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Abstract

We consider the problem of optimizing a vector-valued objective function f sampled from
a Gaussian Process (GP) whose index set is a well-behaved, compact metric space (X , d)
of designs. We assume that f is not known beforehand and that evaluating f at design
x results in a noisy observation of f(x). Since identifying the Pareto optimal designs via
exhaustive search is infeasible when the cardinality of X is large, we propose an algorithm,
called Adaptive ϵ-PAL, that exploits the smoothness of the GP-sampled function and the
structure of (X , d) to learn fast. In essence, Adaptive ϵ-PAL employs a tree-based adaptive
discretization technique to identify an ϵ-accurate Pareto set of designs in as few evaluations
as possible. We provide both information-type and metric dimension-type bounds on the
sample complexity of ϵ-accurate Pareto set identification. We also experimentally show that
our algorithm outperforms other Pareto set identification methods.

1 Introduction

Many complex scientific problems require the optimization of multi-dimensional (m-variate) performance
metrics (objectives) under uncertainty. When developing a new drug, scientists need to identify the optimal
therapeutic doses that maximize benefit and tolerability (Scmidt, 1988). When designing new hardware,
engineers need to identify the optimal designs that minimize energy consumption and runtime (Almer et al.,
2011). In general, there is no design that can simultaneously optimize all objectives, and hence, one seeks to
identify the set of Pareto optimal designs. Moreover, design evaluations are costly, and thus, the optimal
designs should be identified with as few evaluations as possible. In practice, this is a formidable task for at
least two reasons: design evaluations only provide noisy feedback about ground truth objective values, and the
set of designs to explore is usually very large (even infinite). Luckily, in practice, one only needs to identify the
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set of Pareto optimal designs up to a desired level of accuracy. Within this context, a practically achievable
goal is to identify an ϵ-accurate Pareto set of designs whose objective values form an ϵ-approximation of the
true Pareto front for a given ϵ = [ϵ1, . . . , ϵm]T ∈ Rm

+ (Zuluaga et al., 2016).

There has been a considerable amount of interest in the Pareto set identification problem with a finite design
space (Kone et al., 2023; Zuluaga et al., 2013; 2016), where individual designs are compared based on their
vector values, according to multi-objective domination criteria. However, in many multi-objective problems of
interest, such as the accurate tuning of particle accelerators (Roussel et al., 2021), or robotic systems control
(Ariizumi et al., 2014), the design space is not necessarily finite. For these examples, a naive application of
methods that are suitable for finite spaces might not yield the desired level of efficiency, due to the lack of
rigorous theoretical foundations. Motivated by these observations, in this paper, we consider the Pareto set
identification problem assuming a compact design space.

Specifically, we model the identification of an ϵ-accurate Pareto set of designs as an active learning problem.
We assume that the designs lie in a well-behaved, compact metric space (X , d), where the set of designs X
might be very large. The vector-valued objective function f = [f1, . . . , fm]T defined over (X , d) is unknown
at the beginning of the experiment. The learner is given prior information about f , which states that it is a
sample from a multi-output GP with known mean and covariance functions. Then, the learner sequentially
chooses designs to evaluate, where evaluating f at design x immediately yields a noisy observation of f(x).
The learner uses data from its past evaluations in order to decide which design to evaluate next until it can
confidently identify an ϵ-accurate Pareto set of designs.

Main contribution. We propose a new learning algorithm, called Adaptive ϵ-PAL, that solves the Pareto
active learning (PAL) problem described above, by performing as few design evaluations as possible. Our
algorithm employs a tree-based adaptive discretization strategy to dynamically partition X . It uses the GP
posterior on f to decide which regions of designs in the partition of X to discard or to declare as a member
of the ϵ-accurate Pareto set of designs. On termination, Adaptive ϵ-PAL guarantees that the returned set
of designs forms an ϵ-accurate Pareto set with a high probability. To the best of our knowledge, Adaptive
ϵ-PAL is the first algorithm that employs an adaptive discretization strategy in the context of PAL, which
turns out to be very effective when dealing with a large X .

We prove information-type and metric dimension-type upper bounds on the sample complexity of Adaptive
ϵ-PAL (Theorem 1). Our information-type bound yields a sample complexity upper bound of Õ(g(ϵ)) where
ϵ = minj ϵj , g(ϵ) = min{τ ≥ 1 :

√
γτ /τ < ϵ}, and γτ is the maximum information gain after τ evaluations.

To the best of our knowledge, this is the first information type bound for dependent objectives in the context
of PAL. In addition, our metric dimension-type bound yields a sample complexity of Õ(ϵ−( D̄

α +2)) for all
D̄ > D1, where D1 represents the metric dimension of (X , d) and α ∈ (0, 1] represents the Hölder exponent of
the metric induced by the GP on X . As far as we know, this is the first metric dimension-type bound in the
context of PAL. Our bounds complement each other: as we show in the appendix, neither of them dominates
the other for all possible GP kernels. Specifically, we provide an example (Proposition 1) under which the
information-type bound can be very loose compared to the metric dimension-type bound. Besides theory,
we also show via simulations on multi-objective functions that Adaptive ϵ-PAL significantly improves over
its competitors in terms of accuracy. Furthermore, we point out the key challenges that necessitate novel
algorithmic design and techniques as follows:

• First, due to the nature of the problem, we need to properly define novel confidence hyper-rectangle
objects which are designed to capture uncertainty, not only over individual designs, but over whole
regions. This requires integrating information and metric-type components into our hyper-rectangle
definitions.

• Second, the refining, evaluating and discarding steps of our procedure are substantially different from
their analogues in ϵ-PAL (Zuluaga et al., 2016). Again, this is due to the large space of designs to
consider. Here, we need to be confident about regions of space, rather than individual points, and
choose whether to discard them or maintain them.

• Third, in addition to the Pareto front identification problem, inherent in ϵ-PAL, our formulation also
introduces the problem of efficiently expanding the search tree in promising directions (note that the
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tree is not uniformly explored). Thus, we need additional analysis which involve information-theoretic
and geometric components integrated into a threshold condition.

• Finally, all of the above necessitate new additional results which involve algebraic and analytic
arguments to carry through the analysis. Specifically, results such as Lemma 8 (which requires a
careful step-by-step analysis applicable only to our setting), Lemma 10, Lemma 12 and Lemma 16,
are all results which require non-trivial and novel reasoning steps necessary for our setting.

Organization. We provide a detailed comparison with related work in Section 2. We explain the properties
of the function to be optimized and the structure of the design space in Section 3. This is followed by the
description of Adaptive ϵ-PAL in Section 4. We give sample complexity bounds for Adaptive ϵ-PAL in Section
5, discuss the main aspects of computational complexity analysis in Section 6. We devote Section 7 to the
computational experiments, followed by conclusions in Section 8. We present the proof of the main theorem
separately in Section B, the appendix. At the end of the paper, we include a table for the frequently used
notation.

2 Related Work

This section provides a detailed discussion of related work on several lines of research.

2.1 Multi-objective optimization

Learning the Pareto optimal set of designs and the Pareto front has received considerable attention in recent
years (Belakaria et al., 2024; Auer et al., 2016; Zuluaga et al., 2013; 2016; Hernández-Lobato et al., 2016;
Shah & Ghahramani, 2016; Paria et al., 2020; Belakaria & Deshwal, 2019; Belakaria et al., 2020; Daulton
et al., 2020; Alizadeh et al., 2024; Mukherjee et al., 2024).

Auer et al. (2016) consider a finite set of designs and formulate the identification of the Pareto front as a pure
exploration multi-armed bandit (MAB) problem in the fixed confidence setting. Under the assumption that
the centered outcomes are 1-subGaussian and independent, they provide gap-dependent bounds on its sample
complexity, which, in the single objective case, yield the well-known gap-dependent sample-complexity bounds
for pure exploration in the MAB setting (Mannor & Tsitsiklis, 2004). Other works on Multi-objective MAB
include (Xu & Klabjan, 2023; Busa-Fekete et al., 2017; Öner et al., 2018). As opposed to their frequentist
approach, our approach is Bayesian, which imposes a Gaussian process prior to the latent function of interest.

Knowles (2006) and Ponweiser et al. (2008) study the multi-objective optimization problem using the paradigm
of Efficient Global Optimization (EGO) algorithm (Jones et al., 1998), a GP-based supervised learning
approach used to tackle optimization problems with expensive evaluations. Knowles (2006) proposes ParEGO,
which is an adaptation of EGO in the m-objective case. The author takes a scalarization approach to the
problem, where the used acquisition function is the augmented Tchebycheff function, thus essentially reducing
the problem to the single-objective one. Such an acquisition function was also used recently by Lin et al.
(2022) for Pareto set learning. They extend previous approaches by identifying an approximate Pareto set
of (potentially) infinitely many designs, as opposed to stopping with only a finite number of designs. In
contrast, we take a direct Pareto set identification approach, in which we utilize the structure of the partial
ordering relation between values of evaluated designs, while simultaneously integrating the GP posterior into
the selection conditions of our method.

The second application of EGO, SMS-EGO (Ponweiser et al., 2008), does not reduce the problem to a
single-objective one, but instead maximizes the gain in hypervolume from optimistic estimates based on
a GP model. Having optimistically estimated the GP-based value vectors of their predicted Pareto set,
they compute the hypervolume of the gain of choosing such design points. The hypervolume approach to
Pareto learning is further exploited by Shah & Ghahramani (2016) and Daulton et al. (2020). In Shah &
Ghahramani (2016), the Pareto hypervolume is defined in terms of an arbitrarily chosen reference point
which is known to be suboptimal, and the current Pareto frontier. What makes their method attractive is its
efficient implementation and computation, which relies on the approximation of a multi-dimensional integral.
The computational complexity of computing the expected hypervolume gain is improved by extending the
problem to the parallel constrained evaluation setting in Daulton et al. (2020). However, no one of these
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Table 1: Comparison with related works. (1)Both the algorithm and the performance analysis take into
account dependence between the objectives.

Work Design Function Dep.(1) Sample complex. Adaptive
space bounds discret.

Auer et al. (2016) Finite Arbitrary No Gap-dependent Not used
Zuluaga et al. (2013) Finite GP sample No Inf.-type Not used
Zuluaga et al. (2016) Finite RKHS element No Inf.-type Not used
Hernández-Lobato et al. (2016) Bounded GP sample No No bound Not used
Shah & Ghahramani (2016) Bounded GP sample Yes No bound Not used
Paria et al. (2020) Compact GP sample No Bayes Regret Not used
Belakaria & Deshwal (2019) General GP sample No Regret norm Not used
Belakaria et al. (2020) Continuous GP sample No Regret norm Not used
Daulton et al. (2020) Bounded GP sample No Exp. Hypervol. Not used

Ours Compact GP sample Yes Inf. & dim.-type Used

methods come with theoretical convergence guarantees, while we provide a comprehensive best-of-both-world
type of convergence guarantees under minimal assumptions.

Furthermore, Hernández-Lobato et al. (2016) consider a (possibly infinite) bounded design space X and
assume that the individual objectives are samples from independent GPs. Their algorithm, Predictive Entropy
Search for Multi-objective Optimization (PESMO), sequentially queries designs that maximize the acquisition
function defined as the expected reduction in the entropy of the posterior distribution over the predicted
Pareto set, given the previously sampled data. They provide comprehensive experimental comparisons
between PESMO and other multi-objective optimization methods over various objectives and dimensions, in
both noisy and noiseless cases. The comparison is done with respect to the relative difference between the
hypervolume of the predicted set and the maximum such hypervolume for the given number of evaluations.
Although their setup is similar to ours, we take a different approach to the Pareto set identification and
provide theoretical guarantees for our method. Recently, Tu et al. (2022) extend the Predictive Entropy
Search paradigm to that of Joint Entropy Search (JES), which takes into account the informativeness coming
from both the Pareto set designs and their outcome vectors in their acquisition function.

Apart from Pareto front identification, several works consider identifying designs that satisfy certain perfor-
mance criteria. For instance, Katz-Samuels & Scott (2018) consider the problem of identifying designs whose
objective values lie in a given polyhedron in the fixed confidence setting. On the other hand, Locatelli et al.
(2016) consider the problem of identifying designs whose objective values are above a given threshold in the
fixed budget setting. In addition, Gotovos (2013) consider level set identification when f is a sample from a
GP. There also exists a plethora of works developing algorithms for best arm identification in the context of
single-objective pure-exploration MAB problems such as the ones by Mannor & Tsitsiklis (2004); Bubeck
et al. (2009); Gabillon et al. (2012).

2.2 Adaptive discretization

Adaptive discretization is a technique that is mainly used in regret minimization in MAB problems on metric
spaces (Kleinberg et al., 2008; Bubeck et al., 2011), including contextual MAB problems (Shekhar et al.,
2018), when dealing with large arm and context sets. It consists of adaptively partitioning the ground set
along a tree structure into smaller and smaller regions, until, theoretically, the regions converge to a single
point (under uniqueness assumptions in the single-objective case). Different from other upper confidence
bound-based methods, here, the usual upper confidence bound of a given point x (in both frequentist and
Bayesian approaches) is inflated with a factor times the diameter of the region containing x, so that the
uncertainty coming from the variation of the function values inside the region is also captured. A key
efficacy of adaptive discretization comes from the fact that it does not blindly sample the space without first
exhaustively partitioning it as long as it is certain. This certainty is formalized by comparing the sample
uncertainty diameter with the region diameter. If the latter exceeds the former, then the algorithm decides
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to partition the given region into smaller sub-regions. It is known that adaptive discretization can result
in a much smaller regret compared to uniform discretization. However, this is significantly different from
employing adaptive discretization in the context of PAL. While the regret can be minimized by quickly
identifying one design that yields the highest expected reward, PAL requires identifying all designs that can
form an ϵ-Pareto front together, while at the same time discarding all designs that are far from being Pareto
optimal. Table 1 compares our approach with the related work.

2.3 ϵ-Pareto active learning

The line of work on which our method builds is that of Zuluaga et al. (2013; 2016). Zuluaga et al. (2016)
consider a finite design space and assume that each objective is a sample from an independent GP. We briefly
describe the rationale of their algorithm, since it will also be used later on. Their algorithm, ϵ-Pareto Active
Learning (ϵ-PAL), is a confidence bound-based method. It partitions the design space into three subsets:
the set of undecided designs, that of predicted Pareto-optimal designs, and that of predicted suboptimal
designs. The procedure is composed of four main phases. In the first phase, the algorithm uses the posterior
estimates in order to compute the confidence hyper-rectangles of designs that are still up for selection. In
the second phase, each design is associated with an uncertainty region, dependent on all previous confidence
hyper-rectangles, and then checked whether it is safe to discard it. The third phase consists of deciding
whether there are any designs that can be safely predicted to be Pareto optimal. In the final phase, ϵ-PAL
decides whether or not to evaluate the design of maximal uncertainty.

The algorithm we propose utilizes a similar rationale to that of ϵ-PAL. However, such an extension, although
seemingly natural, also brings with it several challenges and key differences, which necessitate novel ways of
solving the problem. We summarize these differences in the following.

First, ϵ-PAL iterates through all designs, maintaining relevant statistics of them which it uses to decide
whether they are reasonable candidates for Pareto optimality, or whether they can be safely discarded. In
our case, this would be a futile attempt, since the design space is potentially infinite. Therefore, we use
adaptive discretization techniques (Bubeck et al., 2011) in order to tackle the problem. Next, the application
of adaptive discretization in the context of PAL introduces additional technical intricacies: instead of working
over individual designs, our method maintains statistics over nodes (centers) of design regions with similar
values, and, as a result, with similar levels of confidence. Thus, we design novel bonus terms for each node,
which simultaneously take into account both the hyper-rectangular uncertainty and the structural relationship
of “nearby”1 nodes.

On the algorithmic front, the successful integration of adaptive discretization into the PAL setting implies a
new evaluation procedure. We part from the ϵ-PAL evaluation subroutine and introduce a new condition,
which captures the uncertainty over a given region and implies that the algorithm will evaluate a design
from the region only when it is absolutely necessary, thus optimizing the sample complexity of the overall
procedure. On the theoretical front, on top of the information-type sample complexity bounds provided
by Zuluaga et al. (2016), we additionally provide dimension-type bounds, thus yielding best-of-both-worlds
bounds. We do this motivated by examples in which the information-type bounds might actually be loose
(see Proposition 1). To make our theoretical analysis rigorous, we prove several additional results that allow
for a comprehensive understanding of our bounds. To the best of our knowledge, we are the first to provide
such a full comprehensive analysis for both types of bounds, while simultaneously accounting for adaptive
discretization in the context of PAL.

3 Background and formulation

Throughout the paper, let us fix a positive integer m ≥ 2 and a compact metric space (X , d). We denote
by Rm the m-dimensional Euclidean space and by Rm

+ the set of all vectors in Rm with nonnegative
components. We write [m] = {1, . . . , m}. Given a function f : X → Rm and a set S ⊆ X , we denote by
f(S) = {f(x) : x ∈ S} the image of S under f . Given x ∈ X and r ≥ 0, B(x, r) = {y ∈ X : d(x, y) ≤ r}

1We assume a tree structure defined over the design space, where parent-child relationships are properly defined between
relevant nodes. See Definition 10.
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denotes the closed ball centered at x with radius r. For a non-empty set S ⊆ Rm, let ∂S denote its boundary.
If another non-empty set S ′ ⊆ Rm is given, then we define the Minkowski sum and difference of S and S ′ as
S + S ′ = {µ + µ′ : µ ∈ S, µ′ ∈ S ′}, S − S ′ = {µ − µ′ : µ ∈ S, µ′ ∈ S ′}, respectively. For a vector µ′′ ∈ Rm,
we define µ′′ + S = {µ′′} + S.

