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Abstract

Spatial understanding is a critical capability for vision foundation models. While
recent advances in large vision models or vision–language models (VLMs) have ex-
panded recognition capabilities, most benchmarks emphasize localization accuracy
rather than whether models capture how objects are arranged and related within a
scene. This gap is consequential: effective scene understanding requires not only
identifying objects, but reasoning about their relative positions, groupings, and
depth. In this paper, we present a systematic benchmark for object-centric spatial
reasoning in foundation models. Using a controlled synthetic dataset, we evaluate
state-of-the-art vision models (e.g., GroundingDINO, Florence-2, OWLv2) and
large VLMs (e.g., InternVL, LLaVA, GPT-4o) across three tasks: spatial localiza-
tion, spatial reasoning, and downstream retrieval tasks. We find a stable trade-off:
detectors such as GroundingDINO and OWLv2 deliver precise boxes with limited
relational reasoning, while VLMs like SmolVLM and GPT-4o provide coarse
layout cues and fluent captions but struggle with fine-grained spatial context. Our
study highlights the gap between localization and true spatial understanding, and
pointing toward the need for spatially-aware foundation models in the community.

1 Introduction

Understanding and reasoning about spatial relationships between objects is a core challenge for
vision–language systems and embodied AI [45]. Despite progress in object detection [42, 43] and
open-vocabulary recognition [17, 37], most benchmarks emphasize localization, identifying, and
bounding objects [41, 10, 45], rather than contextual spatial reasoning. Yet, applications from
embodied interaction to e-commerce recommendation [38, 48, 56, 33] require models to detect
objects and interpret how they are arranged and functionally related within a scene. In shopping
images, for example, a sofa may appear with a coffee table, rug, and lamp. A useful system must
capture relative position, containment, and grouping: a sofa next to a coffee table implies different
recommendations than a sofa isolated against a wall. Without such context, results risk incoherence
and poor alignment with user intent.

State-of-the-art vision models (e.g., GroundingDINO [44], Florence-2 [49], OWLv2 [36]) and large
VLMs (e.g., InternVL [5], LLaVA [31], GPT-4o [18]) broaden what can be localized in complex
scenes, but their spatial reasoning ability remains underexplored. A model that detects both a “sofa”

∗Equal contributions.
†All authors are from Walmart Global Tech, USA
‡Corresponding author: kai.zhao@walmart.com

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: SPACE in Vision,
Language, and Embodied AI.



and a “lamp” may still fail to infer their relative depth, errors that harm multi-item recommendation,
scene retrieval, and embodied planning. We present a systematic benchmarking study of spatial
reasoning in vision models and VLMs on a synthetic shopping-scene data. Our contribution lies in the
evaluation protocol and analysis rather than a new dataset: we probe whether state-of-the-art systems
can (i) localize a focal product in clutter, (ii) capture its spatial relations with surrounding items, and
(iii) leverage these relations for retrieval and recommendation via a unified detection-to-retrieval
pipeline and spatial-localization.

Our results show a consistent gap: task-specific (e.g., object detection) vision models such as
GroundingDINO [44] achieve high localization precision, but lack spatial reasoning capability. On
the other hand, large VLMs like GPT-4o [18] produce descriptive captions and coarse layouts yet
underperform when fine-grained spatial context is required. These results reveal a persistent divide
between precise localization and true spatial understanding. Our benchmark surfaces this gap and
provides standardized tasks and metrics, establishing a foundation for developing spatially aware
foundation models that unify detection accuracy with contextual understanding. We release complete
details of the benchmark, covering data generation, evaluation protocol, prompts, metrics, and failure
analyses, to ensure reproducibility and extension to other domains.

