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ABSTRACT

When modelling a real-world dataset as a graph, groups of highly correlated data
items correspond to densely connected vertex sets (clusters), and efficient algo-
rithms that find these clusters have broad applications in various data analysis
tasks. In this paper we study densely connected clusters in graphs and introduce
two sparsification algorithms that preserve the structure of these clusters in both
undirected graphs and directed ones. We show that our algorithms significantly
speedup the running time of existing clustering algorithms while preserving their
effectiveness.

1 INTRODUCTION

Graph clustering is a fundamental technique in data analysis with wide-ranging applications in ma-
chine learning and data science. A classical graph clustering problem involves partitioning the
vertices of a graph into sets of highly connected vertices to minimise the normalised cut value.
However, many real-world clustering tasks are defined by alternative objective functions, tailored to
the specific needs and constraints of the problem at hand. One such example involves uncovering
the vertex sets (clusters) that are densely connected to each other, and these clusters are connected
through bipartite-like graphs. For example, when representing the migration or trade datasets with a
graph, a pair of densely connected clusters captures regional migration or trade patterns (Cucuringu
et al., 2020; |[Laenen & Sunl 2020; |He et al., [2022), and the importance of these densely connected
clusters extends to various other real-world datasets (Bennett et al., [2022; /Concas et al., [2022).

In this paper we study densely connected clusters in both undirected graphs and directed ones. We
first study the case for undirected graphs, and present an efficient algorithm that sparsifies an input
graph while preserving its densely connected clusters. For any undirected G = (V, F) and a pair of
disjoint non-empty subsets V1, Vo C V, let ¢ (V1, V2) be

2w (V1, Va)
VOlg(Vl U Vg) ’

and for every k € N we define the k-way dual Cheeger constant by

gG(Vlv‘/Q) £

pe (k) = i A;, B; L1

pa (k) (Al,Blf.l?,’((Ak,B@@l&%( i» Bi), (L.D)
where the maximum is taken over all the possible k pairs of subsets (A1, By), ..., (A, By) sat-
isfying A, N A; = 0,B, N B; = 0,A; N B; = 0 for different i, € [k], and A; U B; # 0 for
different 7,j € [k]. Notice that a high value of pg(k) implies that G contains & disjoint pairs of
densely connected (A;, B;)’s, i.e., almost-bipartite components. We prove that, when G presents a
clear structure of exactly k pairs of densely connected clusters with respect to p(k), this structure
can be represented by a sparse subgraph H of G with O(n) edges, and H can be constructed in
nearly-linear tim Our result is as follows:

Theorem 1 (Result for undirected graphs). Letr G = (Vg, Eg,wg) be an undirected and
weighted graph of m edges, and assume that G contains k pairs of densely-connected clusters

'We say that a graph algorithm runs in nearly-linear time if the algorithm’s running time is O(m -
poly logn), where m and n are the number of edges and vertices of the input graph. For simplicity, we

use O(+) to hide a poly-logarithmic factor of 7.
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(A1, B1),. .., (A, By) corresponding to p (k). Then, there is an algorithm that runs in O(m) time
and computes a sparsifier G* = (Vg, F C Eg, W), such that these k pairs of densely-connected
clusters of G is preserved in G* with high probability. That is, it holds with high probability that
pa- (k) = Q(pa(k)), and G* contains only k pairs densely-connected clusters.

Secondly, we study the densely connected clusters in directed graphs. Let 8 = (Vg, Ez, wa) be
a digraph with weight function wg : Eg — Rx¢. For any vertex u € Vz, we use deg,, (u) or

deg;, (u) to denote the sum of weights of directed edges with u as the tail or the head, respectively.
For any S C Vg, we define volow (S) = >_, c g degoy (u) and volin(S) = >, g deg;, (u). For any

two disjoint subsets A, B C Vz, we define 58 (A, B) by
2wz (A, B)
vOloyt (A) + voliy(B)’

uesS

(1.2)

¢z (A, B) £

where w—; (A, B) is the sum of the weights of the edges from A to B. For every k € N, the k-way
directed dual Cheeger constant is defined by

o= (k) £ i A;, By), 1.3
pz (k) (Al,Blg%Ath)@lgkég( » Bi) (1.3)
where the maximum is taken over all the possible k pairs of subsets (A1, B1), ..., (A, By) sat-
isfying A, NA; = 0,B, N B; = 0, A; N B; = 0 for different i, j € [k], A; U B; # 0 for any
i € [k]. By definition, a high value of of p (k) implies that graph @ contains k pairs of clusters
(A1, B1),. .., (Ag, Bg) such that almost all edges with their tails in A; have their head in B; and

conversely almost all edges with their head in B; have their tail in A;. We prove that, when
presents a structure of & densely connected clusters with respect to ﬁa(k), this structure is pre-

served in graph C? with 5(71) edges, and C?Z can be constructed in nearly-linear time. Our result is
as follows:

Theorem 2 (Result for directed graphs). Let ¢ = (Va, Eg,wg) be a directed and

weighted graph of m edges, and assume that 8 contains k pairs of densely-connected clusters
(A1, B1), ..., (Ak, By) with respect to p (k). Then, there is an algorithm that runs in O(m) time

and computes a sparsifier C?Z = (Va, F C Eg, w), such that these k pairs of densely-connected

clusters of 8 are preserved in G* with high probability. That is, it holds with high probability that
pg:(k) =Q (ﬁa(k)), and G* only contains k pairs of densely-connected clusters.

To examine the significance of Theorems|[T]and 2] we first highlight that our algorithms preserve the
cut values w(A4;, B;) between the pairs of vertex sets 4; and B; for 1 < ¢ < k; this objective is very
different from the one for most graph sparsification problems, which only preserve the cut values
between vertex set S and V' \ S. Secondly, our algorithms preserve k pairs of densely connected
clusters, and the value of k in the output graph is the same as the original input graph. Thirdly,
our second result works for directed graphs; this result is very interesting on its own since most
sparsification algorithms are only applicable for undirected graphs.

