SAGA mainly re-
lies on for its variance reduction purposes, which makes
our theoretical analysis non-trivial and different from that
of SAGA. Therefore, CA2FL should not be considered as
a direct application of SAGA to asynchronous federated
learning.

Note that CA2FL does not require extra communication
and computation overhead on clients, and it is compatible
with privacy persevering approaches such as differential
privacy and secure aggregation. However, one drawback
is that CA2FL introduces extra memory overhead on the
server since it needs to store a cached update for each client.
To reduce this storage overhead, we further extend the pro-
posed CA2FL to a memory friendly adaption in Appendix
C, which demonstrates that CA2FL can maintain overall
good performance without the need to maintain full-size
cached updates.

4. Convergence Analysis
Due to space limitations, we will introduce the assumptions
needed for the convergence analysis in Appendix.

Theorem 4.1 (Informal Convergence analysis for Algorithm
1). Assume that ∀i ∈ [N ], Fi is smooth under a common
assumption. Let σ2 and σ2

g be the stochastic and global vari-
ance, let τmax = maxt∈[T ],i∈St

{τ it} <∞ be the maximum
gradient delay and let ζmax = maxt∈[T ],i∈St

{ζit} < ∞
represents the maximum state delay. If the local learning
rate η = Θ(

√
KM) and ηl = Θ(1/

√
TK) then the global

rounds of Algorithm 2 satisfy

1

T

T∑
t=1

E[∥∇f(xt)∥2]

= O
(

f0 − f∗√
TKM

)
+O

(
σ2

√
TKM

)
+O

(
σ2 +Kσ2

g

TK

)
+O

(
τ2maxσ

2

T

)
+O

(
ζ2max(N −M)2σ2

TN2

)
, (4.1)

where f∗ = argminx f(x).

Remark 4.2. Theorem 4.1 suggests that with a sufficient
amount of global communication rounds T , i.e., T ≥ KM ,
our proposed CA2FL method achieves a desired conver-
gence rate ofO( 1√

TKM
) w.r.t. global communication round

T , local steps K and the update accumulation amount
M , which matches the convergence rate in traditional syn-
chronous federated learning baselines (Yang et al., 2021;
Reddi et al., 2021; Jhunjhunwala et al., 2022).
Remark 4.3. Compared with Theorem 2.1, we notice that
in Theorem 4.1, the joint effect term O(Kτ2maxσ

2
g/T ) no

longer exists, while the asynchronous delay τmax only re-
lates to the stochastic noise σ. This suggests that our pro-
posed CA2FL can benefit from the design of reusing the

cached update for global update calibration, which tackles
the data heterogeneity issue across clients and reduces the
joint impact caused by the asynchronous delay and data
heterogeneity. Note that our design also contributes to the
general data heterogeneity issue in that the O(

√
K√
TM

σ2
g)

term in Theroem 4.1 also gets smaller. Together, those two
improvements finally lead to a better convergence rate for
our proposed CA2FL algorithm.

5. Memory Friendly Cached-Aided
Asynchronous FL

While CA2FL successfully tackles the data heterogeneity
issue in Asynchronous FL, it involves extra memory costs
for maintaining the cached variable for each client on the
server. However, this memory overhead can pose challenges
when applying CA2FL in practice, especially for large mod-
els with massive trainable parameters. To overcome this
memory overhead, we extend the proposed CA2FL to a
memory-friendly adaption method (MF-CA2FL). The main
difference between CA2FL and MF-CA2FL lies in whether
the server maintains a full-size or a quantized latest up-
date. Specifically, in MF-CA2FL, after the client i obtains
the model differences ∆i

t−τ i
t

and sends it to the server, the
server quantizes ∆i

t−τ i
t

to Q(∆i
t−τ i

t
) via unbiased quanti-

zation approaches 2 and keeps Q(∆i
t−τ i

t
) in memory. The

server updates the global calibration variable vt same as
CA2FL. Note that for each global round t, the server up-
dates the quantized Q(∆i

t−τ i
t
) as the cached update, i.e.,

hi
t+1 = Q(∆i

t−τ i
t
),∀i ∈ St, that being said, the cached

variable hi
t+1 for each client represents the latest quan-

tized model update difference. Therefore, compared to
CA2FL, this memory-friendly adaption effectively reduces
the memory overhead. Due to space limits, we summarize
the detailed MF-CA2FL algorithm and provide a complete
theoretical analysis for convergence guarantee in Appendix
C.

6. Experimental Results
Datasets, models, and methods. We present the experi-
mental results on the CIFAR-10 (Krizhevsky et al., 2009)
dataset where we evaluate experiments on non-i.i.d. data
distributions by a Dirichlet distribution partitioned strategy
with parameter α = 0.3 similar to Wang et al. (2020a;b).
We adopt the same CNN network as in Wang & Ji (2022)
and ResNet-18 network (He et al., 2016). We compare our
proposed CA2FL and MF-CA2FL with the general Asyn-
chronous federated learning baseline (Algorithm 2). Note
that this asynchronous FL baseline is essentially the same as

2Due to space limits, we leave detailed discussion of the quan-
tization approaches in Appendix C.
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FedBuff without differential privacy (Nguyen et al., 2022)
when limiting the concurrency of clients. Due to the space
limit, we leave additional experiments on more datasets and
models together with the experiment details in Appendix D.

Main Results. Table 1 shows the overall performance on
training CIFAR-10 with a CNN model and the ResNet-18
model. We observe that the proposed CA2FL shows im-
provement upon the general Asynchronous FL baseline, and
the proposed MF-CA2FL with 8 bits and 4 bits quantization
maintains the superior performance of the cached update
with just 0.1%-0.3% loss decreasing comparing to the pro-
posed CA2FL method, while reduces the memory overhead
by up to 8 times compared to CA2FL. This demonstrates
that our proposed CA2FL and MF-CA2FL with 8 bits or 4
bits quantization achieve overall better performance than
the general asynchronous federated learning method.

Table 1. The test accuracy of training CNN and ResNet-18 models
on CIFAR-10. We report the final accuracy of training 500 global
rounds, and the global round when achieves the desired accuracy.

Method & Model CNN ResNet-18
Acc. R#(50%) Acc. R# (80%)

Asynchronous FL 50.23 284 74.22 500+
CA2FL 53.66 294 77.16 449
MF-CA2FL (8 bits) 53.54 314 75.09 461
MF-CA2FL (4 bits) 53.38 329 74.18 500+
MF-CA2FL (2 bits) 41.55 500+ 51.19 500+

Ablation Studies. We conduct ablation studies to investi-
gate the effect of maximum asynchronous delay τmax, the
effect of data heterogeneity, and the effect of different delay
sampling strategies. Due to constraints on space, we pro-
vide detailed ablation results and discussions in Appendix
D. Figure 1 shows curves of test accuracy for several abla-
tions studies. From plots (a) and (b) we can observe that
compared to the general Asynchronous federated learning
method, our proposed is less sensitive to the variation of
maximum delay 3. This suggests that the delay could have a
relatively weaker impact on the overall model performance
in CA2FL. We show the different levels of data heterogene-
ity in the plot (c), Figure 3. For plot (d), we investigate the
impact of letting all clients’ wall-time delay sampled from
the same distribution σh ∼ halfnorm(5) or letting clients’
wall-time delay randomly sampled from different half nor-
mal distributions. We observe that sampling from the same
distributions worsens the overall performance of both our
proposed CA2FL and the general Asynchronous federated
learning baseline 4.

3Due to the algorithm structure, we cannot directly control the
maximum delay, instead, we adjust the overall concurrency Mc

and report the result with fixed model accumulation amount M
and different levels of concurrency Mc.

4We further discuss this in Appendix D.
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Figure 1. Ablation study with several context: (a) the effect of
maximum delay in the Asynchronous FL baseline; (b) the effect
of maximum delay in the proposed CA2FL; (c) the effect of data
heterogeneity in CA2FL; (d) the effect of different delay σh sam-
pling methods.