2 Experiments

2.1 Datasets

To benchmark spatial reasoning capability of vision models and VLMs, we build a unique synthetic
dataset where both localization and relevance are known by construction, allowing us to control
viewpoint, clutter, and scene context. Our synthetic dataset spans across nine furniture categories:
Bed, Chair, Cabinet, Desk, Dresser, Planter, Shelf, Sofa, and Vase. Images are created by rendering
3D products with random rotation, shift, and scale, to increase variety. The rendered images are
then composited with background scenes. For each product, we split renders into database (DB)
images that contain frontal views and query images that contain more angled views. Details of the
data-generation pipeline are given in Appendix A. The synthesized dataset has roughly 11k images,
split into 3k DB images and remaining 8k are served as query images. For retrieval, each query is
paired with its matching DB image from the same product, which we use as ground-truth relevance.
The statistics per category are reported in the Appendix Table 3.

2.2 Benchmark Models

We evaluate 14 models grouped into two families:

• Task-specific (e.g., object detection) vision models include D-FINE[39], OWL-ViT[37],
OWLv2[36], Florence-2[53], GroundingDINO[44], and (LISA-7B/13B)[23].

• General-purpose VLMs which include SmolVLM[35], InternVL[5], LLaVA[29], LLaVA-
OneVision[26], LLaVA-Next[30], Gemini 2.5[7], and GPT-4o[18].

We run three experiment sets: (i) spatial localization, (ii) spatial reasoning, and (iii) image-based
retrieval. For spatial localization, we extract the focal product’s bounding box using both vision
models and VLMs. Spatial reasoning includes two tasks: predicting the focal object’s position on a
coarse grid (with 2×2 and 3×3 settings) and predicting coarse depth as front vs. back (VLM-only).
For retrieval, we compute VL-CLIP [14] embeddings over crops from each method’s predicted boxes
on query images, and search an HNSW [34] index built on DB-image embeddings. Full setup and
metrics are given in Appendix B.2.

2.3 Main Results

In general, for spatial localization, reasoning, and retrieval experiments, task-specific vision models
outperform general-purpose VLMs by a clear margin. GroundingDINO is the strongest overall,
leading both spatial localization and image-based retrieval. Among VLMs, InternVL and LLaVA
variants are the most competitive, yet they still underperform the best vision models consistently
across spatial localization, spatial reasoning, and retrieval.
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Table 1 reports spatial localization performance for coarse grid-cell prediction using accuracy, macro-
F1, and MCC metrics. Among task-specific vision models, GroundingDINO is consistently strongest,
while LISA-7B ranks lowest in this group. Among the VLMs, LLaVA-OneVision and InternVL are
the top performers, whereas GPT-4o and Gemini 2.5 show the lowest performance overall. Comparing
across groups, vision models clearly outperform VLMs on both grid settings, and the performance
gap widens as the grid becomes smaller.

Figure 1 illustrates typical spatial localization errors for VLMs. Across task-specific vision models,
failures are dominated by box-placement issues (shifted or mis-sized extents) in cluttered or low-
contrast scenes; while category confusions are comparatively rare. On the other hand, failures in
VLMs are more often due to coarse spatial grounding, yielding off-center or overly loose boxes. This
observation supports weaker box-level supervision in VLMs relative to vision models.

Figure 1: Spatial localization failures of VLMs. The GT cell is indicated by a green star, and the
predicted cell by a red circle centered in the chosen cell.

2.4 Spatial Reasoning Capability of VLMs

We further analyze the spatial reasoning capability of VLMs for context-aware scene understanding,
by evaluating coarse depth ordering of the focal object relative to its surrounding environment. For
this experiment, VLMs are prompted for front-vs-back classification (constrained to respond with
front or back). This experiment assesses whether the model can determine if the focal object lies in
the foreground (front) or background (back) of the overall scene by considering the relative depth and
layering of objects. We report accuracy, precision, recall, and F1 in Table 2. The results show that
InternVL is the best-performing model for coarse-depth prediction, achieving the highest accuracy
and F1 score. While SmolVLM also shows strong performance, other models exhibit significant
trade-offs between precision and recall. LLaVA-OneVision achieves near-perfect recall, indicating
it correctly identifies almost every background object, though its precision is lower. In contrast,
LLaVA-Next has extremely high precision but low recall. Performance drops notably for the last
two models, with GPT-4o showing the weakest results, particularly in recall and F1 score. For
visualization purpose, we show failed cases in Figure 2.

