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ABSTRACT

When modelling a real-world dataset as a graph, groups of highly correlated data
items correspond to densely connected vertex sets (clusters), and efficient algo-
rithms that find these clusters have broad applications in various data analysis
tasks. In this paper we study densely connected clusters in graphs and introduce
two sparsification algorithms that preserve the structure of these clusters in both
undirected graphs and directed ones. We show that our algorithms significantly
speedup the running time of existing clustering algorithms while preserving their
effectiveness.

1 INTRODUCTION

Graph clustering is a fundamental technique in data analysis with wide-ranging applications in ma-
chine learning and data science. A classical graph clustering problem involves partitioning the
vertices of a graph into sets of highly connected vertices to minimise the normalised cut value.
However, many real-world clustering tasks are defined by alternative objective functions, tailored to
the specific needs and constraints of the problem at hand. One such example involves uncovering
the vertex sets (clusters) that are densely connected to each other, and these clusters are connected
through bipartite-like graphs. For example, when representing the migration or trade datasets with a
graph, a pair of densely connected clusters captures regional migration or trade patterns (Cucuringu
et al., 2020; Laenen & Sun, 2020; He et al., 2022), and the importance of these densely connected
clusters extends to various other real-world datasets (Bennett et al., 2022; Concas et al., 2022).

In this paper we study densely connected clusters in both undirected graphs and directed ones. We
first study the case for undirected graphs, and present an efficient algorithm that sparsifies an input
graph while preserving its densely connected clusters. For any undirected G = (V,E) and a pair of
disjoint non-empty subsets V1, V2 ⊂ V , let ϕG(V1, V2) be

ϕG(V1, V2) ≜
2wG(V1, V2)

volG(V1 ∪ V2)
,

and for every k ∈ N we define the k-way dual Cheeger constant by

ρ̄G(k) ≜ max
(A1,B1),...,(Ak,Bk)

min
1≤i≤k

ϕG(Ai, Bi), (1.1)

where the maximum is taken over all the possible k pairs of subsets (A1, B1), . . . , (Ak, Bk) sat-
isfying Ai ∩ Aj = ∅, Bi ∩ Bj = ∅, Ai ∩ Bj = ∅ for different i, j ∈ [k], and Ai ∪ Bi ̸= ∅ for
different i, j ∈ [k]. Notice that a high value of ρ̄G(k) implies that G contains k disjoint pairs of
densely connected (Ai, Bi)’s, i.e., almost-bipartite components. We prove that, when G presents a
clear structure of exactly k pairs of densely connected clusters with respect to ρ̄G(k), this structure
can be represented by a sparse subgraph H of G with Õ(n) edges, and H can be constructed in
nearly-linear time1. Our result is as follows:
Theorem 1 (Result for undirected graphs). Let G = (VG, EG, wG) be an undirected and
weighted graph of m edges, and assume that G contains k pairs of densely-connected clusters

1We say that a graph algorithm runs in nearly-linear time if the algorithm’s running time is O(m ·
poly logn), where m and n are the number of edges and vertices of the input graph. For simplicity, we
use Õ(·) to hide a poly-logarithmic factor of n.
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(A1, B1), . . . , (Ak, Bk) corresponding to ρ̄G(k). Then, there is an algorithm that runs in Õ(m) time
and computes a sparsifier G∗ = (VG, F ⊂ EG, w̃), such that these k pairs of densely-connected
clusters of G is preserved in G∗ with high probability. That is, it holds with high probability that
ρ̄G∗(k) = Ω (ρ̄G(k)), and G∗ contains only k pairs densely-connected clusters.

Secondly, we study the densely connected clusters in directed graphs. Let
−→
G = (V−→

G
, E−→

G
, w−→

G
) be

a digraph with weight function w−→
G

: E−→
G

→ R≥0. For any vertex u ∈ V−→
G

, we use degout(u) or
degin(u) to denote the sum of weights of directed edges with u as the tail or the head, respectively.
For any S ⊂ V−→

G
, we define volout(S) =

∑
u∈S degout(u) and volin(S) =

∑
u∈S degin(u). For any

two disjoint subsets A,B ⊂ V−→
G

, we define ϕ−→
G
(A,B) by

ϕ−→
G
(A,B) ≜

2w−→
G
(A,B)

volout(A) + volin(B)
, (1.2)

where w−→
G
(A,B) is the sum of the weights of the edges from A to B. For every k ∈ N, the k-way

directed dual Cheeger constant is defined by

ρ̄−→
G
(k) ≜ max

(A1,B1),...,(Ak,Bk)
min

1≤i≤k
ϕ−→
G
(Ai, Bi), (1.3)

where the maximum is taken over all the possible k pairs of subsets (A1, B1), . . . , (Ak, Bk) sat-
isfying Ai ∩ Aj = ∅, Bi ∩ Bj = ∅, Ai ∩ Bj = ∅ for different i, j ∈ [k], Ai ∪ Bi ̸= ∅ for any
i ∈ [k]. By definition, a high value of of ρ̄−→

G
(k) implies that graph

−→
G contains k pairs of clusters

(A1, B1), . . . , (Ak, Bk) such that almost all edges with their tails in Ai have their head in Bi and
conversely almost all edges with their head in Bi have their tail in Ai. We prove that, when

−→
G

presents a structure of k densely connected clusters with respect to ρ̄−→
G
(k), this structure is pre-

served in graph
−→
G∗ with Õ(n) edges, and

−→
G∗ can be constructed in nearly-linear time. Our result is

as follows:
Theorem 2 (Result for directed graphs). Let

−→
G = (V−→

G
, E−→

G
, w−→

G
) be a directed and

weighted graph of m edges, and assume that
−→
G contains k pairs of densely-connected clusters

(A1, B1), . . . , (Ak, Bk) with respect to ρ̄−→
G
(k). Then, there is an algorithm that runs in Õ(m) time

and computes a sparsifier
−→
G∗ = (V−→

G
, F ⊂ E−→

G
, w̃), such that these k pairs of densely-connected

clusters of
−→
G are preserved in

−→
G∗ with high probability. That is, it holds with high probability that

ρ̄−→
G∗(k) = Ω

(
ρ̄−→
G
(k)
)
, and

−→
G∗ only contains k pairs of densely-connected clusters.

To examine the significance of Theorems 1 and 2, we first highlight that our algorithms preserve the
cut values w(Ai, Bi) between the pairs of vertex sets Ai and Bi for 1 ≤ i ≤ k; this objective is very
different from the one for most graph sparsification problems, which only preserve the cut values
between vertex set S and V \ S. Secondly, our algorithms preserve k pairs of densely connected
clusters, and the value of k in the output graph is the same as the original input graph. Thirdly,
our second result works for directed graphs; this result is very interesting on its own since most
sparsification algorithms are only applicable for undirected graphs.