The design of our algorithms is based on several reductions and sampling routines that can be im-
plemented locally when the degree sequence of the underlying graph is available with an oracle. As
such one can run our algorithms online while exploring the underlying graph with existing local al-
gorithms that find densely connected clusters (e.g., (Andersen, 2010; |Li & Peng|, 2013))), resulting in
direct improvement on the running time of the existing algorithms. To demonstrate this, we conduct
experimental studies and show that our algorithms can be directly applied to significantly speed up
the running times to the ones presented in (Macgregor & Sun,|2021)), while preserving similar output
results.

Related Work. [Trevisan|(2009) developed a spectral algorithm that finds two densely connected
clusters in an undirected graph, and used this to design an approximation algorithm for the max-cut
problem. [Li & Peng (2013) and Macgregor & Sun| (2021) presented local algorithms that find a
pair of densely connected clusters. (Cucuringu et al.| (2020) proved that densely connected clusters
in a digraph can be uncovered through spectral clustering on a complex-valued Hermitian matrix
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representation of directed graphs. Neumann & Peng| (2022)) further presented a sublinear-time oracle
which, under a certain condition, correctly classified the membership most vertices in a set of hidden
planted ground-truth clusters in signed graphs.

Our work relates to the problem of finding clusters in disassortative networks (Moore et al.| 2011}
Pei et al.l |2019; [Zhu et al., [2020), although most existing techniques are based on semi-supervised
and global methods. Our work is further related to a number of graph sparsification algorithms, e.g.,
(Spielman & Teng, [2011; Batson et al., 2012} |Cohen et al.l 2017 |Lee & Sun|[2017). In comparison
with these results, our algorithms are much easier to implement, and work for directed graphs.

2 PRELIMINARIES
In this section we list the notation and background knowledge of spectral graph theory.

Matrix Representation of Graphs. We always use G = (V, E,w) to represent an undirected
and weighted graph with n vertices and weight function w : £ — R>g. The degree of any vertex
w is defined as dg(u) = ), ., w(u,v), where the notation v ~ v represents that v and v are
adjacent, i.e., {u,v} € E(G). For any set S C V in G, the volume of S is defined by volg(S) =

dg(v)
volg (S)

ifv € S, and xg(v) = 0 otherwise. Let Ag be the adjacency matrix of G defined by (Ag)y,, =
w(u,v) if {u,v} € E(G), and (Ag)u,» = 0 otherwise. The degree matrix D¢ of G is a diagonal
matrix defined by (D¢ )y, = dg(u), and the normalised Laplacian of G is defined by Lo = I —

> wes da(w). The normalised indicator vector of a set S C V' is defined by xs(v) =

D(_;l/ 2AgDC_,1/ %, We can also write the normalised Laplacian matrix with respect to the indicator

vectors of the vertices: for each vertex v, we define an indicator vector x,, € R™ by x,(u) = \/% if

u = v, and X, (u) = 0 otherwise. We further define b, = x,, — x» for each edge e = {u, v}, where

the orientation of e is chosen arbitrarily. Then, we have Lo = Z w(u,v) - b.bY. We also
e={u,v}eE

define

Ja 21+ D;"?AqD'?.

For any symmetric matrix A € R™*", we use A\1(A4) < A(A) < --- < A\, (A) to express the
eigenvalues of A. For ease of presentation, we always use 0 = A\ < Ao < --- < A, < 2 to express
the eigenvalues of L , with the corresponding orthonormal eigenvectors f1, fa,- - - , f,. With slight
abuse of notation, we use Lal for the pseudo inverse of Lg, i.e.,

_ "1
Lot &Y AT
i=2 7t

Note that when G is connected, it holds that Ay > 0 and the matrix Eal is well defined. We
sometimes drop the subscript G when it is clear from the context.

For any vector z € R" we define ||z| £ />, 22, and any matrix M € R™ " we define

| M|
1M = _max .
zeR7\{0} |||

Graph expansion and Cheeger inequality. For any undirected graph G, the expansion (or con-

ductance) of any non-empty subset S C V in G is defined as ¢ (S) £ lz‘fiés(ss)), where S is the
complement of S and wg(S, S) = Y ues.wes Wa(u,v). We call subsets of vertices S, 52, -+, S,

a k-way partition of G if S; # @ forall1 <i <k, S;NS; = 0 fori # j and Ule S; = V. For
every k € N, the k-way expansion constant is defined as

k) = i S;
palh) = g, Bt s, 1205, 90 (50,

where the minimum is taken over all possible k-way partitions of G. [Lee et al.| (2014) proves the
following higher-order Cheeger inequality:
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Lemma 3 (Higher-order Cheeger Inequality, (Lee et al., |2014)). It holds for any undirected graph
G of n vertices and integer 1 < k < n that \/2 < pg(k) < Ck?*\/Ai, where C is a universal
constant.

Generalising this, |Liu| (2015) proves the following higher-order dual-Cheeger inequality:

Lemma 4 (Higher-order dual-Cheeger Inequality, (Liu, 2015)). It holds for any undirected graph

G of n vertices and integer 1 < k < n that (2 — Ap_x+1)/2 < 1 — pg(k) < Ck3\/2 — A\p_r11,
where C' is a universal constant.

Note that the higher-order dual Cheeger inequality can be viewed as a quantitative version of the
fact that \,,_x11 = 2 if and only if G has at least k bipartite connected components.

