
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EFFICIENT SPARSIFICATION OF
DENSELY CONNECTED CLUSTERS

Anonymous authors
Paper under double-blind review

ABSTRACT

When modelling a real-world dataset as a graph, groups of highly correlated data
items correspond to densely connected vertex sets (clusters), and efficient algo-
rithms that find these clusters have broad applications in various data analysis
tasks. In this paper we study densely connected clusters in graphs and introduce
two sparsification algorithms that preserve the structure of these clusters in both
undirected graphs and directed ones. We show that our algorithms significantly
speedup the running time of existing clustering algorithms while preserving their
effectiveness.

1 INTRODUCTION

Graph clustering is a fundamental technique in data analysis with wide-ranging applications in ma-
chine learning and data science. A classical graph clustering problem involves partitioning the
vertices of a graph into sets of highly connected vertices to minimise the normalised cut value.
However, many real-world clustering tasks are defined by alternative objective functions, tailored to
the specific needs and constraints of the problem at hand. One such example involves uncovering
the vertex sets (clusters) that are densely connected to each other, and these clusters are connected
through bipartite-like graphs. For example, when representing the migration or trade datasets with a
graph, a pair of densely connected clusters captures regional migration or trade patterns (Cucuringu
et al., 2020; Laenen & Sun, 2020; He et al., 2022), and the importance of these densely connected
clusters extends to various other real-world datasets (Bennett et al., 2022; Concas et al., 2022).

In this paper we study densely connected clusters in both undirected graphs and directed ones. We
first study the case for undirected graphs, and present an efficient algorithm that sparsifies an input
graph while preserving its densely connected clusters. For any undirected G = (V,E) and a pair of
disjoint non-empty subsets V1, V2 ⊂ V , let ϕG(V1, V2) be

ϕG(V1, V2) ≜
2wG(V1, V2)

volG(V1 ∪ V2)
,

and for every k ∈ N we define the k-way dual Cheeger constant by

ρ̄G(k) ≜ max
(A1,B1),...,(Ak,Bk)

min
1≤i≤k

ϕG(Ai, Bi), (1.1)

where the maximum is taken over all the possible k pairs of subsets (A1, B1), . . . , (Ak, Bk) sat-
isfying Ai ∩ Aj = ∅, Bi ∩ Bj = ∅, Ai ∩ Bj = ∅ for different i, j ∈ [k], and Ai ∪ Bi ̸= ∅ for
different i, j ∈ [k]. Notice that a high value of ρ̄G(k) implies that G contains k disjoint pairs of
densely connected (Ai, Bi)’s, i.e., almost-bipartite components. We prove that, when G presents a
clear structure of exactly k pairs of densely connected clusters with respect to ρ̄G(k), this structure
can be represented by a sparse subgraph H of G with Õ(n) edges, and H can be constructed in
nearly-linear time1. Our result is as follows:
Theorem 1 (Result for undirected graphs). Let G = (VG, EG, wG) be an undirected and
weighted graph of m edges, and assume that G contains k pairs of densely-connected clusters

1We say that a graph algorithm runs in nearly-linear time if the algorithm’s running time is O(m ·
poly logn), where m and n are the number of edges and vertices of the input graph. For simplicity, we
use Õ(·) to hide a poly-logarithmic factor of n.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(A1, B1), . . . , (Ak, Bk) corresponding to ρ̄G(k). Then, there is an algorithm that runs in Õ(m) time
and computes a sparsifier G∗ = (VG, F ⊂ EG, w̃), such that these k pairs of densely-connected
clusters of G is preserved in G∗ with high probability. That is, it holds with high probability that
ρ̄G∗(k) = Ω (ρ̄G(k)), and G∗ contains only k pairs densely-connected clusters.

Secondly, we study the densely connected clusters in directed graphs. Let
−→
G = (V−→

G
, E−→

G
, w−→

G
) be

a digraph with weight function w−→
G

: E−→
G

→ R≥0. For any vertex u ∈ V−→
G

, we use degout(u) or
degin(u) to denote the sum of weights of directed edges with u as the tail or the head, respectively.
For any S ⊂ V−→

G
, we define volout(S) =

∑
u∈S degout(u) and volin(S) =

∑
u∈S degin(u). For any

two disjoint subsets A,B ⊂ V−→
G

, we define ϕ−→
G
(A,B) by

ϕ−→
G
(A,B) ≜

2w−→
G
(A,B)

volout(A) + volin(B)
, (1.2)

where w−→
G
(A,B) is the sum of the weights of the edges from A to B. For every k ∈ N, the k-way

directed dual Cheeger constant is defined by

ρ̄−→
G
(k) ≜ max

(A1,B1),...,(Ak,Bk)
min

1≤i≤k
ϕ−→
G
(Ai, Bi), (1.3)

where the maximum is taken over all the possible k pairs of subsets (A1, B1), . . . , (Ak, Bk) sat-
isfying Ai ∩ Aj = ∅, Bi ∩ Bj = ∅, Ai ∩ Bj = ∅ for different i, j ∈ [k], Ai ∪ Bi ̸= ∅ for any
i ∈ [k]. By definition, a high value of of ρ̄−→

G
(k) implies that graph

−→
G contains k pairs of clusters

(A1, B1), . . . , (Ak, Bk) such that almost all edges with their tails in Ai have their head in Bi and
conversely almost all edges with their head in Bi have their tail in Ai. We prove that, when

−→
G

presents a structure of k densely connected clusters with respect to ρ̄−→
G
(k), this structure is pre-

served in graph
−→
G∗ with Õ(n) edges, and

−→
G∗ can be constructed in nearly-linear time. Our result is

as follows:
Theorem 2 (Result for directed graphs). Let

−→
G = (V−→

G
, E−→

G
, w−→

G
) be a directed and

weighted graph of m edges, and assume that
−→
G contains k pairs of densely-connected clusters

(A1, B1), . . . , (Ak, Bk) with respect to ρ̄−→
G
(k). Then, there is an algorithm that runs in Õ(m) time

and computes a sparsifier
−→
G∗ = (V−→

G
, F ⊂ E−→

G
, w̃), such that these k pairs of densely-connected

clusters of
−→
G are preserved in

−→
G∗ with high probability. That is, it holds with high probability that

ρ̄−→
G∗(k) = Ω

(
ρ̄−→
G
(k)
)
, and

−→
G∗ only contains k pairs of densely-connected clusters.

To examine the significance of Theorems 1 and 2, we first highlight that our algorithms preserve the
cut values w(Ai, Bi) between the pairs of vertex sets Ai and Bi for 1 ≤ i ≤ k; this objective is very
different from the one for most graph sparsification problems, which only preserve the cut values
between vertex set S and V \ S. Secondly, our algorithms preserve k pairs of densely connected
clusters, and the value of k in the output graph is the same as the original input graph. Thirdly,
our second result works for directed graphs; this result is very interesting on its own since most
sparsification algorithms are only applicable for undirected graphs.

The design of our algorithms is based on several reductions and sampling routines that can be im-
plemented locally when the degree sequence of the underlying graph is available with an oracle. As
such one can run our algorithms online while exploring the underlying graph with existing local al-
gorithms that find densely connected clusters (e.g., (Andersen, 2010; Li & Peng, 2013)), resulting in
direct improvement on the running time of the existing algorithms. To demonstrate this, we conduct
experimental studies and show that our algorithms can be directly applied to significantly speed up
the running times to the ones presented in (Macgregor & Sun, 2021), while preserving similar output
results.