7. Conclusions
In this paper, we first investigate the convergence of general
asynchronous federated learning under heterogeneous data
distributions and we show that the data heterogeneity ampli-
fies the negative impact of asynchronous delay which slows
down the convergence of asynchronous federated learning.
To address this convergence degradation issue, we propose
a novel asynchronous federated learning method, CA2FL,
which involves caching and reusing previous updates for
global calibration. We provide theoretical analysis under
non-convex stochastic settings that demonstrate the signif-
icant convergence improvement of our proposed CA2FL.
Moreover, we extend the proposed CA2FL to a memory-
friendly adaption, MF-CA2FL, for reducing the storage
overhead caused by caching the latest update. Empirical
results demonstrate the superior performance of the pro-
posed CA2FL compared to general asynchronous federated
learning, and it also shows that the proposed MF-CA2FL
could largely save the memory overhead while maintaining
the superior performance benefits from the cached update.
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A. Related Work and Preliminaries
Synchronous FL. Federated learning (Konečnỳ et al., 2016) play a critical role in collaboratively training models at edge
devices with potential privacy protections. Basic optimization methods for federated learning include SGD-based global
optimizer, e.g., FedAvg (McMahan et al., 2017) (a.k.a. Local SGD (Stich, 2018) and its variants (Li et al., 2019; Yang
et al., 2021), adaptive gradient optimization based global optimizer such as FedAdam (Reddi et al., 2021), FedAGM (Tong
et al., 2020) and FedAMS (Wang et al., 2022). Recently, several works address the data heterogeneity issue through several
aspects. For example, FedProx (Li et al., 2020) adds a proximate term to align the local model with the global one, and
FedDyn (Acar et al., 2021) involves dynamic regularization term for local and global model consistency. FedNova (Wang
et al., 2020b) proposes a normalized averaging mechanism that reduces objective inconsistency with heterogeneous data.
Moreover, several works study to eliminate the client drift caused by data heterogeneity from the aspect of variance reduction
such as Karimireddy et al. (2020b;a); Khanduri et al. (2021); Cutkosky & Orabona (2019); Jhunjhunwala et al. (2022). They
introduce additional control variables to track and correct the local model shift during local training, but they require extra
communication costs for synchronizing these control variables. Besides, FedDC (Gao et al., 2022) involves both dynamic
regularization terms and local drift variables for model correction.

Asynchronous SGD and Asynchronous FL. Asynchronous optimization methods such as asynchronous SGD and its
variants have been discussed for many years. For example, Hogwild! SGD (Niu et al., 2011) studies a coordinate-wise
asynchronous method without any locking which allows processors access to shared memory and provides the possibility
of overwriting each other’s work, and Nguyen et al. (2018) provided a tight convergence analysis for SGD and Hogwild!
algorithm. Some other works focusing on the theoretical analysis for the asynchronous SGD such as Mania et al. (2017);
Stich et al. (2021). Leblond et al. (2018) studies the SAGA method in the context of asynchronous SGD and demonstrates
the theoretical convergence improvement of the asynchronous SAGA. Glasgow & Wootters (2022) explored SAGA methods
in the context of asynchronous distributed-data settings provided a theoretical analysis under (strongly) convex loss
functions. In the context of federated learning, the system heterogeneity across clients, e.g., the computation capabilities and
communication bandwidths, limits the efficiency and practicality. Hence the asynchronous federated learning aggregation
methods have been raised for adjusting for the flexibility and scalability consideration. For example, FedAsync (Xie et al.,
2019) is proposed for clients to update asynchronously to the server, and FedBuff (Nguyen et al., 2022) is extended to a
buffered asynchronous aggregation strategy. Anarchic Federated Averaging (AFA) (Yang et al., 2022) is another related
work focusing on letting the clients decide when and whether to participate in global training. Moreover, there are several
works studying the theoretical convergence analysis in asynchronous federated learning with arbitrary delay (Avdiukhin &
Kasiviswanathan, 2021; Mishchenko et al., 2022) or the complete theoretical analysis under various assumptions (Koloskova
et al., 2022).

Preliminaries. As we mentioned in Section 2, here we summarize the general asynchronous federated learning methods
in Algorithm 2. In Algorithm 2, the server initializes by selecting an active client setM1 with concurrency Mc

5 and
assigning the initial model x1 to these clients. Throughout the algorithm, all clients conduct K steps of local training
asynchronously (Algorithm 3) at their own pace. This means each client trains the local model with the previously assigned
global model xt−τ i

t
, where τ it represents the gradient delay, i.e., the difference between the round when client i start to

compute the gradient and the round that the update difference ∆i
t−τ i

t
from client i is received by the server. The server

does not immediately update the global model once receiving a client’s update, instead, it accumulates the model update
difference ∆t (Line 5 in Algorithm 2) and updates the global model xt+1 once it receives M updates from clients in St
(Lines 10-12 in Algorithm 2). After that, a subset of clients St+1 are assigned with the latest update xt+1, as shown in Line
11 of Algorithm 2. Note that this client assignment ensures that a client can only be sampled once in a specific global round
t. Once it updates the update difference to the server, it becomes eligible for immediate assignment in the subsequent round
of training.

B. Convergence Analysis for Asynchronous FL and CA2FL
First, we state several general assumptions needed for the convergence analysis.

Assumption B.1 (Smoothness). Each loss function on the i-th worker Fi(x) is L-smooth, i.e., ∀x,y ∈ Rd,∣∣Fi(x)− Fi(y)− ⟨∇Fi(y),x− y⟩
∣∣ ≤ L

2
∥x− y∥2.

5The concurrency implies that the maximum simultaneously active clients is Mc.
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Algorithm 2 Asynchronous FL
Input: initial point x1, local step size ηl, global stepsize η, server concurrency Mc, server updates after receive M updates
from clients

1: Initialize sampled set with |M1| = Mc clients, send server initial model x1 to active clients
2: repeat
3: Initialize St = ∅, clients inMt perform local SGD updates based on Algorithm 3
4: if receive client update then
5: Server receive client update ∆it

t−τ i
t

from client it: ∆t ← ∆t +∆it
t−τ i

t

6: m← m+ 1, St ← St ∪ {it}
7: end if
8: if m = M then
9: Update global model xt+1 = xt + η∆t

10: Reset m← 0, t← t+ 1
11: Sample client St+1 ⊆ [N ]/Mt ∪St, updateMt+1 ←Mt/St ∪St+1, and broadcast global model xt+1 to clients

in St+1

12: end if
13: until Convergence

Algorithm 3 Asynchronous FL - client
Input: Server model (with delay) xt−τ i

t
, learning rate ηl, number of local SGD steps K

1: xi
t−τ i

t ,0
= xt−τ i

t

2: for k = 0, ...,K − 1 do
3: Compute local stochastic gradient: gi

t−τ i
t ,k

= ∇Fi(x
i
t−τ i

t ,k
; ξ)

4: xi
t−τ i

t ,k+1
= xi

t−τ i
t ,k
− ηlg

i
t−τ i

t ,k

5: end for
6: Obtain model update difference ∆i

t−τ i
t
= xi

t−τ i
t ,K
− xt−τ i

t

This also implies the L-gradient Lipschitz condition, i.e., ∥∇Fi(x)−∇Fi(y)∥ ≤ L∥x− y∥. Assumption B.1 is a standard
assumption in nonconvex optimization problems, which has been also adopted in several works (Kingma & Ba, 2015; Reddi
et al., 2018; Li et al., 2019; Yang et al., 2021).

Assumption B.2 (Bounded Variance). Each stochastic gradient on the i-th worker has a bounded local variance, i.e., for all
x, i ∈ [N ],we have E

[
∥∇fi(x, ξ)−∇Fi(x)∥2

]
≤ σ2, and the loss function on each worker has a global variance bound,

1
N

∑N
i=1 ∥∇Fi(x)−∇f(x)∥2 ≤ σ2

g .

Assumption B.2 is widely used in federated optimization problems (Li et al., 2019; Reddi et al., 2021; Yang et al., 2021).
The bounded local variance represents the randomness of stochastic gradients, and the bounded global variance represents
data heterogeneity between clients. Note that σg = 0 corresponds to the i.i.d setting, in which datasets from each client have
the same distribution.