3  SPARSIFYING DENSELY CONNECTED CLUSTERS IN UNDIRECTED GRAPHS

In this section we present a nearly-linear time sparsification algorithm such that every pair of densely
connected clusters in an undirected graph G is approximately preserved in the sparsifed graph G*,
and sketch the proof. Our result is as follows:

Theorem 5 (Formal Statement of Theorem [I). There exists an algorithm that, given a graph
G = (V, E,w) with pg(k) > —— for constant some k as input, with high probability computes a

= logn

sparsifier G* = (V, F C E,w) with |F| = O (%) edges such that the following hold: (1) it

holds that pe- (k) = Q(pa(k)); (2) it holds that 11 (Te+) = O(Mg1(Ta))

The first statement of Theorem 5|shows that the & pairs of densely connected clusters of G is approx-
imately preserved in G*, and together with Lemma [] the second statement shows that the number
of pairs of the densely connected clusters in G and G* is the same.

Algorithm. Our algorithm is similar with [Sun & Zanetti| (2019) at a high level, and is based
on sampling edges in G with certain probabilities. Formally, for an input undirected graph
G = (V,E,wg), the algorithm starts with G* = (V, ), w) and samples every edge u ~ v in G
with probability

DPe £ pu(v) + pv(u) - Pu(U) : pv(u)7

where

A . C - log®
Py (v) = min {wg(u,v) . dola)- (;)g_z =’ 1} . 3.1)

For every sampled edge e = {u, v}, the algorithm adds e to graph G*, and sets wg~(e) = wg(€)/pe.-

Proof Sketch of Theorem We first show prove that the cut values between A; and B; in G is
preserved in H for any 1 < ¢ < k. For any edge ¢ = {u, v}, we define the random variable Y, by
Y. = wg(u,v)/p. with probability p., and Y. = 0 otherwise. By defining X = wg(A;, B;), we
prove that E[X| = wg(4;, B;) and

2— A d d
C -log°n e Ta) 2
UGAi,’JEBi

Let {(A;, B;)}%_, be the optimal cluster where p(k) is attained for graph G. Then, we have for
every 1 < i < k that

_ = 2wg (4, Bi)

k) < be(Ay, B) = 26\ 2 Di)
pG( ) = ¢G( ) VO]G(Ai UBZ)

which implies

ﬁaék) -volg(A; U B;) < Z we(u, v).

e={u,v}
u€A; ,vEB,;
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Applying the Chebyshev’s inequality, we have for any constant ¢ € RT that

E[X?]
_ > . < U 1
P(X ~BIX|| > e BIX] < 5 pre
(maX e={uv} {dg(u) +dg(v)}> > e={u,v} we(u,v)
2- (2 - )‘n—k') . u€A;,vEB; u€A; vEB;
T 2-C-log’n - pa(k)? volg(A; U B;)?

Since volg(A; U B;) = > ca, da(u) + > cp, da(v) and dg(u) = >, ., wa(u,v), we have

max {da(u) +da(v)} < Y da(u)+ Y da(v) = volg(4; U B;)

weart e, veB;
and
Z we (u,v) < volg(4; U By).
e={u,v}
u€A;,vEB;
Applying these gives us that
2(2 = Az 1
PIX - BIX]| 2 ¢ BIX]| < 22t o ().
c2-C-log”n- p(k)? logn

Hence, by the union bound, we have that wy (4;, B;) = Q (wg(A;, B;)) foralll < ¢ < k. The
second statement of Theorem [5] holds by the analysis similar with [Sun & Zanetti| (2019). Finally,
the total number of edges in H follows by the definition of sampling probability and the Markov
inequality. This completes the proof of Theorem 5}

4  SPARSIFYING DENSELY CONNECTED CLUSTERS IN DIRECTED GRAPHS

In this section we present a nearly-linear time sparsification algorithm such that all pairs of densely
connected clusters in a directed graph is approximately preserved in the output sparsifier, and prove

Theorem [2} Specifically, for a digraph G' that contains exactly & pairs of (A1,B1),...,(Ag, Bg)
with high values of ¢ (A;, B;) for every 1 < i < k, our objective is to construct a sparse digraph

CT*? , such that (i) the values of 553 (A;, B;) are high for every 1 < 4 < k and (ii) the number of such
P

pairs in G™ is the same as 8

Before sketching our technique, we recall that, for undirected graphs, the value of k is proven to
be identical for G and G* by analysing the eigenvalues of Js and Jg~ and applying the higher-
order dual-Cheeger inequality (Lemma [4). However, a natural matrix representation for directed
graph could result in complex-valued eigenvalues, and there is no analog of Lemma [ for directed
graphs. To overcome this, our developed algorithm is based on a reduction from a directed graph
to an undirected one, and its reverse operation. Specifically, our designed algorithm consists of the
following three steps, as illustrated in Figure

1. for any input digraph 8 the algorithm constructs an undirected graph H such that every
two densely connected clusters (A;, B;) in 8 corresponds to a low-conductance set in H;

2. the algorithm constructs a sparsifier H* of H, such that H and H* have the same structure
of clusters;

3. the algorithm applies the sparsified undirected graph H* to construct a directed graph (?ﬁ

of G that satisfies jz: (k) = Q (pg (k).

Constructing H from . Notice that, to preserve ¢~ (4;, B;), the cut values w(A;, B;) between
A; and B; need to be approximately preserved in a sparsified directed graph; this objective is very
different from the most graph sparsification one, which only preserves the cut value between any
set S and its complement. To overcome this, following (Macgregor & Sun| [2021)) we construct an
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(8’ P (k)) semi-double (H, pi (k)

cover
graph graph
sparsification sparsification
_ reverse .
(Ghrg ) — (H*, piz- (k)
semi-double cover

Gt

, we construct graphs H and H* and prove the close relationships between 8 H, H*, and (?Z .

Figure 1: A commutative diagram of sparsification of directed graphs. In order to construct G* from

undirected graph H such that every pair of densely connected clusters (A;, B;) in 8 corresponds to

a low-conductance set in H. Specifically, for a weighted digraph 8 = (Vg, Ez, sz), we construct
its semi-double cover H = (Vy, E, wp ) as follows:

1. every vertex v € V3 has two corresponding vertices v1,v2 € Vi

2. forevery edge u — v € Eg, we add the edge {u1,v2} in Ep.