3.1 Multi-objective optimization

A multi-objective optimization problem is an optimization problem that involves multiple objective functions
(Hwang & Masud, 2012). Formally, letting f j : X → R be a function for every j ∈ [m], we write

maximize [f1(x), . . . , fm(x)]T subject to x ∈ X ,

where m ≥ 2 is the number of objectives and X is the set of designs. We refer to the vector of all objectives
evaluated at design x ∈ X as f(x) = [f1(x), . . . , fm(x)]T. The objective space is given as f(X ) ⊆ Rm. In
order to define a set of Pareto optimal designs in X , we first describe several order relations on Rm.
Definition 1. For µ, µ′ ∈ Rm, we say that: (1) µ is weakly dominated by µ′, written as µ ⪯ µ′, if µj ≤ µ′

j

for every j ∈ [m]. (2) µ is dominated by µ′, written as µ ≺ µ′, if µ ⪯ µ′ and there exists j ∈ [m] with
µj < µ′

j. (3) For ϵ ∈ Rm
+ , µ is ϵ-dominated by µ′, written as µ ⪯ϵ µ′, if µ ⪯ µ′ + ϵ. (4) µ is incomparable

with µ′, written as µ ∥ µ′, if neither µ ≺ µ′ nor µ′ ≺ µ holds.

Based on Definition 1, we define the following induced relations on X .
Definition 2. For designs x, y ∈ X , we say that: (1) x is weakly dominated by y, written as x ⪯ y, if
f(x) ⪯ f(y). (2) x is dominated by y, written as x ≺ y, if f(x) ≺ f(y). (3) For ϵ ∈ Rm

+ , x is ϵ-dominated
by y, written as x ⪯ϵ y, if f(x) ⪯ϵ f(y). (4) x is incomparable with y, written as x ∥ y, if f(x) ∥ f(y).

Note that, while the relation ⪯ on Rm (Definition 1) is a partial order, the induced relation ⪯ on X (Definition
2) is only a preorder since it does not satisfy antisymmetry in general. If a design x ∈ X is not dominated by
any other design, then we say that x is Pareto optimal. The set of all Pareto optimal designs is called the
Pareto set and is denoted by O(X ). The Pareto front is defined as Z(X ) = ∂(f(O(X )) − Rm

+ ).

We assume that f is not known beforehand and formalize the goal of identifying O(X ) as a sequential
decision-making problem. In particular, we assume that evaluating f at design x results in a noisy observation
of f(x). The exact identification of the Pareto set and the Pareto front using a small number of evaluations is,
in general, not possible under this setup, especially when the cardinality of X is infinite or a very large finite
number. A realistic goal is to identify the Pareto set and the Pareto front in an approximate sense, given a
desired level of accuracy that can be specified as an input ϵ. Therefore, our goal in this paper is to identify
an ϵ-accurate Pareto set (see Definition 5) that contains a set of near-Pareto optimal designs by using as few
evaluations as possible. Next, we define the ϵ-Pareto front and ϵ-accurate Pareto set associated with X .
Definition 3. Given ϵ ∈ Rm

+ , the set Zϵ(X ) = (f(O(X ))−Rm
+ )\(f(O(X ))−2ϵ−Rm

+ ) is called the ϵ-Pareto
front of X .

Roughly speaking, the ϵ-Pareto front can be thought of as the slab of points of width 2ϵ in Rm adjoined to
the lower side of the Pareto front.
Definition 4. Given ϵ ∈ Rm

+ and S ⊆ Rm, a non-empty subset C of S is called an ϵ-covering of S if for
every µ ∈ S, there exists µ′ ∈ C such that µ ⪯ϵ µ′.
Definition 5. Given ϵ ∈ Rm

+ , a subset Oϵ of X is called an ϵ-accurate Pareto set if f(Oϵ) is an ϵ-covering
of Zϵ(X ).

Note that the front associated with an ϵ-accurate Pareto set is a subset of the ϵ-Pareto front. As mentioned in
(Zuluaga et al., 2016), an ϵ-accurate Pareto set is a natural substitute of the Pareto set since any ϵ-accurate
Pareto design is guaranteed to be no worse than 2ϵ of any Pareto optimal design.

3.2 Prior knowledge on f

We model the vector f = [f1, . . . , fm]T of objective functions as a realization of an m-output GP with zero
mean, i.e., µ(x) = 0 for all x ∈ X , and some positive definite covariance function k.
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Definition 6. An m-output GP with index set X is a collection (f(x))x∈X of m-dimensional random vectors
which satisfies the property that (f(x1), . . . , f(xn)) is a Gaussian random vector for all {x1, . . . , xn} ⊆ X
and n ∈ N. The probability law of an m-output GP (f(x))x∈X is uniquely specified by its (vector-valued)
mean function x 7→ µ(x) = E[f(x)] ∈ Rm and its (matrix-valued) covariance function (x1, x2) 7→ k(x1, x2) =
E[(f(x1) − µ(x1))(f(x2) − µ(x2))T] ∈ Rm×m.

Functions generated from a GP naturally satisfy smoothness conditions which are very useful while working
with metric spaces, as indicated by the following remark.
Remark 1. Let g be a zero-mean, single-output GP with index set X and covariance function k. The
metric l induced by the GP on X is defined as l(x1, x2) =

(
E[(g(x1) − g(x2))2]

)1/2 = (k(x1, x1) + k(x2, x2) −
2k(x1, x2))1/2. This gives us the following tail bound for x1, x2 ∈ X , and a ≥ 0: P(|g(x1) − g(x2)| ≥ a) ≤
2exp

(
−a2/(2l2(x1, x2))

)
.

Let us fix an integer T ≥ 1. We consider a finite sequence x̃[T ] = [x̃1, . . . , x̃T ]T of designs with the
corresponding vector f[T ] = [f(x̃1)T, . . . , f(x̃T )T]T of unobserved objective values and the (mT -dimensional)
vector y[T ] = [yT

1 , . . . , yT
T ]T of observations, where

yτ = f(x̃τ ) + κτ

is the observation that corresponds to x̃τ and κτ = [κ1
τ , . . . , κm

τ ]T is the noise vector that corresponds to this
particular evaluation for each τ ∈ [T ].

The posterior distribution of f given y[T ] is that of an m-output GP with mean function µT and covariance
function kT given by

µT (x) = k[T ](x)(K[T ] + Σ[T ])−1yT
[T ]

and
kT (x, x′) = k(x, x′) − k[T ](x)(K[T ] + Σ[T ])−1k[T ](x′)T

for all x, x′ ∈ X , where k[T ](x) = [k(x, x̃1), . . . , k(x, x̃T )] ∈ Rm×mT ,

K[T ] =


k(x̃1, x̃1), . . . , k(x̃1, x̃T )

...
...

k(x̃T , x̃1), . . . , k(x̃T , x̃T )

 , Σ[T ] =


σ2Im, 0m, . . . , 0m

...
...

0m, 0m, . . . , σ2Im

 ∈ RmT ×mT ,

Im denotes the m × m-dimensional identity matrix, and 0m is the m × m-dimensional zero matrix. Note
that this posterior distribution captures the uncertainty in f(x) for all x ∈ X . In particular, the posterior
distribution of f(x) is N (µT (x), kT (x, x)); and for each j ∈ [m], the posterior distribution of f j(x) is
N (µj

T (x), (σj
T (x))2), where (σj

T (x))2 = kjj
T (x, x). Moreover, the distribution of the corresponding observation

y is N (µT (x), kT (x, x) + σ2Im).

3.3 Information gain

Since we aim at finding an ϵ-accurate Pareto set in as few evaluations as possible, we need to learn the most
informative designs. In order to do that, we will make use of the notion of information gain. Our sample
complexity result in Theorem 1 depends on the maximum information gain.

In Bayesian experimental design, the informativeness of a finite sequence x̃[T ] of designs is quantified by
I(y[T ]; f[T ]) = H(y[T ]) − H(y[T ]|f[T ]), where H(·) denotes the entropy of a random vector and H(·|f[T ])
denotes the conditional entropy of a random vector with respect to f[T ]. This measure is called the information
gain, which gives us the decrease of entropy of f[T ] given the observations y[T ]. We define the maximum
information gain as γT = maxy[T ] I(y[T ]; f[T ]).
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4 Adaptive ϵ-PAL algorithm

In this section, we introduce our algorithm, Adaptive ϵ-Pareto Active Learning (PAL), which builds on the
ϵ-PAL algorithm of Zuluaga et al. (2016) and utilizes adaptive discretization techniques to enable an efficient
navigation of the continuous search space. The algorithm is largely technical, thus we divide the description
of each of its phases into more comprehensible subsections.

Intuition On a high level, our algorithm’s rationale can be explained as follows. First, Adaptive ϵ-PAL
maintains an adaptively changing resolution over the design space, structured along so-called nodes of a tree.
That is, starting from the center of the space (the center node), we only ‘zoom in’ (thus expanding the tree)
on points that are of potential interest. In every iteration of the algorithm, we are given the current set of
active nodes in our tree-based partition of the space. These nodes serve as proxies for regions of points in
the design space which they inhabit. Now, the goal of the algorithm is to return a set of nodes (and, as a
consequence, their associated regions) that form an approximate Pareto front with high probability. In order
to do that, the algorithm maintains a confidence region for every active node. Applying worst-case arguments
over these confidence regions, the algorithm decides which points to discard in every iteration, and which
points to maintain as potentially optimal (in the Pareto sense). Next, we move points about which we are
confident enough to a predicted Pareto set. Basically, we keep shrinking the set of points about which we are
undecided, and we keep growing the set of points which we believe are approximately optimal. Finally, if
enough information is obtained on the most uncertain active node, then we decide to expand it into children
nodes, since there is enough reason to believe that more relevant information will be obtained from those new
nodes.

The system operates in rounds t ≥ 1. In each round t, the algorithm picks a design xt ∈ X , and assuming that
it already had τ evaluations, it subsequently decides whether or not to obtain the τ + 1st noisy observation
yτ+1 = [y1

τ , . . . , ym
τ+1]T of the latent function f at xt. At the end, our algorithm returns a subset P̂ of X

which is guaranteed to be an ϵ-accurate Pareto set with high probability and the associated set P̂ of nodes
which we will define later. The pseudocode is given in Algorithm 1.

4.1 Modeling

We maintain two sets of time indices, one counting the total number of iterations, denoted by t, and the
other counting only the evaluation rounds, denoted by τ . The algorithm evaluates a design only in some
rounds. For this reason, we also define the following auxiliary time variables which help us understand the
chronological connection between the values of t and τ . We let τt represent the number of evaluations before
round t ≥ 1 and let tτ denote the round when evaluation τ ≥ 0 is made, with the convention t0 = 0. The
sequence (tτ )τ≥0 is an increasing sequence of stopping times. Note that we have τtτ +1 = τ for each τ ∈ N.

Iteration over individual designs may not be feasible when the cardinality of the design space is very large.
Thus, we consider partitioning the space into regions of similar designs, i.e., two designs in X which are at a
close distance have similar outcomes in each objective. This is a natural property of GP-sampled functions as
discussed in Remark 1.

Since iteration over individual designs is not possible in large spaces, we will instead iterate over ‘regions’ of
interest. Here, we focus on a compact subset X of the Euclidean space Rm′ for some m′ ∈ N. However, we
do this purely for simplicity of presentation. In Appendix, we show that our analysis holds when X is any
general ‘well-behaved’ metric space.2 For such a metric space, one can easily partition the design space along
a tree structure, each level h of which is associated with a partition of X into Nh equal-sized regions Xh,i,
centered at a node xh,i, for all 0 ≤ i ≤ Nh, where N ∈ N.

At each round t ∈ N, the algorithm maintains a set St of undecided nodes and a set Pt of decided nodes. For
an undecided node in St, its associated cell consists of designs for which we are undecided about including
in the ϵ-accurate Pareto set. Similarly, for a decided node in Pt, its associated cell consists of designs that
we decide to include in the ϵ-accurate Pareto set. At the beginning of round t = 1 (initialization), we set

2See Section A for detailed definitions.
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S1 = {x0,1} and P1 = ∅. Within each round t ∈ N, the sets Pt and St are updated during the discarding,
ϵ-covering and refining/evaluating phases of the round; at the end of round t, their finalized contents are
set as Pt+1 and St+1, respectively, as a preparation for round t + 1. For each t ∈ N, the algorithm performs
round t as long as St ̸= ∅ at the beginning of round t; otherwise, it terminates and returns P̂ = Pt.

In addition to the sets of undecided and decided nodes, the algorithm maintains a set At of active nodes,
which is defined as the union St ∪ Pt at the beginning of each round t ∈ N. While the sets St and Pt are
updated within round t as described above, the set At is kept fixed throughout the round with its initial
content. Note that A1 = {x0,1}.

At round t ∈ N, the algorithm considers each active node xh,i ∈ At. Let j ∈ [m]. We define the lower index
of xh,i in the jth objective as Lj

t (xh,i) = Bj
t (xh,i) − Vh, where Bj

t (xh,i) is a high probability lower bound on
the jth objective value at xh,i and is defined as

Bj
t (xh,i) = max{µj

τt
(xh,i) − β1/2

τt
σj

τt
(xh,i), µj

τt
(p(xh,i)) − β1/2

τt
σj

τt
(p(xh,i)) − Vh−1} .

Here, βτ ∈ O(log(τ2/δ)) and Vh ∈ Õ(ραh) is a high probability upper bound on the maximum variation
of the objective j inside region Xh,i.3 Similarly, we define the upper index of xh,i in the jth objective as
U j

t (xh,i) = B̄j
t (xh,i) + Vh, where B̄j

t (xh,i) is a high probability upper bound on the jth objective value at
xh,i and is defined as

B̄j
t (xh,i) = min{µj

τt
(xh,i) + β1/2

τt
σj

τt
(xh,i), µj

τt
(p(xh,i)) + β1/2

τt
σj

τt
(p(xh,i)) + Vh−1} .

We denote by Lt(xh,i) = [L1
t (xh,i), . . . , Lm

t (xh,i)]T the lower index vector of the node xh,i at round t and
similarly by Ut(xh,i) = [U1

t (xh,i), . . . , Um
t (xh,i)]T the corresponding upper index vector. We also let Vh denote

the m-dimensional vector with all entries being equal to Vh. Next, we define the confidence hyper-rectangle of
node xh,i at round t as

Qt(xh,i) = {y ∈ Rm : Lt(xh,i) ⪯ y ⪯ Ut(xh,i)} ,

which captures the uncertainty in the learner’s prediction of the objective values. Then, the posterior mean
vector µτt

(xh,i) = [µ1
τt

(xh,i), . . . , µm
τt

(xh,i)]T and the variance vector στt
(xh,i) = [σ1

τt
(xh,i), . . . , σm

τt
(xh,i)]T are

computed by using the GP inference outlined in Section 3. We define the cumulative confidence hyper-rectangle
of xh,i at round t as

Rt(xh,i) = Rt−1(xh,i) ∩ Qt(xh,i) (1)

assuming that Rt−1(xh,i) is well-defined at round t − 1 (the case t ≥ 2) or using the convention that
R0(x0,1) = Rm since A1 = {x0,1} (the case t = 1). The well-definedness assumption will be verified in the
refining/evaluating phase below.

4.2 Discarding phase

In order to correctly identify designs to be discarded under uncertainty, we need to compare the pessimistic
and optimistic outcomes of designs. First, we define dominance under uncertainty.
Definition 7. Let t ∈ N and let x, y ∈ At be two nodes with x ̸= y. We say that x is ϵ-dominated by y
under uncertainty at round t if max(Rt(x)) ⪯ϵ min(Rt(y)), where we define max(Rt(x)) as the unique
vector v ∈ Rt(x) such that vj ≥ zj for every j ∈ [m] and z = (z1, . . . , zj) ∈ Rt(x), and we define min(Rt(y))
in a similar fashion.

If a node x ∈ At is ϵ-dominated by any other node in At under uncertainty, then the algorithm is confident
enough to discard it. Basically, the condition of Definition 7 implies that, if the best possible value that x
can have is still approximately dominated by the worst possible value that y can have, then we can conclude
that y dominates x with overwhelming probability. To check this, the algorithm compares x with all of the
pessimistic available points as introduced next.

3See Theorem 1 for exact definitions.
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Definition 8. (Pessimistic Pareto set) Let t ≥ 1 and let D ⊆ At be a set of nodes. We define ppess,t(D),
called the pessimistic Pareto set of D at round t, as the set of all nodes x ∈ D for which there is no other
node y ∈ D \ {x} such that min(Rt(x)) ≺ min(Rt(y)). We call a design in ppess,t(D) a pessimistic Pareto
design of D at round t.

Here we are interested in finding the nodes, say x, which are Pareto optimal in the most pessimistic scenario
when their objective values turn out to be min Rt(x). We do this in order to identify which nodes (and
their associated cells) to discard with overwhelming probability. More precisely, the algorithm calculates
Ppess,t = ppess,t(At) first. For each xh,i ∈ St\Ppess,t, it checks if max(Rt(xh,i)) ⪯ϵ min(Rt(x)) for some
x ∈ Ppess,t. In this case, node xh,i is discarded, that is, it is removed from St, and will not be considered in
the rest of the algorithm; otherwise no change is made in St.