The design of our algorithms is based on several reductions and sampling routines that can be im-
plemented locally when the degree sequence of the underlying graph is available with an oracle. As
such one can run our algorithms online while exploring the underlying graph with existing local al-
gorithms that find densely connected clusters (e.g., (Andersen, 2010; Li & Peng, 2013)), resulting in
direct improvement on the running time of the existing algorithms. To demonstrate this, we conduct
experimental studies and show that our algorithms can be directly applied to significantly speed up
the running times to the ones presented in (Macgregor & Sun, 2021), while preserving similar output
results.

Related Work. Trevisan (2009) developed a spectral algorithm that finds two densely connected
clusters in an undirected graph, and used this to design an approximation algorithm for the max-cut
problem. Li & Peng (2013) and Macgregor & Sun (2021) presented local algorithms that find a
pair of densely connected clusters. Cucuringu et al. (2020) proved that densely connected clusters
in a digraph can be uncovered through spectral clustering on a complex-valued Hermitian matrix
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representation of directed graphs. Neumann & Peng (2022) further presented a sublinear-time oracle
which, under a certain condition, correctly classified the membership most vertices in a set of hidden
planted ground-truth clusters in signed graphs.

Our work relates to the problem of finding clusters in disassortative networks (Moore et al., 2011;
Pei et al., 2019; Zhu et al., 2020), although most existing techniques are based on semi-supervised
and global methods. Our work is further related to a number of graph sparsification algorithms, e.g.,
(Spielman & Teng, 2011; Batson et al., 2012; Cohen et al., 2017; Lee & Sun, 2017). In comparison
with these results, our algorithms are much easier to implement, and work for directed graphs.

2 PRELIMINARIES

In this section we list the notation and background knowledge of spectral graph theory.

Matrix Representation of Graphs. We always use G = (V,E,w) to represent an undirected
and weighted graph with n vertices and weight function w : E → R≥0. The degree of any vertex
u is defined as dG(u) =

∑
u∼v w(u, v), where the notation u ∼ v represents that u and v are

adjacent, i.e., {u, v} ∈ E(G). For any set S ⊂ V in G, the volume of S is defined by volG(S) =∑
u∈S dG(u). The normalised indicator vector of a set S ⊂ V is defined by χS(v) =

√
dG(v)

volG(S)

if v ∈ S, and χS(v) = 0 otherwise. Let AG be the adjacency matrix of G defined by (AG)u,v =
w(u, v) if {u, v} ∈ E(G), and (AG)u,v = 0 otherwise. The degree matrix DG of G is a diagonal
matrix defined by (DG)u,u = dG(u), and the normalised Laplacian of G is defined by LG = I −
D

−1/2
G AGD

−1/2
G . We can also write the normalised Laplacian matrix with respect to the indicator

vectors of the vertices: for each vertex v, we define an indicator vector χv ∈ Rn by χv(u) =
1√
dv

if
u = v, and χv(u) = 0 otherwise. We further define be = χu − χv for each edge e = {u, v}, where
the orientation of e is chosen arbitrarily. Then, we have LG =

∑
e={u,v}∈E

w(u, v) · beb⊺e . We also

define
JG ≜ I +D

−1/2
G AGD

−1/2
G .

For any symmetric matrix A ∈ Rn×n, we use λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A) to express the
eigenvalues of A. For ease of presentation, we always use 0 = λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 2 to express
the eigenvalues of LG , with the corresponding orthonormal eigenvectors f1, f2, · · · , fn. With slight
abuse of notation, we use L−1

G for the pseudo inverse of LG, i.e.,

L−1
G ≜

n∑
i=2

1

λi
fif

⊺
i .

Note that when G is connected, it holds that λ2 > 0 and the matrix L−1
G is well defined. We

sometimes drop the subscript G when it is clear from the context.

For any vector x ∈ Rn we define ∥x∥ ≜
√∑n

i=1 x
2
i , and any matrix M ∈ Rn×n we define

∥M∥ = max
x∈Rn\{0}

∥Mx∥
∥x∥

.

Graph expansion and Cheeger inequality. For any undirected graph G, the expansion (or con-
ductance) of any non-empty subset S ⊂ V in G is defined as ϕG(S) ≜ wG(S,S̄)

volG(S) , where S̄ is the
complement of S and wG(S, S̄) =

∑
u∈S,v∈S̄ wG(u, v). We call subsets of vertices S1, S2, · · · , Sk

a k-way partition of G if Si ̸= ∅ for all 1 ≤ i ≤ k, Si ∩ Sj = ∅ for i ̸= j and
⋃k

i=1 Si = V . For
every k ∈ N, the k-way expansion constant is defined as

ρG(k) = min
S1,S2,··· ,Sk

max
1≤i≤k

ϕG(Si),

where the minimum is taken over all possible k-way partitions of G. Lee et al. (2014) proves the
following higher-order Cheeger inequality:

3
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Lemma 3 (Higher-order Cheeger Inequality, (Lee et al., 2014)). It holds for any undirected graph
G of n vertices and integer 1 ≤ k ≤ n that λk/2 ≤ ρG(k) ≤ Ck2

√
λk, where C is a universal

constant.

Generalising this, Liu (2015) proves the following higher-order dual-Cheeger inequality:

Lemma 4 (Higher-order dual-Cheeger Inequality, (Liu, 2015)). It holds for any undirected graph
G of n vertices and integer 1 ≤ k ≤ n that (2 − λn−k+1)/2 ≤ 1 − ρ̄G(k) ≤ Ck3

√
2− λn−k+1,

where C is a universal constant.

Note that the higher-order dual Cheeger inequality can be viewed as a quantitative version of the
fact that λn−k+1 = 2 if and only if G has at least k bipartite connected components.

3 SPARSIFYING DENSELY CONNECTED CLUSTERS IN UNDIRECTED GRAPHS

In this section we present a nearly-linear time sparsification algorithm such that every pair of densely
connected clusters in an undirected graph G is approximately preserved in the sparsifed graph G∗,
and sketch the proof. Our result is as follows:

Theorem 5 (Formal Statement of Theorem 1). There exists an algorithm that, given a graph
G = (V,E,w) with ρ̄G(k) ≥ 1

logn for constant some k as input, with high probability computes a

sparsifier G∗ = (V, F ⊂ E, w̃) with |F | = O
(

n·log3 n
2−λn−k

)
edges such that the following hold: (1) it

holds that ρ̄G∗(k) = Ω(ρ̄G(k)); (2) it holds that λk+1(JG∗) = Θ(λk+1(JG)).

The first statement of Theorem 5 shows that the k pairs of densely connected clusters of G is approx-
imately preserved in G∗, and together with Lemma 4 the second statement shows that the number
of pairs of the densely connected clusters in G and G∗ is the same.