Related Work. Trevisan (2009) developed a spectral algorithm that finds two densely connected
clusters in an undirected graph, and used this to design an approximation algorithm for the max-cut
problem. Li & Peng (2013) and Macgregor & Sun (2021) presented local algorithms that find a
pair of densely connected clusters. Cucuringu et al. (2020) proved that densely connected clusters
in a digraph can be uncovered through spectral clustering on a complex-valued Hermitian matrix

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

representation of directed graphs. Neumann & Peng (2022) further presented a sublinear-time oracle
which, under a certain condition, correctly classified the membership most vertices in a set of hidden
planted ground-truth clusters in signed graphs.

Our work relates to the problem of finding clusters in disassortative networks (Moore et al., 2011;
Pei et al., 2019; Zhu et al., 2020), although most existing techniques are based on semi-supervised
and global methods. Our work is further related to a number of graph sparsification algorithms, e.g.,
(Spielman & Teng, 2011; Batson et al., 2012; Cohen et al., 2017; Lee & Sun, 2017). In comparison
with these results, our algorithms are much easier to implement, and work for directed graphs.

2 PRELIMINARIES

In this section we list the notation and background knowledge of spectral graph theory.

Matrix Representation of Graphs. We always use G = (V,E,w) to represent an undirected
and weighted graph with n vertices and weight function w : E → R≥0. The degree of any vertex
u is defined as dG(u) =

∑
u∼v w(u, v), where the notation u ∼ v represents that u and v are

adjacent, i.e., {u, v} ∈ E(G). For any set S ⊂ V in G, the volume of S is defined by volG(S) =∑
u∈S dG(u). The normalised indicator vector of a set S ⊂ V is defined by χS(v) =

√
dG(v)

volG(S)

if v ∈ S, and χS(v) = 0 otherwise. Let AG be the adjacency matrix of G defined by (AG)u,v =
w(u, v) if {u, v} ∈ E(G), and (AG)u,v = 0 otherwise. The degree matrix DG of G is a diagonal
matrix defined by (DG)u,u = dG(u), and the normalised Laplacian of G is defined by LG = I −
D

−1/2
G AGD

−1/2
G . We can also write the normalised Laplacian matrix with respect to the indicator

vectors of the vertices: for each vertex v, we define an indicator vector χv ∈ Rn by χv(u) =
1√
dv

if
u = v, and χv(u) = 0 otherwise. We further define be = χu − χv for each edge e = {u, v}, where
the orientation of e is chosen arbitrarily. Then, we have LG =

∑
e={u,v}∈E

w(u, v) · beb⊺e . We also

define
JG ≜ I +D

−1/2
G AGD

−1/2
G .

For any symmetric matrix A ∈ Rn×n, we use λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A) to express the
eigenvalues of A. For ease of presentation, we always use 0 = λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 2 to express
the eigenvalues of LG , with the corresponding orthonormal eigenvectors f1, f2, · · · , fn. With slight
abuse of notation, we use L−1

G for the pseudo inverse of LG, i.e.,

L−1
G ≜

n∑
i=2

1

λi
fif

⊺
i .

Note that when G is connected, it holds that λ2 > 0 and the matrix L−1
G is well defined. We

sometimes drop the subscript G when it is clear from the context.

For any vector x ∈ Rn we define ∥x∥ ≜
√∑n

i=1 x
2
i , and any matrix M ∈ Rn×n we define

∥M∥ = max
x∈Rn\{0}

∥Mx∥
∥x∥

.

Graph expansion and Cheeger inequality. For any undirected graph G, the expansion (or con-
ductance) of any non-empty subset S ⊂ V in G is defined as ϕG(S) ≜ wG(S,S̄)

volG(S) , where S̄ is the
complement of S and wG(S, S̄) =

∑
u∈S,v∈S̄ wG(u, v). We call subsets of vertices S1, S2, · · · , Sk

a k-way partition of G if Si ̸= ∅ for all 1 ≤ i ≤ k, Si ∩ Sj = ∅ for i ̸= j and
⋃k

i=1 Si = V . For
every k ∈ N, the k-way expansion constant is defined as

ρG(k) = min
S1,S2,··· ,Sk

max
1≤i≤k

ϕG(Si),

where the minimum is taken over all possible k-way partitions of G. Lee et al. (2014) proves the
following higher-order Cheeger inequality:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Lemma 3 (Higher-order Cheeger Inequality, (Lee et al., 2014)). It holds for any undirected graph
G of n vertices and integer 1 ≤ k ≤ n that λk/2 ≤ ρG(k) ≤ Ck2

√
λk, where C is a universal

constant.

Generalising this, Liu (2015) proves the following higher-order dual-Cheeger inequality:

Lemma 4 (Higher-order dual-Cheeger Inequality, (Liu, 2015)). It holds for any undirected graph
G of n vertices and integer 1 ≤ k ≤ n that (2 − λn−k+1)/2 ≤ 1 − ρ̄G(k) ≤ Ck3

√
2− λn−k+1,

where C is a universal constant.

Note that the higher-order dual Cheeger inequality can be viewed as a quantitative version of the
fact that λn−k+1 = 2 if and only if G has at least k bipartite connected components.

3 SPARSIFYING DENSELY CONNECTED CLUSTERS IN UNDIRECTED GRAPHS

In this section we present a nearly-linear time sparsification algorithm such that every pair of densely
connected clusters in an undirected graph G is approximately preserved in the sparsifed graph G∗,
and sketch the proof. Our result is as follows:

Theorem 5 (Formal Statement of Theorem 1). There exists an algorithm that, given a graph
G = (V,E,w) with ρ̄G(k) ≥ 1

logn for constant some k as input, with high probability computes a

sparsifier G∗ = (V, F ⊂ E, w̃) with |F | = O
(

n·log3 n
2−λn−k

)
edges such that the following hold: (1) it

holds that ρ̄G∗(k) = Ω(ρ̄G(k)); (2) it holds that λk+1(JG∗) = Θ(λk+1(JG)).

The first statement of Theorem 5 shows that the k pairs of densely connected clusters of G is approx-
imately preserved in G∗, and together with Lemma 4 the second statement shows that the number
of pairs of the densely connected clusters in G and G∗ is the same.

Algorithm. Our algorithm is similar with Sun & Zanetti (2019) at a high level, and is based
on sampling edges in G with certain probabilities. Formally, for an input undirected graph
G = (V,E,wG), the algorithm starts with G∗ = (V, ∅, w̃) and samples every edge u ∼ v in G
with probability

pe ≜ pu(v) + pv(u)− pu(v) · pv(u),
where

pu(v) ≜ min

{
wG(u, v) ·

C · log3 n
dG(u) · (2− λn−k)

, 1

}
. (3.1)

For every sampled edge e = {u, v}, the algorithm adds e to graph G∗, and sets wG∗(e) = wG(e)/pe.

Proof Sketch of Theorem 5. We first show prove that the cut values between Ai and Bi in G is
preserved in H for any 1 ≤ i ≤ k. For any edge e = {u, v}, we define the random variable Ye by
Ye = wG(u, v)/pe with probability pe, and Ye = 0 otherwise. By defining X = wH(Ai, Bi), we
prove that E[X] = wG(Ai, Bi) and

E
[
X2
]
≤ 2− λn−k

C · log3 n

∑
e={u,v}

u∈Ai,v∈Bi

w(u, v) ·
(
dG(u) + dG(v)

2

)
.