4.3 ϵ-Covering phase

The overall aim of the learner is to empty the set St of undecided nodes as fast as possible. A node xh,i ∈ St

is moved to the decided set Pt if it is determined that the associated cell Xh,i belongs to an ϵ-accurate Pareto
set Oϵ with high probability. To check this, the notion in the next definition is useful. Let us denote by Wt

the union Pt ∪ St at the end of the discarding phase. Note that Wt ⊆ At but the two sets do not coincide in
general due to the discarding phase.

 
 

Figure 1: This is an illustration of the modeling, discarding, and ϵ-covering phases.

Definition 9. Let xh,i ∈ St. We say that the cell Xh,i associated to node xh,i belongs to an Oϵ with high
probability if there is no x ∈ Wt such that min(Rt(xh,i)) + ϵ ⪯ max(Rt(x)).

For each xh,i ∈ St, the algorithm checks if Xh,i belongs to an Oϵ with high probability in view of Definition 9.
In this case, xh,i is removed from the set St of undecided nodes and is moved to the set Pt of decided
nodes; otherwise, no change is made. The nodes in Pt are never removed from this set; hence, they will
be returned by the algorithm as part of the set P̂ at termination. Intuitively, this step determines which
points can be safely predicted to be in the approximately accurate Pareto set if there is no other active
node which approximately dominates it in the worst case possible. In the appendix, we show that the union
P̂ =

⋃
xh,i∈P̂ Xh,i of the cells is an ϵ-accurate Pareto cover, according to Definition 5, with high probability.

Note that while the sets St, Pt can be modified during this phase, the set Wt does not change. The modeling,
discarding, and ϵ-covering phases of the algorithm are illustrated in Figure 1.

4.4 Refining/evaluating phase

While St ̸= ∅, the algorithm selects a design xt = xht,it
∈ Wt that corresponds to a node with depth ht and

index it, according to the following rule. First, for a given node xh,i ∈ Wt, we define

ωt(xh,i) = max
y,y′∈Rt(xh,i)

∥y − y′∥2 , (2)

which is the diameter of its cumulative confidence hyper-rectangle in Rm. The algorithm picks the most
uncertain node for evaluation in order to decrease uncertainty. Hence, among the available points in Wt,
the node xht,it

with the maximum such diameter is chosen by the algorithm. We denote the diameter of
the cumulative confidence hyper-rectangle associated with the selected node by ωt and formally define it as
ωt = maxxh,i∈Wt ωt(xh,i). Since the learner is not sure about discarding xht,it or moving it to Pt, he decides

10
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Figure 2: This is an illustration of the sampling and refining phase.

whether to refine the associated region Xht,it
or evaluating the objective function at the current node based

on the following rule.

• Refine: If β
1/2
τt ∥στt

(xht,it
)∥2 ≤ ∥Vht

∥2, then xht,it
is expanded, i.e., the N children nodes {xht+1,j : N(it −

1) + 1 ≤ j ≤ it} of xht,it
are generated. If xht,it

∈ St, then these newly generated nodes are added
to St while xht,it

is removed from St. An analogous operation is performed if xht,it
∈ Pt. In each

case, for each j with N(it − 1) + 1 ≤ j ≤ it, the newly generated node xht+1,j inherits the cumulative
confidence hyper-rectange of its parent node xht,it ∈ At as calculated by equation 1, that is, we define
Rt(xht+1,j) = Rt(xht,it) = Rt−1(xht,it) ∩ Qt(xht,it). This way, for every node x ∈ Pt ∪ St at the
end of refining, the cumulative confidence hyper-rectangles up to round t are well-defined and we have
R0(x) ⊇ R1(x) ⊇ . . . ⊇ Rt(x). In particular, the well-definedness assumption for equation 1 is verified for
round t + 1 since At+1 is defined as Pt ∪ St at the end of this phase.

• Evaluate: If β
1/2
τt ∥στt

(xht,it
)∥2 > ∥Vht

∥2, then the objective function is evaluated at the point xht,it
, i.e.,

we observe the noisy sample yτt
and update the posterior statistics of xht,it

. No change is made in St and
Pt.

This phase of the algorithm is illustrated in Figure 2. The evolution of the partitioning of the design space is
illustrated in Figure 3.

Pareto front

Figure 3: This is an illustration of the structural way of partitioning the design space. In this example we
take X = [0, 1], m = 2 and ϵ = 0. On the left, we can see the partition of X at the beginning of round t. Note
that St = {x4,7, x4,8, x2,3} and Pt = {x3,7, x3,8}, while x2,1 and x3,3 have been discarded in some prior round.
On the right, we see the corresponding confidence hyper-rectangles of these nodes. At the beginning of round
t, prior to the modeling phase, the hyper-rectangle of node xh,i is Rt−1(xh,i). Note that, in the discarding
phase, node x4,8 will be discarded since max(Rt(x4,8)) ⪯ϵ min(Rt(x4,7)). Thus, x4,7 will be removed from
St by the end of the phase. Furthermore, note that more than one Pareto optimal designs take values in one
hyper-rectangle. This is because the node of a region containing Pareto optimal points is not necessarily one
of these points. For example, we have x ∈ X2,3 and f(x) ∈ Rt(x2,3).

11
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x0,1
𝒳

x1,1 x1,2

x2,1 x2,2

x3,3 x3,4
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x0,1
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x1,1 x1,2

x2,1 x2,2

0 1X2,1 X1,2X2,2
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𝒳

x1,1 x1,2

0 1X1,1 X1,2
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Rt(x1,2)

Rt(x1,1)

ϵ

0 y1

y2

Rt+1(x2,1)

ϵ
Rt+1(x2,2)
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y2
ϵ Rt+2(x3,3)

Rt+2(x3,4)

Figure 4: A depiction of three refining iterations of our algorithm together with the associated discarding and
ϵ-covering phases. The first row reflects the structural changes in the design space. The second row reflects
the changes in the objective space. The green color in the region bars denotes a predicted Pareto region, the
orange color denotes an undecided region, while the gray color a discarded region. At time t, we have two
nodes x1,1 and x1,2 that partition X . The region X1,2 is already a predicted Pareto set, while X1,1 is still
undecided. This is also reflected in the first figure (from the left) on the second row. Here, we can visually
see that x1,1 is ϵ-dominated by x1,2 under uncertainty. Since there are no more nodes, we proceed to assign
X1,2 to a predicted Pareto set. In the next iteration, we first refine x1,1 further because the uncertainty level
is already below the threshold. Then, upon examination, we discard region X2,1. Again, the corresponding
changes in the objective space are reflected in the second row. In the next iteration, we further refine x2,2
and include one of its children regions to the predicted Pareto set. Note that we have not included evaluation
steps for simplicity of presentation.

4.5 Termination

If St = ∅ at the beginning of round t, then the algorithm terminates. We show in the appendix that at the
latest, the algorithm terminates when ωt < minj ϵj . Upon termination, it returns a non-empty set P̂ of
decided nodes together with the corresponding ϵ-accurate Pareto set P̂ =

⋃
xh,i∈P̂ Xh,i , which is the union

of the cells corresponding to the nodes in P̂. The full procedure is given in Algorithm 1.

5 Sample complexity bounds

We state the main result in this section. Its proof is composed of a sequence of lemmas which are given in the
appendix. We first state the necessary assumptions (Assumption 1) on the metric and the kernel under which
the result holds. Then, we provide a sketch of its proof and subsequently give an example of an m-output
GP for which the maximum information gain is linear in T .
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Algorithm 1 Adaptive ϵ-PAL
Input: X , (Xh)h≥0, (Vh)h≥0, ϵ, δ, (βτ )τ≥1; GP prior µ0 = µ, k0 = k

1: Initialize: P1 = ∅, S1 = {x0,1}; R0(x0,1) = Rm, t = 1, τ = 0.
2: while St ̸= ∅ do
3: At = Pt ∪ St; Ppess,t = ppess,t(At).
4: for xh,i ∈ At do ▷ Modeling
5: Obtain µτ (xh,i) and στ (xh,i) by GP inference.
6: Rt(xh,i) = Rt−1(xh,i) ∩ Qt(xh,i).
7: end for
8: for xh,i ∈ St \ Ppess,t do ▷ Discarding
9: if ∃x ∈ Ppess,t : max(Rt(xh,i)) ⪯ϵ min(Rt(x)) then

10: St = St \ {xh,i}.
11: end if
12: end for
13: Wt = St ∪ Pt.
14: for xh,i ∈ St do ▷ ϵ-Covering
15: if ∄x ∈ Wt : min(Rt(xh,i)) + ϵ ⪯ max(Rt(x)) then
16: St = St \ {xh,i} ; Pt = Pt ∪ {xh,i}.
17: end if
18: end for
19: if St ̸= ∅ then ▷ Refining/Evaluating
20: Select node xht,it = argmaxxh,i∈Wt

ωt(xh,i).
21: if β

1/2
τ ∥στ (xht,it

)∥2 ≤ ∥Vht
∥2 AND xht,it

∈ St then
22: St = St \ {xht,it

}; St = St ∪ {xht+1,i : N(it − 1) + 1 ≤ i ≤ Nit}.
23: Rt(xht+1,i) = Rt(xht,it) for each i with N(it − 1) + 1 ≤ i ≤ Nit.
24: else if β

1/2
τ ∥στ (xht,it)∥2 ≤ ∥Vht∥2 AND xht,it ∈ Pt then

25: Pt = Pt \ {xht,it}; Pt = Pt ∪ {xht+1,i : N(it − 1) + 1 ≤ i ≤ Nit}.
26: Rt(xht+1,i) = Rt(xht,it

) for each i with N(it − 1) + 1 ≤ i ≤ Nit.
27: else
28: Evaluate design xt = xht,it

and observe yτ = f(xht,it
) + κτ .

29: τ = τ + 1.
30: end if
31: end if
32: Pt+1 = Pt; St+1 = St.
33: t = t + 1.
34: end while
35: return P̂ = Pt and P̂ =

⋃
xh,i∈Pt

Xh,i.
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Assumption 1. The class K of covariance functions to which we restrict our focus satisfies the following
criteria for any k ∈ K: (1) For any x, y ∈ X and j ∈ [m], we have lj(x, y) ≤ Ckd(x, y)α, for suitable Ck > 0
and 0 < α ≤ 1. Here, lj is the natural metric induced on X by the jth component of the GP in Definition 6
as given in Remark 1 with covariance function kjj. (2) We assume bounded variance, that is, for any x ∈ X
and j ∈ [m], we have kjj(x, x) ≤ 1.
Theorem 1. Let ϵ = [ϵ1, . . . , ϵm]T be given with ϵ = minj∈[m] ϵj > 0. Let δ ∈ (0, 1) and D̄ > D1. For each
h ≥ 0, let

Vh = 4Ck(v1ρh)α

√C2 + 2 log
(

2h2π2m

6δ

)
+ h log N +

(
−4D1

α
log (Ck(v1ρh)α)

)+
+ C3

 ,

for some strictly positive constants C2 and C3, where x+ := max{0, x} for x ∈ R. Moreover, for each τ ∈ N,
define βτ = 2 log(2mπ2Nhmax+1(τ + 1)2

/(3δ)). When we run Adaptive ϵ-PAL with prior GP (0, k) and noise
N (0, σ2), the following holds with probability at least 1 − δ:

An ϵ-accurate Pareto set can be found with at most T function evaluations, where T is the smallest natural
number satisfying

min
{

K1βT T
−α

D̄+2α (log T )
−(D̄+α)

D̄+2α + K2T
−α

D̄+2α (log T )
α

D̄+2α ,

√
CβT γT

T

}
< ϵ ,

where C and K1 are constants that are defined in the appendix and do not depend on T , K2 is logarithmic in
T , and γT is the maximum information gain which depends on the choice of k.

Sketch of the proof of Theorem 1: We divide the proof of Theorem 1 into three essential parts. First, we
prove that the algorithm terminates in finite time, and examine the events that necessitate and the ones that
follow termination. Here, it is important to note that if the largest uncertainty diameter in a given round
t is less than or equal to ϵ, then the algorithm terminates. This introduces a way on how to proceed on
upper bounding sample complexity, namely, we can upper bound the sum of these uncertainty diameters
over all rounds. Then, by observing that i) the term Vh decays to 0 as h grows indefinitely, which means
that the algorithm refines up until a finite number of tree levels, and that ii) a node cannot be refined
more than a finite number of times before expansion, we can conclude that the algorithm terminates in
finite time. After this point we prove, using Hoeffding bounds, that the true function values live inside the
uncertainty hyper-rectangles with high probability. We then proceed on first proving the dimension-type
sample complexity bounds and then the information-type bounds. We use the aforementioned termination
condition and upper bound the sum of the uncertainty diameters over all rounds. We use Cauchy-Schwarz
inequality to manipulate the expression as we desire and then upper bound it in terms of information gain
using an already established result in the paper. For the dimension-type bounds, we consider expressing the
sum over rounds as a sum over levels h of the tree of partitions and upper bound it using the notion of metric
dimension. We take the minimum of the two bounds, thus achieving the bound stated in Theorem 1.
Remark 2. Note that we minimize over two different bounds in Theorem 1. The term that involves γT

corresponds to the information-type bound, while the other term corresponds to the metric dimension-type bound.
Equivalently, we can express our information-type bound as Õ(g(ϵ)) where g(ϵ) = min{T ≥ 1 :

√
γT /T < ϵ}

and our metric dimension-type bound as Õ(ϵ−( D̄
α +2)) for any D̄ > D1. For certain kernels, such as squared

exponential and Matérn kernels, γT can be upper bounded by a sublinear function of T (see Srinivas et al.
(2012)). Our information type-bound is of the same form as in Zuluaga et al. (2016). When X is a finite subset
of the Euclidean space, we have D1 = 0, and thus, our metric-dimension type bound becomes near-O(1/ϵ2),
which is along the same lines with the almost optimal, gap-dependent near-O(1/gap2) bound for Pareto front
identification in Auer et al. (2016).

In order to prove the bounds in Theorem 1, even for infinite X , we propose a novel way of defining the
confidence hyper-rectangles and refining them. Since Adaptive ϵ-PAL discards, ϵ-covers and refines/evaluates
in ways different than ϵ-PAL in Zuluaga et al. (2016), we use different arguments in the proof to show when
the algorithm converges and what it returns when it converges. In particular, for the information-type bound,
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we exploit the dependence structure between the objectives. Moreover, having two different bounds allows
us to use the best of both, as it is known that for certain kernels, the metric dimension-type bound can be
tighter than the information-type bound. That is the implication of our next result. The proof is mainly
technical, thus we defer it to the Appendix.
Proposition 1. There exists a multi-output GP f , with covariance function satisfying Assumption 1 and a
sequence of T noisy observations made on f , such that we have I(y[T ], f[T ]) ≥ Ω(T ).

6 Computational complexity analysis

The most significant subroutines of Adaptive ϵ-PAL in terms of computational complexity are the modeling,
discarding, and ϵ-covering phases. Below, we inspect the computational complexity of these three phases
separately.

Modeling. In the modeling phase, mean and variance values of the GP surrogate are computed for every
node point in the leaf set. This results in a complexity of O(τ3 + nτ2), where τ is the number of evaluations
and n is the number of node points at a particular round. Note that the bound on n depends on the maximum
depth of the search tree.

Discarding. This phase can be further separated into two substeps. In the first substep, the pessimistic
Pareto front is determined by choosing the leaf nodes whose lower confidence bounds are not dominated
by any other point in the leaf set. In the second phase, the leaf points whose upper confidence bounds are
ϵ-dominated by pessimistic Pareto set points are discarded. If done naively by comparing each point with all
the other points, both of the phases can result in O(n2) complexity. However, there are efficient methods
that achieve lower computational complexity. In our implementation, we adopt Algorithm 3.1 of Kung et al.
(1975) to reduce computational complexity to O(n log n) when m = 2 or m = 3. For m > 3, one can use
Algorithm 4.1 of Kung et al. (1975) to achieve a O(n(log n)m−2) complexity.

ϵ-Covering. In the ϵ-covering phase, the algorithm moves the nodes that are not dominated by any other
node to P̂. Similar to the discarding phase, when implemented naively, the ϵ-covering phase results in
O(n2) complexity. An adaptation of Kung et al. (1975) algorithm can be implemented as in the case of
discarding phase to achieve sub-quadratic complexity which results in O(n log n) for m = 2 and m = 3 and
O(n(log n)m−2 + n log n) for m > 3.

In general, we observed that the number of evaluations was much smaller than the number of nodes
throughout a run. Therefore we can say that discarding and ϵ-covering phases are the main bottlenecks in
our implementation which scale sub-quadratically with the number of points.

7 Experiments

This section empirically evaluates Adaptive ϵ-PAL, comparing its performance and efficiency against other
multi-objective Bayesian optimization (MOBO) methods. We focus on validating the effectiveness of the
adaptive discretization strategy and assessing the algorithm’s ability to find an ϵ-accurate Pareto set sample-
efficiently.