Algorithm. Our algorithm is similar with Sun & Zanetti (2019) at a high level, and is based
on sampling edges in G with certain probabilities. Formally, for an input undirected graph
G = (V,E,wG), the algorithm starts with G∗ = (V, ∅, w̃) and samples every edge u ∼ v in G
with probability

pe ≜ pu(v) + pv(u)− pu(v) · pv(u),
where

pu(v) ≜ min

{
wG(u, v) ·

C · log3 n
dG(u) · (2− λn−k)

, 1

}
. (3.1)

For every sampled edge e = {u, v}, the algorithm adds e to graph G∗, and sets wG∗(e) = wG(e)/pe.

Proof Sketch of Theorem 5. We first show prove that the cut values between Ai and Bi in G is
preserved in H for any 1 ≤ i ≤ k. For any edge e = {u, v}, we define the random variable Ye by
Ye = wG(u, v)/pe with probability pe, and Ye = 0 otherwise. By defining X = wH(Ai, Bi), we
prove that E[X] = wG(Ai, Bi) and

E
[
X2
]
≤ 2− λn−k

C · log3 n

∑
e={u,v}

u∈Ai,v∈Bi

w(u, v) ·
(
dG(u) + dG(v)

2

)
.

Let {(Ai, Bi)}ki=1 be the optimal cluster where ρ̄(k) is attained for graph G. Then, we have for
every 1 ≤ i ≤ k that

ρ̄G(k) ≤ ϕG(Ai, Bi) =
2wG(Ai, Bi)

volG(Ai ∪Bi)
,

which implies
ρ̄G(k)

2
· volG(Ai ∪Bi) ≤

∑
e={u,v}

u∈Ai,v∈Bi

wG(u, v).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Applying the Chebyshev’s inequality, we have for any constant c ∈ R+ that

P [|X −E[X]| ≥ c ·E[X]] ≤ E[X2]

c2 ·E[X]2

≤ 2 · (2− λn−k)

c2 · C · log3 n · ρ̄G(k)2
·

(
max e={u,v}

u∈Ai,v∈Bi

{dG(u) + dG(v)}
)
·
∑

e={u,v}
u∈Ai,v∈Bi

wG(u, v)

volG(Ai ∪Bi)2
.

Since volG(Ai ∪Bi) =
∑

u∈Ai
dG(u) +

∑
v∈Bi

dG(v) and dG(u) =
∑

u∼v wG(u, v), we have

max
e={u,v}

u∈Ai,v∈Bi

{dG(u) + dG(v)} ≤
∑
u∈Ai

dG(u) +
∑
v∈Bi

dG(v) = volG(Ai ∪Bi)

and ∑
e={u,v}

u∈Ai,v∈Bi

wG(u, v) ≤ volG(Ai ∪Bi).

Applying these gives us that

P [|X −E[X]| ≥ c ·E[X]] ≤ 2(2− λn−k)

c2 · C · log3 n · ρ̄(k)2
= O

(
1

log n

)
.

Hence, by the union bound, we have that wH(Ai, Bi) = Ω (wG(Ai, Bi)) for all 1 ≤ i ≤ k. The
second statement of Theorem 5 holds by the analysis similar with Sun & Zanetti (2019). Finally,
the total number of edges in H follows by the definition of sampling probability and the Markov
inequality. This completes the proof of Theorem 5.

4 SPARSIFYING DENSELY CONNECTED CLUSTERS IN DIRECTED GRAPHS

In this section we present a nearly-linear time sparsification algorithm such that all pairs of densely
connected clusters in a directed graph is approximately preserved in the output sparsifier, and prove
Theorem 2. Specifically, for a digraph

−→
G that contains exactly k pairs of (A1, B1), . . . , (Ak, Bk)

with high values of ϕ−→
G
(Ai, Bi) for every 1 ≤ i ≤ k, our objective is to construct a sparse digraph

−→
G∗, such that (i) the values of ϕ−→

G∗(Ai, Bi) are high for every 1 ≤ i ≤ k and (ii) the number of such

pairs in
−→
G∗ is the same as

−→
G .

Before sketching our technique, we recall that, for undirected graphs, the value of k is proven to
be identical for G and G∗ by analysing the eigenvalues of JG and JG∗ and applying the higher-
order dual-Cheeger inequality (Lemma 4). However, a natural matrix representation for directed
graph could result in complex-valued eigenvalues, and there is no analog of Lemma 4 for directed
graphs. To overcome this, our developed algorithm is based on a reduction from a directed graph
to an undirected one, and its reverse operation. Specifically, our designed algorithm consists of the
following three steps, as illustrated in Figure 1:

1. for any input digraph
−→
G , the algorithm constructs an undirected graph H such that every

two densely connected clusters (Ai, Bi) in
−→
G corresponds to a low-conductance set in H;

2. the algorithm constructs a sparsifier H∗ of H , such that H and H∗ have the same structure
of clusters;

3. the algorithm applies the sparsified undirected graph H∗ to construct a directed graph
−→
G∗

of
−→
G that satisfies ρ̄−→

G∗(k) = Ω
(
ρ̄−→
G
(k)
)
.

Constructing H from
−→
G . Notice that, to preserve ϕ−→

G∗(Ai, Bi), the cut values w(Ai, Bi) between
Ai and Bi need to be approximately preserved in a sparsified directed graph; this objective is very
different from the most graph sparsification one, which only preserves the cut value between any
set S and its complement. To overcome this, following (Macgregor & Sun, 2021) we construct an

5
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(−→
G∗, ρ̄−→

G∗(k)
)

(H∗, ρH∗(k))

(−→
G, ρ̄−→

G
(k)
)

(H, ρH(k))

reverse
semi-double cover

semi-double
cover

graph

sparsification

graph

sparsification

Figure 1: A commutative diagram of sparsification of directed graphs. In order to construct
−→
G∗ from

−→
G , we construct graphs H and H∗ and prove the close relationships between

−→
G , H , H∗, and

−→
G∗.

undirected graph H such that every pair of densely connected clusters (Ai, Bi) in
−→
G corresponds to

a low-conductance set in H . Specifically, for a weighted digraph
−→
G = (V−→

G
, E−→

G
, w−→

G
), we construct

its semi-double cover H = (VH , EH , wH) as follows:

1. every vertex v ∈ V−→
G

has two corresponding vertices v1, v2 ∈ VH ;

2. for every edge u → v ∈ E−→
G

, we add the edge {u1, v2} in EH .

See Figure 2 for illustration.

c

a

d

b

a2 b2 c2 d2

a1 b1 c1 d1

Figure 2: Illustration of the semi-double cover construction. A directed graph of n vertices (left)
corresponds to an undirected and bipartite graph of 2n vertices (right).