Assumption B.3 (Bounded Gradient Delay). Let τ it represent the delay for global round t and client i which is applied in
Algorithm 2 and 3. τ it implies the difference between the current global round t and the global round at which client i started
to compute the gradient. We assume that the maximum gradient delay is bounded, i.e., τmax = maxt∈[T ],i∈St

{τ it} <∞.

Assumption B.3 is a common assumption in convergence analysis for asynchronous federated learning method (Koloskova
et al., 2022; Yang et al., 2020). In the following, we will show the convergence results general Asynchronous FL methods.

Assumption B.4 (Bounded State Delay). Let ζjt represent the delay of the state variable for global round t and client j /∈ St
in Algorithm 1. ζjt is state in the context of client j which does not update the model difference in round t and then maintains
the state variable hj

t as the last step, and ζjt implies the difference between the current global round t and the global round at
which this client j started to compute the last gradient. We assume that the maximum gradient delay is also bounded, i.e.,
ζmax = maxt∈[T ],j /∈St

{ζjt } <∞.
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Assumption B.4 is also commonly used in convergence analysis for asynchronous federated learning method (Koloskova
et al., 2022; Yang et al., 2022). In the following, we will show the convergence results for Asynchronous FL and our
proposed CA2FL.

Theorem B.5 (Convergence analysis for Algorithm 2). Under Assumptions B.1-B.4, if the local learning rate

ηl and global learning rate η satisfy the following condition: ηl ≤
(√ 36η2K2L2(N−M)2

M2(N−1)2 − 480K2L2τmax −
6ηKL(N−M)

M(N−1)

)
(240K2L2τmax)

−1, and ηl ≤ ηM(N−1)
2KN(M−1) , then the global rounds of Algorithm 2 satisfy

1

T

T∑
t=1

E[∥∇f(xt)∥2] ≤
1

ηηlKT
[f(x1)− E[f(xt+1)]] + L25Kη2l (σ

2 + 6Kσ2
g)

+ τ2maxη
2

{
Kη2l
M

σ2
l +

η2l (N −M)

M(N − 1)
[15K3L3η2l (σ

2
l + 6Kσ2

g) + 90K4L2η2l + 3K2σ2
g ]

}
+

ηL

2

{
ηl
M

σ2
l +

ηl(N −M)

M(N − 1)
[15K2TL3η2l (σ

2
l + 6Kσ2

g) + 90K3L2η2l + 3Kσ2
g ]

}
(B.1)

Corollary B.6. If we choose the local learning rate η = Θ(
√
KM) and ηl = Θ(1/

√
TK) then the global rounds of

Algorithm 2 satisfy

1

T

T∑
t=1

E[∥∇f(xt)∥2] = O
(
[(f0 − f∗) + σ2]√

TKM

)
+O

(
σ2 +Kσ2

g

TK

)

+O
( √

K√
TM

σ2
g

)
+O

(
Kτ2maxσ

2
g + τ2maxσ

2

T

)
, (B.2)

where f∗ = argminx f(x).

Theorem B.7 (Convergence analysis for Algorithm 1). Under Assumptions B.1-B.4, if the local learning rate ηl and

global learning rate η satisfy the following condition: ηηl ≤
(√

1 + 24τ2max +
48(N−M)2ζ2

max

N2 − 1
)(
12K2L2τ2max +

24K2L2(N−M)2ζ2
max

N2

)−1
and ηl ≤

[(
3τmax +

6(N−M)2ζmax

N2

)
2
√
30KL

]−1
, then the global rounds of CA2FL satisfy

1

T

T∑
t=1

E[∥∇f(xt)∥2] ≤
1

ηηlKT
[f(x1)− E[f(xT+1)]] +

(
3 +

6(N −M)2

N2

)
5KL2η2l (σ

2 + 6Kσ2
g)

+
3ηηlL

2M
σ2 +

(
3L2τ2max +

6L2(N −M)2ζ2max

N2

)
3η2η2l Kσ2

M
. (B.3)

Corollary B.8. If we choose the local learning rate η = Θ(
√
KM) and ηl = Θ(1/

√
TK) then the global rounds of

Algorithm 1 satisfy

1

T

T∑
t=1

E[∥∇f(xt)∥2] = O
(

f0 − f∗√
TKM

)
+O

(
σ2

√
TKM

)
+O

(
σ2 +Kσ2

g

TK

)
+O

(
τ2maxσ

2

T

)
+O

(
ζ2max(N −M)2σ2

TN2

)
, (B.4)

where f∗ = argminx f(x).

C. Theoretical Analysis for Memory Friendly Cached-Aided Asynchronous FL
First, we state two additional assumptions for analyzing the quantization method.

Assumption C.1. Assume that the random quantization operation Q(x) is unbiased and has bounded variance, i.e.,

E[Q(x)] = x, E[∥Q(x)− x∥2] ≤ q∥x∥2. (C.1)
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This assumption is a common assumption for quantization methods, which has been adopted in many communication-
compression strategies (Reisizadeh et al., 2020; Haddadpour et al., 2021; Alistarh et al., 2017).

Assumption C.2 (Compression Dissimilarity). For the quantization operator satisfies there exists a constant γ such that, for
each iteration t ≥ 0, we have ∥∥∥∥Q( 1

N

N∑
i=1

∆i
t

)
− 1

N

N∑
i=1

Q(∆i
t)

∥∥∥∥ ≤ γ

∥∥∥∥ 1

N

N∑
i=1

∆i
t

∥∥∥∥. (C.2)

Assumption C.2 bounds the difference between the average of compression and compression of average. Similar assumptions
have been adopted in Haddadpour et al. (2021).

Theorem C.3 (Convergence analysis for MF-CA2FL). Under Assumptions B.1-B.4, Assumptions C.1 and As-
sumptions C.2, if the local learning rate ηl and global learning rate η satisfy the following condition:

ηηl ≤
(√

1 +
48τ2

max

γ2+q2 +
96(N−M)2ζ2

max

N2(γ2+q2) − 1
)(
12K2L2τ2max +

24K2L2(N−M)2ζ2
max

N2

)−1
and ηl ≤

[(
3τmax +

6(N−M)2ζmax

N2

)
2
√
30KL

]−1
, then the global rounds of MF-CA2FL satisfy

1

T

T∑
t=1

E[∥∇f(xt)∥2] ≤
1

ηηlKT
[f(x1)− E[f(xT+1)]] +

(
3 +

6(N −M)2

N2

)
5KL2η2l (σ

2 + 6Kσ2
g)

+
3ηηlL(γ

2 + q2)

M
σ2 +

(
3L2τ2max +

6L2(N −M)2ζ2max

N2

)
6η2η2l K(γ2 + q2)σ2

M
. (C.3)

Corollary C.4. If we choose the local learning rate η = Θ(
√
KM) and ηl = Θ(1/

√
TK) then the global rounds of

MF-CA2FL satisfy

1

T

T∑
t=1

E[∥∇f(xt)∥2] = O
(

f0 − f∗√
TKM

)
+O

(
(γ2 + q2)σ2

√
TKM

)
+O

(
σ2 +Kσ2

g

TK

)
+O

(
τ2max(γ

2 + q2)σ2

T

)
+O

(
ζ2max(N −M)2(γ2 + q2)σ2

TN2

)
, (C.4)

where f∗ = argminx f(x).

D. Additional Experiments
In this section, we present additional empirical results for our proposed methods in training CNN network as in (Wang & Ji,
2022) on CIFAR-10, and ResNet-18 network (He et al., 2016) on CIFAR-10/100 (Krizhevsky et al., 2009) datasets, and
abundant ablations and discussions about our proposed methods. All experiments in this paper are conducted on 4 NVIDIA
RTX A6000 GPUs.