3



Table 1: Spatial localization results for vision models and VLMs, predicting the location of the focal
object in an image on a coarse grid

2×2 grid 3×3 grid

Model Acc ↑ F1
macro ↑ MCC ↑ Acc ↑ F1

macro ↑ MCC ↑
Ta

sk
-s

pe
ci

fic
vi

si
on

m
od

el
s

GroundingDINO-1.5 0.816 0.815 0.754 0.799 0.759 0.742
Florence2-base 0.808 0.808 0.745 0.797 0.754 0.740
D-FINE 0.799 0.799 0.732 0.789 0.742 0.726
OWLv2-base-16 0.793 0.792 0.724 0.764 0.715 0.702
LISA-13B-Llama 0.785 0.785 0.713 0.750 0.690 0.684
OWL-ViT-base-32 0.759 0.759 0.679 0.728 0.677 0.655
LISA-7B 0.733 0.732 0.645 0.694 0.628 0.614

G
en

er
al

-p
ur

po
se

V
L

M
s

InternVL3-8B 0.643 0.640 0.530 0.565 0.494 0.452
LLaVA-OneVision 0.645 0.643 0.538 0.548 0.390 0.400
LLaVA-Next 0.551 0.544 0.415 0.429 0.239 0.244
LLaVA-1.5-7B 0.492 0.424 0.349 0.055 0.026 0.024
SmolVLM2-2.2B-Inst. 0.422 0.360 0.253 0.355 0.106 0.071
Gemini 2.5-Pro 0.262 0.262 0.016 0.241 0.120 0.017
GPT-4o 0.252 0.199 0.003 0.315 0.088 0.015

Table 2: Assessing spatial reasoning capability of VLMs on predicting coarse-depth ordering of the
focal object in an image.

Model Acc ↑ Prec ↑ Rec ↑ F1 ↑
InternVL3-8B 0.874 0.895 0.949 0.921
SmolVLM2-2.2B-Instruct 0.854 0.863 0.964 0.911
LLaVA-OneVision 0.832 0.823 0.998 0.902
LLaVA-1.5-7B 0.745 0.907 0.748 0.820
LLaVA-Next 0.634 0.996 0.530 0.692
Gemini 2.5-Pro 0.677 0.870 0.697 0.774
GPT-4o 0.455 0.931 0.322 0.478

Figure 2: Spatial reasoning failures of VLMs. Annotations: P is what the VLM thinks about the
relative position of the item, GT is the ground-truth coarse depth of the item.
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Spatial Reasoning in Foundation Models:
Benchmarking Object-Centric Spatial Understanding

APPENDIX

A Data Generation

A.1 Data Generation Pipeline

Existing public datasets rarely pair precise box-level ground truth with product-level relevance for
the same scenes. To address this, we construct a synthetic dataset in which both localization and
relevance are known by construction, allowing controlled variation in viewpoint, clutter, and context.

Recently, LayoutAgent [12] proposed using vision-language models (VLMs) for layout planning and
spatial realism [13]. Inspired by LayoutAgent, we designed a data-generation pipeline to synthesize
product–in–scene images by compositing 3D product renders into text-conditioned backgrounds
(see Fig. 3). For each environment type (e.g., living room, bedroom, patio), we generate short
textual scene descriptions using GPT-4 and split them so that database (DB) and query images use
disjoint descriptions. Each product’s 3D asset is rendered in Blender [3] under random rotations to
obtain a clean foreground mask; we apply random scale/shift augmentations and export the exact
2D GT bounding box from the transformed mask. The augmented foreground and a sampled scene
description are fed to FLUX-Kontext [22] to generate photorealistic composites.