Next we analyse the properties of the reduced graph. Let
−→
G be a digraph with semi-double cover

H . For any S ⊂ V−→
G

, we define S1 ⊂ VH and S2 ⊂ VH by S1 ≜ {v1|v ∈ S} and S2 ≜ {v2|v ∈ S}.
A subset S of VH is called simple if |{v1, v2} ∩ S| ≤ 1 holds for all v ∈ V−→

G
. The following lemma

develops a relationship between the flow ratio from A to B defined by
f−→
G
(A,B) ≜ 1− ϕ−→

G
(A,B) (4.1)

and ΦH(A1 ∪B2), for any A,B.

Lemma 6. Let
−→
G be a digraph with semi-double cover H . Then, it holds for any A,B ⊂ V−→

G
that

f−→
G
(A,B) = ϕH(A1 ∪ B2). Similarly, for any simple set S ⊂ VH , let A = {u : u1 ∈ S} and

B = {u : u2 ∈ S}. Then, it holds that f−→
G
(A,B) = ϕH(S).

Lemma 6 proves a one-to-one correspondence between any pair of disjoint vertex sets in
−→
G and a

vertex set in H . Building on this, we prove that this one-to-one correspondence can be generalised
between any k pairs of densely connected clusters in

−→
G and k disjoint vertex sets in H . Moreover,

the structure of k pairs of densely connected clusters in
−→
G is preserved by a collection of k disjoint

vertex sets of low conductance in H .
Lemma 7. For any directed and weighted graph

−→
G = (V−→

G
, E−→

G
, w−→

G
) and k ∈ N, it holds that

ρ̄−→
G
(k) = 1− min

C1,...,Ck

max
1≤i≤k

ϕH(Ci), (4.2)

where the minimum is taken over a collection of k disjoint simple subsets of VH defined by Ci =
Ai1 ∪Bi2 for 1 ≤ i ≤ k.

6
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Sparsification of H . Next we construct a sparse representation of H , denoted by H∗, such that
the k vertex sets of low conductance is preserved in H∗. To achieve this, we apply the following
result to construct a cluster-preserving sparsifier, which guarantees that the structure of k clusters in
G is preserved in H .

Lemma 8 ((Sun & Zanetti, 2019)). There exists an algorithm that, given a graph G = (V,E,w)
with k clusters as input, with probability at least 9/10, computes a sparsifier H = (V, F ⊂ E, w̃)
with |F | = O(1/λk+1 · n log n) edges such that the following holds:

1. it holds for any 1 ≤ i ≤ k that ϕH(Si) = O(k ·ϕG(Si)), where S1, · · · , Sk are the optimal
clusters in G that achieves ρ(k).

2. λk+1(LH) = Ω(λk+1(LG)).

Constructing
−→
G∗ from H∗. Finally, we construct a directed graph

−→
G∗ from H∗ such that the

original k pairs of densely connected clusters in
−→
G is preserved in

−→
G∗. To achieve this, we introduce

the following reverse semi-double cover:

Definition 9 (reverse semi-double cover). Given any double cover graph H∗ = (VH∗ , EH∗ , wH∗)

as input, the reverse semi-double cover of H∗ is a directed graph
−→
G∗ = (V−→

G∗ , E−→
G∗ , w−→

G∗) con-
structed as follows:

• every pair of vertices u1 and u2 in VH∗ corresponds to a vertex v ∈ V−→
G∗ ;

• we add an edge u → v to E−→
G

if there is edge {u1, v2} ∈ EH∗ , and set w−→
G∗(u, v) =

wH∗(u1, v2).

One might think that the reverse double cover plays an exact opposite role of the double cover,
however it is not the case. In particular, while our constructed subsets C1, . . . , Ck in the first step
are always simple in H (cf. Lemma 7), the k subsets corresponding to ρH(k) are not necessarily
simple. As a result,

min
C1,...,Ck

max
1≤i≤k

ϕH(Ci) = ρH(k)

doesn’t hold in general, and there is no direct correspondence between C1, . . . , Ck in H and the k

pairs of densely connected clusters in
−→
G∗ that correspond to ρ̄−→

G∗(k).

To analyse ρ−→
G∗(k), for any set S ⊂ VH we partition the set into two subsets S1 and S2 defined

by S1 = S ∩ (Ai1 ∪ Bi2) and S2 = S ∩ (Ai2 ∪ Bi1). For example, following Figure 2, if the
sets Ai = {a, c} and Bi = {b, d} and the set S ⊂ VH be S = {a1, b1, b2, c1, c2}, then we have
S1 = {a1, b2, c1} and S2 = {b1, c2}. Since Ai and Bi are densely connected in H , implying that
most of the edges are either from Ai to Bi or from Bi to Ai, there are few edges within Ai and Bi

for 1 ≤ i ≤ k. Hence, there are very few edges between S1 and S2 for any S ⊂ VH . Without loss
of generality, we assume that

2wH(S1, S2)

wH(S1, S̄1) + wH(S2, S̄2)
≤ c

for some constant c < 1. Simplifying the inequality above we get

wH(S1, S̄1) + wH(S2, S̄2)− 2wH(S1, S2) ≥ (1− c) ·
[
wH(S1, S̄1) + wH(S2, S̄2)

]
.

Thus, for any set S ⊂ VH that is not necessarily simple we have

ϕH(S) =
wH(S, S̄)

vol(S)
=

wH(S1, S̄1) + wH(S2, S̄)− 2wH(S1, S2)

vol(S1) + vol(S2)

≥ (1− c) ·min

{
wH(S1, S̄1)

vol(S1)
,
wH(S2, S̄2)

vol(S2)

}
= (1− c) ·min {ϕH(S1), ϕH(S2)} ,

where the last inequality follows from the median inequality. Thus, for every set S ⊂ VH , there
exists a simple set T ⊂ VH such that ϕH(S) ≥ (1 − c) · ϕH(T ). Moreover, for any collection
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of k-disjoint sets S1, S2, · · · , Sk, where Si ⊂ VH we have a collection of k-disjoint simple sets
T1, T2, · · · , Tk, where Ti ⊂ VH , such that

max
1≤i≤k

ϕH(Si) ≥ (1− c) · max
1≤i≤k

ϕH(Ti).