Let {(Ai, Bi)}ki=1 be the optimal cluster where ρ̄(k) is attained for graph G. Then, we have for
every 1 ≤ i ≤ k that

ρ̄G(k) ≤ ϕG(Ai, Bi) =
2wG(Ai, Bi)

volG(Ai ∪Bi)
,

which implies
ρ̄G(k)

2
· volG(Ai ∪Bi) ≤

∑
e={u,v}

u∈Ai,v∈Bi

wG(u, v).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Applying the Chebyshev’s inequality, we have for any constant c ∈ R+ that

P [|X −E[X]| ≥ c ·E[X]] ≤ E[X2]

c2 ·E[X]2

≤ 2 · (2− λn−k)

c2 · C · log3 n · ρ̄G(k)2
·

(
max e={u,v}

u∈Ai,v∈Bi

{dG(u) + dG(v)}
)
·
∑

e={u,v}
u∈Ai,v∈Bi

wG(u, v)

volG(Ai ∪Bi)2
.

Since volG(Ai ∪Bi) =
∑

u∈Ai
dG(u) +

∑
v∈Bi

dG(v) and dG(u) =
∑

u∼v wG(u, v), we have

max
e={u,v}

u∈Ai,v∈Bi

{dG(u) + dG(v)} ≤
∑
u∈Ai

dG(u) +
∑
v∈Bi

dG(v) = volG(Ai ∪Bi)

and ∑
e={u,v}

u∈Ai,v∈Bi

wG(u, v) ≤ volG(Ai ∪Bi).

Applying these gives us that

P [|X −E[X]| ≥ c ·E[X]] ≤ 2(2− λn−k)

c2 · C · log3 n · ρ̄(k)2
= O

(
1

log n

)
.

Hence, by the union bound, we have that wH(Ai, Bi) = Ω (wG(Ai, Bi)) for all 1 ≤ i ≤ k. The
second statement of Theorem 5 holds by the analysis similar with Sun & Zanetti (2019). Finally,
the total number of edges in H follows by the definition of sampling probability and the Markov
inequality. This completes the proof of Theorem 5.

4 SPARSIFYING DENSELY CONNECTED CLUSTERS IN DIRECTED GRAPHS

In this section we present a nearly-linear time sparsification algorithm such that all pairs of densely
connected clusters in a directed graph is approximately preserved in the output sparsifier, and prove
Theorem 2. Specifically, for a digraph

−→
G that contains exactly k pairs of (A1, B1), . . . , (Ak, Bk)

with high values of ϕ−→
G
(Ai, Bi) for every 1 ≤ i ≤ k, our objective is to construct a sparse digraph

−→
G∗, such that (i) the values of ϕ−→

G∗(Ai, Bi) are high for every 1 ≤ i ≤ k and (ii) the number of such

pairs in
−→
G∗ is the same as

−→
G .

Before sketching our technique, we recall that, for undirected graphs, the value of k is proven to
be identical for G and G∗ by analysing the eigenvalues of JG and JG∗ and applying the higher-
order dual-Cheeger inequality (Lemma 4). However, a natural matrix representation for directed
graph could result in complex-valued eigenvalues, and there is no analog of Lemma 4 for directed
graphs. To overcome this, our developed algorithm is based on a reduction from a directed graph
to an undirected one, and its reverse operation. Specifically, our designed algorithm consists of the
following three steps, as illustrated in Figure 1:

1. for any input digraph
−→
G , the algorithm constructs an undirected graph H such that every

two densely connected clusters (Ai, Bi) in
−→
G corresponds to a low-conductance set in H;

2. the algorithm constructs a sparsifier H∗ of H , such that H and H∗ have the same structure
of clusters;

3. the algorithm applies the sparsified undirected graph H∗ to construct a directed graph
−→
G∗

of
−→
G that satisfies ρ̄−→

G∗(k) = Ω
(
ρ̄−→
G
(k)
)
.

Constructing H from
−→
G . Notice that, to preserve ϕ−→

G∗(Ai, Bi), the cut values w(Ai, Bi) between
Ai and Bi need to be approximately preserved in a sparsified directed graph; this objective is very
different from the most graph sparsification one, which only preserves the cut value between any
set S and its complement. To overcome this, following (Macgregor & Sun, 2021) we construct an

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(−→
G∗, ρ̄−→

G∗(k)
)

(H∗, ρH∗(k))

(−→
G, ρ̄−→

G
(k)
)

(H, ρH(k))

reverse
semi-double cover

semi-double
cover

graph

sparsification

graph

sparsification

Figure 1: A commutative diagram of sparsification of directed graphs. In order to construct
−→
G∗ from

−→
G , we construct graphs H and H∗ and prove the close relationships between

−→
G , H , H∗, and

−→
G∗.

undirected graph H such that every pair of densely connected clusters (Ai, Bi) in
−→
G corresponds to

a low-conductance set in H . Specifically, for a weighted digraph
−→
G = (V−→

G
, E−→

G
, w−→

G
), we construct

its semi-double cover H = (VH , EH , wH) as follows:

1. every vertex v ∈ V−→
G

has two corresponding vertices v1, v2 ∈ VH ;

2. for every edge u → v ∈ E−→
G

, we add the edge {u1, v2} in EH .

See Figure 2 for illustration.

c

a

d

b

a2 b2 c2 d2

a1 b1 c1 d1

Figure 2: Illustration of the semi-double cover construction. A directed graph of n vertices (left)
corresponds to an undirected and bipartite graph of 2n vertices (right).

Next we analyse the properties of the reduced graph. Let
−→
G be a digraph with semi-double cover

H . For any S ⊂ V−→
G

, we define S1 ⊂ VH and S2 ⊂ VH by S1 ≜ {v1|v ∈ S} and S2 ≜ {v2|v ∈ S}.
A subset S of VH is called simple if |{v1, v2} ∩ S| ≤ 1 holds for all v ∈ V−→

G
. The following lemma

develops a relationship between the flow ratio from A to B defined by
f−→
G
(A,B) ≜ 1− ϕ−→

G
(A,B) (4.1)

and ΦH(A1 ∪B2), for any A,B.

Lemma 6. Let
−→
G be a digraph with semi-double cover H . Then, it holds for any A,B ⊂ V−→

G
that

f−→
G
(A,B) = ϕH(A1 ∪ B2). Similarly, for any simple set S ⊂ VH , let A = {u : u1 ∈ S} and

B = {u : u2 ∈ S}. Then, it holds that f−→
G
(A,B) = ϕH(S).

Lemma 6 proves a one-to-one correspondence between any pair of disjoint vertex sets in
−→
G and a

vertex set in H . Building on this, we prove that this one-to-one correspondence can be generalised
between any k pairs of densely connected clusters in

−→
G and k disjoint vertex sets in H . Moreover,

the structure of k pairs of densely connected clusters in
−→
G is preserved by a collection of k disjoint

vertex sets of low conductance in H .
Lemma 7. For any directed and weighted graph

−→
G = (V−→

G
, E−→

G
, w−→

G
) and k ∈ N, it holds that

ρ̄−→
G
(k) = 1− min

C1,...,Ck

max
1≤i≤k

ϕH(Ci), (4.2)

where the minimum is taken over a collection of k disjoint simple subsets of VH defined by Ci =
Ai1 ∪Bi2 for 1 ≤ i ≤ k.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Sparsification of H . Next we construct a sparse representation of H , denoted by H∗, such that
the k vertex sets of low conductance is preserved in H∗. To achieve this, we apply the following
result to construct a cluster-preserving sparsifier, which guarantees that the structure of k clusters in
G is preserved in H .

