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Abstract

This study uses a Bayesian machine learning method to infer the parameters of a
physics-based model of a bluff-body-stabilised flame in real-time. An ensemble
of neural networks is trained on a library of simulated flame fronts with known
parameters, generated using a level-set solver, LSGEN2D. The ensemble learns
a surrogate of the approximate Bayesian posterior of the parameters given the
observations, from which the flame can be re-simulated beyond the observation
window of the experiment. The method is general: once trained, the ensemble can
be used to infer the parameters from any bluff-body-stabilised flame as long as
the flame is qualitatively similar and the parameters lie within the ranges in the
training library. Amortized inference takes milliseconds, which is fast enough to
work in real-time.

1 Introduction

The modelling of complex physical phenomena often relies on the solution to partial differential
equations. Starting from a complete model description of the physical system, including model
parameters, simulation can be used to solve the forward problem. It is often desirable, however, to
infer model parameters from measurements, which are usually noisy: this constitutes the inverse
problem. If assumptions about the statistics of the measurement noise are made and prior knowledge
about the un-observed parameters is considered, the inverse problem can addressed through a Bayesian
inference framework [1]. A key advantage of Bayesian inference for solving inverse problems is that
uncertainties are also quantified, through the inferred probability distributions of the un-observed
quantities.

Traditional filtering-based techniques for parameter inference, such as the ensemble Kalman filter [2,
3], require the system to be simulated in parallel, which becomes infeasible if the underlying model
is computationally expensive to simulate. Instead, deep learning-based methods are made possible
in part because synthetic data sets can be created cheaply at scale [4]. Amortized inference using
neural networks involves an expensive offline training phase, where a surrogate of the approximate
posterior p(t|z) is learnt from a library of simulator-generated observations zi corresponding to input
parameters ti [5]. The surrogate can then be rapidly evaluated online to perform parameter inference
on new observed data.

In this study, the physical system is a version of the Volvo burner: a partially-observed bluff-body-
stabilised flame inside a rectangular duct [6, 7]. The G-equation model [8] for the flame front
models how acoustic perturbations at the base of the flame cause wrinkles that propagate down
the flame. The flame’s surface area variation in time is a proxy for the heat release rate variation
- a key quantity in determining the thermoacoustic stability of the burner. Inferring the model
parameters allows the flame to be simulated beyond the observation window so that the surface area
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variation can be calculated, with uncertainties, arbitrarily far downstream. Bayesian neural network
ensembles are used to learn the surrogate posterior of the parameters of the model from images of the
partially-observed flame [9, 10].

2 Volvo burner experiment, model and simulations

2.1 The Volvo burner

Experiments are performed on a version of the Volvo burner shown schematically in Figure 1.
Premixed air and propane flow into the combustor and are burnt by a flame stabilized on a triangular
bluff body with side length D = 3.8 cm. As the air-fuel mixture flows through the combustor, vortices
are shed periodically from the bluff body. Images of the flame are recorded at 10kHz using OH
planar laser induced fluorescence (OH PLIF) through a window 3D tall and 3.4D wide. The images
are processed to find discretisations of the position y = f(x) of the flame front by thresholding and
interpolating the magnitude of the OH gradient vector at each point. The vectors of positions y are
smoothed using splines with 10 knots. To create an observation vector z representing a sequence of
10 flame front positions, 10 position vectors are appended together.

Figure 1: Diagram of the Volvo combustor rig and G-equation model of the flame. As the air-fuel
mixture flows through the combustor, vortex shedding causes wrinkling and cusping of the flame
front, represented by the G = 0 contour of a continuous scalar field G(x, y, t). An example OH
intensity image taken through the window is shown, as well as the pre-processing step to find the
flame front.

2.2 The G-equation model of the flame front

The flame front is assumed to be a thin boundary between unburnt and burnt gases (see Fig. 1). The
flame travels normal to itself into the unburnt gases with laminar flame speed sL which depends
on the gas composition. The velocity in the burnt gases does not affect the flame kinematics. The
unburnt and burnt gases are assumed to travel with velocity u(x, y, t). Under these assumptions, the
flame front is modelled by the G(x, y, t) = 0 contour (or level-set) of a continuous scalar field G
whose motion is governed by the G-equation:

∂G

∂t
+ u · ∇G = sL|∇G|. (1)

The flow velocity field u is assumed to comprise a constant and uniform base flow U and super-
imposed physics-based (continuity-obeying) velocity perturbations u′(x, y, t) and v′(x, y, t):

u(x, y, t)
U

= (1 + u′(x, y, t)) i + v′(x, y, t)j, (2)
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where v′ is calculated using ∇.u = 0. In the above, U is a characteristic speed, ε is a non-dimensional
amplitude, St is the Strouhal number of the flame with characteristic length D, excitation frequency
f , and nominal aspect ratio β: St = 2πfβD/U , and K is the ratio of the characteristic speed U to
the perturbation phase speed. The parameter η is introduced into the flame perturbation model to
allow for the horizontal velocity perturbations to increase in size with distance from the flame holder,
which is the qualitative behaviour observed in the experiment. This has proven to be a versatile
and physically descriptive flame front model in several previous studies, despite having only a few
parameters [11]. To make the G-equation model quantitatively accurate, the parameters K, ε, η, St
and β must be tuned to fit an observed flame shape.