Implementation overview. The number of local training iterations K on each client is set to two local epochs (the amount
of iteration depends on the amount of data for each client, and and the batch size is set to 50 for all experiments by default.
For local update, we use the SGD optimizer with a learning rate gridding from {0.01, 0.1, 1} and a global learning rate
gridding from {0.1, 1}. For a fair comparison, the local SGD updates apply no momentum and no gradient clipping steps for
all methods. We set a total of 100 clients in the network and the concurrency Mc = 20 if there is no further instructions, and
we set the update accumulation amount M = 10 by default. We simulate the delay distribution from several half-normal
distributions similar to FedBuff (Nguyen et al., 2022) controlled by the scaling σh, where larger σh means in expectation
larger wall-clock delay, we default set the half-normal distribution to σh ∼ halfnorm(s) , where s ∼ Unif (0,5).

D.1. Additional Experimental Results

Results on CIFAR-10. Table 2 shows the overall test accuracy of experiments on CIFAR-10 on training different models
with two data heterogeneity levels. It demonstrates that our proposed CA2FL achieve better test accuracy than general
asynchronous federated learning baselines. Particularly, when the data is highly heterogeneously distributed across clients,
indicated by smaller α values in Dirichlet sampling strategies, our CA2FL method significantly outperforms the general
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asynchronous baseline. Particularly, when α = 0.1, CA2FL can significantly outperform Asynchronous FL with more than
a 6% increase. Moreover, in the memory-friendly version MF-CA2FL, which reduces the memory overhead by keeping the
quantized cached update, the superior performance of the cached variable is still observed and leading to better test accuracy
than the general asynchronous baseline. Furthermore, Figure 2 provides the test accuracy curves of training CNN and
ResNet-18 networks on CIFAR-10 with α = 0.3, offering a visual illustration of the effectiveness of our proposed method.

Table 2. The test accuracy of different models on the CIFAR-10 dataset with different models and data heterogeneity degrees. We report
the mean accuracy and the standard derivation over 3 runs with different random seeds.

Method
Dir(0.3) Dir(0.1)

CNN ResNet-18 CNN ResNet-18
Acc. & std Acc. & std Acc. & std Acc. & std

Asynchronous FL 50.15 ± 1.50 75.60 ± 1.13 43.71 ± 3.13 57.31 ± 4.23
CA2FL 53.30 ± 0.49 76.36 ± 0.57 50.13 ± 1.10 68.37 ± 1.97
MF-CA2FL (8 bits) 52.73 ± 0.59 74.77 ± 0.45 49.72 ± 0.99 67.75 ± 3.26
MF-CA2FL (4 bits) 52.72 ± 0.45 74.30 ± 0.73 49.92 ± 0.62 68.79 ± 2.82
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Figure 2. The test accuracy for our proposed CA2FL and MF-CA2FL (4 bits) with asynchronous federated learning baseline in training
CIFAR10 data on CNN and ResNet-18 model.

Results on CIFAR-100. Table 3 presents the overall test accuracy of experiments on CIFAR-100 with two data heterogeneity
levels. It demonstrates that our proposed CA2FL achieve higher test accuracy compared to the general asynchronous
federated learning baseline. Specifically, when the data is highly heterogeneously distributed, e.g., α = 0.01, our CA2FL
method significantly outperforms the general asynchronous baseline with approximately 4.5% improvement compared
to Asynchronous FL. The memory-friendly version MF-CA2FL also shows its advantage over the general asynchronous
federated learning baseline.

Table 3. The test accuracy of different models on the CIFAR-10 dataset with different data heterogeneity degrees. We report the mean
accuracy and the standard derivation over 3 runs with different random seeds.

Method Dir(0.1) Dir(0.01)
Acc. & std Acc. & std

Asynchronous FL 43.64 ± 1.42 22.15 ± 1.54
CA2FL 44.40 ± 1.27 26.67 ± 2.20
MF-CA2FL (8 bits) 43.84 ± 0.47 25.89 ± 0.82
MF-CA2FL (4 bits) 43.85 ± 0.44 25.09 ± 1.75
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D.2. Ablation Studies and Additional Results

We conduct ablation studies to investigate the effect of maximum asynchronous delay τmax, the effect of data heterogeneity,
the delay sampling strategies, and how different quantization levels would affect the overall convergence and generalization
performances of MF-CA2FL. Figure 3 shows curves of test accuracy for different ablations studies.

We show the different levels of data heterogeneity in the plot (a), Figure 3. We also investigate the level of quantization for
the proposed MF-CA2FL. From plots (b) and (c), we observe that MF-CA2FL does not suffer from significant performance
reduction when quantizing the cached update from the full tensor to 8 bits or 4 bits quantized tensor. This suggests that in
CA2FL, the server can save up to 8× storage overhead while still applying the cached update for global model calibration.
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(c) Quantization with ResNet-18

Figure 3. Ablation study with several context: (a) the effect of data heterogeneity in CA2FL; different quantization levels on (b) CNN and
(c) ResNet-18.

Concurrency Mc, update accumulation M and delay. Note that both Algorithm 2 and 1 do not explicitly include the
delay factor τmax, and we emphasize that τmax is only needed for theoretical analysis. In practice, the delay is controlled
by the concurrency Mc and the amount of the model update accumulation M (i.e., the server accumulates model update
difference from M different client to update the global model in a round). When the concurrency Mc is large, indicating a
large number of clients actively receive the global model from the server and compute the gradient simultaneously, thus if
the accumulation number M is small, the delay for clients would be large. Specifically, for plots (a) and (b) in Figure 4,
the maximum asynchronous delay τmax = 3, 4, 5 correspond to the pairs of Mc = 15,M = 10, Mc = 20,M = 10 and
Mc = 25,M = 10, i.e., this τmax ablation is the same as the ablation study of network concurrency Mc.

Moreover, another ablation study regarding τmax is the ablation for the amount of the model update accumulation M .
Figure 4 shows the test accuracy for three pairs: Mc = 20,M = 15, Mc = 20,M = 10 and Mc = 20,M = 5, with the
corresponding τmax = 2, 4, 9. This shows that the maximum delay τmax could also be varying from different model update
accumulation M given the same concurrency Mc. We further track the average delay

τavg =
1

T

T∑
t=1

1

|St|
∑
i∈St

τ it (D.1)

of asynchronous algorithms, which might better describe the delay in both Asynchronous FL and our proposed CA2FL. We
summarize the maximum asynchronous and average delay for the experiments shown in Figure 4 and Table 4.

Simulated delay distributions. We sample the wall-clock delay distributions from several half-normal distributions. We
have investigated a different delay distribution simulation strategy in the plot (a), Figure 5. It shows that if all clients’
wall-clock delays are sampled from the same halfnorm(5) distribution, i.e., σh ∼ halfnorm(5), the overall performance
would be a little worse than each client’s wall-clock time delay is sampled from a random half-normal distribution, i.e.,
σh ∼ halfnorm(s) and s ∼ Unif(0, 5). It is worth mentioning that the fixed half-normal distribution leads to τmax = 2 and
τmax = 0.9946, and random half-normal distribution leads to τmax = 4 and τmax = 0.9184. This further demonstrates that
the average delay is also important for the overall performance of the asynchronous federated learning methods.

We compare how the parameter of the half-normal distribution would affect the overperformance of our proposed method.
We compare experiments with σh ∼ halfnorm(s) and s ∼ Unif(0, 5), σh ∼ halfnorm(s) and s ∼ Unif(0, 1) and σh ∼
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(a) τmax in Async FL
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(b) τmax in CA2FL
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(c) Asynchronous FL
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(d) CA2FL

Figure 4. Ablation study with several contexts: (a) the effect of maximum delay in the Asynchronous FL baseline; (b) the effect of
maximum delay in the proposed CA2FL; different maximum asynchronous delay by adopting different accumulation amount M in (c) the
Asynchronous FL baseline and (d) the proposed CA2FL when training ResNet-18 network on CIFAR-10 dataset.

halfnorm(s) and s ∼ Unif(0, 0.5), which implies that the parameter for wall-clock delays are randomly sampled from
different uniform distributions. Figure 5 plots (b) and (c) show that there is only a slight difference between several uniform
distributions. We track the maximum and average asynchronous delay and we summarize these numerical factors in Table 5.
It shows that although the maximum delay differs from uniform distributions, the average delay is very similar, thus the
overall performance is similar when choosing different uniform distributions for simulating the wall-clock delay.