Lemma 8 ((Sun & Zanetti, 2019)). There exists an algorithm that, given a graph G = (V,E,w)
with k clusters as input, with probability at least 9/10, computes a sparsifier H = (V, F ⊂ E, w̃)
with |F | = O(1/λk+1 · n log n) edges such that the following holds:

1. it holds for any 1 ≤ i ≤ k that ϕH(Si) = O(k ·ϕG(Si)), where S1, · · · , Sk are the optimal
clusters in G that achieves ρ(k).

2. λk+1(LH) = Ω(λk+1(LG)).

Constructing
−→
G∗ from H∗. Finally, we construct a directed graph

−→
G∗ from H∗ such that the

original k pairs of densely connected clusters in
−→
G is preserved in

−→
G∗. To achieve this, we introduce

the following reverse semi-double cover:

Definition 9 (reverse semi-double cover). Given any double cover graph H∗ = (VH∗ , EH∗ , wH∗)

as input, the reverse semi-double cover of H∗ is a directed graph
−→
G∗ = (V−→

G∗ , E−→
G∗ , w−→

G∗) con-
structed as follows:

• every pair of vertices u1 and u2 in VH∗ corresponds to a vertex v ∈ V−→
G∗ ;

• we add an edge u → v to E−→
G

if there is edge {u1, v2} ∈ EH∗ , and set w−→
G∗(u, v) =

wH∗(u1, v2).

One might think that the reverse double cover plays an exact opposite role of the double cover,
however it is not the case. In particular, while our constructed subsets C1, . . . , Ck in the first step
are always simple in H (cf. Lemma 7), the k subsets corresponding to ρH(k) are not necessarily
simple. As a result,

min
C1,...,Ck

max
1≤i≤k

ϕH(Ci) = ρH(k)

doesn’t hold in general, and there is no direct correspondence between C1, . . . , Ck in H and the k

pairs of densely connected clusters in
−→
G∗ that correspond to ρ̄−→

G∗(k).

To analyse ρ−→
G∗(k), for any set S ⊂ VH we partition the set into two subsets S1 and S2 defined

by S1 = S ∩ (Ai1 ∪ Bi2) and S2 = S ∩ (Ai2 ∪ Bi1). For example, following Figure 2, if the
sets Ai = {a, c} and Bi = {b, d} and the set S ⊂ VH be S = {a1, b1, b2, c1, c2}, then we have
S1 = {a1, b2, c1} and S2 = {b1, c2}. Since Ai and Bi are densely connected in H , implying that
most of the edges are either from Ai to Bi or from Bi to Ai, there are few edges within Ai and Bi

for 1 ≤ i ≤ k. Hence, there are very few edges between S1 and S2 for any S ⊂ VH . Without loss
of generality, we assume that

2wH(S1, S2)

wH(S1, S̄1) + wH(S2, S̄2)
≤ c

for some constant c < 1. Simplifying the inequality above we get

wH(S1, S̄1) + wH(S2, S̄2)− 2wH(S1, S2) ≥ (1− c) ·
[
wH(S1, S̄1) + wH(S2, S̄2)

]
.

Thus, for any set S ⊂ VH that is not necessarily simple we have

ϕH(S) =
wH(S, S̄)

vol(S)
=

wH(S1, S̄1) + wH(S2, S̄)− 2wH(S1, S2)

vol(S1) + vol(S2)

≥ (1− c) ·min

{
wH(S1, S̄1)

vol(S1)
,
wH(S2, S̄2)

vol(S2)

}
= (1− c) ·min {ϕH(S1), ϕH(S2)} ,

where the last inequality follows from the median inequality. Thus, for every set S ⊂ VH , there
exists a simple set T ⊂ VH such that ϕH(S) ≥ (1 − c) · ϕH(T). Moreover, for any collection

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

of k-disjoint sets S1, S2, · · · , Sk, where Si ⊂ VH we have a collection of k-disjoint simple sets
T1, T2, · · · , Tk, where Ti ⊂ VH , such that

max
1≤i≤k

ϕH(Si) ≥ (1− c) · max
1≤i≤k

ϕH(Ti).

Taking minimum over all such collection of k-disjoint subsets of VH gives us that

min
S1,S2,··· ,Sk

max
1≤i≤k

ϕH(Si) = ρH(k) ≥ (1− c) · min
T1,T2,··· ,Tk

max
1≤i≤k

ϕH(Ti),

where in the second half of the inequality the minimum is taken over collection of k-disjoint simple
subsets of VH . On one hand, rearranging the above inequality we have

1

1− c
· ρH(k) ≥ min

T1,T2,··· ,Tk

max
1≤i≤k

ϕH(Ti), (4.3)

and on the other hand, since the collection of k-disjoint simple subsets of VH is a sub-collection of
the collection of k-disjoint subsets of VH , we have

min
T1,T2,··· ,Tk

max
1≤i≤k

ϕH(Ti) ≥ ρH(k). (4.4)

Thus, combining (4.3) and (4.4), we have

1

1− c
· ρH(k) ≥ min

T1,T2,··· ,Tk

max
1≤i≤k

ϕH(Ti) ≥ ρH(k). (4.5)

Further, combining (4.2) and (4.5) we have

1− 1

1− c
· ρH(k) ≤ ρ̄−→

G
(k) ≤ 1− ρH(k). (4.6)

Proof of Theorem 2. Now we are ready to prove 2. Since
−→
G is a directed graph with k pairs

of densely connected clusters, the value of ρ̄−→
G
(k) is high; together with (4.6), this implies that

ρH(k) = o(1). By Lemma 8, we know that there exists a sparsifier H∗ of H , such that ρH∗(k) =

O(k · ρH(k)). Thus, we can conclude that ρH∗(k) = o(1). Hence, applying (4.6) for
−→
G∗ and H∗

we have

1− 1

1− c
· ρH∗(k) ≤ ρ̄−→

G∗(k) ≤ 1− ρH∗(k). (4.7)

Finally, using the fact that ρH∗(k) = o(1), we conclude that ρ̄−→
G∗(k) is close to 1 and hence the

structure of
−→
G will be preserved in

−→
G∗. Moreover, by the construction of H , and H∗, and

−→
G∗, the

value of k is preserved.

For the running time, notice that all the intermediate graphs H and H∗ can be constructed lo-
cally, and therefore it’s sufficient to examine every edge of the input graph

−→
G once throughout the

execution of the algorithm. This implies the nearly-linear running time of our overall algorithm.
Combining everything above above proves Theorem 2.