See Figure [2|for illustration.

B - SRS

Figure 2: Illustration of the semi-double cover construction. A directed graph of n vertices (left)
corresponds to an undirected and bipartite graph of 2n vertices (right).

Next we analyse the properties of the reduced graph. Let 8 be a digraph with semi-double cover
H. Forany S C V, we define S; C Vg and Sy C Vg by 51 £ {v)jv € S} and Sy £ {wy|v € S}.
A subset S of Vyy is called simple if [{v1,v2} N S| < 1 holds for all v € V4. The following lemma
develops a relationship between the flow ratio from A to B defined by

fa(A,B) £1—¢z(A, B) (4.1)
and @y (A1 U By), for any A, B.

Lemma 6. Let 8 be a digraph with semi-double cover H. Then, it holds for any A, B C Va that
fa(A,B) = ¢u(A1 U Ba). Similarly, for any simple set S C Vp, let A = {u : uy € S} and
B = {u:uz € S}. Then, it holds that f5 (A, B) = ¢ (S).

Lemmalgl proves a one-to-one correspondence between any pair of disjoint vertex sets in 8 and a
vertex set in H. Building on this, we prove that this one-to-one correspondence can be generalised

between any k pairs of densely connected clusters in 8 and k disjoint vertex sets in H. Moreover,

the structure of £ pairs of densely connected clusters in 8 is preserved by a collection of k disjoint
vertex sets of low conductance in H.

Lemma 7. For any directed and weighted graph 8 = (Vg7 Bz, wa) and k € N, it holds that
ﬁa(k) =1- Cmin max ¢y (C;), 4.2)

15050k 1<i<k

where the minimum is taken over a collection of k disjoint simple subsets of Vi defined by C; =
Ail UBZ‘ZfOI"l < ) < k.
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Sparsification of . Next we construct a sparse representation of H, denoted by H*, such that
the k vertex sets of low conductance is preserved in H*. To achieve this, we apply the following
result to construct a cluster-preserving sparsifier, which guarantees that the structure of k clusters in
G is preserved in H.

Lemma 8 ((Sun & Zanetti, [2019). There exists an algorithm that, given a graph G = (V, E, w)
with k clusters as input, with probability at least 9/10, computes a sparsifier H = (V,F C E,w)
with |F| = O(1/Ag+1 - nlogn) edges such that the following holds:

1. itholds forany 1 < i < k that ¢51(S;) = O(k-$c(S;)), where Sy, - - - , Sy, are the optimal
clusters in G that achieves p(k).

2. Mer1 (L) = QA1 (L)

Constructing (?z from H*. Finally, we construct a directed graph C? from H* such that the
original k pairs of densely connected clusters in 8 is preserved in G*. To achieve this, we introduce
the following reverse semi-double cover:

Definition 9 (reverse semi-double cover). Given any double cover graph H* = (Vy«, Ep«, wir+)
as input, the reverse semi-double cover of H* is a directed graph CTg = (Va—;7 Ea—;, w?) con-
structed as follows:

* every pair of vertices uy and us in Vi« corresponds to a vertex v € VC?;

* we add an edge u — v to Eg if there is edge {u1,v2} € Ep-, and set wzz(u,v) =
wp+(ug, v2).

One might think that the reverse double cover plays an exact opposite role of the double cover,
however it is not the case. In particular, while our constructed subsets C1, ..., C} in the first step
are always simple in H (cf. Lemma , the k subsets corresponding to pg (k) are not necessarily
simple. As a result,

i Cy) = py(k
o, max o (Ci) = pu (k)

doesn’t hold in general, and there is no direct correspondence between C1, ..., Cy in H and the k
pairs of densely connected clusters in G* that correspond to Pt (k).

To analyse pz(k), for any set S C Vi we partition the set into two subsets S1 and Sy defined
by S;1 = SN (A, UB;,) and S; = SN (A, UB;,). For example, following Figure [2| if the
sets A; = {a,c} and B; = {b,d} and the set S C Vg be S = {ay,b1,b2,c1,c2}, then we have
S1 = {a1,ba,c1} and S = {by,ca}. Since A; and B; are densely connected in H, implying that
most of the edges are either from A; to B; or from B; to A;, there are few edges within A; and B;
for 1 <14 < k. Hence, there are very few edges between S and Sy for any S C V. Without loss
of generality, we assume that

2UiH(ShSQ) __ <
wr(S1,51) + wa(S2,S2) —

for some constant ¢ < 1. Simplifying the inequality above we get
wH(Sl, gl) -+ ’LUH(SQ, gg) - QUJH(Sl, 52) > (1 - C) . [’LUH(Sl, gl) + U)H(Sz, gg)] .
Thus, for any set S C Vj that is not necessarily simple we have

wH(S,g) wH(Sl,S_l)-i-’wH(SQ,S)—2’LUH(51752)

o (S) = vol(S) vol(Sy) + vol(Ss)
> (10 .mm{wj(ff(gj”, wgﬁigj”} — (1= ¢)-min{pu(S1), 61(S2)},

where the last inequality follows from the median inequality. Thus, for every set S C Vp, there
exists a simple set T C Vj such that ¢ (S) > (1 — ¢) - ¢ (T). Moreover, for any collection
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of k-disjoint sets Si, So, -+ , Sk, where S; C Vg we have a collection of k-disjoint simple sets
Ty,T5,--- Tk, where T; C Vi, such that

max ¢p(Si) 2 (1—c)- max ¢y(Th).