7.1 Performance metrics

We use a combination of three performance metrics: ϵ-accuracy ratio, ϵ-coverage ratio, and average mean-
squared error (MSE). Since the objective functions tested are continuous, the true Pareto front contains
infinitely many points. To compute the metrics, we approximate the true Pareto front by sampling 10, 000
points uniformly from the input space, evaluating the objective function at these points, and identifying the
Pareto optimal designs among them.

ϵ-accuracy ratio. This metric measures the quality of the predicted Pareto set P̂ . It is computed as the
ratio of predicted points f(x) (with x ∈ P̂ ) that fall within the ϵ-Pareto front Zϵ(X ) to the total number of
points in P̂ . Operationally, we check if a predicted point is ϵ-dominated by some point on the approximated
true Pareto front, or equivalently, if it is at most 2ϵ away (in the sense of ⪯2ϵ) from the closest true Pareto
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point. While high ϵ-accuracy is desirable, it does not guarantee that the entire Pareto front is well-represented.
We also need to assess how well the predicted set covers the true front, which is measured by the ϵ-coverage
metric.

ϵ-coverage ratio. This metric measures how well the predicted set P̂ covers the true Pareto front. It is
computed as the ratio of true Pareto points (from the discretized approximation) that are ϵ-dominated by at
least one point in f(P̂ ) to the total number of true Pareto points. Equivalently, we check if a true Pareto
point is within 2ϵ (in the sense of ⪯2ϵ) of the closest predicted point.

Average mean-squared error (MSE). This metric complements ϵ-coverage by quantifying the average
closeness of the predicted front to the true front. It is computed by averaging the squared Euclidean distance
between each true Pareto point (in the objective space) and the closest predicted Pareto point in f(P̂ ).
Ideally, we seek high values for both accuracy and coverage, and a low value for MSE.

7.2 Multi-objective Bayesian optimization algorithms

We compare Adaptive -PAL with four state-of-the-art MOBO methods: PESMO (Hernández-Lobato et al.,
2016), ParEGO (Knowles, 2006), USeMO (Belakaria et al., 2020), and qNEHVI (Daulton et al., 2021). The
latter is a hypervolume-based method specifically designed to handle noisy observations by integrating over
the posterior uncertainty of the true Pareto front. Since PESMO, ParEGO, USeMO, and qNEHVI require a
pre-specified evaluation budget, while Adaptive -PAL terminates based on its confidence criteria, we set the
budget for the competitors to be at least as large as the number of evaluations performed by Adaptive -PAL
upon termination in our experiments. This ensures competitors have access to at least as much information.
We used the implementations for PESMO and ParEGO from the Spearmint Bayesian optimization library4,
for USeMO from the authors’ open-source code5, and for qNEHVI from the BoTorch library.6

For completeness, we also attempted to benchmark against the original ϵ-PAL algorithm (Zuluaga et al.,
2016). However, we encountered difficulties achieving termination when running both the authors’ publicly
available code and our own implementation based on the published pseudocode. As we were unable to obtain
completed runs, we have excluded ϵ-PAL from the presented results.

7.3 Simulation setup & results

We first sampled 10 distinct objective functions from the specified GP prior (detailed below). For each of
these functions, we then ran each algorithm 5 times, using different random seeds for each run to vary the
observation noise and any internal randomness within the algorithms.

Setup. We simulate a problem with a 1-dimensional input space X = [0, 1] and a 2-dimensional objective space
(m = 2). The objective function f is sampled from a GP with a zero mean function and independent squared
exponential kernels for each objective: k1(x, x′) = 0.5 exp(− (x−x′)2

2×0.12 ) and k2(x, x′) = 0.1 exp(− (x−x′)2

2×0.062 ).
Observation noise is Gaussian with σ = 0.01 (variance σ2 = 10−4).

Adaptive ϵ-PAL. We run Adaptive ϵ-PAL with a target accuracy ϵ = (0.05, 0.05) and confidence δ = 0.05.
The tree parameters were set to N = 2, ρ = 1/2, and v1 = v2 = 1. To investigate the impact of the maximum
tree depth, we tested three settings for hmax. The first setting used the theoretically derived value hmax = 24,
calculated using Lemma 4 based on the target ϵ. The other two settings used practical, reduced depths of
hmax = 10 and hmax = 9 to evaluate the trade-off between computational cost and performance. When using
these practical depth limits, refinement beyond hmax was prevented by setting Vh = 0 for all h ≥ hmax. In
this specific experimental run, Adaptive ϵ-PAL terminated after approximately 50 evaluations for hmax = 24,
40 evaluations for hmax = 10, and 35 evaluations for hmax = 9.

PESMO and ParEGO. We run PESMO and ParEGO for 100 iterations (exceeding Adaptive ϵ-PAL’s
evaluations). We use the same δ = 0.05 where applicable. The acquisition function optimization starts from
the best point on a grid of size 1000, followed by L-BFGS optimization.

4https://github.com/HIPS/Spearmint/tree/PESM
5https://github.com/belakaria/USeMO
6https://botorch.org/docs/multi_objective
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Table 2: Average of the ϵ-accuracy and coverage ratios (as percentages, mean ± 99%-confidence interval) for
different evaluation thresholds ϵ′ = (ϵ′, ϵ′). Highest mean value in each row is bolded. Target accuracy for
Adaptive ϵ-PAL was ϵ = (0.05, 0.05).

ϵ′
Adaptive ϵ-PAL

(hmax = 24)
Adaptive ϵ-PAL

(hmax = 10)
Adaptive ϵ-PAL

(hmax = 9) PESMO ParEGO USeMO qNEHVI

0.050 98 ± 2 99 ± 1 99 ± 1 92 ± 2 94 ± 1 92 ± 2 99 ± 1

0.010 97 ± 2 98 ± 2 97 ± 1 90 ± 3 94 ± 1 74 ± 4 96 ± 1

0.005 97 ± 1 97 ± 1 90 ± 3 90 ± 3 84 ± 4 60 ± 5 95 ± 2

0.001 78 ± 4 64 ± 5 42 ± 5 54 ± 5 56 ± 5 26 ± 4 60 ± 4

Table 3: Average mean-squared error (MSE) and total running time (hh:mm:ss) of the algorithms. Lowest
MSE and runtime are bolded.

Metric
Adaptive ϵ-PAL

(hmax = 24)
Adaptive ϵ-PAL

(hmax = 10)
Adaptive ϵ-PAL

(hmax = 9) PESMO ParEGO USeMO qNEHVI

MSE (×10−6) 5 8 40 20 30 4500 10

Runtime 15:15:24 00:01:00 00:00:27 00:09:20 00:07:30 00:23:40 00:00:40

USeMO. We run USeMO for 100 iterations. Expected Improvement (EI) is used as the acquisition function,
aggregated using the Tchebycheff scalarization as recommended by the authors.

qNEHVI. We run the Noisy Expected Hypervolume Improvement (qNEHVI) algorithm for 100 iterations.
We use the sequential setting (batch size q = 1) and the official implementation in BoTorch. The acquisition
function is optimized using multi-start L-BFGS-B, consistent with the other baselines.

Results. We evaluate the predicted Pareto front points returned by each algorithm using the metrics defined
above. Table 2 shows the average of the ϵ-accuracy and ϵ-coverage ratios, calculated for different evaluation
thresholds ϵ′. Using smaller ϵ′ values provides a stricter assessment.

Adaptive ϵ-PAL with its theoretical parameters (hmax = 24) achieves high performance (99% average
accuracy/coverage) when evaluated at its target ϵ′ = (0.05, 0.05). This aligns well with the theoretical
expectation of producing a valid ϵ-accurate Pareto set with high probability. The slight deviation from 100%
can be attributed to the probabilistic nature of the guarantees (δ = 0.05) and the approximations involved in
discretizing the true Pareto front for metric calculation. Notably, reducing hmax to 10 or 9 maintains excellent
performance at the target ϵ′ = 0.05. However, as expected, using a smaller hmax affects the performance
at stricter evaluation thresholds (ϵ′ < 0.05), as the algorithm has less resolution to precisely delineate the
Pareto front.

Comparing with competitors, Adaptive ϵ-PAL (even with hmax = 10) achieves superior combined accuracy
and coverage across most evaluation thresholds. qNEHVI matches the best performance at ϵ′ = 0.05 and
significantly outperforms all other baselines at stricter thresholds. Nonetheless, Adaptive ϵ-PAL with its
theoretical parameters (hmax = 24) still achieves the highest accuracy at the most stringent thresholds of
ϵ′ ≤ 0.005. USeMO shows good accuracy for ϵ′ = 0.05 but degrades quickly, likely due to returning a sparse
set of points. PESMO and ParEGO offer reasonable performance but are consistently outperformed by both
qNEHVI and Adaptive ϵ-PAL.

Table 3 presents the average MSE and total running time. The MSE results corroborate the accuracy/coverage
findings: Adaptive ϵ-PAL with hmax = 24 achieves the lowest MSE, indicating its predicted front is closest to
the true front on average. The qNEHVI and Adaptive ϵ-PAL (hmax = 10) runs yield the next-best MSE
values, significantly outperforming other competitors. USeMO has a notably high MSE, consistent with its
poor coverage. Observing the running times reveals the practical benefit of tuning hmax. Reducing hmax
from 24 to 10 or 9 decreased the runtime dramatically while preserving strong performance. qNEHVI is also
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highly efficient, with a runtime of just 40 seconds, faster than all baselines except the highly-tuned Adaptive
ϵ-PAL (hmax = 9). This demonstrates that Adaptive ϵ-PAL can be made exceptionally fast by selecting a
practical tree depth limit, while still offering an accuracy-advantage over state-of-the-art methods.

Observing the running times reveals the practical benefit of tuning hmax. Reducing hmax from 24 to 10
decreased the runtime dramatically (by over 900 times in this instance) while preserving performance at the
target ϵ = 0.05. This demonstrates that Adaptive ϵ-PAL can be made computationally efficient by selecting
a practical tree depth limit, while still offering a significant accuracy-advantage over the baseline methods
tested.

8 Conclusion

In this paper, we proposed a new algorithm for PAL in large design spaces. Our algorithm learns an ϵ-accurate
Pareto set of designs in as few evaluations as possible by combining an adaptive discretization strategy with
GP inference of the objective values. We proved both information-type and metric-dimension type bounds on
the sample complexity of our algorithm. To the best of our knowledge, this is the first sample complexity
result for PAL that (i) involves an information gain term, which captures the dependence between objectives
and (ii) explains how sample complexity depends on the metric dimension of the design space.
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A Structure and dimensionality of the design space

Before we initiate our theoretical analysis, we first provide some technical definitions to be used throughout.
We begin by defining well-behaved metric spaces. Our results will hold under any well-behaved metric space.
Definition 10. (Well-behaved metric space (Bubeck et al., 2011)) The compact metric space (X , d) is said
to be well-behaved if there exists a sequence (Xh)h≥0 of subsets of X satisfying the following properties:

1. There exists N ∈ N such that for each h ≥ 0, the set Xh has Nh elements. We write Xh = {xh,i : 1 ≤
i ≤ Nh} and to each element xh,i is associated a cell Xh,i = {x ∈ X : ∀j ̸= i : d(x, xh,i) ≤ d(x, xh,j)}.

2. For all h ≥ 0 and 1 ≤ i ≤ Nh, we have Xh,i =
⋃Ni

j=N(i−1)+1 Xh+1,j. The nodes xh+1,j for
N(i − 1) + 1 ≤ j ≤ Ni are called the children of xh,i, which in turn is referred to as the parent of
these nodes. We write p(xh+1,j) = xh,i for every N(i − 1) + 1 ≤ j ≤ Ni.

3. We assume that the cells have geometrically decaying radii, i.e., there exist 0 < ρ < 1 and 0 < v2 ≤
1 ≤ v1 such that we have B(xh,i, v2ρh) ⊆ Xh,i ⊆ B(xh,i, v1ρh) for every h ≥ 0. Note that we have
2v2ρh ≤ diam(Xh,i) ≤ 2v1ρh, where diam(Xh,i) = supx,y∈Xh,i

d(x, y).

The first property implies that, for every h ≥ 0, the cells Xh,i, 1 ≤ i ≤ Nh partition X . This can be observed
trivially by reductio ad absurdum. The second property intuitively means that, as h grows, we get a more
refined partition. The third property implies that the nodes xh,i are evenly spread out in the space.

Additionally, we make use of a notion of dimensionality intrinsic to the design space, namely, the metric
dimension.
Definition 11. (Packing, Covering and Metric Dimension (Shekhar et al., 2018)) Let r ≥ 0.

• A subset X1 of X is called an r-packing of X if for every x, y ∈ X1 such that x ≠ y, we have
d(x, y) > r. The largest cardinality of such a set is called the r-packing number of X with respect to
d, and is denoted by M(X , r, d).
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• A subset X2 of X is called an r-covering7 of X if for every x ∈ X , there exists y ∈ X2 such that
d(x, y) ≤ r. The smallest cardinality of such a set is called the r-covering number of X with respect
to d, and is denoted by N(X , r, d).

• The metric dimension D1 of (X , d) is defined as D1 = inf{a ≥ 0: ∃C ≥ 0, ∀r > 0 :
log(N(X , r, d)) ≤ C − a log(r)}.

This dimension coincides with the usual dimension of the space when X is a subspace of a finite-dimensional
Euclidean space. We will upper bound the sample complexity of the algorithm using the metric dimension of
(X , d).

B The proof of Theorem 1

The proof of Theorem 1 is composed of a series of sophisticated steps, and is divided into multiple subsections.
First, we describe in Section B.1 a set of preliminary results that will be utilized in obtaining dimension-type
and information-type bounds on the sample complexity. Then, in Section B.2, we prove a key result that
provides a sufficient condition for the termination of Adaptive ϵ-PAL. We also show in this section that
Adaptive ϵ-PAL returns an ϵ-accurate Pareto set when it terminates and bounds the maximum depth node
that can be created by the algorithm before it terminates. In the proof, τs represents the number of evaluations
performed by the algorithm until termination and ts represents the round (iteration) at which the algorithm
terminates. Throughout the proof, for a given ϵ, we let ϵ = minj ϵj , and assume that ϵ is such that ϵ > 0.
Unless noted otherwise, all inequalities that involve random variables hold with probability one.

B.1 Preliminary results

We start by formulating the relationship between packing number, covering number, and metric dimension,
which will help us obtain dimension-type bounds on the sample complexity. Recall that (X , d) is a compact
well-behaved metric space with metric dimension D1 < +∞.
Lemma 1. For every constant r > 0, we have

M(X , 2r, d) ≤ N(X , r, d).

Moreover, for every D̄ > D1, there exists Q > 0 such that

M(X , 2r, d) ≤ N(X , r, d) ≤ Qr−D̄.

Proof. We argue by contradiction. Suppose that we have a 2r-packing {x1, . . . , xM } and an r-covering
{y1, . . . , yM } of X such that M ≥ N + 1. Then, by the pigeon-hole principle, we must have that both xi and
xj lie in the same ball B(yk, r), for some i ̸= j and some k, meaning that d(xi, xj) ≤ r, which contradicts the
definition of r-packing. Thus, the size of any 2r-packing is less than or equal to the size of any r-covering
and the first claim of the lemma follows. The second claim is an immediate consequence of Definition 11 and
the fact that D1 < +∞. ■

Our next result gives a relation between the metric dimension of X with respect to d and the one of X with
respect to the metrics induced by the GP, which holds under Assumption 1.
Lemma 2. Part 1 of Assumption 1 implies that if (X , d) has a finite metric dimension D1, then (X , lj) has
a metric dimension Dj

1 such that Dj
1 ≤ D1/α.

Proof. We will proceed in two steps.

We first claim that N(X , r, lj) ≤ N(X , ( r
Ck

) 1
α , d). In order to show this, let X̃ be an ( r

Ck
) 1

α -covering of (X , d).
Then, it is an r-covering of (X , lj). Indeed, let x ∈ X . Then, there exists y ∈ X̃, such that

d(x, y) ≤
(

r

CK

) 1
α

.

7Not to be confused with ϵ-covering in Definition 4, where ϵ ∈ Rm
+ . The meaning will be clear from the context.
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Table 4: Notation.

Symbol Description

X The design space

f The latent function drawn from an m-output GP

ϵ Accuracy level given as input to the algorithm

Z(X ) The Pareto front of X

Zϵ(X ) The ϵ-Pareto front of X

yτ = f(x̃τ ) + κτ τth noisy observation of f

y[τ ] Vector that represents the first τ noisy observations

xh,i The node with index i in depth h of the tree

Xh,i The cell associated with node xh,i

p(xh,i) Parent of node xh,i

µτ (xh,i) The posterior mean after τ evaluations of xh,i with jth component µj
τ (xh,i)

στ (xh,i) The posterior variance after τ evaluations of xh,i with jth component σj
τ (xh,i)

βτ The confidence term

k The covariance function of the GP

d The metric associated with the design space

lj The metric on X induced by the jth component of the GP

Pt and Pt The predicted ϵ-accurate Pareto sets of nodes and regions, respectively, at round t

St and St The undecided sets of nodes and regions, respectively, at round t

P̂ The ϵ-accurate Pareto set of nodes returned by Algorithm 1

At The union of sets St and Pt at the beginning of round t

Wt The union of sets St and Pt at the end of the discarding phase of round t

Lt(xh,i) and Ut(xh,i) The lower and upper vector-valued indices of node xh,i at time t,
whose jth components are Lj

t (xh,i) and U j
t (xh,i)

B
j
t (xh,i) and Bj

t (xh,i) The auxiliary indices of the lower and upper index of node xh,i at time t

Vh The m-dimensional vector with components are equal to Vh, which appears in
high probability bounds on the variation of f

Qt(xh,i) The confidence hyper-rectangle associated with node xh,i at round t

Rt(xh,i) The cumulative confidence hyper-rectangle associated with node xh,i at round t

ωt(xh,i) The diameter of the cumulative confidence hyper-rectangle of xh,i at round t

ωt The maximum ωt(xh,i) over all active nodes at round t

D1 The metric dimension of X
γT The maximum information gain in T evaluations of f

τs The number of evaluations performed by the algorithm until termination

ts The round in which the algorithm terminates

Thus, lj(x, y) ≤ Ckd(x, y)α ≤ r, which implies that X̃ is an r-covering of (X , lj). By the definition of the
covering number, we have

N(X , r, lj) ≤ |X̃| ,
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and since this holds for any ( r
Ck

) 1
α -covering of (X , d), we conclude that

N(X , r, lj) ≤ N

(
X ,
( r

Ck

) 1
α

, d

)
.