DB-query pairs that are synthesized from the same source item form ground-truth correspondences
(see examples in Fig. 4).

Figure 3: Data generation pipeline: generating synthetic product-in-scene images from a product’s
3D asset based on a textual scene description sampled from a database.

A.2 Dataset Statistics

Table 3 reports per-category counts of unique items (samples) and resulting images, partitioned into
database (DB) and query sets produced by our data-generation pipeline.

A.3 Synthetic Data Samples

In this section, we show a few examples generated through our designed pipeline. Figures 5, 6, 7 and
8 show data generated from different 3D objects in a multitude of everyday environments.
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Table 3: Dataset summary by category. Each item is generated via our data-generation pipeline and
split into database (DB) and query images.

Category Samples Images DB images Query images

Bed 22 2939 1128 1811
Cabinet 100 1007 201 806
Chair 100 1005 201 804
Desk 100 1001 200 801
Dresser 62 624 272 352
Planter 135 1349 667 682
Shelf 100 1001 200 801
Sofa 22 1652 630 1022
Vase 50 501 250 251

Total 691 11079 3749 7330

Figure 4: Generated samples are split into DB images (left) and query images (right).
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Figure 5: Generated data for a teal upholstered sofa with button-tufted back cushions and metal legs.
Column (a) shows the original object in different rotations in isolation, while columns (b), (c) and
(d) present the same object in the corresponding rotation (same row) scaled, shifted and integrated
into various indoor scenes. The scenes include diverse residential and commercial environments
such as modern living rooms, art galleries, minimalist spaces, rustic interiors with fire places, and
contemporary office settings. Columns (b), (c), (d) also have the ground truth bounding box shown in
red.
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Figure 6: Generated data for a grey upholstered dining chair with quilted diamond-pattern backrest
and black metal frame. Column (a) shows the original object in different rotations in isolation,
while columns (b), (c) and (d) present the same object in the corresponding rotation (same row)
scaled, shifted and integrated into various indoor scenes. The scenes include diverse residential
and commercial environments such as modern living rooms, minimalist offices, rustic interiors with
fireplaces, contemporary dining spaces, and gallery-like settings. Columns (b), (c), (d) also have the
ground truth bounding box shown in red.
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Figure 7: Generated data for a wooden sideboard with three drawers and black metal geometric frame
base. Column (a) shows the original object in different rotations in isolation, while columns (b), (c)
and (d) present the same object in the corresponding rotation (same row) scaled, shifted and integrated
into various indoor scenes. The scenes include diverse residential and commercial environments such
as modern living rooms, home offices with bookshelves, gallery spaces, contemporary bedrooms,
minimalist interiors, and traditional spaces with brick walls. Columns (b), (c), (d) also have the
ground truth bounding box shown in red.
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Figure 8: Generated data for a sage green upholstered ottoman with wooden legs. Column (a) shows
the original object in different rotations in isolation, while columns (b), (c) and (d) present the same
object in the corresponding rotation (same row) scaled, shifted and integrated into various indoor
scenes. The scenes include diverse residential environments such as modern living rooms, cozy
bedrooms, contemporary home offices, outdoor terraces, bohemian-style spaces with macramé decor,
and traditional libraries with bookshelves. Columns (b), (c), (d) also have the ground truth bounding
box shown in red.
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B Methodology

B.1 Model Groups

We evaluate two model families distinguished by output type and prompting interface: Task-specific
vision models, and general-purpose VLMs. Table 4 provides a summary of model properties and
prompting inference for the selected models.

Table 4: Models evaluated in this study. (REC = referring expression comprehension).