Taking minimum over all such collection of k-disjoint subsets of Vi gives us that

i N = pp(k)>(1—c)- i T
o, fin gggxkaﬁf;(&) pu(k) > (1 —c¢) 7 i ggggxkcbzf( i),

where in the second half of the inequality the minimum is taken over collection of k-disjoint simple
subsets of V. On one hand, rearranging the above inequality we have

1
. > i ’ .
e pr(k) > A max ou(T;), (4.3)

and on the other hand, since the collection of k-disjoint simple subsets of V; is a sub-collection of
the collection of k-disjoint subsets of V7, we have

i Ti) > pu(k). 44
Thgl}p,nlrg%xk%( ) > pu(k) 4.4

Thus, combining (@.3) and (@.4), we have

1
e > i i) > . .
e P2 g it g, e o) 2 o (8) 3

Further, combining [#.2)) and (.5) we have

1
1—c¢

1—

pu(k) < pg(k) <1—pr (k). (4.6)

Proof of Theorem Now we are ready to prove [2| Since 8 is a directed graph with k pairs
of densely connected clusters, the value of ﬁa(k) is high; together with (@.6), this implies that

pr (k) = o(1). By Lemma8] we know that there exists a sparsifier H* of H, such that pg- (k) =
O(k - pu(k)). Thus, we can conclude that pg- (k) = o(1). Hence, applying (4.6) for G* and H*
we have

1

1—

<o (k) < pgr (k) < 1= pu- (k). .7

Finally, using the fact that p+ (k) = o(1), we conclude that pz (k) is close to 1 and hence the

structure of 8 will be preserved in (? . Moreover, by the construction of H, and H*, and C?Z , the

value of k is preserved.

For the running time, notice that all the intermediate graphs H and H* can be constructed lo-

cally, and therefore it’s sufficient to examine every edge of the input graph 8 once throughout the
execution of the algorithm. This implies the nearly-linear running time of our overall algorithm.
Combining everything above above proves Theorem 2]

5 EXPERIMENTS

In this section, we evaluate the performance of our proposed algorithms on synthetic data sets.
We employ the algorithms presented in (Macgregor & Sun, [2021) as the baseline algorithms, and
examine the speedup of their algorithms when applying our sparsification algorithms as subroutines.
Notice that, as all the involved operations of our algorithms can be performed locally, one can run our
graph sparsification algorithms online while exploring the underlying graph with a local algorithm.
For ease of presentation, in this section we call the local algorithm in (Macgregor & Sunl, 2021)) with
our sparsification framework our algorithm. All experiments were performed on a HP ZBook Studio
with 11th Gen Intel(R) Core(TM) i7-11800H @ 2.30GHz processor and 32 GB of RAM.



Under review as a conference paper at ICLR 2025

5.1 RESULTS FOR UNDIRECTED GRAPHS

We compare the performance of our algorithm with the previous existing algorithm LocBipartDC
given by Macgregor & Sun|(2021), which we refer to as MS, on synthetic graphs generated from
the stochastic block model (SBM). Specifically, we assume that the graph has k = 2 clusters, say
C1,C5, and the number of vertices in each cluster, denoted by n; and ns respectively, satisfies
n1 = ng. Moreover, any pair of vertices v € C; and v € Cj is connected with probability p;;. We
assume that pjo = p2; = p and p1; = pa2 = ¢, where ¢ = 0.1p. Throughout the experiments, we
leave the parameters n and p free but maintain the above relations.

Our algorithm sparsifies the graph in an online manner while exploring it and simultaneously apply
the MS algorithm. We evaluate the quality of the output (L, R) returned by each algorithm with
respect to its bipartiteness ratio defined by 8(L, R) = 1 — ¢(L, R). All our reported results are the
average performance of each algorithm over 10 runs, in which a random vertex from C; U Cs is
chosen as the starting vertex of the algorithm. We generate graphs from the SBM such that ¢ = 0.1p
and vary the size of the target set by varying n; between 1,000 and 6, 000. In Figure[3] we fix the
probability p = 0.3 and vary the number of vertices n; = ng and compare both runtime and the
bipartiteness ratio between the MS algorithm and our algorithm. One can observe that for a fixed
probability p as we increase the number of vertices, our algorithm takes much less time than the MS
algorithm and maintains a similar bipartiteness ratio with the MS algorithm.

Runtime Comparison 10 Bipartiteness Ratio Comparison
—— MS+O0ur —— MS+0ur
Ms Ms
0.8
0.8
206 2
g & 06
< 2
0.4 F]
g F04
= 5
0.2 0.2
0.0 0.0
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
Number of Vertices in each partition Number of Vertices in each partition
(a) Runtime comparison (b) Bipartiteness Ratio comparison

Figure 3: Runtime and bipartiteness comparison between MS and our algorithm by fixing p = 0.3,
q = 0.1p and varying the number of vertices between 500 and 6, 000.

5.2 RESULTS FOR DIRECTED GRAPHS

Next we evaluate the performance of our algorithm for digraphs on synthetic dataset. We compare
the performance of our algorithm with the previous existing algorithm EvoCutDirected given by
Macgregor & Sun| (2021)), which we refer to as ECD, and use the graphs generated from the SBM
as the algorithms’ input. In our algorithm, given a digraph G as input, we sparsify the graph along
with generating the volume-biased ESP on G’s semi-double cover H. Since the ECD is a local
algorithm, we also test our algorithm locally. In this model, we look into a cluster which is almost
bipartite with the bipartition being L and R. We set the number of vertices in L and R to be n; and
ng such that n; = ny and the probability of an edge to be as follows

L R
Ilé (19/—n;7 9/2”&2)7

i.e., the probability that there is an edge within the partition is 9/n1 = 9/n2 and so on. Since most
of our directed edges are from L to R, the value of 7 is high. For our experiments we generate two
sets of plots:

e We first fix the value of = 0.7 and vary the number of vertices in each partition from
2,000 to 5,000, and compare the runtime of the ECD algorithm and our algorithm. One
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can observe that our algorithm takes much less time than the ECD algorithm and gives a
similar flow-ratio at the same time as we increase the number of vertices.