2.3 The simulated flame front library

LSGEN2D [12] is a level-set solver that iterates the G field of the G-equation model for known
parameters K, ε, η, St and β. In this study, the G field is iterated until convergence to a set of 200
different periodic solutions. This is repeated for 2400 combinations of parameters sampled from the
ranges shown in Table 1. The forced cycle states are processed to find a y = f(x) discretisation of
the G = 0 contour, for all x in the range of the experiment observation window. This is done by
interpolating the G field values for every vertical coordinate, and recording the positions y in vectors
y. To create a single observation vector z representing a sequence of 10 flame front positions, 10
position vectors are appended together. This is repeated for every state in the forced cycle. The result
is a library of 4.8× 105 observation - parameter pairs.

Table 1: Parameters of the G-equation model that are varied in this study and the range over which
they are varied in order to generate the synthetic flame front library. vp is the perturbation phase
speed.

Parameter Range Description

K 0 - 2 Ratio U/vp
ε 0 - 1 Perturbation amplitude
η 0 - 3 Spatial growth rate
St 5 - 30 Strouhal number
β 4 - 8 Flame aspect ratio

3 Inference using a heteroscedastic Bayesian neural network ensemble

The posterior probability distribution p(t|z) of the G-equation parameters t, given the observations
z is assumed to be a multivariate Gaussian with mean vector µ(z) and diagonal covariance matrix
Σ(z) = diag(σ2(z)). An ensemble of M neural networks are trained on the synthetic flame front
library to predict the mean and variance vectors, µ(z) and σ2(z). Each neural network in the
ensemble produces estimates µj(zi) and σ2

j (zi) for each observation vector zi. These estimates are
combined as follows:

µ(zi) =
1

M

∑
j

µj(zi), (4)

σ2(zi) =
1

M

∑
j

σ2
j (zi) +

1

M

∑
j

µ2
j (zi)− µ2(zi), (5)

following Ref. [13]. Each neural network comprises 4 fully connected layers 600 hidden units wide,
and two output layers (one for the mean vector, one for the variance vector) each 6 units wide. ReLU
activations are used for the hidden layers, a sigmoid activation is used for the output layer for the
mean and an exponential activation is used for the variance layer, to ensure positivity. The architecture
of one such neural network is shown in Appendix A.1. Further hyperparameter details are listed in
Appendix A.2. The weights θj of each neural network are initialised by sampling from Gaussian
prior distributions with means 0 and covariance matrices Σprior according to He normalisation [14].
During training, the weights are anchored to their initial values θj,anc. The loss function used for
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training is:

Lj =
(
µj(z)− t

)T
Σj (z)

−1 (
µj(z)− t

)
+ log (|Σj (z) |)

+ (θj − θanc,j)
T
Σ−1

prior (θj − θanc,j) .
(6)

Training the ensemble in this way is known as Bayesian ensembling with maximum a-posteriori
(MAP) sampling [15]. An ensemble of size M = 20 is trained for 100 epochs on a Tesla P100 GPU.
This takes approximately 3 hours. Once converged, the ensemble is evaluated on the observations,
which takes milliseconds.

4 Results

Fig. 2 shows the results of inferring the parameters from a sequence of 430 experimental images.
These parameter estimates are used to re-simulate the flames, which match the experiments well in
the observation window (top left quadrant of each re-simulation image). The appropriately-tuned
flame models accurately predict the oscillations in the flame front position and their evolution with
time. This shows that the method is working well in the observed region. The model then extrapolates
beyond the observed region, using the physics-based velocity field and the G-equation. With the
flame fully re-simulated, the surface area variation can be calculated.

Figure 2: Results of inference using the neural networks. In the centre, the parameter means (dots)
and uncertainties (bars) are plotted for every time step. The parameters are used to re-simulate the
flames, as shown in the outer four images. The top left quadrant of each re-simulation image is the
experimental data. The other three quadrants show the G-field domain, which extrapolates the flame
downstream.
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5 Conclusions

This study uses a Bayesian machine learning method to infer the parameters of a physics-based
model of the flame front of a bluff-body-stabilized flame. Using this method, parameters can be
inferred with known uncertainty in milliseconds, as long as the parameters fall within the range of the
training data set. The method is demonstrated here for a physics-based nonlinear flame model, but
this could in principle be performed for any computational fluid dynamics (CFD) solution. Firstly,
this provides a cheap way to store CFD data: for example the parameters of the most relevant CFD
solution for a given experiment can be extracted cheaply, and the CFD solution then re-calculated.
Secondly, it shows how sparse experimental results can be combined with complete numerical results
to extrapolate, with defined confidence levels, beyond experimental observations.

Broader Impact

This work will lead to cost savings in high-energy density combustor design by enabling engineers to
quickly and reliably tune their models to match experiments.
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A Appendix

A.1 Neural network architecture

Figure 3: Architecture of each neural network in the ensemble of 20. The input and hidden layers
have 600 units each, while each output layer has 6 units each. All layers are fully connected (FC).
Rectified Linear Unit (ReLU) activation functions are used for the hidden layers and sigmoid and
exponential (Exp) activation functions are used for the mean and variance output layers respectively.

A.2 Hyperparameters

Table 2: Hyperparameter settings used for neural network training.

Hyperparameter Value

Training
Train-test split 80:20
Batch size 256
Epochs 100
Optimiser Adam
Learning rate 10−4
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