Comparison with FedAsync (Xie et al., 2019). FedAsync (Xie et al., 2019) is one of the first works studying asynchronous
federated learning methods in which clients jointly train a model with their local private data at their own pace. In FedAsync,
each client conducts K steps of local SGD training to solve a regularized optimization problem, i.e,

min
x∈Rd

Eξ∼Di [Fi(x; ξi)] +
ρ

2
∥x− xt∥2. (D.2)

Once the server receives a local model from an arbitrary client, it would immediately update the global model by adopting a
momentum average strategy:

xt+1 = (1− αt)xt + αtx
i
t−τ,K . (D.3)

The momentum factor αt can be updated in various ways, but we specifically compare our method with two variants:
1) constant update: αt = α · s(t − τ), where s(t − τ) = 1, and 2) polynomial update: αt = α · s(t − τ), where
s(t − τ) = (t − τ + 1)−β with β > 0. Figure 6 illustrates that our proposed CA2FL achieves significantly better test
accuracy results compared to FedAsync with these two different momentum averaging strategies. This further demonstrates
the superior performance of our cached-aided asynchronous federated learning method.

D.3. Hyper-parameters Details

We conduct detailed hyper-parameter searches to find the best hyper-parameter for each baseline. We grid over the local
learning rater ηl ∈ {0.001, 0.01, 0.1, 1.0}, and the global learning rate η ∈ {0.001, 0.01, 0.1, 1.0, 2.0} for each methods.
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Table 4. The maximum and average with different concurrency and clients’ update accumulation when training ResNet-18 network on
CIFAR-10 dataset.

Settings Mc = 15,M = 10 Mc = 20,M = 10 Mc = 25,M = 10

τmax 3 4 5
τavg 0.4888 0.9184 1.312

Settings Mc = 20,M = 15 Mc = 20,M = 10 Mc = 20,M = 5

τmax 2 4 9
τavg 0.3264 0.9181 2.6512
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(c) CA2FL

Figure 5. Ablation study for different distributions for simulating the wall-clock delay.

Table 6 summarizes the hyper-parameter details in our experiments. Experiments are set up with 100 total clients, the
concurrency is Mc = 20 by default, and we let the server update the global model once it receives M = 10 updates from
clients. For each method, we conduct 2 local epochs (the explicit local iterations K may differ from clients) of local training
with a batch size of 50 by default. We set the weight decay as 10−4 for the local SGD optimizer. For FedAsync (Xie
et al., 2019), we additionally grid over the weight of the regularization term ρ ∈ {0.01, 0.1, 1.0}, the momentum factor
αt ∈ {0.1, 0.3, 0.5, 0.9}, and β ∈ {0.3, 0.5} in the polynomial update. Table 7 presents the hyper-parameter details of
FedAsync (Xie et al., 2019).
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Table 5. The maximum and average delay corresponding to ablations in Figure 5, plot (b) and plot (c).

s ∼ Unif(0, 0.5) s ∼ Unif(0, 1) s ∼ Unif(0, 5)

τmax 6 6 4
τavg 0.8992 0.9092 0.9184
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Figure 6. Comparison with FedAsync when training CNN and ResNet-18 model on CIFAR-10 dataset.

Table 6. Hyper-parameters details.
CIFAR-10

Asynchronous FL CA2FL MF-CA2FL (8 bits) MF-CA2FL (4 bits)
Models & Dir(α) ηl η ηl η ηl η ηl η

CNN & Dir(0.3) 0.01 1.0 0.01 1.0 0.01 1.0 0.01 1.0
ResNet-18 & Dir(0.3) 0.01 1.0 0.01 1.0 0.01 1.0 0.01 1.0
CNN & Dir(0.1) 0.01 1.0 0.01 1.0 0.01 1.0 0.01 1.0
ResNet-18 & Dir(0.1) 0.01 1.0 0.01 1.0 0.01 1.0 0.01 1.0

CIFAR-100

Asynchronous FL CA2FL MF-CA2FL (8 bits) MF-CA2FL (4 bits)
Models & Dir(α) ηl η ηl η ηl η ηl η

ResNet-18 & Dir(0.1) 0.01 1.0 0.01 1.0 0.01 1.0 0.01 1.0
ResNet-18 & Dir(0.01) 0.01 1.0 0.01 1.0 0.01 1.0 0.01 1.0

Table 7. Additional hyper-parameters of FedAsync (Xie et al., 2019).
CIFAR-10

Constant update Polynomial update
Models & Dir(α) ηl ρ αt ηl ρ αt β

CNN & Dir(0.3) 0.01 1.0 0.3 0.01 1.0 0.5 0.3
ResNet-18 & Dir(0.3) 0.01 0.1 0.1 0.01 0.1 0.3 0.3
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E. Convergence Analysis for Asynchronous FL
Proof of Theorem B.5. Since f is L-smooth, taking conditional expectation at time t, we have

E[f(xt+1)]− f(xt)

≤ E[⟨∇f(xt),xt+1 − xt⟩] +
L

2
E[∥xt+1 − xt∥2]

= E[⟨∇f(xt)), η∆t⟩]︸ ︷︷ ︸
I

+
η2L

2
E[∥∆t∥2]︸ ︷︷ ︸
II

. (E.1)

Bounding I1

I1 = E[⟨∇f(xt), η∆t⟩]

=
η

M

∑
i∈Mt

E[⟨∇f(xt),∆
i
t−τ i

t
⟩]

= −ηηl
M

∑
i∈Mt

E
[〈
∇f(xt),

K−1∑
k=0

gi
t−τ i

t ,k

〉]

= −ηηl
M

∑
i∈Mt

K−1∑
k=0

E[⟨∇f(xt), g
i
t−τ i

t ,k
⟩]

= −ηηl
M

∑
i∈Mt

K−1∑
k=0

E[⟨∇f(xt),∇Fi(x
i
t−τ i

t ,k
)⟩]
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E
[〈
∇f(xt),

1

N

N∑
i=1

∇Fi(x
i
t−τ i

t ,k
)

〉]
, (E.2)

where the second and third equation holds by the update rule. The fifth one holds by the unbiasedness of stochastic gradient.
By the fact of ⟨a, b⟩ = 1

2 [∥a∥
2 + ∥b∥2 − ∥a− b∥2], we have

− ηηlE
[〈
∇f(xt),

1
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N∑
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K−1∑
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∇Fi(x
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)
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for the last term, we have

ηηl
2

K−1∑
k=0

E
[∥∥∥∥ 1
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∇Fi(xt)−
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t ,k
)
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≤ ηηl
2

K−1∑
k=0

1

N

N∑
i=1

E[∥∇Fi(xt)−∇Fi(x
i
t−τ i

t ,k
)∥2]

≤ ηηl
N

K−1∑
k=0

N∑
i=1

[
E[∥∇Fi(xt)−∇Fi(xt−τ i

t
)∥2] + E[∥∇Fi(xt−τ i

t
)−∇Fi(x

i
t−τ i

t ,k
)∥2]

]

≤ ηηl
N

K−1∑
k=0

N∑
i=1

[
L2E[∥xt − xt−τ i

t
∥2] + L2E[∥xt−τ i

t
− xi

t−τ i
t ,k
∥2]

]
. (E.4)

For the first term, we have

E[∥xt − xt−τ i
t
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t

(xs+1 − xs)
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For the second term, we have
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t
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Thus we have
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Thus for I1, we have
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For simplicity, in the following, we define Vt =
∑N

i=1

∑K−1
k=0 ∇Fi(x

i
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t ,k
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Merging pieces. Therefore, by merging pieces together, we have
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Summing over t = 1 to T , we have
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thus by the constraint as follows,

η2l (M − 1)

NM(N − 1)
− ηηl

2KN2
≤ 0

⇒ ηl ≤
ηM(N − 1)

2KN(M − 1)
,

η2L

2

η2l (N −M)