Model Family / Style Inference Year
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D-FINE Strong non-OVD detector non-REC 2024
OWL-ViT-base-32 Promptable OVD Word 2022
OWLv2-base-16 Promptable OVD (self-training) Word 2023
Florence-2-base Foundation model used for detection Sentence 2024
Grounding DINO Grounding-style pretraining Word 2023
LISA-7B Reasoning Segmentation Sentence 2023
LISA-13B-Llama Reasoning Segmentation Sentence 2023
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LLaVA-1.5-7B Open LVLM Sentence 2023
LLaVA-Next-7B Open LVLM Sentence 2024
LLaVA-OneVision-7B-si Open LVLM Sentence 2024
SmolVLM2-2.2B-Instruct Open LVLM (efficient) Sentence 2024
InternVL3-8B Open LVLM Sentence 2023
Gemini 2.5-Pro API LVLM Sentence 2025
GPT-4o API LVLM Sentence 2024

B.2 Evaluation Protocol and Metrics

We designed the following complementary tasks for benchmarking the performance of task-specific
vision models and VLMs:

• Localization (box-based): Given an image and target name (e.g., sofa), predict one box for
the main product; task-specific models directly output class-conditioned bounding box, while
VLMs are prompted in REC style to output a box (first valid output is used). Evaluation
metrics include mIoU , AP0.5, and AP0.75, AP0.5:0.95.

• Localization (coarse grid): We overlay a 2×2 or 3×3 grid and define the GT cell by
majority overlap with the GT box. VLMs return a cell index/tag; For task=specific vision
models, top-1 predicted boxes are converted by assigning the cell with maximum overlap.
We use multiclass metrics: accuracy, macro-F1, and multiclass MCC.

• Spatial reasoning – coarse depth ordering: VLMs are prompted to answer with {front,
back} under a constrained prompt whether the focal object is in front or back of the scene;
we report accuracy, precision, recall, and F1.

• Patch-based retrieval (downstream): We crop the predicted box (clipped to bounds),
embed the crop with VL-CLIP [14], and query an HNSW index [34] built over DB em-
beddings to return top-k candidates. Models are compared using Precision@k and Hit@k
for k ∈ {1, 2, 3}, based on the DB–query GT correspondences obtained through the data
synthesis pipeline.

C Results

C.1 Localization

Table 5 provides the box-based localization performance for both task-specific vision models and
general-purpose VLMs. Among task-specific models, GroundingDINO leads, followed by Florence-2
and OWLv2. Notably, while D-FINE attains strong mIoU, its AP is the lowest in this group, indicating
a calibration gap between box quality and confidence scores under our setup.
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Among general-purpose VLMs, InternVL is the strongest, followed by LLaVA; while other VLMs
fall off rapidly, especially at stricter IoU thresholds where AP nearly collapses.

Table 5: Localization results (box-based) for task-specific vision models and general-purpose VLMs.

Model mIoU ↑ AP0.5 ↑ AP0.75 ↑ AP0.5:0.95 ↑
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GroundingDINO-1.5 0.773 0.821 0.711 0.695
Florence2-base 0.767 0.755 0.617 0.602
OWLv2-base-16 0.735 0.743 0.631 0.592
LISA-13B-Llama 0.711 0.658 0.513 0.505
LISA-7B 0.649 0.535 0.427 0.409
OWL-ViT-base-32 0.706 0.436 0.374 0.338
D-FINE 0.768 0.340 0.320 0.309
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InternVL3-8B 0.550 0.454 0.079 0.160
LLaVA-Next-7B 0.550 0.342 0.158 0.173
LLaVA-1.5-7B 0.487 0.389 0.022 0.111
LLaVA-OneVision-7B-si 0.388 0.148 0.001 0.029
Gemini 2.5-Pro 0.210 0.010 0.000 0.002
GPT-4o 0.181 0.003 0.000 0.000
SmolVLM2-2.2B-Instruct 0.136 0.005 0.000 0.000

Based on results in Table 5, task-specific models substantially outperform general-purpose VLMs on
both mIoU and AP across different thresholds. Practically, this suggests a simple hybrid strategy for
applications that need both reasoning and high-accuracy boxes: first leverage a reasoning-capable
VLM to resolve the referent via language (e.g., infer the product/object name or category), then
feeding the VLM output to a specialized open-vocabulary detector (OVD) for precise localization.
This “reason-then-localize” pipeline preserves the VLM’s scene understanding while delegating box
regression and confidence calibration to models optimized for detection.