—— ECD+Our

ECD ~—— ECD+Our

ECD

0.8

IS

S

S
o
o

Flowratio

~ w

<3 S

S S
)
S

Run time in Seconds

0.2

2000 2500 3000 3500 4000 4500 5000

0.0
y y 2000 2500 3000 3500 4000 4500 5000
Number of Vertices in each partition

Number of Vertices in each partition

(a) Runtime comparison (b) Flow-ratio comparison

Figure 4: Runtime and flow-ratio comparison between ECD and our algorithm.

* Based on this, it suffices for us to only compare the running times. We vary the number of
vertices in each partition from 1, 500 to 5, 000 and vary the value of 7 from 0.7 to 0.9, and
compare the runtime of the ECD algorithm and our algorithm. One can observe that our
algorithm runs faster than the ECD algorithm as 7 increases, i.e., when the graph is dense.

— ECD+Our — ECD+Our — ECD+Our
ECD 600 Eco =

Run time in Seconds
s
s

o 0
1500 2000 2500 3000 3500 4000 4500 5000 1500 2000 2500 3000 3500 4000 4500 5000 1500 2000 2500 3000 3500 4000 4500 5000
N Number of Vertices i

@n=0.7 (b) forn = 0.8 ©n=09

Figure 5: Runtime comparison between ECD and our algorithm for » = 0.7,0.8 and 0.9.
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A USEFUL INEQUALITIES

The following inequalities will be used in our analysis.

Theorem 10 (Courant-Fischer Theorem). Let A be a n X n symmetric matrix with eigenvalues
A1 < Ay <o <\, Then, it holds for any 1 < k < n that

. yT . A . y . yT . A . y
A = min max = max min ——~=

T. T.
dimCey g ESMOY YTy S VeSO YTy

where the maximisation and minimisation are over the subspaces of R™.

11



Under review as a conference paper at ICLR 2025

Lemma 11 (Bernstein’s Inequality). Let X, Xo,--- , X,, be independent random variables such
that | X;| < M forany1 <i<n.Let X =% | X;,and R="" | E[X?]. Then, it holds that

P X~ BIX]| > 1 < 2exp (2(31)) |
3

Lemma 12 (Matrix Chernoff Bound). Consider a finite sequence {X;} of independent, random,
PSD matrices of dimension d that satisfy || X;|| < R. Let fimin = Amin (E[Y_; Xi]) and pimax =
Amax (B[, Xi]). Then, it holds that

N
and .
86 -
P | Anax (Z X2> > (1 + 6)Nmax‘| <d- (W) ford > 0.

B OMITTED DETAIL FROM SECTION [3]

This section presents all the omitted detail from Section[3] and gives a complete proof of Theorem|[5}
We first recall that, for every vertex w and its adjacent vertex v, the algorithm assigns the edge
e = {u, v} the probability

C -log®n } B.1)

dg(u) . (2 - )\n,ky
for a large enough constant C' € R>(. The algorithm checks every edge and samples an edge
e = {u, v} with probability p., where

pu(v) 2 min {waw, v)-

Pe é pu(v) + pv(u) — DPu (U) * Pou (u)
Note that, it is easy to check that p. satisfies the inequality

S 0u(0) + o) < pe < pulv) + pul).

We start with an empty set F' and gradually store all the sampled edges in F', which is sampled by
the algorithm. Finally, the algorithm returns a weighted graph H = (V, F,wp ), where the weight
wp (u,v) of every sampled edge e = {u, v} € F is defined by

wg (u,v) = wGZ()u’ V),
e

Next, we analyze the size of F'. Since

OID DITEURSRSLCELL S B AL
AU da) - (2= k) \2= i)’

u e={u,v}

it holds by Markov inequality that the number of edges e = {u, v} with p,(v) > 1is O (%)

Without loss of generality, we assume that these edges are in F', and in the remaining part of the
proof we assume it holds for any edge v ~ v that

C -log®n
dg(u) . (2 - )\n,k)
Then, the expected number of edges in H equals

B C-log*n 1 1
S ope< Y Pu(v) +po(w) = 53— > w(“’”)'(dg(u)+dc(v)>

e={u,v} e={u,v} e={u,v}
e n-log®n ,
2— /\n—k

12

<1

wea(u,v) -
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and by Markov inequality it holds with constant probability that

n-log®n
F|= — .
‘ ‘ O<2_)\n—/€>

Now we show that the cut value between A; and B; is preserved in H for all 1 < ¢ < k. For any
edge e = {u, v}, we define the random variable Y, by

wa (ua ’U) . N
Y, = o with probability p., (B.2)

0 otherwise.

Also, we define X = wg (A;, B;), and have that

we(u, v)
E[X] = E E[Y.] = E Por ————F = E wea(u,v) = wg(A;, B;). (B.3)
_ _ De _
e={u,v} e={u,v} e={u,v}
u€EA;,vEB; u€EA; WEB; u€EA;,vEB;

Next, we analyse the second moment of the random variable X and have that

E(x’]= 3 pe.<w0(“»”)>2: > WG(;:U)Q

e={u,v} Pe e={u,v}
u€A;,vEDB; u€A; wEB;
2 2
< Z wg (u,v)
e={uw} pu(v) + po(u)
u€A; ,vEB,;

(B.4)

Z 2wg (u,v)?
wa (u,v)-C-log3n 1 1
e={u,v} (2—Xn—k) : (dg(u) + dc;(v)>

u€A;,vEB;
2— d d
Ik S (),
C -log®n ot 2
uEAi,’U’GBi

where the last step follows by the means inequality. Let {(A;, B;)}%_, be the optimal cluster where
p(k) is attained for graph G. Recall that for every k € N, the k-way dual Cheeger constant is defined
by

D = in ¢~(A;, B).
pa (k) (Al,BIF_??%Ak,Bk)lrgrlilgk¢G( i Bi)

Then, we have for every 1 < ¢ < k that

QU)G (Al, Bz)

pa(k) < ¢g(Ai, By) = volo(A; U By’

which implies

pa(k
pG2( ) . VOlG‘(Ai U Bl) < Z wa (ua U)' (B.5)

e={u,v}
u€A; ,vEB,;