Next, we will show that Dj
1 ≤ D1/α. For this, it is enough to show that Dj

1 ≤ D̄1/α for every D̄1 > D1. By
Lemma 1, there exists a constant Q1 ≥ 1 such that N(X , r, d) ≤ Q1r−D̄1 for all r > 0. In particular, for
every r > 0, we have

N(X , r, lj) ≤ N

(
X ,
( r

Ck

) 1
α

, d

)
≤ Q1

(
r

CK

)−D̄1
α

≤
(

Q1

(Ck)−D̄1/α

)
rD̄1/α .

For all r > 0, assuming Ck ≥ 1, we have

log N(X , r, lj) ≤ log Q1 + (D̄1/α) log(Ck) − (D̄1/α) log(r) .

Therefore, there exists Q2 > 0, such that for all r > 0, we have log N(X , r, lj) ≤ Q2 − (D̄1/α) log r, with
Q2 = log Q1 + (D̄1/α) log(Ck). Hence, we conclude that Dj

1 ≤ D1/α. ■

Next, we state a proposition that relates the information gain with the posterior variance of the GP after each
evaluation. This proposition will help us in obtaining information-type bounds on the sample complexity.
Since its proof is lengthy, we defer it to Section B.9.
Proposition 2. Let T ∈ N and x̃[T ] = [x̃1, . . . , x̃T ]T be the finite sequence of designs that are evaluated.
Consider the corresponding vector f[T ] = [f(x̃1)T, . . . , f(x̃T )T]T of unobserved objective values and the vector
y[T ] = [yT

1 , . . . , yT
T ]T of noisy observations. Then, we have

I(y[T ]; f[T ]) ≥ 1
2m

T∑
τ=1

m∑
j=1

log(1 + σ−2(σj
τ−1(x̃τ ))2).

B.2 Termination condition

In this section, we derive a sufficient condition under which Adaptive ϵ-PAL terminates. We also give an
upper bound on the maximum depth node that can be created by Adaptive ϵ-PAL until it terminates.

In the lemma given below, we show that the algorithm terminates at latest when the diameter of the most
uncertain node has fallen below minj ϵj .
Lemma 3. (Termination condition for Adaptive ϵ-PAL) Let ϵ = minj ϵj > 0, where (ϵ1, . . . , ϵm) = ϵ.
When running Adaptive ϵ-PAL, if ωt < ϵ holds at round t, then the algorithm terminates without further
sampling.

Proof. Since Adaptive ϵ-PAL updates St and Pt at the end of discarding and ϵ-covering phases, contents
of these sets might change within round t. Thus, we let St,0 (Pt,0), St,1 (Pt,1) and St,2 (Pt,2) represent the
elements in St (Pt) at the end of modeling, discarding and covering phases, respectively. These sets are
related in the following ways: St,0 ⊇ St,1 ⊇ St,2, Pt,0 = Pt,1 ⊆ Pt,2 and St,1 ∪ Pt,1 = St,2 ∪ Pt,2.

Next, we state a claim from which termination immediately follows.
Claim 1. If ωt < ϵ holds at iteration t, then for all xh,i ∈ St,0 \ Pt,2, we have xh,i /∈ St,1.

If Claim 1 holds, then any xh,i ∈ St,0 \ Pt,2 must be discarded by the end of the discarding phase of Adaptive
ϵ-PAL. This implies that any xh,i ∈ St,0 is either discarded or moved to Pt,2 by the end of the ϵ-covering
phase of round t, thereby completing the proof.

Next, we prove Claim 1. Note that ωt is an upper bound on ∥max(Rt(xh,i)) − min(Rt(xh,i))∥2, for all
xh,i ∈ St,2 ∪ Pt,2. For each xh,i ∈ St,2 ∪ Pt,2 define

ωh,i = max(Rt(xh,i)) − min(Rt(xh,i)) .
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We have ∥ωh,i∥2 ≤ ωt < ϵ, which implies that ωh,i ≺ ϵ since ωj
h,i ≤

√∑m
j′=1(ωj′

h,i)2 < ϵ ≤ ϵj for all j ∈ [m].

We will show that if xh,i ∈ St,0 \ Pt,2 holds, then xh,i cannot belong to St,1. To prove this, assume that
xh,i ∈ St,1. Since xh,i /∈ Pt,2, then by the ϵ-covering rule of Adaptive ϵ-PAL specified in line 15 of Algorithm
1, there exists some y∗ ∈ St,1 ∪ Pt,1 for which

min(Rt(xh,i)) + ϵ ⪯ max(Rt(y∗)) . (3)

Since St,1 ∪ Pt,1 = St,2 ∪ Pt,2, we have, for all y ∈ St,1 ∪ Pt,1, that

max(Rt(y)) − min(Rt(y)) ≺ ϵ . (4)

Combining equation 3 and equation 4, we obtain

max(Rt(xh,i)) = min(Rt(xh,i)) + ωh,i ≺ min(Rt(xh,i)) + ϵ

⪯ max(Rt(y∗))
≺ min(Rt(y∗)) + ϵ . (5)

An immediate consequence of equation 5 is that

min(Rt(xh,i)) ≺ min(Rt(y∗)) . (6)

Since y∗ ∈ St,0 ∪ Pt,0, by Definition 8 and equation 6, we conclude that xh,i /∈ Ppess,t. Thus, we must have
xh,i ∈ St,0 \ Ppess,t. Finally, we claim that max(Rt(xh,i)) ⪯ϵ min(Rt(y∗∗)) for some y∗∗ ∈ Ppess,t. Since
equation 5 implies that the condition max(Rt(xh,i)) ⪯ϵ min(Rt(y∗)) is satisfied, then, if y∗ ∈ Ppess,t, we can
simply set y∗∗ = y∗. Else if y∗ /∈ Ppess,t, then this will imply by Definition 8 existence of y∗∗ ∈ Ppess,t such
that min(Rt(y∗)) ≺ min(Rt(y∗∗)), which in turn together with equation 5 implies that max(Rt(xh,i)) ≺ϵ

min(Rt(y∗∗)). Then, by the discarding rule of Adaptive ϵ-PAL specified in line 9 of Algorithm 1, we must
have xh,i discarded by the end of the discarding phase, which implies that xh,i cannot be in St,1. This proves
that all xh,i ∈ St,0 \ Pt,2 must be discarded. ■

We will prove information-type and dimension-type sample complexity bounds by making use of the termination
condition given in Lemma 3.

B.3 Guarantees on the termination of Adaptive ϵ-PAL

We start by stating a bound on the maximum depth node that can be created by Adaptive ϵ-PAL before it
terminates for a given ϵ. This result will be used in defining “good" events that hold with high probability
under which f(xh,i) lies in the confidence hyper-rectangle of xh,i formed by Adaptive ϵ-PAL, for all possible
nodes that can be created by the algorithm (see Section B.4). Our bounds on sample complexity will hold
given that these “good" events happen.
Lemma 4. Given ϵ, there exists hmax ∈ N (dependent on ϵ) such that Adaptive ϵ-PAL stops refining at level
hmax.

Proof. By Lemma 3, at the latest, the algorithm terminates at round t for which ωt < ϵ, i.e., ω2
t < ϵ2. By

definition, at a refining round we have

ω2
t ≤ max

y,y′∈Qt(xht,it )
∥y − y′∥2

2

= ∥Ut(xht,it) − Lt(xht,it)∥
2
2

=
m∑

j=1

(
U j

t (xht,it
) − Lj

t (xht,it
)
)2

=
m∑

j=1

(
B

j

t (xht,it) − Bj
t (xht,it) + 2Vht

)2
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≤
m∑

j=1

(
2β1/2

τt
σj

τt
(xht,it

) + 2Vht

)2

=

4
m∑

j=1
βτt(σj

τt
(xht,it))2 + 8

m∑
j=1

Vhtβ
1/2
τt

σj
τt

(xht,it) + 4
m∑

j=1
(Vht)2


≤

4
m∑

j=1
(Vht

)2 + 8

 m∑
j=1

(Vht
)2

1/2 m∑
j=1

(Vht
)2

1/2

+ 4
m∑

j=1
(Vht

)2

 (7)

= 16mV 2
ht

,

where equation 7 follows from the fact that we refine at round t and from the Cauchy-Schwarz inequality.
Thus, if at round t, we have

16mV 2
ht

< ϵ2 ,

then we guarantee termination of the algorithm. Recall that we have defined

Vh = 4Ck(v1ρh)α

(√
C2 + 2 log(2h2π2m/6δ) + h log N + max{0, −4(D1/α) log(Ck(v1ρh)α)} + C3

)
,

for positive constants C2 and C3 defined in Corollary 1. Obviously, Vh decays to 0 exponentially in h. Thus,
by letting hmax = hmax(ϵ) to be the smallest h ≥ 0, for which 16mV 2

hmax
< ϵ2 holds, it is observed that the

algorithm stops refining at level hmax. ■

Our next result gives an upper bound on the maximum number of times a node can be evaluated before it is
expanded.
Lemma 5. Let h ≥ 0 and i ∈ [Nh]. Let τs be the number of evaluations performed by Adaptive ϵ-PAL until
termination. Any active node xh,i may be evaluated no more than qh times before it is expanded, where

qh = σ2βτs

V 2
h

.

Furthermore, we have

qh ≤ σ2βτs

g(v1ρh)2C3
.

Proof. The proof is similar to the proof of (Shekhar et al., 2018, Lemma 1). Fix t ≥ 1. By definition, the
vector y[τt] denotes the evaluations made prior to round t. Let yxh,i

be the vector that represents the subset
of evaluations in y[τt] made at node xh,i prior to round t, and let nt(xh,i) represent the number of evaluations
in yxh,i

. Similarly, let yxh,i
be the vector that represents the subset of evaluations in y[τt] made at nodes

other than node xh,i prior to round t. For any j ∈ [m], by non-negativity of the information gain, we have

I(f j(xh,i); yxh,i
|yxh,i

) = H(f j(xh,i)|yxh,i
) − H(f j(xh,i)|yxh,i

, yxh,i
) ≥ 0.

Furthermore, let yj
xh,i

be the vector of evaluations that corresponds to the jth objective at node xh,i, and yj
xh,i

be the vector of evaluations that corresponds to the jth objective at nodes other than node xh,i prior to round
t. Since conditioning on more variables reduces the entropy, we have H(f j(xh,i)|yxh,i

) ≤ H(f j(xh,i)|yj
xh,i

),
and thus,

H(f j(xh,i)|yj
xh,i

) − H(f j(xh,i)|yxh,i
, yxh,i

) ≥ 0 .

Using the definition of conditional entropy for Gaussian random variables, after a short algebraic calculation,
we get

1
2 log

(∣∣∣∣ 2πe

nt(xh,i)/σ2 + (kjj(xh,i, xh,i))−1

∣∣∣∣)− 1
2 log(|2πe(σj

τt
(xh,i))2|) ≥ 0 .
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Since k(xh,i, xh,i) is positive definite, we have kjj(xh,i, xh,i) > 0, and as a result we obtain the following.

(σj
τt

(xh,i))−2 ≥ nt(xh,i)
σ2 + 1

kjj(xh,i, xh,i)
≥ nt(xh,i)

σ2

Thus, we have that (σj
τt

(xh,i))2 ≤ σ2/nt(xh,i). If the algorithm has not yet refined, then it means that we
have

mV 2
h < βτt

m∑
j=1

(σj
τt

)2 ≤ βτs
mσ2/nt(xh,i) .

Therefore, we obtain

nt(xh,i) ≤ qh = σ2βτs

V 2
h

.

The second statement of the result follows from the trivial observation that

σ2βτs

V 2
h

≤ σ2βτs

g(v1ρh)2C3
.

■

Next, we show that Adaptive ϵ-PAL terminates in finite time.
Proposition 3. Given ϵ such that minj ϵj > 0, Adaptive ϵ-PAL terminates in finite time.

Proof. By Lemma 4, the algorithm refines no deeper than hmax(ϵ) until termination. Moreover, the algorithm
cannot evaluate a node xh,i indefinitely, since there must exist some finite τt for which β

1/2
τt ∥στt(xh,i)∥2 ≤

∥Vh∥2 holds. This observation is a consequence of the fact that (σj
τt

(xh,i))2 ≤ σ2/nt(xh,i), given in the
proof of Lemma 5, where nt(xh,i) represents the number of evaluations made at node xh,i prior to round
t. Let t′

s be the round that comes just after the round in which s evaluations are made at node xh,i. Since
(σj

τt′
s

(xh,i))2 ≤ σ2/s, we conclude by observing that there exists s ∈ N such that β
1/2
τt′

s

∥∥∥στt′
s
(xh,i)

∥∥∥
2

≤ ∥Vh∥2
holds. ■

B.4 Two “good” events under which the sample complexity will be bounded

First, we show that the indices of all possible nodes that could be created by Adaptive ϵ-PAL do not deviate
too much from the true mean objective values in all objectives, and that similar designs yield similar outcomes
with high probability. To that end let us denote by Thmax

the set of all nodes that can be created until the
level hmax, where hmax comes from Lemma 4. Note that we have

Thmax = ∪hmax

h=0 Xh.

Lemma 6. (The first “good” event) For any δ ∈ (0, 1), the probability of the following event is at least
1 − δ/2:

F1 = {∀j ∈ [m], ∀τ ≥ 0, ∀x ∈ Thmax : |f j(x) − µj
τ (x)| ≤ β1/2

τ σj
τ },

where βτ = 2 log(2mπ2Nhmax+1(τ + 1)2
/(3δ)) with hmax being the deepest level of the tree before termination.

Proof. We have:

1 − P(F1) = E
[
I
(

∃j ∈ [m], ∃τ ≥ 0, ∃x ∈ Thmax
: |f j(x) − µj

τ (x)| > β1/2
τ σj

τ (x)
)]

≤ E

 m∑
j=1

∑
τ≥0

∑
x∈Thmax

I
(

|f j(x) − µj
τ (x)| > β1/2

τ σj
τ (x)

)
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=
m∑

j=1

∑
τ≥0

∑
x∈Thmax

E
[
E
[
I
(

|f j(x) − µj
τ (x)| > β1/2

τ σj
τ (x)

) ∣∣y[τ ]

]]
(8)

=
m∑

j=1

∑
τ≥0

∑
x∈Thmax

E
[
P
{

|f j(x) − µj
τ (x)| > β1/2

τ σj
τ (x)

∣∣y[τ ]

}]
≤

m∑
j=1

∑
τ≥0

∑
x∈Thmax

2e−βτ /2 (9)

≤ 2mNhmax+1
∑
τ≥0

e−βτ /2 (10)

= 2mNhmax+1
∑
τ≥0

(2mπ2Nhmax+1(τ + 1)2/(3δ))−1

= δ

2
6
π2

∑
τ≥0

(τ + 1)−2 = δ

2 ,

where equation 8 uses the tower rule and linearity of expectation; equation 9 uses Gaussian tail bounds (note
that f j(x) ∼ N (µj

τt
(x), σj

τt
(x)) conditioned on y[τt]) and equation 10 uses the fact that for any t ≥ 1, the

cardinality of Thmax is 1 + N + N2 + . . . + Nhmax = (Nhmax+1 − 1)/(N − 1) ≤ Nhmax+1, since N ≥ 2. ■

Next, we introduce a bound on the maximum variation of the function inside a region. First, we state a
result taken from Shekhar et al. (2018) on which this bound is based. Suppose {g(x); x ∈ X } is a separable
zero mean single output Gaussian Process GP (0, k) and let l be the GP-induced metric on X . Let D′

1 be
the metric dimension of X with respect to l. By Lemma 1, we have that if D′

1 < ∞, then there exists a
positive constant C̃1 depending on 2D′

1 such that for any z ≤ diam(X ) we have N(X , z, l) ≤ C̃1z−2D′
1 . Let

η1 =
∑

n≥1 2−(n−1)√log n, η2 =
∑

n≥1 2−(n−1)√n, and define

C̃2 = 2 log(2C̃2
1 π2/6) and C̃3 = η1 + η2

√
2D′

1 log 2 .

Lemma 7. (Proposition 1, Section 6, Shekhar et al. (2018)) Let x0 ∈ X and B(x0, b, l) ⊂ X be an l-ball of
radius b > 0, where l is the GP-induced metric on X . Then, we have for any u > 0

P

{
sup

x∈B(x0,b,l)
|g(x) − g(x0)| > ω(b)

}
≤ e−u ,

where ω(b) = 4b

(√
C̃2 + 2u + max{0, 4D′

1 log(1/b))} + C̃3

)
.