5 EXPERIMENTS

In this section, we evaluate the performance of our proposed algorithms on synthetic data sets.
We employ the algorithms presented in (Macgregor & Sun, 2021) as the baseline algorithms, and
examine the speedup of their algorithms when applying our sparsification algorithms as subroutines.
Notice that, as all the involved operations of our algorithms can be performed locally, one can run our
graph sparsification algorithms online while exploring the underlying graph with a local algorithm.
For ease of presentation, in this section we call the local algorithm in (Macgregor & Sun, 2021) with
our sparsification framework our algorithm. All experiments were performed on a HP ZBook Studio
with 11th Gen Intel(R) Core(TM) i7-11800H @ 2.30GHz processor and 32 GB of RAM.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5.1 RESULTS FOR UNDIRECTED GRAPHS

We compare the performance of our algorithm with the previous existing algorithm LocBipartDC
given by Macgregor & Sun (2021), which we refer to as MS, on synthetic graphs generated from
the stochastic block model (SBM). Specifically, we assume that the graph has k = 2 clusters, say
C1, C2, and the number of vertices in each cluster, denoted by n1 and n2 respectively, satisfies
n1 = n2. Moreover, any pair of vertices u ∈ Ci and v ∈ Cj is connected with probability pij . We
assume that p12 = p21 = p and p11 = p22 = q, where q = 0.1p. Throughout the experiments, we
leave the parameters n and p free but maintain the above relations.

Our algorithm sparsifies the graph in an online manner while exploring it and simultaneously apply
the MS algorithm. We evaluate the quality of the output (L,R) returned by each algorithm with
respect to its bipartiteness ratio defined by β(L,R) = 1− ϕ(L,R). All our reported results are the
average performance of each algorithm over 10 runs, in which a random vertex from C1 ∪ C2 is
chosen as the starting vertex of the algorithm. We generate graphs from the SBM such that q = 0.1p
and vary the size of the target set by varying n1 between 1, 000 and 6, 000. In Figure 3, we fix the
probability p = 0.3 and vary the number of vertices n1 = n2 and compare both runtime and the
bipartiteness ratio between the MS algorithm and our algorithm. One can observe that for a fixed
probability p as we increase the number of vertices, our algorithm takes much less time than the MS
algorithm and maintains a similar bipartiteness ratio with the MS algorithm.

(a) Runtime comparison (b) Bipartiteness Ratio comparison

Figure 3: Runtime and bipartiteness comparison between MS and our algorithm by fixing p = 0.3,
q = 0.1p and varying the number of vertices between 500 and 6, 000.

5.2 RESULTS FOR DIRECTED GRAPHS

Next we evaluate the performance of our algorithm for digraphs on synthetic dataset. We compare
the performance of our algorithm with the previous existing algorithm EvoCutDirected given by
Macgregor & Sun (2021), which we refer to as ECD, and use the graphs generated from the SBM
as the algorithms’ input. In our algorithm, given a digraph G as input, we sparsify the graph along
with generating the volume-biased ESP on G′s semi-double cover H . Since the ECD is a local
algorithm, we also test our algorithm locally. In this model, we look into a cluster which is almost
bipartite with the bipartition being L and R. We set the number of vertices in L and R to be n1 and
n2 such that n1 = n2 and the probability of an edge to be as follows

L R()
L 9/n1 η
R 1− η 9/n2

,

i.e., the probability that there is an edge within the partition is 9/n1 = 9/n2 and so on. Since most
of our directed edges are from L to R, the value of η is high. For our experiments we generate two
sets of plots:

• We first fix the value of η = 0.7 and vary the number of vertices in each partition from
2, 000 to 5, 000, and compare the runtime of the ECD algorithm and our algorithm. One

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

can observe that our algorithm takes much less time than the ECD algorithm and gives a
similar flow-ratio at the same time as we increase the number of vertices.

(a) Runtime comparison (b) Flow-ratio comparison

Figure 4: Runtime and flow-ratio comparison between ECD and our algorithm.

• Based on this, it suffices for us to only compare the running times. We vary the number of
vertices in each partition from 1, 500 to 5, 000 and vary the value of η from 0.7 to 0.9, and
compare the runtime of the ECD algorithm and our algorithm. One can observe that our
algorithm runs faster than the ECD algorithm as η increases, i.e., when the graph is dense.

(a) η = 0.7 (b) for η = 0.8 (c) η = 0.9

Figure 5: Runtime comparison between ECD and our algorithm for η = 0.7, 0.8 and 0.9.

REFERENCES

Reid Andersen. A local algorithm for finding dense subgraphs. ACM Transactions on Algorithms
(TALG), 6(4):1–12, 2010.

Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-ramanujan sparsifiers. SIAM
J. Comput., 41(6):1704–1721, 2012.

Stefanos Bennett, Cucuringu Mihai, and Reinert Gesine. Lead–lag detection and network clustering
for multivariate time series with an application to the US equity market. Machine Learnin, 111:
4497–4538, 2022.

Michael B. Cohen, Jonathan A. Kelner, John Peebles, Richard Peng, Anup B. Rao, Aaron Sidford,
and Adrian Vladu. Almost-linear-time algorithms for markov chains and new spectral primitives
for directed graphs. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, pp. 410–419, 2017.

Anna Concas, Caterina Fenu, Lothar Reichel, Giuseppe Rodriguez, and Zhang Yunzi. Chained
structure of directed graphs with applications to social and transportation networks. Applied
Network Science, 7(64), 2022.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Mihai Cucuringu, Huan Li, He Sun, and Luca Zanetti. Hermitian matrices for clustering directed
graphs: insights and applications. In The 23rd International Conference on Artificial Intelligence
and Statistics, 2020.

Yixuan He, Gesine Reinert, and Mihai Cucuringu. DIGRAC: digraph clustering based on flow
imbalance. In Learning on Graphs Conference, Proceedings of Machine Learning Research, pp.
21, 2022.

Steinar Laenen and He Sun. Higher-order spectral clustering of directed graphs. In Advances in
Neural Information Processing Systems 33: Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, 2020.

James R Lee, Shayan Oveis Gharan, and Luca Trevisan. Multiway spectral partitioning and higher-
order cheeger inequalities. Journal of the ACM, 61(6):1–30, 2014.

Yin Tat Lee and He Sun. An sdp-based algorithm for linear-sized spectral sparsification. In 49th
Annual ACM Symposium on Theory of Computing, pp. 678–687, 2017.

Angsheng Li and Pan Peng. Detecting and characterizing small dense bipartite-like subgraphs by
the bipartiteness ratio measure. In 24th International Symposium on Algorithms and Computa-
tion (ISAAC’13), pp. 655–665, 2013.

Shiping Liu. Multi-way dual cheeger constants and spectral bounds of graphs. Advances in Mathe-
matics, 268:306–338, 2015.

Peter Macgregor and He Sun. Local algorithms for finding densely connected clusters. In 38th
International Conference on Machine Learning, pp. 7268–7278, 2021.

Cristopher Moore, Xiaoran Yan, Yaojia Zhu, Jean-Baptiste Rouquier, and Terran Lane. Active
learning for node classification in assortative and disassortative networks. In 17th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD’11), pp. 841–849,
2011.

Stefan Neumann and Pan Peng. Sublinear-time clustering oracle for signed graphs. In International
Conference on Machine Learning, pp. 16496–16528, 2022.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-GCN: Geomet-
ric Graph Convolutional Networks. In 7th International Conference on Learning Representations
(ICLR’19), 2019.

Daniel A. Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM J. Comput., 40
(4):981–1025, 2011.