13
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Next, by the Chebyshev’s inequality we have for any constant ¢ € R™ that
P X — E[X]| > ¢- E[X]]

E[X?]
— 2 -E[X]?
2—An_k dg(u)+da (v
C»10g3rkt (Z e={u,v} wG(uv’U) : (G()JQFG()))
u€A;,vEDB;
S 5
0.01 - <Z e={u,v} wg(u,v))
u€A;,veB;
?7_12;;2 (Z e={u,v} wG(uvv) : ((1(;(u)—2l-clc(v))) (B.6)
< u€A;,veB;
2 - (pc(k) volg(A; U B; ))
> e={uw) wG(u,v) - (dg(u) +da(v))
_ 2- (2 - )\n—k) . ueAE,ve}J}}i
c2-C-log’n - pa(k)? volg(A; U B;)?
<maX e={uw} {dc(u)+ dG(U)}) Y e={uw} wal(u,v)
2- (2 - )\nfk) i uEA;,vEB; u€A; ,veEB;
T 2.0 -log*n - pa(k)? volg(A; U B;)? '
Since volg (A; U Bi) = >, ca, da(uw) + > cp, dg(v) and dg(u) =), ., wa(u,v), we have
eg?ii} {dg( +dg(v } < Z dG Z dg(U) = VOlg(Ai U Bi)
u€EA;,WEB; u€A; vEB;
and
> wa(u,v) < volg(4; U By).
e={u,v}
u€A;,vEB;
Thus, we have by (B.6) and the assumption of p(k) > gl( j that
— A 1
PIX - B[X] > o Bix] < 205 o (L),
c2-C-log”n-p(k)? logn

Hence, by choosing a sufficient large constant ¢ and the union bound, we have that

Next, we show that the degree of every vertex in H is approximately preserved with high probability.
Based on the random variable Y, defined in (B.2)), we define the random variable Z,, by

T = Z Y.,.

Then, the expected value of Z,, is given by

= Z E[Y. Z Pe - = Z we(u,v) = dg(u),

viv~vU viv~u viv~u

and the second moment can be upper bounded by

S EN=Y » ~(W)2 T welno)? 5~ wolno)?
viv~U e S € Pe s Pe —U:UNU pu(v) )

since pe > py(v). Now using the value of p, (v) from (3:I)), we have

da(u) - (2—Ank) _ da(u) - (2= Anp)
Z Bl < Z W v)-C-log®n C -log’n Z we(u,v)

viv~U viv~U ( u,

B (2= M)
C -log®n

viv~Nu

14
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and for any edge e = {u, v} we have that

w(u,v) < w(u,v) < da(u) - (2 — )\n,k).

0<
T ope T opu(v) T C -log*n
Now, applying Bernstein’s inequality (Lemma[TT), we have
d, E[Z,
P |ldn(w - detw)] > | = 12, 1201 > =]
L (u)

< 9.
=20 | B e

C-log®n

L.C . log®n
=2-exp ((2—)\)
6 n—k

_ 1
=0 ﬁ .
Hence, it holds by the union bound that, with high probability, the degree of all the vertices in H are

approximately preserved up to a constant factor. This implies that for any subset S C V, we have

voly (S) = O (volg(9)),

dQG(u)'(2_>\nfk)
C-log®n

+ 5

more specifically,

forall 1 < i < k. Thus, combining and (B.8) gives us that
o (Ai, Bi) = Q (¢g(Ai, Bi)) (B.9)

for all 1 < ¢ < k, which implies that

pr(k) = min o (Ai, Bi) = min Q (¢ (A, Bi)) = Q(pa(k)),
where the last equality follows from the fact that {(Az, B;)}k_, is the optimal cluster where p(k) is
attained for graph G.

Next, we show that the top (n— k)-eigenspaces of J¢ are preserved in H. Without loss of generality
we assume the graph is connected. Since Jg = 21 — L by definition, it holds that

Xi(Tg) =2 — Mg1-i(La). (B.10)
Let

P& 22— (L)) fif]

and with slight abuse of notation we call 79_1/ 2 as the square root of the pseudo-inverse of P, i.e.,
n—~k
PTE=% (2= Ni(La) 2L
i=1

Let P be the projection on the spam of { f1, fa, -+ , fn_#}. then

n—k
P=> fifl.
=1

Recall that, for each vertex v, the indicator vector x, € R™ is defined by x, (u) = L

Vda(v)
and x,(u) = 0 otherwise. For each edge e = {u, v} of G we define a vector g, = X, + X» € R”
and a random matrix X, € R"*" by

ifu=v

(B.11)

v _ Jwn(u,v)- P~12g.gTP~1/2 if e = {u,v} is sampled by the algorithm,
0 otherwise.

15
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Then, it holds that
ZXe = Z wir(u,v) - P~Y2g,gTP~1/?

e€E e={u,v}eF

= p1/2 Z wi (u,v) - gegl | P72
e={u,v}eF

— Pfl/lel_Ipfl/Q’

where
Tis > wa(u,v) - gegl
e={u,v}eF
is the signless Laplacian matrix of H normalised with respect to the degree of the vertices in the
original graph G. We will now prove that, with high probability the top n — k eigenspaces of J;

and J¢ are approximately the same. We first analyse the expectation of ) | ., X., and have that

ZXelz Y. perwn(uv) P gegI P

e€E e={u,v}€E

E

wa(u, v _ _
= Z Pe - wa(u,v) PG TP/
e={u,v}€FE Pe

=p1/2 Z we(u,v) - gegl | P72
e={u,v}eF
n—k
=P V2g,p1/2 = Z Liff="7.
i=1

Moreover, for any edge ¢ = {u,v} € E sampled by the algorithm, we have

we (u, v)