Remark 3. Note that by Remark 1, for every j ∈ [m], the covariance function kjj(x, x) is continuous with
respect to the metric lj, and thus, the process {f j(x); x ∈ X } is separable.
Corollary 1. (The second “good” event) For any δ ∈ (0, 1), the probability of the following event is at
least 1 − δ/2:

F2 =
{

∀h ≥ 0, ∀i ∈ [Nh], ∀j ∈ [m] : sup
x∈B(xh,i,v1ρh,d)

|f j(x) − f j(xh,i)| ≤ Vh

}
,

where

Vh = 4Ck(v1ρh)α

(√
C2 + 2 log(2h2π2m/6δ) + h log N + max{0, −4(D1/α) log(Ck(v1ρh)α)} + C3

)
,

and C2 and C3 are the positive constants defined below which depend on the metric dimension D1 of X with
respect to metric d.

Proof. Let D1 be the metric dimension of X with respect to d. By Lemma 2, we have that Dj
1 ≤ D1/α, where

Dj
1 is the metric dimension of X with respect to lj , for all j ∈ [m]. We also have constants Cj

1 associated
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with Dj
1, such that N(X , rα, d) ≤ N(X , r, lj) ≤ Cj

1r2Dj
1 . Let C1 = maxj Cj

1 . Also, let

C2 = 2 log(2C2
1 π2/6) and C3 = η1 + η2

√
2D1α log 2 .

Using Lemma 7 and Remark 2 we let

ω(b) = 4b
(√

C2 + 2u + max{0, 4D1 log(1/b)} + C3

)
.

Now let u = − log δ + log m + h log N + log(2h2π2/6). We have

1 − P(F2) = P

{
∃h ≥ 0, ∃i ∈ [Nh], ∃j ∈ [m] : sup

x∈B(xh,i,v1ρh,d)
|f j(x) − f j(xh,i)| > ω(Ck(v1ρh)α)

}

≤
∑
h≥0

∑
1≤i≤Nh

m∑
j=1

P

{
sup

x∈B(xh,i,v1ρh,d)
|f j(x) − f j(xh,i)| > ω(Ck(v1ρh)α)

}

≤
∑
h≥0

∑
1≤i≤Nh

m∑
j=1

P

{
sup

x∈B(xh,i,Ck(v1ρh)α,l)
|f j(x) − f j(xh,i)| > ω(Ck(v1ρh)α)

}
(11)

≤
∑
h≥0

∑
1≤i≤Nh

m∑
j=1

e−u ≤ δ
π2

6
∑
h≥0

1
2mNh(mNh)−1h−2 ≤ δ

2 ,

where for equation 11 we argue as follows. Note that by Assumption 1, given x, y ∈ X and j ∈ [m], we
have lj(x, y) ≤ Ckd(x, y)α. In particular, letting y be any design which is v1ρh away from xh,i under d, we
have lj(xh,i, y) ≤ Ckd(xh,i, y)α = Ck(v1ρh)α. This implies that B(xh,i, r, lj) ⊆ B(xh,i, Ck(v1ρh)α, lj), where
r := lj(xh,i, y). Note that we have B(xh,i, r, lj) = B(xh,i, v1ρh, d). The result follows from observing that the
probability that the variation of the function exceeds ω(Ck(v1ρh)α) is higher in B(xh,i, Ck(v1ρh)α, lj) then
in B(xh,i, v1ρh, d), since B(xh,i, v1ρh, d) ⊆ B(xh,i, Ck(v1ρh)α, lj). ■

B.5 Key results that hold under the “good” events

Our next result shows that the objective values of all designs x ∈ X belong to the uncertainty hyper-rectangles
of the nodes associated to the regions containing them in a given round. To that end, let us denote by ct(x)
the node associated to the cell Ct(x) containing x at the beginning of round t. Also, let us denote by ht(x)
the depth of the tree where ct(x) is located.
Lemma 8. Under events F1 and F2, for any round t ≥ 1 before Adaptive ϵ-PAL terminates and for any
x ∈ X , we have

f(x) ∈ Rt(ct(x)) .

Proof. First, let us denote by 1 = s0 < s1 < s2 < . . . < sn the sequence of stopping times up to
round t in which the original node containing design x was refined into children nodes, so that we have
Csn+1(x) ⊆ Csn

(x) ⊆ . . . ⊆ C0(x). By the definition of the cumulative confidence hyper-rectangle, for cs0(x),
we have

Rs1(cs0(x)) = Rs1−1(cs0(x)) ∩ Qt1(cs0(x))
= Rs1−2(cs0(x)) ∩ Qs1−1(ct0(x)) ∩ Qs1(cs0(x))
= R0(cs0(x)) ∩ Qs0(cs0(x)) ∩ . . . ∩ Qs1(cs0(x)) ,

and since R0(cs0(x)) = Rm, we obtain

Rs1(cs0(x)) =
s1⋂

s=1
Qs(cs0(x)) .
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Similarly, for cs1(x) we have

Rs2(cs1(x)) = Rs2−1(cs1(x)) ∩ Qs2(cs1(x))
= Rs1(cs1(x)) ∩ Qs1+1(cs1(x)) ∩ . . . ∩ Qs2(cs1(x)) ,

where

Rs1(cs1(x)) = Rs1(p(cs1(x))) = Rs1(cs0(x)) .

Thus, we obtain

Rs2(cs1(x)) =
(

s1⋂
s=1

Qs(cs0(x))
)

∩

(
s2⋂

s=s1+1
Qs(cs1(x))

)
.

Note that cs(x) = csi(x) for all s such that si < s ≤ si+1 for each i ∈ {0, . . . , n − 1}; and cs(x) = csn(x) for
all s such that sn+1 < s ≤ t. Thus, continuing as above, we can write

Rt(ct(x)) =
(

s1⋂
s=1

Qs(cs0(x))
)

∩ . . . ∩

 sn⋂
s=sn−1+1

Qs(csn−1(x))

 ∩

(
t⋂

s=sn+1
Qs(csn

(x))
)

=
t⋂

s=1
Qs(cs(x)) .

Based on the above display, to prove that f(x) ∈ Rt(ct(x)), it is enough to show that f(x) ∈ Qs(cs(x)), for
all s ≤ t. Next, we prove that this is indeed the case, by showing that for any s ≤ t and j ∈ [m], it holds that

Lj
s(cs(x)) = Bj

s(cs(x)) − Vhs(x) ≤ f j(x) ≤ B
j

s(cs(x)) + Vhs(x) = U j
s (cs(x)) . (12)

To show this, we first note that by definition

Bj
s(cs(x)) = max{µj

τs
(cs(x)) − β1/2

τs
σj

τs
(cs(x)), µj

τs
(p(cs(x))) − β1/2

τs
σj

τs
(p(cs(x))) − Vhs(x)−1} ,

and

B
j

s(cs(x)) = min{µj
τs

(cs(x)) + β1/2
τs

σj
τs

(cs(x)), µj
τs

(p(cs(x))) + β1/2
τs

σj
τs

(p(cs(x))) + Vhs(x)−1} .

Hence, we need to consider four cases: two cases for Bj
s(cs(x)) and two cases for B

j

s(cs(x)). Let j ∈ [m].
Note that under events F1 and F2, we have

µj
τs

(cs(x)) − β1/2
τs

σj
τs

(cs(x)) ≤ f j(ct(x)) ≤ µj
τs

(cs(x)) + β1/2
τs

σj
τs

(cs(x)) , (13)

and

f j(cs(x)) − Vhs(x) ≤ f j(x) ≤ f j(cs(x)) + Vhs(x) . (14)

The following inequalities hold under F1 and F2.

Case 1: If we have Lj
s(cs(x)) = µj

τs
(cs(x)) − β

1/2
τs σj

τs
(cs(x)) − Vhs(x), then

Lj
t (cs(x)) = µj

τs
(cs(x)) − β1/2

τs
σj

τs
(cs(x)) − Vhs(x)

≤ f j(cs(x)) − Vhs(x)

≤ f j(x) ,

where the first inequality follows from equation 13 and the second inequality follows from equation 14.
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Case 2: If we have Lj
s(cs(x)) = µj

τs
(p(cs(x))) − β

1/2
τs σj

τs
(p(cs(x))) − Vhs(x)−1 − Vhs(x), then

Lj
s(cs(x)) = µj

τs
(p(cs(x))) − β1/2

τs
σj

τs
(p(cs(x))) − Vhs(x)−1 − Vhs(x)

≤ f j(p(cs(x))) − Vhs(x)−1 − Vhs(x)

≤ f j(cs(x)) − Vhs(x)

≤ f j(x) ,

where the first inequality follows from equation 13; for the second inequality we use the fact that cs(x)
belongs to the cell associated to p(cs(x)), and thus we have that f j(p(cs(x))) ≤ f j(cs(x)) + Vhs(x)−1; the
third inequality follows from equation 14.

Case 3: If we have U j
s (cs(x)) = µj

τs
(cs(x)) + β

1/2
τs σj

τs
(cs(x)) + Vhs(x), then

f j(x) ≤ f j(cs(x)) + Vhs(x)

≤ µj
τs

(cs(x)) + β1/2
τs

σj
τs

(cs(x)) + Vhs(x)

= U j
s (cs(x)) ,

where the first inequality follows from equation 14 and the second inequality follows from equation 13.

Case 4: If we have U j
s (cs(x)) = µj

τs
(p(cs(x))) + β

1/2
τs σj

τs
(p(cs(x))) + Vhs(x)−1 + Vhs(x), then

f j(x) ≤ f j(cs(x)) + Vhs(x)

≤ f j(p(cs(x))) + Vhs(x)−1 + Vhs(x)

≤ µj
τs

(p(cs(x))) + β1/2
τs

σj
τs

(p(cs(x))) + Vhs(x)−1 + Vhs(x)

= U j
s (cs(x)) .

The analysis of this case follows the same argument as the one of Case 2. This proves that equation 12 holds,
and thus, the result follows. ■

Our next result ensures that Adaptive ϵ-PAL does not return "bad" nodes.
Lemma 9. Let x ∈ X . Under events F1 and F2, if f(x) ̸∈ Zϵ(X ), then x ̸∈ P̂ .

Proof. Suppose that f(x) ̸∈ Zϵ(X ). Then, by Definition 3, we have f(x) ∈ f(O(X )) − 2ϵ −Rm
+ , that is, there

exists x∗ ∈ O(X ) such that we have
f(x) + 2ϵ ⪯ f(x∗) . (15)

To get a contradiction, let us assume that x ∈ P̂ . This implies that there exists t ≥ 1 such that ct(x) is added
to Pt by line 16 of the algorithm pseudocode. Thus, by the ϵ-Pareto front covering rule in line 15 of the
algorithm pseudocode, for each xh,i ∈ Wt, we have

min(Rt(ct(x))) + ϵ ⪯̸ max(Rt(xh,i)) . (16)

In particular,we have that min(Rt(ct(x))) + ϵ ⪯̸ max(Rt(ct(x∗))) (note that we may even have ct(x) = ct(x∗)
and this would yield the same result), which, together with Lemma 8, implies that f(x) + ϵ ⪯̸ f(x∗). This
contradicts equation 15.

Now since we have x, x∗ ∈ Ct(x), we must have min(Rt(ct(x))) ⪯ f(x) and f(x∗) ⪯ max(Rt(ct(x))) by
Lemma 8, which implies that f(x) + ϵ ⪯̸ f(x∗), thereby contradicting equation 15.

Next, let us assume that ct(x∗) /∈ Wt. This means that there exists a round s1 ≤ t at which cs1(x∗) is
discarded. By line 9 of the Algorithm 1, there exists y1 ∈ Ppess,s1 such that we have

max(Rs1(cs1(x∗))) − ϵ ⪯ min(Rs1(y1)) . (17)

Assume that the child node ct(y1) of y1 at round t (due to possible refining in the middle rounds) is still not
discarded by round t, i.e. ct(y1) ∈ Wt. Then, by equation 16, we have

min(Rt(ct(x))) + ϵ ⪯̸ max(Rt(ct(y1))) ,
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which implies that

min(Rt(ct(x))) + ϵ ⪯̸ min(Rt(ct(y1))) ,

which in return implies that

min(Rt(ct(x))) + ϵ ⪯̸ min(Rs1(y1))

due to the fact that min(Rs1(y1)) = min(Rs1(ct(y1))) ⪯ min(Rt(ct(y1))). Thus, by equation 17, we obtain

min(Rt(ct(x))) + ϵ ⪯̸ max(Rs1(cs1(x∗))) − ϵ ,

or equivalently,

min(Rt(ct(x))) + 2ϵ ⪯̸ max(Rs1(cs1(x∗))) .

By Lemma 8, this implies that f(x) + 2ϵ ⪯̸ f(x∗), contradicting equation 15. Hence, it remains to consider
the case ct(y1) /∈ Wt.

In general, let the finite sequence of nodes [y1, y2, . . . , yn]T be such that all the nodes y1 to yn−1 are discarded,
meaning that, for each i ∈ [n − 1], the node yi stopped being part of Ppess,si+1 at some round si+1 by
satisfying

min(Rsi+1(csi+1(yi))) ≺ min(Rsi+1(yi+1)) .

Suppose that ct(yn) is active in round t, meaning that ct(yn) ∈ Wt (note that we can always find such
an n since the algorithm terminates and that we choose the sequence such that it satisfies that condition;
furthermore, we have s1 < s2 < . . . < sn ≤ t). Since we have ct(yn) ∈ Wt, by equation 16, we obtain

min(Rt(ct(x))) + ϵ ⪯̸ max(Rt(ct(yn))) . (18)

Note that equation 17 implies

max(Rs1(cs1(x∗))) − ϵ ⪯ min(Rs1(y1)) ≺ min(Rs2(cs2(y1)))
≺ min(Rs2(y2)) ≺ min(Rs3(cs3(y2)))
≺ . . .

≺ min(Rsn
(yn)) ≺ min(Rt(ct(yn))) ,

which in turn implies that

max(Rs1(cs1(x∗))) − ϵ ≺ min(Rt(ct(yn))) ⪯ max(Rt(ct(yn))) .

This, combined with equation 18 implies

min(Rt(ct(x))) + 2ϵ ⪯̸ max(Rs1(cs1(x∗))) .

Thus, in all cases we have that f(x)+2ϵ ⪯̸ f(x∗), contradicting our assumption. We conclude that x /∈ P̂ . ■

Next, we show that Adaptive ϵ-PAL returns an ϵ-accurate Pareto set when it terminates.
Lemma 10. (Adaptive ϵ-PAL returns an ϵ-accurate Pareto set) Under events F1 and F2, the set P̂
returned by Adaptive ϵ-PAL is an ϵ-accurate Pareto set.

Proof. Let x ∈ O(X ). We claim that there exists z ∈ P̂ such that f(x) ⪯ϵ f(z). Note that if x ∈ P̂ , then the
claim holds trivially. Let us assume that x ̸∈ P̂ . Then, there exists some round s1 ∈ N at which Adaptive
ϵ-PAL discards the node cs1(x). By line 9 of the algorithm pseudocode, there exists a node z1 ∈ Ppess,s1 such
that

max(Rs1(cs1(x))) ⪯ min(Rs1(z1)) + ϵ .
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By Lemma 8, we have

f(x) ⪯ max(Rs1(cs1(x))) ⪯ min(Rs1(z1)) + ϵ ⪯ f(z1) + ϵ . (19)

Hence, if z1 ∈ P̂ , then the claim holds with z = z1.

Now, suppose that z1 ̸∈ P̂ . Hence, at some round s2 ≥ s1, the node cs2(z1) associated with z1 must be
discarded by Adaptive ϵ-PAL. By line 8 of the algorithm pseudocode, we know that a node in Ppess,s2 cannot
be discarded at round s2. Hence, cs2(z1) ̸∈ Ppess,s2 . Then, by Definition 8, there exists a node z2 ∈ As2 such
that

min(Rs2(cs2(z1))) ≺ min(Rs2(z2)) ,

which, by equation 19, implies that

f(x) ⪯ min(Rs1(z1)) + ϵ

= min(Rs1(cs2(z1))) + ϵ

⪯ min(Rs2(cs2(z1))) + ϵ

≺ min(Rs2(z2)) + ϵ

⪯ f(z2) + ϵ .

Here, the equality the follows since the child node inherits the cumulative confidence hyper-rectangles of its
parents at prior rounds (see refining/evaluating phase in Section 4), and the second inequality follows from
the fact that the cumulative confidence hyper-rectangles shrink with time. Hence, f(x) ⪯ϵ f(z2). If z2 ∈ P̂ ,
then the claim holds with z = z2.

Suppose that z2 /∈ P̂ . Then, the above process continues in a similar fashion. Suppose that the process never
yields a node in P̂ . Since the algorithm is guaranteed to terminate by Lemma 3, the process stops and yields
a finite sequence [z1, . . . , zn]T of designs such that z1 /∈ P̂, . . . , zn /∈ P̂ . For each i ∈ [n − 1], let si+1 ∈ N be
the round at which csi+1(zi) is discarded; by the above process, we have

f(x) ⪯ min(Rsi+1(zi+1)) + ϵ .