He Sun and Luca Zanetti. Distributed graph clustering and sparsification. ACM Trans. Parallel
Comput., 6(3):17:1–17:23, 2019.

Luca Trevisan. Max cut and the smallest eigenvalue. In 41st Annual ACM Symposium on Theory of
Computing, pp. 263–272, 2009.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. In 34th Advances
in Neural Information Processing Systems (NeurIPS’20), 2020.

A USEFUL INEQUALITIES

The following inequalities will be used in our analysis.
Theorem 10 (Courant-Fischer Theorem). Let A be a n × n symmetric matrix with eigenvalues
λ1 ≤ λ2 ≤ · · · ≤ λn. Then, it holds for any 1 ≤ k ≤ n that

λk = min
S

dim(S)=k

max
y∈S\{0}

y⊺ ·A · y
y⊺ · y

= max
S

dim(S)=n−k+1

min
y∈S\{0}

y⊺ ·A · y
y⊺ · y

,

where the maximisation and minimisation are over the subspaces of Rn.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Lemma 11 (Bernstein’s Inequality). Let X1, X2, · · · , Xn be independent random variables such
that |Xi| ≤ M for any 1 ≤ i ≤ n. Let X =

∑n
i=1 Xi, and R =

∑n
i=1 E

[
X2

i

]
. Then, it holds that

P [|X −E[X]| ≥ t] ≤ 2 exp

(
− t2

2
(
R+ Mt

3

)) .

Lemma 12 (Matrix Chernoff Bound). Consider a finite sequence {Xi} of independent, random,
PSD matrices of dimension d that satisfy ∥Xi∥ ≤ R. Let µmin = λmin (E[

∑
i Xi]) and µmax =

λmax (E[
∑

i Xi]). Then, it holds that

P

[
λmin

(∑
i

Xi

)
≤ (1− δ)µmin

]
≤ d ·

(
e−δ

(1− δ)1−δ

)µmin
R

for δ ∈ [0, 1],

and

P

[
λmax

(∑
i

Xi

)
≥ (1 + δ)µmax

]
≤ d ·

(
eδ

(1 + δ)1+δ

)µmax
R

for δ ≥ 0.

B OMITTED DETAIL FROM SECTION 3

This section presents all the omitted detail from Section 3, and gives a complete proof of Theorem 5.
We first recall that, for every vertex u and its adjacent vertex v, the algorithm assigns the edge
e = {u, v} the probability

pu(v) ≜ min

{
wG(u, v) ·

C · log3 n
dG(u) · (2− λn−k)

, 1

}
, (B.1)

for a large enough constant C ∈ R≥0. The algorithm checks every edge and samples an edge
e = {u, v} with probability pe, where

pe ≜ pu(v) + pv(u)− pu(v) · pv(u).
Note that, it is easy to check that pe satisfies the inequality

1

2
(pu(v) + pv(u)) ≤ pe ≤ pu(v) + pv(u).

We start with an empty set F and gradually store all the sampled edges in F , which is sampled by
the algorithm. Finally, the algorithm returns a weighted graph H = (V, F,wH), where the weight
wH(u, v) of every sampled edge e = {u, v} ∈ F is defined by

wH(u, v) =
wG(u, v)

pe
.

Next, we analyze the size of F . Since∑
u

∑
e={u,v}

wG(u, v) ·
C · log3 n

dG(u) · (2− λn−k)
= O

(
n · log3 n
2− λn−k

)
,

it holds by Markov inequality that the number of edges e = {u, v} with pu(v) ≥ 1 is O
(

n·log3 n
2−λn−k

)
.

Without loss of generality, we assume that these edges are in F , and in the remaining part of the
proof we assume it holds for any edge u ∼ v that

wG(u, v) ·
C · log3 n

dG(u) · (2− λn−k)
< 1.

Then, the expected number of edges in H equals∑
e={u,v}

pe ≤
∑

e={u,v}

pu(v) + pv(u) =
C · log3 n
(2− λn−k)

∑
e={u,v}

w(u, v) ·
(

1

dG(u)
+

1

dG(v)

)

= O

(
n · log3 n
2− λn−k

)
,

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

and by Markov inequality it holds with constant probability that

|F | = O

(
n · log3 n
2− λn−k

)
.

Now we show that the cut value between Ai and Bi is preserved in H for all 1 ≤ i ≤ k. For any
edge e = {u, v}, we define the random variable Ye by

Ye =


wG(u, v)

pe
with probability pe,

0 otherwise.
(B.2)

Also, we define X = wH(Ai, Bi), and have that

E[X] =
∑

e={u,v}
u∈Ai,v∈Bi

E [Ye] =
∑

e={u,v}
u∈Ai,v∈Bi

pe·
wG(u, v)

pe
=

∑
e={u,v}

u∈Ai,v∈Bi

wG(u, v) = wG(Ai, Bi). (B.3)

Next, we analyse the second moment of the random variable X and have that

E
[
X2
]
=

∑
e={u,v}

u∈Ai,v∈Bi

pe ·
(
wG(u, v)

pe

)2

=
∑

e={u,v}
u∈Ai,v∈Bi

wG(u, v)
2

pe

≤
∑

e={u,v}
u∈Ai,v∈Bi

2wG(u, v)
2

pu(v) + pv(u)

=
∑

e={u,v}
u∈Ai,v∈Bi

2wG(u, v)
2

wG(u,v)·C·log3 n
(2−λn−k)

·
(

1
dG(u) +

1
dG(v)

)
≤ 2− λn−k

C · log3 n

∑
e={u,v}

u∈Ai,v∈Bi

w(u, v) ·
(
dG(u) + dG(v)

2

)
,

(B.4)

where the last step follows by the means inequality. Let {(Ai, Bi)}ki=1 be the optimal cluster where
ρ̄(k) is attained for graph G. Recall that for every k ∈ N, the k-way dual Cheeger constant is defined
by

ρ̄G(k) = max
(A1,B1),··· ,(Ak,Bk)

min
1≤i≤k

ϕG(Ai, Bi).

Then, we have for every 1 ≤ i ≤ k that

ρ̄G(k) ≤ ϕG(Ai, Bi) =
2wG(Ai, Bi)

volG(Ai ∪Bi)
,

which implies

ρ̄G(k)

2
· volG(Ai ∪Bi) ≤

∑
e={u,v}

u∈Ai,v∈Bi

wG(u, v). (B.5)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Next, by the Chebyshev’s inequality we have for any constant c ∈ R+ that

P [|X −E[X]| ≥ c ·E[X]]

≤ E[X2]

c2 ·E[X]2

≤

2−λn−k

C·log3 n

(∑
e={u,v}

u∈Ai,v∈Bi

wG(u, v) ·
(

dG(u)+dG(v)
2

))
0.01 ·

(∑
e={u,v}

u∈Ai,v∈Bi

wG(u, v)

)2

≤

2−λn−k

C·log3 n

(∑
e={u,v}

u∈Ai,v∈Bi

wG(u, v) ·
(

dG(u)+dG(v)
2

))
c2 ·

(
ρ̄G(k)

2 · volG(Ai ∪Bi)
)2

=
2 · (2− λn−k)

c2 · C · log3 n · ρ̄G(k)2
·

∑
e={u,v}

u∈Ai,v∈Bi

wG(u, v) · (dG(u) + dG(v))

volG(Ai ∪Bi)2

≤ 2 · (2− λn−k)

c2 · C · log3 n · ρ̄G(k)2
·

(
max e={u,v}

u∈Ai,v∈Bi

{dG(u) + dG(v)}
)
·
∑

e={u,v}
u∈Ai,v∈Bi

wG(u, v)

volG(Ai ∪Bi)2
.