C.2 Spatial Localization Analysis

Figure 1 illustrates typical errors from five VLMs when predicting coarse grid locations of the focal
product. We show two examples per model for both a 2× 2 grid and a 3× 3 grid. The ground-truth
and model’s prediction cells are marked with green and red symbols. Errors are often adjacent-cell
mistakes near cell boundaries. Moving from 2×2 to 3×3 grid increases difficulty and error frequency
due to finer spatial quantization and ambiguity in cluttered scenes.

C.3 Retrieval Analysis

We evaluate ANN retrieval after cropping each query image to the predicted bounding box from each
model and embedding the crop with VL-CLIP. We report retrieval performance using Precision@k
and Hit@k for k ∈ 1, 5, 10 compared against a full-image baseline (Table 6).

GroundingDINO yields the strongest overall retrieval among the task-specific models. All models
in this group improve over the full-image baseline, although D-FINE slightly underperforms the
baseline on Hit rate.

LLaVA-Next is the top performer across all metrics among general-purpose VLMs, while Gemini
and GPT-4o show the lowest performance, falling below the no-crop baseline.

Retrieval failure cases Figures 10 and 11 visualize top-5 ANN retrieval results using a single query
image across models. Row 1 in each figure shows the full-image baseline (i.e., retrieval on full image
without cropping). Subsequent rows use query crops from the predicted bounding boxes of each
model, embedded with VL-CLIP for retrieval. Columns display retrieved candidates left-to-right
(rank 1 to 5); correct matches are outlined with green and incorrect ones in red borders. Small
differences in the predicted crop can induce significant changes in downstream retrieval. Models that
better preserve salient, object-specific features in their boxes tend to yield better matching retrievals.
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Figure 9: Spatial localization failure cases across task-specific vision models (top) and general-
purpose VLMs (bottom). Green boxes denote ground truth; red boxes are predictions.

Results reinforce that crops which preserve the correct visual features (pose, discriminative parts)
enable consistent instance-level retrieval, whereas suboptimal boxes cause retrieval to drift toward
contextually similar but incorrect items.
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Table 6: ANN retrieval performance over VL-CLIP embeddings using predicted-box crops. The first
row shows the full-image (no crop) as a baseline.