In particular, f(x) ⪯ min(Rsn(zn)) + ϵ. Since zn /∈ P̂ , there exists a round sn+1 ≥ sn at which the node
csn+1(zn) is discarded. Consequently, the node csn+1(zn) /∈ Ppess,sn+1 . This implies that the condition of
Definition 8 is violated at round sn+1, that is, there exists zn+1 ∈ Asn+1 such that

min(Rsn+1(csn+1(zn))) ≺ min(Rsn+1(zn+1)) . (20)

At this point, it is important to clarify that zn+1 cannot belong to the sequence [z1, . . . , zn]T of designs. Note
that, by assumption, we have

f(x) ⪯ min(Rs1(z1)) + ϵ ⪯ min(Rs2(cs2(z1))) + ϵ

≺ min(Rs2(z2)) + ϵ ⪯ min(Rs3(cs3(z2))) + ϵ

≺ . . .

≺ min(Rsn
(zn)) + ϵ ⪯ min(Rsn+1(csn+1(zn))) + ϵ

≺ min(Rsn+1(zn+1)) + ϵ .

Due to the strict domination relation between the nodes in the sequence (which is determined by Definition
8), no two nodes can have identical confidence hyper-rectangles at the time of removal from Ppess,s, for
s ∈ {s1, . . . , sn+1}. Moreover, such a condition implies a strict ordering of nodes in the above sense, which
implies that zn+1 ̸∈ {z1, . . . , zn}. Hence, equation 20 and the earlier inequalities imply that

f(x) ⪯ min(Rsn(zn)) + ϵ

= min(Rsn(csn+1(zn))) + ϵ

33



Published in Transactions on Machine Learning Research (08/2025)

⪯ min(Rsn+1(csn+1(zn))) + ϵ

≺ min(Rsn+1(zn+1)) + ϵ

⪯ f(zn+1) + ϵ ,

where we have again used the shrinking property of the cumulative confidence hyper-rectangles in the second
inequality. This means that zn+1 is another node that ϵ-dominates x but it is not in the finite sequence
[z1, . . . , zn]T. This contradicts our assumption that the process stops after finding n designs. Hence, at least
one of the designs in [z1, . . . , zn]T is in P̂ ; let us call it z. This completes the proof of the claim.

Next, let µ ∈ f(O(X )) − Rm
+ . Then, there exist x ∈ O(X ) and µ′ ∈ Rm

+ such that µ = f(x) − µ′. By the
above claim, there exists z ∈ P̂ such that f(x) ⪯ f(z) + ϵ. Hence,

µ ⪯ µ + µ′ = f(x) ⪯ f(z) + ϵ .

This shows that for every µ ∈ f(O(X )) − Rm
+ , there exists z ∈ P̂ such that µ ⪯ϵ f(z). By Definition 3, we

have Zϵ(X ) ⊆ f(O(X )) − Rm
+ . Hence, for every µ ∈ Zϵ(X ), there exists µ′′ ∈ f(P̂ ) such that µ ⪯ϵ µ′′. On

the other hand, since we work under F1 ∩ F2, Lemma 9 implies that f(P̂ ) ⊆ Zϵ(X ). Therefore, f(P̂ ) is an
ϵ-covering of Zϵ(X ) (Definition 4 ), that is, P̂ is an ϵ-accurate Pareto set (Definition 5). ■

B.6 Derivation of the information-type sample complexity bound

In this section, we provide sample complexity upper bounds that depend on the maximum information gain
from observing the evaluated designs.

We begin with an auxiliary lemma whose statement is straightforward for the case m = 1.
Lemma 11. Let T ≥ 1, x ∈ X . The matrices K[T ] + Σ[T ] and k[T ](x)(K[T ] + Σ[T ])−1k[T ](x)T are symmetric
and positive definite. In particular,

(
k[T ](x)(K[T ] + Σ[T ])−1k[T ](x))T)jj

> 0 for each j ∈ [m].

Proof. Note that K[T ] is the covariance matrix of the random vector f[T ] = [f(x̃1)T, . . . , f(x̃T )T]T; hence,
it is symmetric and positive semidefinite. Being a diagonal matrix with positive entries, Σ[T ] is symmetric
and positive definite. Hence, K[T ] + Σ[T ] is symmetric and positive definite; and so is (K[T ] + Σ[T ])−1. The
latter implies that k[T ](x)(K[T ] + Σ[T ])−1k[T ](x)T is symmetric and that

wT (k[T ](x)(K[T ] + Σ[T ])−1k[T ](x)T)w = (k[T ](x)Tw)T(K[T ] + Σ[T ])−1(k[T ](x)Tw) > 0

for every w ∈ Rm with w ̸= 0. Therefore, a = k[T ](x)(K[T ] + Σ[T ])−1k[T ](x)T is positive definite. Let
λ(1) > 0 be its minimum eigenvalue. Let j ∈ [m]. By the variational characterization of minimum eigenvalue,
we have

ajj = eT
j aej ≥ min

w∈Rm : ∥w∥2=1
wTaw = λ(1) > 0,

where ajj =
(
k[T ](x)(K[T ] + Σ[T ])−1k[T ](x))T)jj and ej is the jth unit vector in Rm. This completes the

proof. ■

Recall from equation 2 that, for each t ≥ 1 such that St ̸= ∅, ωt = ωt(xht,it
) denotes the diameter of the

selected node xht,it ∈ At at round t.
Lemma 12. Let δ ∈ (0, 1). We have

τs∑
τ=1

ωtτ
≤
√

τs (16βτs
σ2Cmγτs

) ,

where C = σ−2/ log(1 + σ−2) and γτs
is the maximum information gain in τs evaluations as defined at the

end of Section 3.
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Proof. Let τ ∈ [τs] and j ∈ [m]. Note that the τth evaluation is made at round tτ and we have τtτ
= τ − 1.

Hence, we have

B
j

tτ
(xhtτ ,itτ

) − Bj
tτ

(xhtτ ,itτ
)

= min{µj
τtτ

(xhtτ ,itτ
) + β1/2

τtτ
σj

τtτ
(xhtτ ,itτ

), µj
τtτ

(p(xhtτ ,itτ
)) + β1/2

τtτ
σj

τtτ
(p(xhtτ ,itτ

)) + Vhtτ −1}

− max{µj
τtτ

(xhtτ ,itτ
) − β1/2

τtτ
σj

τtτ
(xhtτ ,itτ

), µj
τtτ

(p(xhtτ ,itτ
)) − β1/2

τtτ
σj

τtτ
(p(xhtτ ,itτ

)) − Vhtτ −1}

= min{µj
τ−1(xhtτ ,itτ

) + β
1/2
τ−1σj

τ−1(xhtτ ,itτ
), µj

τ−1(p(xhtτ ,itτ
)) + β

1/2
τ−1σj

τ−1(p(xhtτ ,itτ
)) + Vhtτ −1}

− max{µj
τ−1(xhtτ ,itτ

) − β
1/2
τ−1σj

τ−1(xhtτ ,itτ
), µj

τ−1(p(xhtτ ,itτ
)) − β

1/2
τ−1σj

τ−1(p(xhtτ ,itτ
)) − Vhtτ −1} .

We can bound this difference in two ways, so that we can use information-type bounds and dimension-type
bounds. In this result, we focus on the information-type bounds and write

B
j

tτ
(xhtτ ,itτ

) − Bj
tτ

(xhtτ ,itτ
)

≤ µj
τ−1(xhtτ ,itτ

) + β
1/2
τ−1σj

τ−1(xhtτ ,itτ
) − µj

τ−1(xhtτ ,itτ
) + β

1/2
τ−1σj

τ−1(xhtτ ,itτ
)

= 2β
1/2
τ−1σj

τ−1(xhtτ ,itτ
) . (21)

Since the diagonal distance of the hyper-rectangle Qtτ
(xhtτ ,itτ

) is the largest distance between any two points
in the hyper-rectangle, we have

τs∑
τ=1

ω2
tτ

=
τs∑

τ=1
max

y,y′∈Rtτ (xhtτ ,itτ
)
∥y − y′∥2

2

≤
τs∑

τ=1
max

y,y′∈Qtτ (xhtτ ,itτ
)
∥y − y′∥2

2

=
τs∑

τ=1

∥∥Utτ
(xhtτ ,itτ

) − Lτt
(xhtτ ,itτ

)
∥∥2

2

=
τs∑

τ=1

m∑
j=1

(
U j

tτ
(xhtτ ,itτ

) − Lj
tτ

(xhtτ ,itτ
)
)2

=
τs∑

τ=1

m∑
j=1

(
B

j

tτ
(xhtτ ,itτ

) − Bj
tτ

(xhtτ ,itτ
) + 2Vhtτ

)2
(22)

≤
τs∑

τ=1

m∑
j=1

(
2β

1/2
τ−1σj

τ−1(xhtτ ,itτ
) + 2Vhtτ

)2
(23)

= 4
τs∑

τ=1

 m∑
j=1

βτ−1(σj
τ−1(xhtτ ,itτ

))2 + 2
m∑

j=1
Vhtτ

β
1/2
τ−1σj

τ−1(xhtτ ,itτ
) +

m∑
j=1

(Vhtτ
)2


≤ 4

τs∑
τ=1

(
m∑

j=1
βτ−1(σj

τ−1(xhtτ ,itτ
))2

+ 2

 m∑
j=1

(Vhtτ
)2

1/2 m∑
j=1

βτ−1(σj
τ−1(xhtτ ,itτ

))2

1/2

+
m∑

j=1
(Vhtτ

)2

)
(24)

≤ 4
τs∑

τ=1

(
m∑

j=1
βτ−1(σj

τ−1(xhtτ ,itτ
))2 + 2

m∑
j=1

βτ−1(σj
τ−1(xhtτ ,itτ

))2

+
m∑

j=1
βτ−1(σj

τ−1(xhtτ ,itτ
))2

)
(25)
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≤ 16βτs

τs∑
τ=1

m∑
j=1

(σj
τ−1(xhtτ ,itτ

))2 (26)

= 16βτsσ2
τs∑

τ=1

m∑
j=1

σ−2(σj
τ−1(xhtτ ,itτ

))2

≤ 16βτs
σ2C

 τs∑
τ=1

m∑
j=1

log(1 + σ−2(σj
τ−1(xhtτ ,itτ

))2)

 (27)

≤ 16βτs
σ2CmI(y[τs], f[τs]) (28)

≤ 16βτs
σ2Cmγτs

, (29)

where C = σ−2/ log(1 + σ−2). In this calculation, equation 22 follows by definitions; equation 23 follows by
equation 21; equation 24 follows from Cauchy-Schwarz inequality; equation 25 follows from the fact that we
make evaluation at round tτ so that we have

β
1/2
τ−1

∥∥στ−1(xhtτ ,itτ
)
∥∥

2 = β1/2
τtτ

∥∥στtτ
(xhtτ ,itτ

)
∥∥

2 >
∥∥Vhtτ

∥∥
2

by the structure of the algorithm; equation 26 holds since βτ is monotonically non-decreasing in τ (see the
definition of βτ in Theorem 1); equation 27 follows from the fact that s ≤ C log(1 + s) for all 0 ≤ s ≤ σ−2

and that we have

σ−2(σj
τ−1(xhtτ ,itτ

))2

= σ−2
(

kjj(xhtτ ,itτ
, xhtτ ,itτ

) −
(
k[τ−1](xhtτ ,itτ

)(K[τ−1] + Σ[τ−1])−1k[τ−1](xhtτ ,itτ
)τs
)jj
)

≤ σ−2kjj(xht,it
, xht,it

)
≤ σ−2

thanks to Lemma 11 and Assumption 1; equation 28 follows from Proposition 2; and equation 29 follows
from definition of the maximum information gain.

Finally, by Cauchy-Schwarz inequality, we have

τs∑
τ=1

ωtτ ≤

√√√√τs

τs∑
τ=1

ω2
tτ

≤
√

τs (16βτsσ2Cmγτs) ,

which completes the proof. ■

Lemma 13. Running Adaptive ϵ-PAL with (βτ )τ∈N as defined in Lemma 6, we have

ωts
≤

√
16βτsσ2Cmγτs

τs
.

Proof. First we show that the sequence (ωt)t∈N is a monotonically non-increasing sequence. To that end, note
that by the principle of selection we have that ωt−1(xht,it

) ≤ ωt−1. On the other hand, for every x ∈ X , we
have ωt(x) ≤ ωt−1(x) since Rt(x) ⊆ Rt−1(x). Thus, ωt = ωt(xht,it) ≤ ωt−1(xht,it). So we obtain ωt ≤ ωt−1.

By above and by Lemma 12, we have

ωts
≤
∑τs

τ=1 ωtτ

τs
≤

√
16βτsσ2Cmγτs

τs
.

■

Finally, we are ready to state the information-type bound on the sample complexity.
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Proposition 4. Let ϵ = [ϵ1, . . . , ϵm]T be given with ϵ = minj∈[m] ϵj > 0. Let δ ∈ (0, 1) and D̄ > D1. For
each h ≥ 0, let Vh be defined as in Corollary 1; for each τ ∈ N, let βτ be defined as in Lemma 6. When we
run Adaptive ϵ-PAL with prior GP (0, k) and noise N (0, σ2), the following holds with probability at least
1 − δ. An ϵ-accurate Pareto set can be found with at most T function evaluations, where T is the smallest
natural number satisfying √

16βT σ2CmγT

T
< ϵ .

In the above expression, C represents the constant defined in Lemma 12.

Proof. According to Lemma 3, we have wts < ϵ. In addition, Lemma 13 says that

ωτs ≤
∑τs

τ=1 ωtτ

τs
≤

√
16βτs

σ2Cmγτs

τs
.

We use these two facts to find an upper bound on τs that holds with probability one. Let

T = min
{

τ ∈ N :
√

16βτ σ2Cmγτ

τ
< ϵ

}
.

Since the event {τs = T} implies that {wts
< ϵ}, we have Pr(τs > T ) = 0. ■

B.7 Derivation of the dimension-type sample complexity bound

In order to bound the diameter, we make use of the following observation.
Remark 4. We have

Vh

Vh+1
≤ N1 := ρ−α .

The next lemma bounds diameters of confidence hyper-rectangles of the nodes in At for all rounds t.
Lemma 14. In any round t ≥ 1 before Adaptive ϵ-PAL terminates, we have

ω2
t ≤ LV 2

ht
,

where L = m
(
4N2

1 + 4N2
1 (2N1 + 2) + (2N1 + 2)2).

Proof. We have

ω2
t = ω2

t (xht,it
) =

(
max

y,y′∈Rt(xht,it )
||y − y′||2

)2

≤
(

max
y,y′∈Qt(xht,it )

||y − y′||2
)2

=
(

||Ut(xht,it) − Lt(xht,it)||2
)2

=
m∑

j=1

(
B

j

t (xht,it) − Bj
t (xht,it) + 2Vht

)2

≤
m∑

j=1

(
2β1/2

τt
σj

τt
(p(xht,it

)) + (2N1 + 2)Vht

)2
(30)

= 4βτt

m∑
j=1

(
σj

τt
(p(xht,it

))
)2 + 4(2N1 + 2)

m∑
j=1

β1/2
τt

σj
τt

(p(xht,it
))Vht

+ (2N1 + 2)2
m∑

j=1
(Vht

)2

≤ 4
m∑

j=1
(Vht−1)2 + 4(2N1 + 2)

m∑
j=1

β1/2
τt

σj
τt

(p(xht,it
))Vht

+ (2N1 + 2)2
m∑

j=1
(Vht

)2 (31)

≤ 4
m∑

j=1
(Vht−1)2 + 4(2N1 + 2)

 m∑
j=1

βτt

(
σj

τt
(p(xht,it

))
)2

 1
2
 m∑

j=1
(Vht)

2

 1
2

+ (2N1 + 2)2
m∑

j=1
(Vht)

2 (32)
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≤ 4
m∑

j=1
(Vht−1)2 + 4(2N1 + 2)N1

 m∑
j=1

(Vht−1)2

 1
2
 m∑

j=1
(Vht

)2

 1
2

+ (2N1 + 2)2
m∑

j=1
(Vht)

2 (33)

≤ m
(
4N2

1 + 4N2
1 (2N1 + 2) + (2N1 + 2)2) (Vht

)2 = LV 2
ht

. (34)

In the above expression, equation 30 follows from the fact that for j ∈ [m] and t ≥ 1

B
j

t (xht,it) − Bj
t (xht,it)

= min{µj
τt

(xht,it
) + β1/2

τt
σj

τt
(xht,it

), µj
τt

(p(xht,it
)) + β1/2

τt
σj

τt
(p(xht,it

)) + Vht−1}
− max{µj

τt
(xht,it

) − β1/2
τt

σj
τt

(xht,it
), µj

τt
(p(xht,it

)) − β1/2
τt

σj
τt

(p(xht,it
)) − Vht−1}

≤ µj
τt

(p(xht,it)) + β1/2
τt

σj
τt

(p(xht,it)) + Vht−1 − µj
τt

(p(xht,it)) + β1/2
τt

σj
τt

(p(xht,it)) + Vht−1

≤ 2β1/2
τt

σj
τt

(p(xht,it
)) + 2Vht−1

≤ 2β1/2
τt

σj
τt

(p(xht,it)) + 2N1Vht , (35)

where equation 35 follows from Remark 4. equation 31 is obtained by observing that the node p(xht,it) has been
refined, and hence, it holds that β

1/2
τt ∥στt(p(xht,it))∥2 ≤ ∥Vht−1∥2. equation 32 follows from application of the

Cauchy-Schwarz inequality. equation 33 follows again from the fact that β
1/2
τt ∥στt(p(xht,it))∥2 ≤ ∥Vht−1∥2,

and equation 34 follows from Remark 4. ■

Let E denote the set of rounds in which Adaptive ϵ-PAL performs design evaluations. Note that |E| = τs. Let
ts denote the round in which the algorithm terminates. Next, we use Lemma 1 together with Lemma 14 to
upper bound ωts

as a function of the number evaluations until termination.
Lemma 15. Let δ ∈ (0, 1) and D̄ > D1. Running Adaptive ϵ-PAL with βτ defined in Lemma 6, there exists
a constant Q > 0 such that the following event holds almost surely.