(B.6)

Since volG(Ai ∪Bi) =
∑

u∈Ai
dG(u) +

∑
v∈Bi

dG(v) and dG(u) =
∑

u∼v wG(u, v), we have

max
e={u,v}

u∈Ai,v∈Bi

{dG(u) + dG(v)} ≤
∑
u∈Ai

dG(u) +
∑
v∈Bi

dG(v) = volG(Ai ∪Bi)

and ∑
e={u,v}

u∈Ai,v∈Bi

wG(u, v) ≤ volG(Ai ∪Bi).

Thus, we have by (B.6) and the assumption of ρ̄(k) ≥ 1
log(n) that

P [|X −E[X]| ≥ c ·E[X]] ≤ 2(2− λn−k)

c2 · C · log3 n · ρ̄(k)2
= O

(
1

log n

)
.

Hence, by choosing a sufficient large constant c and the union bound, we have that

wH(Ai, Bi) = Ω (wG(Ai, Bi)) for all 1 ≤ i ≤ k. (B.7)

Next, we show that the degree of every vertex in H is approximately preserved with high probability.
Based on the random variable Ye defined in (B.2), we define the random variable Zu by

Zu =
∑

v:v∼u

Ye.

Then, the expected value of Zu is given by

E[Zu] =
∑

v:v∼u

E[Ye] =
∑

v:v∼u

pe ·
wG(u, v)

pe
=
∑

v:v∼u

wG(u, v) = dG(u),

and the second moment can be upper bounded by∑
v:v∼u

E
[
Y 2
e

]
=
∑

v:v∼u

pe ·
(
wG(u, v)

pe

)2

=
∑

v:v∼u

wG(u, v)
2

pe
≤
∑

v:v∼u

wG(u, v)
2

pu(v)
,

since pe ≥ pu(v). Now using the value of pu(v) from (3.1), we have∑
v:v∼u

E
[
Y 2
e

]
≤
∑

v:v∼u

w(u, v)2 · dG(u) · (2− λn−k)

w(u, v) · C · log3 n
=

dG(u) · (2− λn−k)

C · log3 n

∑
v:v∼u

wG(u, v)

=
d2G(u) · (2− λn−k)

C · log3 n

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

and for any edge e = {u, v} we have that

0 ≤ w(u, v)

pe
≤ w(u, v)

pu(v)
≤ dG(u) · (2− λn−k)

C · log3 n
.

Now, applying Bernstein’s inequality (Lemma 11), we have

P
[
|dH(u)− dG(u)| ≥

du
2

]
= P

[
|Zu − E[Zu]| ≥

E[Zu]

2

]

≤ 2 · exp

 − 1
8 · d2G(u)

d2
G(u)·(2−λn−k)

C·log3 n
+ 1

6 · d2
G(u)·(2−λn−k)

C·log3 n


= 2 · exp

(
−

1
8 · C · log3 n
7
6 · (2− λn−k)

)

= o

(
1

n2

)
.

Hence, it holds by the union bound that, with high probability, the degree of all the vertices in H are
approximately preserved up to a constant factor. This implies that for any subset S ⊆ V , we have

volH(S) = Θ (volG(S)) ,

more specifically,
volH(Ai ∪Bi) = Θ (volG(Ai ∪Bi)) , (B.8)

for all 1 ≤ i ≤ k. Thus, combining (B.7) and (B.8) gives us that

ϕH(Ai, Bi) = Ω
(
ϕG(Ai, Bi)

)
(B.9)

for all 1 ≤ i ≤ k, which implies that

ρ̄H(k) ≥ min
1≤i≤k

ϕH(Ai, Bi) = min
1≤i≤k

Ω
(
ϕG(Ai, Bi)

)
= Ω(ρ̄G(k)) ,

where the last equality follows from the fact that {(Ai, Bi)}ki=1 is the optimal cluster where ρ̄(k) is
attained for graph G.

Next, we show that the top (n−k)-eigenspaces of JG are preserved in H . Without loss of generality
we assume the graph is connected. Since JG = 2I − LG by definition, it holds that

λi(JG) = 2− λn+1−i(LG). (B.10)

Let

P ≜
n−k∑
i=1

(2− λi(LG))fif
⊺
i ,

and with slight abuse of notation we call P−1/2 as the square root of the pseudo-inverse of P , i.e.,

P−1/2 =

n−k∑
i=1

(2− λi(LG))
−1/2fif

⊺
i .

Let P be the projection on the spam of {f1, f2, · · · , fn−k}, then

P =

n−k∑
i=1

fif
⊺
i .

Recall that, for each vertex v, the indicator vector χv ∈ Rn is defined by χv(u) =
1√

dG(v)
if u = v

and χv(u) = 0 otherwise. For each edge e = {u, v} of G we define a vector ge = χu + χv ∈ Rn

and a random matrix Xe ∈ Rn×n by

Xe =

{
wH(u, v) · P−1/2geg

⊺
eP−1/2 if e = {u, v} is sampled by the algorithm,

0 otherwise.
(B.11)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Then, it holds that ∑
e∈E

Xe =
∑

e={u,v}∈F

wH(u, v) · P−1/2geg
⊺
eP−1/2

= P−1/2

 ∑
e={u,v}∈F

wH(u, v) · geg⊺e

P−1/2

= P−1/2J ′
HP−1/2,

where
J ′
H ≜

∑
e={u,v}∈F

wH(u, v) · geg⊺e

is the signless Laplacian matrix of H normalised with respect to the degree of the vertices in the
original graph G. We will now prove that, with high probability the top n − k eigenspaces of J ′

H
and JG are approximately the same. We first analyse the expectation of

∑
e∈E Xe, and have that

E

[∑
e∈E

Xe

]
=

∑
e={u,v}∈E

pe · wH(u, v) · P−1/2geg
⊺
eP−1/2

=
∑

e={u,v}∈E

pe ·
wG(u, v)

pe
· P−1/2geg

⊺
eP−1/2

= P−1/2

 ∑
e={u,v}∈F

wG(u, v) · geg⊺e

P−1/2

= P−1/2JGP−1/2 =

n−k∑
i=1

fif
⊺
i = P.

Moreover, for any edge e = {u, v} ∈ E sampled by the algorithm, we have

∥Xe∥ ≤ wH(u, v) · g⊺eP−1/2P−1/2ge =
wG(u, v)

pe
· g⊺eP−1ge

≤ wG(u, v)

pe
· 1

2− λn−k
· ∥ge∥2

≤ 2wG(u, v)

pu(v) + pv(u)
· 1

2− λn−k
·
(

1

dG(u)
+

1

dG(v)

)
≤ 2

C · log3 n
,

where the second inequality follows by the min-max theorem of eigenvalues. Now we apply the
matrix Chernoff bound (Lemma 12) to analyze the eigenvalues of

∑
e∈E Xe. Following Lemma 12

we set the parameters as follows:

µmax = λmax

(
E

[∑
e∈E

Xe

])
= λmax

(
P
)
= 1,

R =
2

C · log3 n
, and

δ =
1

2
.