Precision@k ↑ Hit@k ↑
Model @1 @5 @10 @5 @10

Full image (no crop) 0.400 0.285 0.236 0.576 0.659
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GroundingDINO-1.5 0.554 0.426 0.270 0.736 0.790
OWL-ViT-base-32-base-32 0.551 0.426 0.266 0.721 0.768
Florence-2-base 0.539 0.419 0.264 0.728 0.788
OWLv2-base-16-base-16 0.517 0.404 0.256 0.699 0.759
LISA-13B-Llama 0.499 0.388 0.248 0.686 0.737
LISA-7B 0.467 0.363 0.231 0.643 0.693
D-FINE 0.447 0.310 0.251 0.581 0.633
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LLaVA-Next-7B 0.498 0.391 0.244 0.671 0.725
LLaVA-1.5-7B 0.448 0.344 0.225 0.634 0.714
InternVL3-8B 0.445 0.346 0.228 0.625 0.700
LLaVA-OneVision-7B-si 0.345 0.279 0.185 0.526 0.605
SmolVLM2-2.2B-Instruct 0.277 0.209 0.147 0.421 0.491
Gemini 2.5-Pro 0.173 0.135 0.096 0.254 0.308
GPT-4o 0.129 0.112 0.081 0.233 0.281
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Figure 10: Retrieval results with crops made from predicted boxes of task-specific vision models
(top-5 shown). Row 1: full-image baseline (no crop). Rows 2–6: crops from D-FINE, OWL-ViT,
OWLv2, Florence-2, and GroundingDINO, respectively. The same query image is used across all
rows; only the crop differs by model. In this example, the baseline and OWLv2 produce no correct
matches in the top-5; D-FINE and Florence-2 retrieve a correct match at rank 2; OWL-ViT and
GroundingDINO retrieve a correct match at rank 3. This highlights how modest crop shifts (e.g.,
tighter/looser boxes or slight offsets) can substantially alter retrieval outcomes.
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Figure 11: Retrieval results using crops made from predicted boxes of general-purpose VLMs
(top-5 shown). Row 1: full-image baseline. Rows 2–6: crops from SmolVLM, InternVL, LLaVA,
Gemini 2.5, and GPT-4o, respectively. The same query image is used across all rows. Here, the
full-image baseline, InternVL, and LLaVA achieve all top-5 correct; SmolVLM and GPT-4o have no
correct matches; Gemini 2.5 produces a single correct match at rank 5.
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D VLM Prompts

D.1 Object position on a 2× 2 grid

The prompt used in the 2 × 2 grid-cell localization experiment; the VLM selects the dominant
quadrant (A–D) containing the target object.

Divide this image into 4 regions. Where is the {object} most
prominently located in this image? If the object spans multiple
regions , choose the region where the majority or most prominent
part of the object is located.

Options:
A) top -left
B) top -right
C) bottom -left
D) bottom -right

Chose from one of the above options.

D.2 Object position on a 3× 3 grid

The prompt used for the 3× 3 grid-cell localization experiment; the VLM selects the dominant cell
(A–I) where the target object lies.

Divide this image into 9 regions. Where is the {object} most
prominently located in this image? If the object spans multiple
regions , choose the region where the majority or most prominent
part of the object is located.

Options:
A) top -left
B) top -center
C) top -right
D) middle -left
E) middle -center
F) middle -right
G) bottom -left
H) bottom -center
I) bottom -right

Chose from one of the above options.

D.3 Object Depth Estimation

The prompt used in the front/back depth-order classification experiment; the VLM indicates whether
the target object is in the foreground or background.

Look at the {object} in this image. Is it positioned in the
foreground (front) or background (back) of the scene?

Consider the relative depth and layering of objects in the image.

A) Front (foreground)
B) Back (background)

Chose from one of the above options.

20



D.4 Object Bounding Box

Look at the {object} in this image. Please identify the bounding
box coordinates that tightly enclose this object.

Provide the coordinates as absolute pixel values based on the image
dimensions:

- Image width: {width} pixels
- Image height: {height} pixels
- (0,0) is the top -left corner of the image

Format: (x1 , y1 , x2, y2) where:
- x1, y1 = top -left corner of the bounding box in pixels
- x2, y2 = bottom -right corner of the bounding box in pixels

Response format: Provide only the coordinates in the specified
format.

E Related Works

E.1 Object Detection: From Closed-set to Open-vocabulary

Early object detectors were based on a fixed category list, often referred to as the closed-set detectors,
where a model is trained and evaluated on the same finite taxonomy. This limitted inference
applications: adding a new class required retraining.[16, 15, 43, 42, 20, 4, 54] To relax the fixed-label
constraint, open-vocabulary detection (OVD) brings text supervision into the loop. Early OVD
lines either distilled knowledge from vision–language models into detectors or learned region–text
alignment at scale.[17, 57, 28, 55]

Grounding DINO [32] adopts a dual-encoder, single-decoder architecture with an image encoder, a
language encoder, and a cross-modality decoder for box refinement. Its 1.5 variant [44] employs a
larger ViT-L backbone [11] and is pre-trained on over 20M grounded image–text pairs, reporting 54.3
AP on COCO and 55.7 AP on the LVIS minival zero-shot transfer benchmark. OWL-ViT [37] pre-
trains vision and text encoders with image–text contrastive learning (as in CLIP [40] and ALIGN [19])
and adapts them for open-vocabulary detection with text prompts. OWL-ST and OWL-v2 [36] further
scale this approach via self-training, using an existing detector to generate pseudo-boxes on web-scale
image–text pairs, yielding substantial gains on rare LVIS categories.