NM(N − 1)
3NK2 + 30ηηlKL2K2η2l τmax ≤

ηηlK

4

⇒ 6ηηlL(N −M)

M(N − 1)
K + 120K2η2l L

2τmax ≤ 1

⇒ ηl ≤
(√

36η2K2L2(N −M)2

M2(N − 1)2
− 480K2L2τmax −

6ηKL(N −M)

M(N − 1)

)
(240K2L2τmax)

−1, (E.12)

thus we have
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g) + 90K4L2η2l + 3K2σ2
g ]

}
+

ηL

2

{
ηl
M

σ2
l +

ηl(N −M)

M(N − 1)
[15K2TL3η2l (σ

2
l + 6Kσ2

g) + 90K3L2η2l + 3Kσ2
g ]

}
(E.13)

By choosing η = Θ(
√
KM) and ηl = Θ(1/

√
TK), we have

1

T

T∑
t=1

E[∥∇f(xt)∥2] = O
(
[(f0 − f∗) + σ2]√

TKM

)
+O

(
σ2 +Kσ2

g

TK

)

+O
( √

K√
TM

σ2
g

)
+O

(
Kτ2maxσ

2
g + τ2maxσ

2

T

)
, (E.14)

where f∗ = argminx f(x).
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F. Convergence Analysis for CA2FL
Proof of Theorem B.7. By the update scheme of Algorithm 1, we have

vt ← ht +
1

M
(∆i

t−τ i
t
− hi

t−1)⇒ vt = ht−1 +
1

M

∑
i∈St

(∆i
t−τ i

t
− hi

t−1).

vt =
1

N

∑
i/∈St

hi
t−1 +

1

N

∑
i∈St

hi
t−1 +

1

M

∑
i∈St

(∆i
t−τ i

t
− hi

t−1)

=
1

N

∑
i/∈St

hi
t−1 +

∑
i∈St

[(
1

N
− 1

M

)
hi
t−1 +

1

M
∆i

t−τ i
t

]
(F.1)

Since f is L-smooth, taking conditional expectation at time t, we have

E[f(xt+1)]− f(xt)

≤ E[⟨∇f(xt),xt+1 − xt⟩] +
L

2
E[∥xt+1 − xt∥2]

= E[⟨∇f(xt)), ηvt⟩]︸ ︷︷ ︸
I

+
η2L

2
E[∥vt∥2]︸ ︷︷ ︸
II

. (F.2)

Since we hi
t represents the state update for client i, and hi

t keeps unchanged if i /∈ St. We have the following

ht = ht−1 +
1

N

∑
i∈St

(∆i
t−τ i

t
− hi

t−1) =
1

N

∑
i∈St

∆i
t−τ i

t
+

1

N

∑
i/∈St

∆i
t−ζi

t
, (F.3)
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Bounding I

I = E[⟨∇f(xt), ηvt⟩]

= E
[〈
∇f(xt),

η

M

∑
i∈St

∆i
t−τ i

t
+

(
η

N
− η

M

) ∑
i∈St

hi
t−1 +

η

N

∑
i/∈St

hi
t−1

〉]

= −ηηlE
[〈
∇f(xt),

1

M

∑
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K−1∑
k=0

gi
t−τ i

t ,k
+

(
1

N
− 1

M

) ∑
i∈St

K−1∑
k=0

gi
t−ζi

t ,k
+

1

N

∑
i/∈St

K−1∑
k=0

gi
t−ζi

t ,k

〉]

= −ηηlE
[〈
∇f(xt),

1

M

∑
i∈St

K−1∑
k=0

∇Fi(x
i
t−τ i

t ,k
) +

(
1

N
− 1

M

) ∑
i∈St

K−1∑
k=0

∇Fi(x
i
t−ζi

t ,k
)

+
1

N

∑
i/∈St

K−1∑
k=0

∇Fi(x
i
t−ζi

t ,k
)

〉]

= −ηηlKE
[〈
∇f(xt),

1

MK

∑
i∈St

K−1∑
k=0

∇Fi(x
i
t−τ i

t ,k
) +

(
1

NK
− 1

MK

) ∑
i∈St

K−1∑
k=0

∇Fi(x
i
t−ζi

t ,k
)

+
1

NK

∑
i/∈St

K−1∑
k=0

∇Fi(x
i
t−ζi

t ,k
)

〉]
= −ηηlK

2
E[∥∇f(xt)∥2]

− ηηl
2K

E
[∥∥∥∥ ∑

i∈St

K−1∑
k=0

(
1

M
∇Fi(x

i
t−τ i

t ,k
) +

(
1

N
− 1

M

)
∇Fi(x

i
t−ζi

t ,k
)

)
+

1

N

∑
i/∈St

K−1∑
k=0

∇Fi(x
i
t−ζi

t ,k
)

]∥∥∥∥2]

+
ηηlK

2
E
[∥∥∥∥∇f(xt)−

1

K

[ ∑
i∈St

K−1∑
k=0

(
1

M
∇Fi(x

i
t−τ i

t ,k
) +

(
1

N
− 1

M

)
∇Fi(x

i
t−ζi

t ,k
)

)

+
1

N

∑
i/∈St

K−1∑
k=0

∇Fi(x
i
t−ζi

t ,k
)

]∥∥∥∥2], (F.4)

where the second and third equation holds by the update rule. The forth one holds by the unbiasedness of stochastic gradient,
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and the last one holds by the fact of ⟨a, b⟩ = 1
2 [∥a∥

2 + ∥b∥2 − ∥a− b∥2]. For the last item, we have

ηηlK

2
E
[∥∥∥∥∇f(xt)−

1

K

[ ∑
i∈St

K−1∑
k=0

(
1

M
∇Fi(x

i
t−τ i

t ,k
) +

(
1

N
− 1

M

)
∇Fi(x

i
t−ζi

t ,k
)

)

+
∑
i/∈St

K−1∑
k=0

1

N
∇Fi(x

i
t−ζi

t ,k
)

]∥∥∥∥2]

=
ηηlK

2
E
[∥∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

∇Fi(xt)−
1

K

[ ∑
i∈St

K−1∑
k=0

1

M
∇Fi(x

i
t−τ i

t ,k
) +

(
1

N
− 1

M

)
∇Fi(x

i
t−ζi

t ,k
)

+
∑
i/∈St

K−1∑
k=0

1

N
∇Fi(x

i
t−ζi

t ,k
)

]∥∥∥∥2]

=
ηηlK

2
E
[∥∥∥∥ 1

MK

∑
i∈St

K−1∑
k=0

[∇Fi(xt−τ i
t
)−∇Fi(x

i
t−τ i

t ,k
)] +

(
1

N
− 1

M

)
1

K

∑
i∈St

K−1∑
k=0

[∇Fixt−ζi
t
)−∇Fi(x

i
t−ζi

t ,k
)]

+
1

NK

∑
i/∈St

K−1∑
k=0

[∇Fi(xt−ζi
t
)−∇Fi(x

i
t−ζi

t ,k
)] +

1

M

∑
i∈St

[∇Fi(xt)−∇Fi(xt−τ i
t
)]

+

(
1

N
− 1

M

) ∑
i∈St

[∇Fi(xt)−∇Fi(xt−ζi
t
)] +

1

N

∑
i/∈St

[∇Fi(xt)−∇Fi(xt−ζi
t
)]

∥∥∥∥2]

≤ηηlKE
[∥∥∥∥ 1

MK

∑
i∈St

K−1∑
k=0

[∇Fi(xt−τ i
t
)−∇Fi(x

i
t−τ i

t ,k
)] +

(
1

N
− 1

M

)
1

K

∑
i∈St

K−1∑
k=0

[∇Fi(xt−ζi
t
)−∇Fi(x

i
t−ζi

t ,k
)]

+
1

NK

∑
i/∈St

K−1∑
k=0

[∇Fi(xt−ζi
t
)−∇Fi(x

i
t−ζi

t ,k
)]

∥∥∥∥2]+ ηηlKE
[∥∥∥∥ 1

M

∑
i∈St

[∇Fi(xt)−∇Fi(xt−τ i
t
)]