€

| Xe| < wiru,v) - gIP~/2P~12g, = gIP ' ge

’lUG(U,U) 1
< T lgell®
De 2 )\nfk

2wg(u,v) 1 ( 1 n 1 )
T pu(V) Fpu(u) 2= Ak da(u)  dg(v)
<2
~ C-log’n

where the second inequality follows by the min-max theorem of eigenvalues. Now we apply the
matrix Chernoff bound (Lemma to analyze the eigenvalues of ) . X.. Following Lemma
we set the parameters as follows:

Mmax = )\max (E

) XD = e (P) = 1,

ecE
_ 2 and (B.12)
C -log®n’
1
§=-.
2

Then using the Matrix Chernoff bound (Lemma @ we have

Cilog3 n
P|) x)s3<n () Zo(d
max GEZE e sl 5 =n- 15% - E ’

16
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for some constant C'; this implies that

P [Amax (Z Xe> < 21 =1-0 (é) : (B.13)
ecE

On the other hand, since E [}, X.| = P, we have piin = 1 and hence keeping R and § the
same as above, using the Matrix Chernoff bound (Lemma [12)), we get

C-log3 n

1 e*% 2 1
P[Amm <ZXG> < 2] <n- <0.5;> 0<ng,);
eelE
1
P [/\min (;Xe> > ] =1-0 (n3> . (B.14)

Combining (B-13), (B-14) and the fact that 3, X = P~Y/27},P~/2, with probability 1 —

this implies that

N | =

O (#) it holds for any non-zero « € R™ in span{ f1, fa, -+ , fn—i} that
TD—-1/2 71 D—1/2 1
aTPY2 g P12y {3} , (B.15)
T 22

Let y = P~1/2x, and we rewrite (B.13) as

Y Iy Yy Ihy YTy _[13

yTPy yiy  yTPy - [272]°
Since dim(span{ f1, fo, -, fa—k}) = n — k, there exist n — k orthogonal vectors whose Rayleigh
quotient with respect to J7; is ©(\,—,(2I — L¢)). Hence, by the Courant-Fischer Theorem (The-
orem|[10) we have

1 3
3 Mk(2] — L) < M1 (Tjy) < 3 An—k(2I — Lg) (B.16)

By the definition of J/; = Dal/z (D + Ap) D51/2, we have
Ti = Dy* (Du + Aw) DV* = D (D* - 7y - D) D2,
Hence, we set y = Dé/ QD;/ ?z for any = € R™ and have that
e oD (D42 gy D) Dy

_ Y ITny L Y Tny
zT - x zT - x zT-x = 2 yT -y

. (B.17)

where we use the fact that the degree of a vertex differs by a constant factor between H and G.
Similarly, we also have

T. . 3 T T .
e Jnr 3yl Iny (B.18)
zT - x 2 yT -y
Let T C R™ be a (k + 1)-dimensional subspace of R™ satisfying
IT . jH .

Met1(Tg) = max
k+( ) x£0,2€T T -x

and T = {DgQDI_f/Qx tx € T}. Since DémD]:,l/2 has full rank, 7" is also a (k -+ 1)-dimensional
subspace of R". Hence, by the Courant-Fischer Theorem (Theorem[I0) and (B-17), we have that
Yy - Thy

A NAE min max
k+1( H) dim(5§:k+1 ves\{oy YTy
T. 7.
< max Y Iy (B.19)
yeT\{o} YT Yy
T. .
< 2. max ”7Hz:2-)\k+1(jH)-

zeT\{o} xT-x
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Next, using and (B:19), we have
1
3 Mt 1(Te) < M1 (Txr) €20 M1 (),

which implies that
A1 (Ta) < M1 (Tw)- (B.20)

= =

Similarly, let U C R"™ be an (n — k

~

-dimensional subspace of R" satisfying

o . wT . jH . .’E
MeerlTn) = B,
and U = {D/* Dy *ww e U}, since Df* - D7/ has full rank, U is also an (n — k)-

dimensional subspace of R™. Thus, using the Courant-Fischer Theorem (Theorem and (B.18)),
we have

T. .
Mer1(Tf) = max min yTjiHy
dim(S)=n_g VN YUY
T. 7.
> min LIHY
yel\{o} YTy (B.21)
T.(2] — .
>g. min Z (2 —Ly)-x
— 3 zeu\{o} xT - x
2
= 3’ Akt (TH) -
Next, by (B.16) and (B.21) we have
2 3
3 N1 (Tm) < e (L) < 3 Met+1(Ta),
which implies that
9
M1 (TH) < 1 Aet1(Ta)- (B.22)

Thus, combining (B.20) and (B.22) we have
1

9
1 Met1(Je) < A1 (Tm) < 1 Met1(JTa),

Hence, the the top n — k eigenspaces of J are preserved in Jg. This proves the second statement
of the theorem.

C OMITTED DETAIL FROM SECTION [4]
In this section we list all the proofs omitted from Section [4]

Proof of Lemmal6] The proof follows from [Macgregor & Sun| (2021), which proves the result for
undirected graphs. We include the proof here for completeness. Let S = A; U By in H, then
wH(S7 14 \ S)

volg (S)
voly (S) — 2wy (S, S
_ ol () = 2w (S.5) o

volg (S)

1 2wy (S,S) 2wy (A, B)

volg(S) 1- Vol (A) - voln(B) — fa(A, B).

This proves the first statement of the lemma. The second statement of the lemma follows by the
similar argument. U

¢u(A1U Ba) = ¢u(S) =

18
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Proof of Lemmal[]] By definition, we have that

and this implies that

pa(k) = max min, ¢z (Ai, By)

(A1,B1),...,(Ak,Bg) 1
(AhBl%T'l'a‘/a)((Ak,Bk) 1r§nil£k (1 B fa(Ai, BZ))

=1- i Ai, Bl
(Al,Blﬁ%ﬂAk,Bk) 12?3)(1@ fg( )

=1— min max C;
CryoisCh 1§i§k¢H( i),

(C2)

where the second line follow by (C.2), and the last one follows by Lemma[6land C; = A; UB;,. O
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