Taking minimum over all such collection of k-disjoint subsets of VH gives us that

min
S1,S2,··· ,Sk

max
1≤i≤k

ϕH(Si) = ρH(k) ≥ (1− c) · min
T1,T2,··· ,Tk

max
1≤i≤k

ϕH(Ti),

where in the second half of the inequality the minimum is taken over collection of k-disjoint simple
subsets of VH . On one hand, rearranging the above inequality we have

1

1− c
· ρH(k) ≥ min

T1,T2,··· ,Tk

max
1≤i≤k

ϕH(Ti), (4.3)

and on the other hand, since the collection of k-disjoint simple subsets of VH is a sub-collection of
the collection of k-disjoint subsets of VH , we have

min
T1,T2,··· ,Tk

max
1≤i≤k

ϕH(Ti) ≥ ρH(k). (4.4)

Thus, combining (4.3) and (4.4), we have

1

1− c
· ρH(k) ≥ min

T1,T2,··· ,Tk

max
1≤i≤k

ϕH(Ti) ≥ ρH(k). (4.5)

Further, combining (4.2) and (4.5) we have

1− 1

1− c
· ρH(k) ≤ ρ̄−→

G
(k) ≤ 1− ρH(k). (4.6)

Proof of Theorem 2. Now we are ready to prove 2. Since
−→
G is a directed graph with k pairs

of densely connected clusters, the value of ρ̄−→
G
(k) is high; together with (4.6), this implies that

ρH(k) = o(1). By Lemma 8, we know that there exists a sparsifier H∗ of H , such that ρH∗(k) =

O(k · ρH(k)). Thus, we can conclude that ρH∗(k) = o(1). Hence, applying (4.6) for
−→
G∗ and H∗

we have

1− 1

1− c
· ρH∗(k) ≤ ρ̄−→

G∗(k) ≤ 1− ρH∗(k). (4.7)

Finally, using the fact that ρH∗(k) = o(1), we conclude that ρ̄−→
G∗(k) is close to 1 and hence the

structure of
−→
G will be preserved in

−→
G∗. Moreover, by the construction of H , and H∗, and

−→
G∗, the

value of k is preserved.

For the running time, notice that all the intermediate graphs H and H∗ can be constructed lo-
cally, and therefore it’s sufficient to examine every edge of the input graph

−→
G once throughout the

execution of the algorithm. This implies the nearly-linear running time of our overall algorithm.
Combining everything above above proves Theorem 2.

5 EXPERIMENTS

In this section, we evaluate the performance of our proposed algorithms on synthetic data sets.
We employ the algorithms presented in (Macgregor & Sun, 2021) as the baseline algorithms, and
examine the speedup of their algorithms when applying our sparsification algorithms as subroutines.
Notice that, as all the involved operations of our algorithms can be performed locally, one can run our
graph sparsification algorithms online while exploring the underlying graph with a local algorithm.
For ease of presentation, in this section we call the local algorithm in (Macgregor & Sun, 2021) with
our sparsification framework our algorithm. All experiments were performed on a HP ZBook Studio
with 11th Gen Intel(R) Core(TM) i7-11800H @ 2.30GHz processor and 32 GB of RAM.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5.1 RESULTS FOR UNDIRECTED GRAPHS

We compare the performance of our algorithm with the previous existing algorithm LocBipartDC
given by Macgregor & Sun (2021), which we refer to as MS, on synthetic graphs generated from
the stochastic block model (SBM). Specifically, we assume that the graph has k = 2 clusters, say
C1, C2, and the number of vertices in each cluster, denoted by n1 and n2 respectively, satisfies
n1 = n2. Moreover, any pair of vertices u ∈ Ci and v ∈ Cj is connected with probability pij . We
assume that p12 = p21 = p and p11 = p22 = q, where q = 0.1p. Throughout the experiments, we
leave the parameters n and p free but maintain the above relations.

Our algorithm sparsifies the graph in an online manner while exploring it and simultaneously apply
the MS algorithm. We evaluate the quality of the output (L,R) returned by each algorithm with
respect to its bipartiteness ratio defined by β(L,R) = 1− ϕ(L,R). All our reported results are the
average performance of each algorithm over 10 runs, in which a random vertex from C1 ∪ C2 is
chosen as the starting vertex of the algorithm. We generate graphs from the SBM such that q = 0.1p
and vary the size of the target set by varying n1 between 1, 000 and 6, 000. In Figure 3, we fix the
probability p = 0.3 and vary the number of vertices n1 = n2 and compare both runtime and the
bipartiteness ratio between the MS algorithm and our algorithm. One can observe that for a fixed
probability p as we increase the number of vertices, our algorithm takes much less time than the MS
algorithm and maintains a similar bipartiteness ratio with the MS algorithm.

(a) Runtime comparison (b) Bipartiteness Ratio comparison

Figure 3: Runtime and bipartiteness comparison between MS and our algorithm by fixing p = 0.3,
q = 0.1p and varying the number of vertices between 500 and 6, 000.

5.2 RESULTS FOR DIRECTED GRAPHS

Next we evaluate the performance of our algorithm for digraphs on synthetic dataset. We compare
the performance of our algorithm with the previous existing algorithm EvoCutDirected given by
Macgregor & Sun (2021), which we refer to as ECD, and use the graphs generated from the SBM
as the algorithms’ input. In our algorithm, given a digraph G as input, we sparsify the graph along
with generating the volume-biased ESP on G′s semi-double cover H . Since the ECD is a local
algorithm, we also test our algorithm locally. In this model, we look into a cluster which is almost
bipartite with the bipartition being L and R. We set the number of vertices in L and R to be n1 and
n2 such that n1 = n2 and the probability of an edge to be as follows

L R( )
L 9/n1 η
R 1− η 9/n2

,

i.e., the probability that there is an edge within the partition is 9/n1 = 9/n2 and so on. Since most
of our directed edges are from L to R, the value of η is high. For our experiments we generate two
sets of plots:

• We first fix the value of η = 0.7 and vary the number of vertices in each partition from
2, 000 to 5, 000, and compare the runtime of the ECD algorithm and our algorithm. One

9
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can observe that our algorithm takes much less time than the ECD algorithm and gives a
similar flow-ratio at the same time as we increase the number of vertices.

(a) Runtime comparison (b) Flow-ratio comparison

Figure 4: Runtime and flow-ratio comparison between ECD and our algorithm.

• Based on this, it suffices for us to only compare the running times. We vary the number of
vertices in each partition from 1, 500 to 5, 000 and vary the value of η from 0.7 to 0.9, and
compare the runtime of the ECD algorithm and our algorithm. One can observe that our
algorithm runs faster than the ECD algorithm as η increases, i.e., when the graph is dense.

(a) η = 0.7 (b) for η = 0.8 (c) η = 0.9

Figure 5: Runtime comparison between ECD and our algorithm for η = 0.7, 0.8 and 0.9.
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A USEFUL INEQUALITIES

The following inequalities will be used in our analysis.
Theorem 10 (Courant-Fischer Theorem). Let A be a n × n symmetric matrix with eigenvalues
λ1 ≤ λ2 ≤ · · · ≤ λn. Then, it holds for any 1 ≤ k ≤ n that

λk = min
S

dim(S)=k

max
y∈S\{0}

y⊺ ·A · y
y⊺ · y

= max
S

dim(S)=n−k+1

min
y∈S\{0}

y⊺ ·A · y
y⊺ · y

,

where the maximisation and minimisation are over the subspaces of Rn.
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Lemma 11 (Bernstein’s Inequality). Let X1, X2, · · · , Xn be independent random variables such
that |Xi| ≤ M for any 1 ≤ i ≤ n. Let X =

∑n
i=1 Xi, and R =

∑n
i=1 E

[
X2

i

]
. Then, it holds that

P [|X −E[X]| ≥ t] ≤ 2 exp

(
− t2

2
(
R+ Mt

3

)) .