ωts
≤K1τs

−α

D̄+2α (log τs)
−(D̄+α)

D̄+2α + K2τs

−α

D̄+2α (log τs)
α

D̄+2α ,

where

K1 =
√

LQσ2βτs

Ckvα
1 vD̄

2 (ρ−(D̄+α) − 1)
,

K2 = 4
√

LCkvα
1

(√
C2 + 2 log(2H2π2m/6δ) + H log N + max{0, −4(D1/α) log(Ck(v1ρH)α)} + C3

)
,

H =
⌊

log τs − log(log τs)
log(1/ρ)(D̄ + 2α)

⌋
.

Proof. We have

ωts
≤
∑

t∈E ωt

τs
≤

√
L
∑

t∈E Vht

τs
, (36)

where the first inequality follows from the fact that ωt ≤ ωt−1 for all t ≥ 1 and the second inequality is the
result of Lemma 14. We will bound

∑
t∈E Vht and use it to obtain a bound for equation 36. First, we define

S1 =
∑
t∈E:

ht<H

Vht
and S2 =

∑
t∈E:

ht≥H

Vht
,

and write
∑

t∈E Vht
= S1 + S2. We have

S1 =
∑
t≥1:

ht<H

VhtI(t ∈ E) =
∑
t≥1

∑
h<H

VhtI(ht = h)I(t ∈ E)
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=
∑
h<H

∑
t≥1

VhtI(ht = h)I(t ∈ E)

≤
∑
h<H

VhQ(v2ρh)−D̄qh (37)

≤
∑
h<H

VhQ(v2ρh)−D̄ σ2βT

V 2
h

(38)

≤
∑
h<H

Q(v2ρh)−D̄ σ2βT

Ck(v1ρh)α
(39)

≤ Qσ2βT

Ckvα
1 vD̄

2

∑
h<H

ρ−(D̄+α)h ≤ Qσ2βT

Ckvα
1 vD̄

2

ρ−(D̄+α)H

ρ−(D̄+α) − 1
. (40)

In the above display, to obtain equation 37, we note that for a fixed h the cells Xh,i are disjoint, a
ball of radius v2ρh should be able to fit in each cell, and thus, the number of depth h cells is upper
bounded by the number of radius v2ρh balls we can pack in (X , d), which is in turn upper bounded by
M(X , 2v2ρh, d). The rest follows from Lemma 1, which states that there exists a positive constant Q, such
that M(X , 2v2ρh, d) ≤ N(X , v2ρh, d) ≤ Q(v2ρh)−D̄. For equation 38, we upper bound qh using Lemma 5,
and equation 39 follows by observing that Vh ≥ Ck(v1ρh)α.

Since Vh is decreasing in h, the remainder of the sum can be bounded as

S2 =
∑
t≥1:

ht≥H

Vht
I(t ∈ E) ≤

∑
t∈E

VH = τsVH = (K2/
√

L)τsρHα . (41)

Combining equation 40 and equation 41, we obtain∑
t∈E

Vht ≤ Qσ2βτs

Ckvα
1 vD̄

2

ρ−(D̄+α)H

ρ−(D̄+α) − 1
+ (K2/

√
L)τsρHα . (42)

Since

H =
⌊

log τs − log(log τs)
log(1/ρ)(D̄ + 2α)

⌋
=
⌊

− logρ

(
τs

log τs

) 1
D̄+2α

⌋
,

we have

ρ−H(D̄+2α) ≤ τs

D̄+α

D̄+2α (log τs)
−(D̄+α)

D̄+2α and τsρHα ≤ ρατs
1− α

D̄+2α (log τs)
α

D̄+2α .

Finally, we use the values found above to upper bound equation 42, and then use this upper bound in
equation 36, which gives us

ωts
≤

√
L

(
Qσ2βτs

Ckvα
1 vD̄

2 (ρ−(D̄+α) − 1)
τs

−α

D̄+2α (log τs)
−(D̄+α)

D̄+2α + (K2/
√

L)τs

−α

D̄+2α (log τs)
α

D̄+2α

)
.

■

Finally, we are ready to state the metric dimension-type bound on the sample complexity.
Proposition 5. Let ϵ = [ϵ1, . . . , ϵm]T be given with ϵ = minj∈[m] ϵj > 0. Let δ ∈ (0, 1) and D̄ > D1. For
each h ≥ 0, let Vh be defined as in Corollary 1; for each τ ∈ N, let βτ be defined as in Lemma 6. When we
run Adaptive ϵ-PAL with prior GP (0, k) and noise N (0, σ2), the following holds with probability at least
1 − δ.

An ϵ-accurate Pareto set can be found with at most T function evaluations, where T is the smallest natural
number satisfying

K1T
−α

D̄+2α (log T )
−(D̄+α)

D̄+2α + K2T
−α

D̄+2α (log T )
α

D̄+2α < ϵ ,

where K1 and K2 are the constants defined in Lemma 15.
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Proof. According to Lemma 3, we have wts
< ϵ. In addition, Lemma 15 says that

ωts
≤K1τs

−α

D̄+2α (log τs)
−(D̄+α)

D̄+2α + K2τs

−α

D̄+2α (log τs)
α

D̄+2α .

We use these two facts to find an upper bound on τs that holds with probability one. Let

T = min
{

τ ∈ N : K1τ
−α

D̄+2α (log τ)
−(D̄+α)

D̄+2α + K2τ
−α

D̄+2α (log τ)
α

D̄+2α < ϵ

}
.

Since the event {τs = T} implies that {wts
< ϵ}, we have Pr(τs > T ) = 0. ■

B.8 The final step of the proof of Theorem 1

We take the minimum over the two bounds presented in Proposition 4 and Proposition 5 to obtain the result
in Theorem 1. ■

B.9 Proof of Proposition 2

First, let us review some well-known facts about entropies. For an m-dimensional Gaussian random vector g
with distribution N (a, b) with a ∈ Rm, b ∈ Rm×m, the entropy of g is calculated by

H(g) = H(N (a, b)) = 1
2 log |2πeb|.

More generally, if h is another random variable (with arbitrary measurable state space H) and the regular
conditional distribution of g given h is N (a(h), b(h)) for some measurable functions a : H → Rm and
b : H → Rm×m, then the conditional entropy of g given h is calculated by

H(g|h) = 1
2E [log |2πeb(h)|] .

Lemma 16. We have

I(y[T ]; f[T ]) =
T∑

τ=1

1
2 log |Im + σ−2kτ−1(x̃τ , x̃τ )|,

where k0(x̃1, x̃1) = k(x̃1, x̃1).

Proof. We have

I(y[T ]; f[T ]) = H(y[T ]) − H(y[T ]|f[T ])
= H(yT , y[T −1]) − H(y[T ]|f[T ])
= H(yT |y[T −1]) + H(y[T −1]) − H(y[T ]|f[T ]).

Re-iterating this calculation inductively, we obtain

I(y[T ]; f[T ]) =
T∑

τ=2
H(yτ |y[τ−1]) + H(y1) − H(y[T ]|f[T ])

since y[1] = y1. Note that

H(y[T ]|f[T ]) = H(f(x̃1) + ϵ1, . . . , f(x̃T ) + ϵT |f[T ]) =
T∑

τ=1
H(ϵτ ) = T

2 log |2πeσ2Im|.

On the other hand, the conditional distribution of yτ given y[τ−1] is N (µτ−1(x̃τ ), kτ−1(x̃τ , x̃τ ) + σ2Im) and
the distribution of y1 is N (0, k(x̃1, x̃1) + σ2Im). Hence,

I(y[T ]; f[T ]) =
T∑

τ=2
H(yτ |y[τ−1]) + H(y1) − H(y[T ]|f[T ])
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=
T∑

τ=2

1
2
[
log |2πe(kτ−1(x̃τ , x̃τ ) + σ2Im)|

]
+ 1

2 log |2πe(k(x̃τ , x̃τ ) + σ2Im)| − T

2 log |2πeσ2Im|

=
T∑

τ=1

1
2 log |2πe(kτ−1(x̃τ , x̃τ ) + σ2Im)| − T

2 log |2πeσ2Im|

=
T∑

τ=1

1
2 log |2πeσ2Im(σ−2kτ−1(x̃τ , x̃τ ) + Im)| − T

2 log |2πeσ2Im|

=
T∑

τ=1

1
2 log |2πeσ2Im| +

T∑
τ=1

1
2 log |σ−2kτ−1(x̃τ , x̃τ ) + Im)| − T

2 log |2πeσ2Im|

=
T∑

τ=1

1
2 log |σ−2kτ−1(x̃τ , x̃τ ) + Im|.

■

Lemma 17. Let a = (aij)i,j∈[m] be a symmetric positive definite m × m-matrix. Then,

|a + Im| ≥ max
j∈[m]

(1 + ajj).

Proof. Let 0 < λ(1) ≤ . . . ≤ λ(m) be the ordered eigenvalues of a. It is easy to check that λ ∈ R is an
eigenvalue of a if and only if 1 + λ is an eigenvalue of a + Im. In particular, 1 + λ(m) is the largest eigenvalue
of a + Im so that

|a + Im| =
∏

j∈[m]

(1 + λ(j)) =

 ∏
j∈[m−1]

(1 + λ(j))

 (1 + λ(m)) ≥ (1 + λ(m)). (43)

On the other hand, thanks to the variational characterization of the maximum eigenvalue λ(m), we have

λ(m) = max
x∈Rm : ∥x∥=1

xTax ≥ eT
j aej = ajj (44)

for each j ∈ [m], where ej is the jth unit vector in Rm. The claim of the lemma follows by combining
equation 43 and equation 44. ■

Next, we will make use of the lemmas derived above to complete the proof. Note that

I(y[T ]; f[T ]) =
T∑

τ=1

1
2 log |Im + σ−2kτ−1(x̃τ , x̃τ )|

≥
T∑

τ=1

1
2 max

j∈[m]
log(1 + σ−2kjj

τ−1(x̃τ , x̃τ ))

=
T∑

τ=1

1
2 max

j∈[m]
log(1 + σ−2(σj

τ−1(x̃τ ))2)

≥
T∑

τ=1

∑
j∈[m]

1
2m

log(1 + σ−2(σj
τ−1(x̃τ ))2),

where the first equality is by Lemma 16 and the first inequality is by Lemma 17. Hence, the claim of the
proposition follows.
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B.10 Determination of α and CK for Squared Exponential type kernels

For Squared Exponential type kernels, the covariance function of objective j can be written as:

kjj(x, y) = kj(r) = νe− r2
L2 ,

where r = ∥x − y∥ and L and ν are the length-scale and variance hyper-parameters of the jth objective.
Hence, by Remark 1, the metric lj induced by the jth objective of the GP on X is given by:

lj(x, y) =
√

2k(0) − 2k(0)e− r2
L2 =

√
2ν(1 − e− r2

L2 ) ≤
√

2ν

L
r .

Thus, we can set Ck =
√

2ν
L and α = 1 in Assumption 1.

C The proof of Proposition 1

In this section, we provide a constructive proof of Proposition 1, which is an extension of Example 1 in
Shekhar et al. (2018) to the multi-output GP setting. We restate the proposition here for convenience.
Statement. There exists a multi-output GP f , with covariance function satisfying Assumption 1 and a
sequence of T noisy observations made on f , such that we have

I(y[T ], f[T ]) ≥ Ω(T ) .

Proof. We provide a constructive proof, which is an extension of Example 1 in Shekhar et al. (2018) to the
multi-output GP setting. First, let X = [0, 1]. Let j ∈ [m], x ∈ X , and let us define

f̃ j(x) =
∞∑

i=1
4āijXij

(
(3ix − 1)(2 − 3ix)I(x ∈ Li) − (3ix − 2)(3 − 3ix)I(x ∈ Ri)

)
,

where, for each j ∈ [m], (āij)∞
i=1 is a non-increasing sequence of positive real numbers with ā1j ≤ 1;

(Xij)∞,m
i=1,j=1 is a sequence of independent and identically distributed standard Gaussian random variables;

and we let Li := [3−i, 2 · 3−i) for all i ≥ 1, Ri := [2 · 3−i, 3−i+1) for all i ≥ 2, and Ri = [2 · 3−i, 3−i+1] for
i = 1. Note that we have

X =
∞⋃

i=1
(Li ∪ Ri) ,

and moreover, L1, R1, L2, R2, . . . do not overlap, thus they partition X . Therefore, for any x ∈ X , there exists
i(x) ≥ 1 such that x ∈ Li(x) ∪ Ri(x) and x ̸∈ Ll ∪ Rl, for any l ̸= i. So we have

f̃ j(x) = 4āijXij

(
(3i(x)x − 1)(2 − 3i(x)x)I(x ∈ Li(x)) − (3i(x)x − 2)(3 − 3i(x)x)I(x ∈ Ri(x))

)
.

Let x, x′ ∈ X and j, l ∈ [m]. We define f̃(x) = [f̃1(x), . . . , f̃m(x)]T. Note that we have E[f̃(x)] = [0, . . . , 0]T.
Moreover, we let k̃(x, x′) denote the covariance matrix of the m-output GP (f̃(x))x∈X . Note that we have

E[f̃ j(x)f̃ l(x)] = 0, for j ̸= l ,

due to independence of Xij across objectives which implies that

k̃(x, x) =


k̃11(x, x) . . . 0

...
...

0 . . . k̃mm(x, x)


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Now let A = (apq)p,q∈[m] ∈ Rm×m be a square matrix such that ∥Aj∥2 = 1, for all j ∈ [m], where Aj denotes
the jth row of A. Furthermore, let us define f(x) = Af̃ . Let k be the covariance function associated with the
m-output GP (f(x))x∈X . Assume that T designs of the form xi = 1/3i + 1/(2 · 3i) are selected for evaluation
and subsequently the noisy observations yi are obtained, for i ≤ T . Note that in this case we have i(xi) = i.
Now we explicitly calculate the variances of these evaluated points at all objectives. Let j ≤ m and i ≤ T .
We have

kjj(xi, xi) = E[(Af̃(xi))(Af̃(x))T] = Ajk̃(xi, xi)AT
j =

m∑
l=1

k̃ll(xi, xi)a2
jl ,

where the third equality follows from the fact that k̃(x, x) is diagonal. Now we have

f̃ j(xi) = 4āijXij

((
3ix − 1

) (
2 − 3ix

)
I(x ∈ Li) −

(
3ix − 2

) (
3 − 3ix

)
I(x ∈ Ri)

)
= 4āijXij

(
3i

(
1
3i

+ 1
2 · 3i

)
− 1
)(

2 − 3i

(
1
3i

+ 1
2 · 3i

))
= 4āijXij

1
4 = āijXij .

Therefore, we have that k̃ll(xi, xi) = E[(f̃ l(xi))2] = ā2
il, from which we obtain

kjj(xi, xi) =
m∑

l=1
ā2

ila
2
jl ≤

m∑
l=1

ā2
1la

2
jl ≤ ∥Aj∥2

2 = 1 (45)

using the assumptions on the sequence (āil) and the matrix A. The observations at different designs are
uncorrelated, hence independent, by the choice of the designs, and this implies that the posterior distribution
is the same as the prior distribution. This, together with Proposition 2 implies

γT ≥ I(y[T ]; f[T ]) ≥ 1
m

T∑
i=1

m∑
j=1

1
2 log

(
1 + σ−2(σj

i−1(xi))2
)

= 1
m

T∑
i=1

m∑
j=1

1
2 log

(
1 + σ−2(ā2

ij)
)

≥ T

2m

m∑
j=1

log
(

1 +
ā2

T j

σ2

)
≥ T

1
2m

m∑
j=1

ā2
T j/σ2

1 + ā2
T j/σ2 = T

1
2m

m∑
j=1

ā2
T j

ā2
T j + σ2 ,

where in the third inequality we have used the fact that the sequence (aij)∞
i=1 is decreasing and in the fourth

inequality we use the fact that log(1 + x) ≥ x/(1 + x). Thus, we obtain γT = Ω(T ). By Theorem 1, we see
that the information-type quantity

√
CβT γT /T increases logarithmically in T and the metric dimension-type

quantity K1βT T
−α

D̄+2α (log T )
−(D̄+α)

D̄+2α + K2T
−α

D̄+2α (log T )
α

D̄+2α decreases exponentially in T , for any choice of
D̄ > D1 and 0 < α ≤ 1.

On the other hand, for a suitably chosen metric d, the first part of Assumption 1 holds. Similar to equation 45,
it can also be checked that kjj(x, x) ≤ 1 for all x ∈ X . Hence, the second part of Assumption 1 holds as
well. ■
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