+

(
1

N
− 1

M

) ∑
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[∇Fi(xt)−∇Fi(xt−ζi
t
)] +

1

N

∑
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[∇Fi(xt)−∇Fi(xt−ζi
t
)]

∥∥∥∥2], (F.5)
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where we have

ηηlKE
[∥∥∥∥ 1

MK

∑
i∈St

K−1∑
k=0

[∇Fi(xt−τ i
t
)−∇Fi(x

i
t−τ i

t ,k
)] +

(
1

N
− 1

M

)
1

K

∑
i∈St

K−1∑
k=0

[∇Fi(xt−ζi
t
)−∇Fi(x

i
t−ζi

t ,k
)]

+
1

NK

∑
i/∈St

K−1∑
k=0

[∇Fi(xt−ζi
t
)−∇Fi(x

i
t−ζi

t ,k
)]

∥∥∥∥2]

≤3ηηlK

M
E
[ ∑
i∈St

∥∥∥∥ 1

K

K−1∑
k=0

[∇Fi(xt−τ i
t
)−∇Fi(x

i
t−τ i

t ,k
)]

∥∥∥∥2]

+
3ηηlK(N −M)2

N2M
E
[ ∑
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∥∥∥∥ 1

K

K−1∑
k=0

[∇Fi(xt−ζi
t
)−∇Fi(x

i
t−ζi

t ,k
)]

∥∥∥∥2]

+
3ηηlK(N −M)

N2
E
[ ∑
i/∈St

∥∥∥∥ 1

K

K−1∑
k=0

[∇Fi(xt−ζi
t
)−∇Fi(x

i
t−ζi

t ,k
)]

∥∥∥∥2]
≤3ηηlK

M
M · [5KL2η2l (σ

2 + 6Kσ2
g) + 30K2L2η2l E[∥∇f(xt−τ i

t
)∥2]]

+
3ηηlK(N −M)2

N2M
M · [5KL2η2l (σ

2 + 6Kσ2
g) + 30K2L2η2l E[∥∇f(xt−ζi

t
)∥2]]

+
3ηηlK(N −M)

N2
(N −M) · [5KL2η2l (σ

2 + 6Kσ2
g) + 30K2L2η2l E[∥∇f(xt−ζi

t
)∥2]]

≤3ηηlK · [5KL2η2l (σ
2 + 6Kσ2

g) + 30K2L2η2l E[∥∇f(xt−τ i
t
)∥2]]

+
6ηηlK(N −M)2

N2
[5KL2η2l (σ

2 + 6Kσ2
g) + 30K2L2η2l E[∥∇f(xt−ζi

t
)∥2]]. (F.6)

We also have

ηηlKE
[∥∥∥∥ 1

M

∑
i∈St

[∇Fi(xt)−∇Fi(xt−τ i
t
)] +

(
1

N
− 1

M

) ∑
i∈St

[∇Fi(xt)−∇Fi(xt−ζi
t
)]

+
1

N

∑
i/∈St

[∇Fi(xt)−∇Fi(xt−ζi
t
)]

∥∥∥∥2]

≤3ηηlK

M
E
[ ∑
i∈St

∥∇Fi(xt)−∇Fi(xt−τ i
t
)∥2

]
+

3ηηlK(N −M)2

N2M
E
[ ∑
i∈St
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]
+

3ηηlK(N −M)
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E
[ ∑
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∥∇Fi(xt)−∇Fi(xt−ζi
t
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≤3ηηlKL2τmax

M
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[ ∑
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t−1∑
s=t−τ i

t

∥xs+1 − xs∥2
]
+

3ηηlK(N −M)2ζmax

N2M
E
[ ∑
i∈St

t−1∑
s=t−ζi

t

∥xs+1 − xs∥2
]

+
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E
[ ∑
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t−1∑
s=t−ζi

t
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]
. (F.7)
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Bounding II

II =
η2L

2
E[∥vt∥2] =

η2L

2
E
[∥∥∥∥ 1

M

∑
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∆i
t−τ i
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+

(
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M

) ∑
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∥∥∥∥2]

≤ η2η2l L

2
E
[∥∥∥∥ ∑

i∈St

K−1∑
k=0

(
1

M
[gi

t−τ i
t ,k
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)
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−∇Fi(x

i
t−τ i

t ,k
)∥2] +

(
1

N
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i
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+
1
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1

M
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i
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(
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+
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2
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∥∥∥∥2]. (F.8)

Merging pieces. For simplicity, we define Vt =
∑

i∈St

∑K−1
k=0

(
1
M∇Fi(x

i
t−τ i

t ,k
) +

(
1
N −

1
M

)
∇Fi(x

i
t−ζi

t ,k
)
)
+
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1
N

∑
i/∈St

∑K−1
k=0 ∇Fi(x

i
t−ζi

t ,k
). Therefore, by merging pieces together, we have
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t
)∥2] + 6ηηlK(N −M)2

N2

∑
i/∈St

30K2L2η2l E[∥∇f(xt−ζi
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]
+

3ηηlK(N −M)2ζmax

N2M
E
[ ∑
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i/∈St

t−1∑
s=t−ζi

t

∥xs+1 − xs∥2
]

+
η2L

2

{
3Kη2l
M

σ2 + η2l E[∥Vt∥2]
}

=− ηηlK

2
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[ ∑
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Summing over t = 1 to T , we have

E[f(xT+1)]− f(x1)
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[ ∑
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−
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2

T∑
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(
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2TL2η2l (σ
2 + 6Kσ2

g) + η2L
3KTη2l
2M

σ2

+
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while previously we obtained

E[∥xt+1 − xt∥2] ≤ η2
3Kη2l
M

σ2 + η2η2l E[∥Vt∥2], (F.11)

with the constraint of

η2η2l L
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+ η2η2l
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12KLτ2max +

24KL(N −M)2ζ2max

N2

)−1

, (F.12)

and (
3ηηlKτmax +

6ηηlK(N −M)2ζmax

N2

)
(30K2L2η2l ) ≤

ηηlK

4

⇒ηl ≤
[(

3τmax +
6(N −M)2ζmax

N2

)
2
√
30KL

]−1

,

(F.13)
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Thus we have

E[f(xT+1)]− f(x1)

≤− ηηlK

2

T∑
t=1

E[∥∇f(xt)∥2] +
(
3 +

6(N −M)2

N2

)
5ηηlK

2TL2η2l (σ
2 + 6Kσ2

g) + η2L
3KTη2l
2M

σ2

+

(
3ηηlKL2τ2max +

6ηηlKL2(N −M)2ζ2max

N2

)
3η2η2l KTσ2

M

+

(
3ηηlKτmax +

6ηηlK(N −M)2ζmax

N2

)
(30K2L2η2l )

T∑
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E[∥∇f(xt)∥2]

≤− ηηlK

4
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t=1

E[∥∇f(xt)∥2] +
(
3 +

6(N −M)2

N2

)
5ηηlK

2TL2η2l (σ
2 + 6Kσ2

g) + η2L
3KTη2l
2M

σ2

+

(
3ηηlKL2τ2max +

6ηηlKL2(N −M)2ζ2max

N2

)
3η2η2l KTσ2

M
. (F.14)

Therefore,

ηηlK

4

T∑
t=1

E[∥∇f(xt)∥2] ≤ f(x1)− E[f(xT+1)] +

(
3 +

6(N −M)2

N2

)
5ηηlK

2TL2η2l (σ
2 + 6Kσ2

g)

+ η2L
3KTη2l
2M

σ2 +

(
3ηηlKL2τ2max +

6ηηlKL2(N −M)2ζ2max

N2

)
3η2η2l KTσ2

M
,

1

T

T∑
t=1

E[∥∇f(xt)∥2] ≤
1

ηηlKT
[f(x1)− E[f(xT+1)]] +

(
3 +

6(N −M)2

N2

)
5KL2η2l (σ

2 + 6Kσ2
g)

+
3ηηlL

2M
σ2 +

(
3L2τ2max +

6L2(N −M)2ζ2max

N2

)
3η2η2l Kσ2

M
. (F.15)