Lemma 12 (Matrix Chernoff Bound). Consider a finite sequence {Xi} of independent, random,
PSD matrices of dimension d that satisfy ∥Xi∥ ≤ R. Let µmin = λmin (E[

∑
i Xi]) and µmax =

λmax (E[
∑

i Xi]). Then, it holds that

P

[
λmin

(∑
i

Xi

)
≤ (1− δ)µmin

]
≤ d ·

(
e−δ

(1− δ)1−δ

)µmin
R

for δ ∈ [0, 1],

and

P

[
λmax

(∑
i

Xi

)
≥ (1 + δ)µmax

]
≤ d ·

(
eδ

(1 + δ)1+δ

)µmax
R

for δ ≥ 0.

B OMITTED DETAIL FROM SECTION 3

This section presents all the omitted detail from Section 3, and gives a complete proof of Theorem 5.
We first recall that, for every vertex u and its adjacent vertex v, the algorithm assigns the edge
e = {u, v} the probability

pu(v) ≜ min

{
wG(u, v) ·

C · log3 n
dG(u) · (2− λn−k)

, 1

}
, (B.1)

for a large enough constant C ∈ R≥0. The algorithm checks every edge and samples an edge
e = {u, v} with probability pe, where

pe ≜ pu(v) + pv(u)− pu(v) · pv(u).
Note that, it is easy to check that pe satisfies the inequality

1

2
(pu(v) + pv(u)) ≤ pe ≤ pu(v) + pv(u).

We start with an empty set F and gradually store all the sampled edges in F , which is sampled by
the algorithm. Finally, the algorithm returns a weighted graph H = (V, F,wH), where the weight
wH(u, v) of every sampled edge e = {u, v} ∈ F is defined by

wH(u, v) =
wG(u, v)

pe
.

Next, we analyze the size of F . Since∑
u

∑
e={u,v}

wG(u, v) ·
C · log3 n

dG(u) · (2− λn−k)
= O

(
n · log3 n
2− λn−k

)
,

it holds by Markov inequality that the number of edges e = {u, v} with pu(v) ≥ 1 is O
(

n·log3 n
2−λn−k

)
.

Without loss of generality, we assume that these edges are in F , and in the remaining part of the
proof we assume it holds for any edge u ∼ v that

wG(u, v) ·
C · log3 n

dG(u) · (2− λn−k)
< 1.

Then, the expected number of edges in H equals∑
e={u,v}

pe ≤
∑

e={u,v}

pu(v) + pv(u) =
C · log3 n
(2− λn−k)

∑
e={u,v}

w(u, v) ·
(

1

dG(u)
+

1

dG(v)

)

= O

(
n · log3 n
2− λn−k

)
,
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and by Markov inequality it holds with constant probability that

|F | = O

(
n · log3 n
2− λn−k

)
.

Now we show that the cut value between Ai and Bi is preserved in H for all 1 ≤ i ≤ k. For any
edge e = {u, v}, we define the random variable Ye by

Ye =


wG(u, v)

pe
with probability pe,

0 otherwise.
(B.2)

Also, we define X = wH(Ai, Bi), and have that

E[X] =
∑

e={u,v}
u∈Ai,v∈Bi

E [Ye] =
∑

e={u,v}
u∈Ai,v∈Bi

pe·
wG(u, v)

pe
=

∑
e={u,v}

u∈Ai,v∈Bi

wG(u, v) = wG(Ai, Bi). (B.3)

Next, we analyse the second moment of the random variable X and have that

E
[
X2
]
=

∑
e={u,v}

u∈Ai,v∈Bi

pe ·
(
wG(u, v)

pe

)2

=
∑

e={u,v}
u∈Ai,v∈Bi

wG(u, v)
2

pe

≤
∑

e={u,v}
u∈Ai,v∈Bi

2wG(u, v)
2

pu(v) + pv(u)

=
∑

e={u,v}
u∈Ai,v∈Bi

2wG(u, v)
2

wG(u,v)·C·log3 n
(2−λn−k)

·
(

1
dG(u) +

1
dG(v)

)
≤ 2− λn−k

C · log3 n

∑
e={u,v}

u∈Ai,v∈Bi

w(u, v) ·
(
dG(u) + dG(v)

2

)
,

(B.4)

where the last step follows by the means inequality. Let {(Ai, Bi)}ki=1 be the optimal cluster where
ρ̄(k) is attained for graph G. Recall that for every k ∈ N, the k-way dual Cheeger constant is defined
by

ρ̄G(k) = max
(A1,B1),··· ,(Ak,Bk)

min
1≤i≤k

ϕG(Ai, Bi).

Then, we have for every 1 ≤ i ≤ k that

ρ̄G(k) ≤ ϕG(Ai, Bi) =
2wG(Ai, Bi)

volG(Ai ∪Bi)
,

which implies

ρ̄G(k)

2
· volG(Ai ∪Bi) ≤

∑
e={u,v}

u∈Ai,v∈Bi

wG(u, v). (B.5)
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Next, by the Chebyshev’s inequality we have for any constant c ∈ R+ that

P [|X −E[X]| ≥ c ·E[X]]

≤ E[X2]

c2 ·E[X]2

≤

2−λn−k

C·log3 n

(∑
e={u,v}

u∈Ai,v∈Bi

wG(u, v) ·
(

dG(u)+dG(v)
2

))
0.01 ·

(∑
e={u,v}

u∈Ai,v∈Bi

wG(u, v)

)2

≤

2−λn−k

C·log3 n

(∑
e={u,v}

u∈Ai,v∈Bi

wG(u, v) ·
(

dG(u)+dG(v)
2

))
c2 ·

(
ρ̄G(k)

2 · volG(Ai ∪Bi)
)2

=
2 · (2− λn−k)

c2 · C · log3 n · ρ̄G(k)2
·

∑
e={u,v}

u∈Ai,v∈Bi

wG(u, v) · (dG(u) + dG(v))

volG(Ai ∪Bi)2

≤ 2 · (2− λn−k)

c2 · C · log3 n · ρ̄G(k)2
·

(
max e={u,v}

u∈Ai,v∈Bi

{dG(u) + dG(v)}
)
·
∑

e={u,v}
u∈Ai,v∈Bi

wG(u, v)

volG(Ai ∪Bi)2
.

(B.6)

Since volG(Ai ∪Bi) =
∑

u∈Ai
dG(u) +

∑
v∈Bi

dG(v) and dG(u) =
∑

u∼v wG(u, v), we have

max
e={u,v}

u∈Ai,v∈Bi

{dG(u) + dG(v)} ≤
∑
u∈Ai

dG(u) +
∑
v∈Bi

dG(v) = volG(Ai ∪Bi)

and ∑
e={u,v}

u∈Ai,v∈Bi

wG(u, v) ≤ volG(Ai ∪Bi).