(B.12)

Then using the Matrix Chernoff bound (Lemma 12), we have

P

[
λmax

(∑
e∈E

Xe

)
≥ 3

2

]
≤ n ·

(
e

1
2

1.5
3
2

)C·log3 n
2

= O

(
1

n3

)
,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

for some constant C; this implies that

P

[
λmax

(∑
e∈E

Xe

)
≤ 3

2

]
= 1−O

(
1

n3

)
. (B.13)

On the other hand, since E
[∑

e∈E Xe

]
= P , we have µmin = 1 and hence keeping R and δ the

same as above, using the Matrix Chernoff bound (Lemma 12), we get

P

[
λmin

(∑
e∈E

Xe

)
≤ 1

2

]
≤ n ·

(
e−

1
2

0.5
1
2

)C·log3 n
2

= O

(
1

n3

)
;

this implies that

P

[
λmin

(∑
e∈E

Xe

)
≥ 1

2

]
= 1−O

(
1

n3

)
. (B.14)

Combining (B.13), (B.14) and the fact that
∑

e∈E Xe = P−1/2J ′
HP−1/2, with probability 1 −

O
(

1
n3

)
it holds for any non-zero x ∈ Rn in span{f1, f2, · · · , fn−k} that

x⊺P−1/2J ′
HP−1/2x

x⊺x
∈
[
1

2
,
3

2

]
. (B.15)

Let y = P−1/2x, and we rewrite (B.15) as
y⊺J ′

Hy

y⊺Py
=

y⊺J ′
Hy

y⊺y
· y⊺y

y⊺Py
∈
[
1

2
,
3

2

]
.

Since dim(span{f1, f2, · · · , fn−k}) = n− k, there exist n− k orthogonal vectors whose Rayleigh
quotient with respect to J ′

H is Θ(λn−k(2I − LG)). Hence, by the Courant-Fischer Theorem (The-
orem 10) we have

1

2
· λn−k(2I − LG) ≤ λk+1(J ′

H) ≤ 3

2
· λn−k(2I − LG) (B.16)

By the definition of J ′
H = D

−1/2
G (DH +AH)D

−1/2
G , we have

JH = D
−1/2
H (DH +AH)D

−1/2
H = D

−1/2
H

(
D

1/2
G · J ′

H ·D1/2
G

)
D

−1/2
H .

Hence, we set y = D
1/2
G D

−1/2
H x for any x ∈ Rn and have that

x⊺JHx

x⊺ · x
=

x⊺ ·D−1/2
H

(
D

1/2
G · J ′

H ·D1/2
G

)
D

−1/2
H · x

x⊺ · x
=

y⊺ · J ′
H · y

x⊺ · x
≥ 1

2
· y

⊺ · J ′
H · y

y⊺ · y
, (B.17)

where we use the fact that the degree of a vertex differs by a constant factor between H and G.
Similarly, we also have

x⊺ · JH · x
x⊺ · x

≤ 3

2
· y

⊺ · J ′
H · y

y⊺ · y
, (B.18)

Let T ⊂ Rn be a (k + 1)-dimensional subspace of Rn satisfying

λk+1(JH) = max
x̸=0,x∈T

x⊺ · JH · x
x⊺ · x

,

and T̃ =
{
D

1/2
G D

−1/2
H x : x ∈ T

}
. Since D1/2

G D
−1/2
H has full rank, T̃ is also a (k+1)-dimensional

subspace of Rn. Hence, by the Courant-Fischer Theorem (Theorem 10) and (B.17), we have that

λk+1(J ′
H) = min

S
dim(S)=k+1

max
y∈S\{0}

y⊺ · J ′
H · y

y⊺ · y

≤ max
y∈T̃\{0}

y⊺ · J ′
H · y

y⊺ · y

≤ 2 · max
x∈T\{0}

x⊺ · JH · x
x⊺ · x

= 2 · λk+1(JH).

(B.19)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Next, using (B.16) and (B.19), we have

1

2
· λk+1(JG) ≤ λk+1(J ′

H) ≤ 2 · λk+1(JH),

which implies that
1

4
· λk+1(JG) ≤ λk+1(JH). (B.20)

Similarly, let U ⊂ Rn be an (n− k)-dimensional subspace of Rn satisfying

λk+1(JH) = min
x ̸=0,x∈U

x⊺ · JH · x
x⊺ · x

,

and Ũ =
{
D

1/2
G D

−1/2
H x : x ∈ U

}
. Since D

1/2
G · D−1/2

H has full rank, Ũ is also an (n − k)-
dimensional subspace of Rn. Thus, using the Courant-Fischer Theorem (Theorem 10) and (B.18),
we have

λk+1(J ′
H) = max

S
dim(S)=n−k

min
y∈S\{0}

y⊺ · J ′
H · y

y⊺ · y

≥ min
y∈Ũ\{0}

y⊺ · J ′
H · y

y⊺ · y

≥ 2

3
· min
x∈U\{0}

x⊺ · (2I − LH) · x
x⊺ · x

=
2

3
· λk+1 (JH) .

(B.21)

Next, by (B.16) and (B.21) we have

2

3
· λk+1(JH) ≤ γk+1(L′

H) ≤ 3

2
· λk+1(JG),

which implies that

λk+1(JH) ≤ 9

4
· λk+1(JG). (B.22)

Thus, combining (B.20) and (B.22) we have

1

4
· λk+1(JG) ≤ λk+1(JH) ≤ 9

4
· λk+1(JG),

Hence, the the top n− k eigenspaces of JG are preserved in JH . This proves the second statement
of the theorem.

C OMITTED DETAIL FROM SECTION 4

In this section we list all the proofs omitted from Section 4.

Proof of Lemma 6. The proof follows from Macgregor & Sun (2021), which proves the result for
undirected graphs. We include the proof here for completeness. Let S = A1 ∪B2 in H , then

ϕH(A1 ∪B2) = ϕH(S) =
wH(S, V \ S)

volH(S)

=
volH(S)− 2wH(S, S)

volH(S)

= 1− 2wH(S, S)

volH(S)
= 1−

2w−→
G
(A,B)

volout(A) + volin(B)
= f−→

G
(A,B).

(C.1)

This proves the first statement of the lemma. The second statement of the lemma follows by the
similar argument.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Proof of Lemma 7. By definition, we have that

f−→
G
(A,B) = 1− ϕ−→

G
(A,B), (C.2)

and this implies that

ρ̄−→
G
(k) = max

(A1,B1),...,(Ak,Bk)
min

1≤i≤k
ϕ−→
G
(Ai, Bi)

= max
(A1,B1),...,(Ak,Bk)

min
1≤i≤k

(
1− f−→

G
(Ai, Bi)

)
= 1− min

(A1,B1),...,(Ak,Bk)
max
1≤i≤k

f−→
G
(Ai, Bi)

= 1− min
C1,...,Ck

max
1≤i≤k

ϕH(Ci),

where the second line follow by (C.2), and the last one follows by Lemma 6 and Ci = Ai1∪Bi2 .

19

	Introduction
	Preliminaries
	Sparsifying Densely Connected Clusters in Undirected Graphs
	Sparsifying Densely Connected Clusters in Directed Graphs
	Experiments
	Results for Undirected Graphs
	Results for Directed Graphs

	Useful Inequalities
	Omitted Detail from Section 3
	Omitted Detail from Section 4