Proof of Corollary B.8. Hence by choosing ηl =
1√
TK

and η =
√
KM , then the convergence rate satisfies

1

T

T∑
t=1

E[∥∇f(xt)∥2] = O
(

f0 − f∗√
TKM

)
+O

(
σ2

√
TKM

)
+O

(
σ2 +Kσ2

g

TK

)
+O

(
τ2maxσ

2

T

)
+O

(
ζ2max(N −M)2σ2

TN2

)
, (F.16)

where f∗ = argminx f(x).
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G. Convergence Analysis for MF-CA2FL
Proof of Theorem C.3. Most of the proof for MF-CA2FL follows the proof for CA2FL. Denote v̂t as the cached aggregated
variable on the server, then we have E[v̂t] = vt. Since f is L-smooth, taking conditional expectation at time t, we have

E[f(xt+1)]− f(xt)

≤ E[⟨∇f(xt),xt+1 − xt⟩] +
L

2
E[∥xt+1 − xt∥2]

= E[⟨∇f(xt), ηv̂t⟩] +
η2L

2
E[∥v̂t∥2]

= E[⟨∇f(xt)), ηvt⟩]︸ ︷︷ ︸
I

+
η2L

2
E[∥v̂t∥2]︸ ︷︷ ︸
II

. (G.1)

Note that term I is exactly the same as term I for CA2FL. Hence we mainly show the proof for term II.

Bounding II

II =
η2L

2
E[∥v̂t∥2] =

η2L

2
E
[∥∥∥∥ 1

M

∑
i∈St
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t−τ i

t
− ĥi
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1

N

N∑
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ĥi
t

∥∥∥∥2]

=
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2
E
[∥∥∥∥ 1

M

∑
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t
− ĥi
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1

N
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ĥi
t −Q

(
1
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)∥∥∥∥2]
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∆i
t−τ i

t
+

(
1

N
− 1

M

) ∑
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1
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t

∥∥∥∥2]. (G.2)

Therefore, by following the proof for Theorem 4.1 in Section F, we get the similar result as follows,

II =
η2L

2
E[∥v̂t∥2]

≤ η2η2l L(γ
2 + q2)

3K

M
σ2 + η2η2l L(γ

2 + q2)E
[∥∥∥∥ ∑

i∈St
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(
1

M
∇Fi(x

i
t−τ i

t ,k
) +

(
1
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− 1
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)
∇Fi(x
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t ,k
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+
1

N

∑
i/∈St

K−1∑
k=0

∇Fi(x
i
t−ζi

t ,k
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∥∥∥∥2]. (G.3)

Merging pieces. For simplicity, we define Vt =
∑

i∈St

∑K−1
k=0

(
1
M∇Fi(x

i
t−τ i

t ,k
) +

(
1
N −

1
M

)
∇Fi(x

i
t−ζi

t ,k
)
)
+
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1
N

∑
i/∈St

∑K−1
k=0 ∇Fi(x

i
t−ζi

t ,k
). Therefore, by merging pieces together, we have
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t
)∥2] + 6ηηlK(N −M)2

N2

∑
i/∈St

30K2L2η2l E[∥∇f(xt−ζi
t
)∥2]

+
3ηηlKL2τmax

M
E
[ ∑
i∈St

t−1∑
s=t−τ i

t

∥xs+1 − xs∥2
]
+

3ηηlK(N −M)2ζmax

N2M
E
[ ∑
i∈St

t−1∑
s=t−ζi

t

∥xs+1 − xs∥2
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Summing over t = 1 to T , we have

E[f(xT+1)]− f(x1)
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E[∥∇f(xt)∥2] +
(
3 +

6(N −M)2

N2

)
5ηηlK

2TL2η2l (σ
2 + 6Kσ2

g) + η2L(γ2 + q2)
3KTη2l
2M

σ2

+
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while previously we obtained

E[∥xt+1 − xt∥2] ≤ 2η2(γ2 + q2)
3Kη2l
M

σ2 + 2η2η2l (γ
2 + q2)E[∥Vt∥2], (G.6)

with the constraint of

η2η2l L(γ
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(
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and (
3ηηlKτmax +

6ηηlK(N −M)2ζmax
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)
(30K2L2η2l ) ≤

ηηlK

4
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)
2
√
30KL

]−1

,

(G.8)
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Thus we have

E[f(xT+1)]− f(x1)

≤− ηηlK

2
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+
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+
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+
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M
. (G.9)

Therefore,

ηηlK

4
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⇒ 1
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This concludes the proof.

Proof of Corollary C.4. By choosing ηl =
1√
TK

and η =
√
KM , then the convergence rate of MF-CA2FL satisfies

1

T
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, (G.11)

where f∗ = argminx f(x).
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G.1. Supporting Lemmas

Lemma G.1. The global model difference ∆t =
∑

i∈St
∆i

t in partial participation cases satisfy
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where the fifth equation holds due to P{i ∈ St} = M
N . Note that we have
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where the second equation holds due to ∥
∑N

i=1 xi∥2 =
∑N

i=1 N∥xi∥2 − 1
2

∑
i ̸=j ∥xi − xj∥2. By the sampling strategy
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(without replacement), we have P{i ∈ St} = M
N and P{i, j ∈ St} = M(M−1)

N(N−1) , thus we have
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∥∥∥∥2 + M(M − 1)

N(N − 1)

∥∥∥∥ N∑
i=1

K−1∑
k=0

∇Fi(x
i
t,k)

∥∥∥∥2,
(G.14)

where the third equation holds due to ⟨x,y⟩ = 1
2 [∥x∥

2+∥y∥2−∥x−y∥2] and the last equation holds due to 1
2

∑
i̸=j ∥xi−

xj∥2 =
∑N

i=1 N∥xi∥2 − ∥
∑N

i=1 xi∥2. Therefore, for the last term in (G.12), we have

E[∥∆t∥2] =
Kη2l
M

σ2
l +

η2l (N −M)

NM(N − 1)

N∑
i=1

E
[∥∥∥∥K−1∑

k=0

∇Fi(x
i
t,k)

∥∥∥∥2]+
η2l (M − 1)

NM(N − 1)
E
[∥∥∥∥ N∑

i=1

K−1∑
k=0

∇Fi(x
i
t,k)

∥∥∥∥2]. (G.15)

The second term in (G.15) is bounded partially following (Reddi et al., 2021),

N∑
i=1

∥∥∥∥K−1∑
k=0

∇Fi(x
i
t,k)

∥∥∥∥2 =

N∑
i=1

E
∥∥∥∥K−1∑

k=0

[∇Fi(x
i
t,k)−∇Fi(xt) +∇Fi(xt)−∇f(xt) +∇f(xt)]

∥∥∥∥2

≤ 3

N∑
i=1

E
∥∥∥∥K−1∑

k=0

[∇Fi(x
i
t,k)−∇Fi(xt)]

∥∥∥∥2 + 3NK2σ2
g + 3NK2∥∇f(xt)∥2

≤ 3KL2
N∑
i=1

K−1∑
k=0

E[∥xi
t,k − xt∥2] + 3NK2σ2

g + 3NK2∥∇f(xt)∥2

≤ 15NK3L3η2l (σ
2
l + 6Kσ2

g) + (90NK4L2η2l + 3NK2)∥∇f(xt)∥2 + 3NK2σ2
g , (G.16)

where the last inequality holds by applying Lemma G.2 (also follows from Reddi et al. (2021)). Substituting (G.16) into
(G.15), this concludes the proof.

Lemma G.2. (This lemma directly follows from Lemma 3 in FedAdam (Reddi et al., 2021). For local learning rate which
satisfying ηl ≤ 1

8KL , the local model difference after k (∀k ∈ {0, 1, ...,K − 1}) steps local updates satisfies

1

N

N∑
i=1

E[∥xi
t,k − xt∥2] ≤ 5Kη2l (σ

2
l + 6Kσ2

g) + 30K2η2l E[∥∇f(xt)∥2]. (G.17)

Proof. The proof of Lemma G.2 is exactly same as the proof of Lemma 3 in Reddi et al. (2021).
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