Thus, we have by (B.6) and the assumption of ρ̄(k) ≥ 1
log(n) that

P [|X −E[X]| ≥ c ·E[X]] ≤ 2(2− λn−k)

c2 · C · log3 n · ρ̄(k)2
= O

(
1

log n

)
.

Hence, by choosing a sufficient large constant c and the union bound, we have that

wH(Ai, Bi) = Ω (wG(Ai, Bi)) for all 1 ≤ i ≤ k. (B.7)

Next, we show that the degree of every vertex in H is approximately preserved with high probability.
Based on the random variable Ye defined in (B.2), we define the random variable Zu by

Zu =
∑

v:v∼u

Ye.

Then, the expected value of Zu is given by

E[Zu] =
∑

v:v∼u

E[Ye] =
∑

v:v∼u

pe ·
wG(u, v)

pe
=
∑

v:v∼u

wG(u, v) = dG(u),

and the second moment can be upper bounded by∑
v:v∼u

E
[
Y 2
e

]
=
∑

v:v∼u

pe ·
(
wG(u, v)

pe

)2

=
∑

v:v∼u

wG(u, v)
2

pe
≤
∑

v:v∼u

wG(u, v)
2

pu(v)
,

since pe ≥ pu(v). Now using the value of pu(v) from (3.1), we have∑
v:v∼u

E
[
Y 2
e

]
≤
∑

v:v∼u

w(u, v)2 · dG(u) · (2− λn−k)

w(u, v) · C · log3 n
=

dG(u) · (2− λn−k)

C · log3 n

∑
v:v∼u

wG(u, v)

=
d2G(u) · (2− λn−k)

C · log3 n
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and for any edge e = {u, v} we have that

0 ≤ w(u, v)

pe
≤ w(u, v)

pu(v)
≤ dG(u) · (2− λn−k)

C · log3 n
.

Now, applying Bernstein’s inequality (Lemma 11), we have

P
[
|dH(u)− dG(u)| ≥

du
2

]
= P

[
|Zu − E[Zu]| ≥

E[Zu]

2

]

≤ 2 · exp

 − 1
8 · d2G(u)

d2
G(u)·(2−λn−k)

C·log3 n
+ 1

6 · d2
G(u)·(2−λn−k)

C·log3 n


= 2 · exp

(
−

1
8 · C · log3 n
7
6 · (2− λn−k)

)

= o

(
1

n2

)
.

Hence, it holds by the union bound that, with high probability, the degree of all the vertices in H are
approximately preserved up to a constant factor. This implies that for any subset S ⊆ V , we have

volH(S) = Θ (volG(S)) ,

more specifically,
volH(Ai ∪Bi) = Θ (volG(Ai ∪Bi)) , (B.8)

for all 1 ≤ i ≤ k. Thus, combining (B.7) and (B.8) gives us that

ϕH(Ai, Bi) = Ω
(
ϕG(Ai, Bi)

)
(B.9)

for all 1 ≤ i ≤ k, which implies that

ρ̄H(k) ≥ min
1≤i≤k

ϕH(Ai, Bi) = min
1≤i≤k

Ω
(
ϕG(Ai, Bi)

)
= Ω(ρ̄G(k)) ,

where the last equality follows from the fact that {(Ai, Bi)}ki=1 is the optimal cluster where ρ̄(k) is
attained for graph G.

Next, we show that the top (n−k)-eigenspaces of JG are preserved in H . Without loss of generality
we assume the graph is connected. Since JG = 2I − LG by definition, it holds that

λi(JG) = 2− λn+1−i(LG). (B.10)

Let

P ≜
n−k∑
i=1

(2− λi(LG))fif
⊺
i ,

and with slight abuse of notation we call P−1/2 as the square root of the pseudo-inverse of P , i.e.,

P−1/2 =

n−k∑
i=1

(2− λi(LG))
−1/2fif

⊺
i .

Let P be the projection on the spam of {f1, f2, · · · , fn−k}, then

P =

n−k∑
i=1

fif
⊺
i .

Recall that, for each vertex v, the indicator vector χv ∈ Rn is defined by χv(u) =
1√

dG(v)
if u = v

and χv(u) = 0 otherwise. For each edge e = {u, v} of G we define a vector ge = χu + χv ∈ Rn

and a random matrix Xe ∈ Rn×n by

Xe =

{
wH(u, v) · P−1/2geg

⊺
eP−1/2 if e = {u, v} is sampled by the algorithm,

0 otherwise.
(B.11)
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Then, it holds that ∑
e∈E

Xe =
∑

e={u,v}∈F

wH(u, v) · P−1/2geg
⊺
eP−1/2

= P−1/2

 ∑
e={u,v}∈F

wH(u, v) · geg⊺e

P−1/2

= P−1/2J ′
HP−1/2,

where
J ′
H ≜

∑
e={u,v}∈F

wH(u, v) · geg⊺e

is the signless Laplacian matrix of H normalised with respect to the degree of the vertices in the
original graph G. We will now prove that, with high probability the top n − k eigenspaces of J ′

H
and JG are approximately the same. We first analyse the expectation of

∑
e∈E Xe, and have that

E

[∑
e∈E

Xe

]
=

∑
e={u,v}∈E

pe · wH(u, v) · P−1/2geg
⊺
eP−1/2

=
∑

e={u,v}∈E

pe ·
wG(u, v)

pe
· P−1/2geg

⊺
eP−1/2

= P−1/2

 ∑
e={u,v}∈F

wG(u, v) · geg⊺e

P−1/2

= P−1/2JGP−1/2 =

n−k∑
i=1

fif
⊺
i = P.

Moreover, for any edge e = {u, v} ∈ E sampled by the algorithm, we have

∥Xe∥ ≤ wH(u, v) · g⊺eP−1/2P−1/2ge =
wG(u, v)

pe
· g⊺eP−1ge

≤ wG(u, v)

pe
· 1

2− λn−k
· ∥ge∥2

≤ 2wG(u, v)

pu(v) + pv(u)
· 1

2− λn−k
·
(

1

dG(u)
+

1

dG(v)

)
≤ 2

C · log3 n
,

where the second inequality follows by the min-max theorem of eigenvalues. Now we apply the
matrix Chernoff bound (Lemma 12) to analyze the eigenvalues of

∑
e∈E Xe. Following Lemma 12

we set the parameters as follows:

µmax = λmax

(
E

[∑
e∈E

Xe

])
= λmax

(
P
)
= 1,

R =
2

C · log3 n
, and

δ =
1

2
.