Florence [53] pre-trains language and image encoders with contrastive objectives and adapts to
detection by attaching a Dynamic Head adapter [9]. Its successor, Florence-2 [49], comprises an
image encoder and a multimodal encoder–decoder trained under a unified multi-task paradigm.
While not language-grounded, D-FINE [39] revisits bounding-box regression with fine-grained
distribution refinement and global localization self-distillation, offering competitive AP at high
FPS.[39] Complementary to box-based OVD, LISA [23] performs reasoning segmentation, predicting
language-conditioned masks with an LLM-guided planner.[23] Broader efforts further expand OVD
with larger corpora, using semi/self-training, and efficiency-oriented designs.[51, 50, 52, 58, 21, 6]

E.2 Vision–Language Foundation Models for Object Localization and Spatial Reasoning

Modern vision–language models (VLMs) pair a visual encoder with a language model and learn from
large image–text corpora. Common design choices include lightweight connectors (projection or
cross-attention), instruction tuning for task following, and support for multi-image or video inputs.
This line of work established a general recipe for multimodal reasoning and flexible prompting.[1, 2,
27, 8, 46, 25, 24]

LLaVA (Large Language and Vision Assistant) [31, 29] and its successors illustrate the rapid progress
in open multimodal assistants. LLaVA connects a CLIP vision encoder to a Vicuna-based LLM via
a simple projection and is trained end-to-end through a two-stage instruction-tuning pipeline [31],
achieving state-of-the-art accuracy on ScienceQA and demonstrating strong visual dialogue abilities.
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SmolVLM [35] is a compact model that can run on-device capable of performing tasks such as visual
question answering, captioning, and visual storytelling.

Recent VLM research also explores localization and dense description. InternVL [5], Gemini [7],
GPT-4o [18], and Gemma 3 [47] all support localization via bounding boxes or segmentation. As
VLMs continue to grow in scale and multimodality, they increasingly unify tasks such as visual
question answering, open-ended captioning, object localization, and more, moving the field beyond
simple image captioning toward general-purpose vision–language understanding.

F Discussion and Future Works

We introduced a unified benchmark and evaluation protocol for product-centric retrieval that bridges
detection and instance-level matching. Using a synthetic data pipeline, each product yields database
images with more frontal views and query images with more angled views, enabling controlled tests
of view/pose robustness. We index database embeddings with VL-CLIP and evaluate localization
performance of task-specific vision models (e.g., OWL-ViT, GroundingDINO, D-FINE) alongside
general purpose VLM (e.g., LLaVA, SmolVLM, InternVL). Localization quality (mIoU, AP) and
retrieval quality (Precision@k, Hit@k for k ∈1,5,10) are measured under a common setup. Across
experiments, precise crops are a primary driver of retrieval success: using whole-image queries
amplifies background bias, while missed/imprecise boxes and severe view changes are the dominant
failure modes.

Overall, our analysis demonstrates that task-specific vision models consistently outperform general-
purpose VLMs accross all experiments. Future directions of this work includes (i) end-to-end training
that jointly optimizes localization and retrieval embeddings, (ii) stronger view- and pose-invariant
representations (e.g., 3D/geometry cues or multi-view augmentation), (iii) spatial reasoning over
multi-object scenes (compositional relations and complements), and (iv) scaling to richer real-world
catalogs with harder negatives and human-in-the-loop evaluation.
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