(B.12)

Then using the Matrix Chernoff bound (Lemma 12), we have

P

[
λmax

(∑
e∈E

Xe

)
≥ 3

2

]
≤ n ·

(
e

1
2

1.5
3
2

)C·log3 n
2

= O

(
1

n3

)
,
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for some constant C; this implies that

P

[
λmax

(∑
e∈E

Xe

)
≤ 3

2

]
= 1−O

(
1

n3

)
. (B.13)

On the other hand, since E
[∑

e∈E Xe

]
= P , we have µmin = 1 and hence keeping R and δ the

same as above, using the Matrix Chernoff bound (Lemma 12), we get

P

[
λmin

(∑
e∈E

Xe

)
≤ 1

2

]
≤ n ·

(
e−

1
2

0.5
1
2

)C·log3 n
2

= O

(
1

n3

)
;

this implies that

P

[
λmin

(∑
e∈E

Xe

)
≥ 1

2

]
= 1−O

(
1

n3

)
. (B.14)

Combining (B.13), (B.14) and the fact that
∑

e∈E Xe = P−1/2J ′
HP−1/2, with probability 1 −

O
(

1
n3

)
it holds for any non-zero x ∈ Rn in span{f1, f2, · · · , fn−k} that

x⊺P−1/2J ′
HP−1/2x

x⊺x
∈
[
1

2
,
3

2

]
. (B.15)

Let y = P−1/2x, and we rewrite (B.15) as
y⊺J ′

Hy

y⊺Py
=

y⊺J ′
Hy

y⊺y
· y⊺y

y⊺Py
∈
[
1

2
,
3

2

]
.

Since dim(span{f1, f2, · · · , fn−k}) = n− k, there exist n− k orthogonal vectors whose Rayleigh
quotient with respect to J ′

H is Θ(λn−k(2I − LG)). Hence, by the Courant-Fischer Theorem (The-
orem 10) we have

1

2
· λn−k(2I − LG) ≤ λk+1(J ′

H) ≤ 3

2
· λn−k(2I − LG) (B.16)

By the definition of J ′
H = D

−1/2
G (DH +AH)D

−1/2
G , we have

JH = D
−1/2
H (DH +AH)D

−1/2
H = D

−1/2
H

(
D

1/2
G · J ′

H ·D1/2
G

)
D

−1/2
H .

Hence, we set y = D
1/2
G D

−1/2
H x for any x ∈ Rn and have that

x⊺JHx

x⊺ · x
=

x⊺ ·D−1/2
H

(
D

1/2
G · J ′

H ·D1/2
G

)
D

−1/2
H · x

x⊺ · x
=

y⊺ · J ′
H · y

x⊺ · x
≥ 1

2
· y

⊺ · J ′
H · y

y⊺ · y
, (B.17)

where we use the fact that the degree of a vertex differs by a constant factor between H and G.
Similarly, we also have

x⊺ · JH · x
x⊺ · x

≤ 3

2
· y

⊺ · J ′
H · y

y⊺ · y
, (B.18)

Let T ⊂ Rn be a (k + 1)-dimensional subspace of Rn satisfying

λk+1(JH) = max
x̸=0,x∈T

x⊺ · JH · x
x⊺ · x

,

and T̃ =
{
D

1/2
G D

−1/2
H x : x ∈ T

}
. Since D1/2

G D
−1/2
H has full rank, T̃ is also a (k+1)-dimensional

subspace of Rn. Hence, by the Courant-Fischer Theorem (Theorem 10) and (B.17), we have that

λk+1(J ′
H) = min

S
dim(S)=k+1

max
y∈S\{0}

y⊺ · J ′
H · y

y⊺ · y

≤ max
y∈T̃\{0}

y⊺ · J ′
H · y

y⊺ · y

≤ 2 · max
x∈T\{0}

x⊺ · JH · x
x⊺ · x

= 2 · λk+1(JH).

(B.19)
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Next, using (B.16) and (B.19), we have

1

2
· λk+1(JG) ≤ λk+1(J ′

H) ≤ 2 · λk+1(JH),

which implies that
1

4
· λk+1(JG) ≤ λk+1(JH). (B.20)

Similarly, let U ⊂ Rn be an (n− k)-dimensional subspace of Rn satisfying

λk+1(JH) = min
x ̸=0,x∈U

x⊺ · JH · x
x⊺ · x

,

and Ũ =
{
D

1/2
G D

−1/2
H x : x ∈ U

}
. Since D

1/2
G · D−1/2

H has full rank, Ũ is also an (n − k)-
dimensional subspace of Rn. Thus, using the Courant-Fischer Theorem (Theorem 10) and (B.18),
we have

λk+1(J ′
H) = max

S
dim(S)=n−k

min
y∈S\{0}

y⊺ · J ′
H · y

y⊺ · y

≥ min
y∈Ũ\{0}

y⊺ · J ′
H · y

y⊺ · y

≥ 2

3
· min
x∈U\{0}

x⊺ · (2I − LH) · x
x⊺ · x

=
2

3
· λk+1 (JH) .

(B.21)

Next, by (B.16) and (B.21) we have

2

3
· λk+1(JH) ≤ γk+1(L′

H) ≤ 3

2
· λk+1(JG),

which implies that

λk+1(JH) ≤ 9

4
· λk+1(JG). (B.22)

Thus, combining (B.20) and (B.22) we have

1

4
· λk+1(JG) ≤ λk+1(JH) ≤ 9

4
· λk+1(JG),

Hence, the the top n− k eigenspaces of JG are preserved in JH . This proves the second statement
of the theorem.

C OMITTED DETAIL FROM SECTION 4

In this section we list all the proofs omitted from Section 4.

Proof of Lemma 6. The proof follows from Macgregor & Sun (2021), which proves the result for
undirected graphs. We include the proof here for completeness. Let S = A1 ∪B2 in H , then

ϕH(A1 ∪B2) = ϕH(S) =
wH(S, V \ S)

volH(S)

=
volH(S)− 2wH(S, S)

volH(S)

= 1− 2wH(S, S)

volH(S)
= 1−

2w−→
G
(A,B)

volout(A) + volin(B)
= f−→

G
(A,B).

(C.1)

This proves the first statement of the lemma. The second statement of the lemma follows by the
similar argument.
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Proof of Lemma 7. By definition, we have that

f−→
G
(A,B) = 1− ϕ−→

G
(A,B), (C.2)

and this implies that

ρ̄−→
G
(k) = max

(A1,B1),...,(Ak,Bk)
min

1≤i≤k
ϕ−→
G
(Ai, Bi)

= max
(A1,B1),...,(Ak,Bk)

min
1≤i≤k

(
1− f−→

G
(Ai, Bi)

)
= 1− min

(A1,B1),...,(Ak,Bk)
max
1≤i≤k

f−→
G
(Ai, Bi)

= 1− min
C1,...,Ck

max
1≤i≤k

ϕH(Ci),

where the second line follow by (C.2), and the last one follows by Lemma 6 and Ci = Ai1∪Bi2 .
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