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Abstract

Recently it has been observed that neural networks exhibit Neural Collapse (NC)
during the final stage of training for the classification problem. We empirically
show that multivariate regression, as employed in imitation learning and other
applications, exhibits Neural Regression Collapse (NRC), a new form of neural
collapse: (NRC1) The last-layer feature vectors collapse to the subspace spanned
by the n principal components of the feature vectors, where n is the dimension of
the targets (for univariate regression, n = 1); (NRC2) The last-layer feature vectors
also collapse to the subspace spanned by the last-layer weight vectors; (NRC3) The
Gram matrix for the weight vectors converges to a specific functional form that
depends on the covariance matrix of the targets. After empirically establishing the
prevalence of (NRC1)-(NRC3) for a variety of datasets and network architectures,
we provide an explanation of these phenomena by modeling the regression task
in the context of the Unconstrained Feature Model (UFM), in which the last layer
feature vectors are treated as free variables when minimizing the loss function.
We show that when the regularization parameters in the UFM model are strictly
positive, then (NRC1)-(NRC3) also emerge as solutions in the UFM optimization
problem. We also show that if the regularization parameters are equal to zero, then
there is no collapse. To our knowledge, this is the first empirical and theoretical
study of neural collapse in the context of regression. This extension is significant
not only because it broadens the applicability of neural collapse to a new category
of problems but also because it suggests that the phenomena of neural collapse
could be a universal behavior in deep learning.

1 Introduction

Recently, an insightful phenomenon known as neural collapse (NC) [Papyan et al., 2020] has been
empirically observed during the terminal phases of training in classification tasks with balanced
data. NC has three principal components: (NC1) The features of samples within each class converge
closely around their class mean. (NC2) The averages of the features within each class converge to
form the vertices of a simplex equiangular tight frame. This geometric arrangement implies that class
means are equidistant and symmetrically distributed. (NC3) The weight vectors of the classifiers in
the final layer align with the class means of their respective features. These phenomena not only
enhance our understanding of neural network behaviors but also suggest potential simplifications in
the architecture and the training of neural networks.
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Figure 1: Visualization of the neural regression collapse. The red dots represent the sample features,
the blue arrows represent the row vectors of the last layer weight matrix, and the yellow plane
represents the plane spanned by the principal components of the sample features. Here the target
dimension is n = 2. The feature vectors and weight vectors collapse to the same subspace. The angle
between the weight vectors takes specific forms governed by the covariance matrix of the targets.

The initial empirical observations of NC have led to the development of theoretical frameworks
such as the layered-peeled model [Fang et al., 2021] and the unconstrained feature model (UFM)
[Mixon et al., 2020]. These models help explain why NC occurs in classification tasks theoretically.
By allowing the optimization to freely adjust last-layer features along with classifier weights, these
models provide important insights into the prevalence of neural collapse, showing that maximal class
separability is a natural outcome for a variety of loss functions when the data is balanced [Han et al.,
2021, Poggio and Liao, 2020, Zhou et al., 2022a,b].

Regression in deep learning is arguably equally important as classification, as it serves for numerous
applications across diverse domains. In imitation learning for autonomous driving, regression is
employed to predict continuous control actions (such as speed and steering angles) based on observed
human driver behavior. Similarly, regression is used in robotics, where the regression model is trained
to imitate expert demonstrations. In the financial sector, regression models are extensively used for
predictive analytics, such as forecasting stock prices, estimating risk, and predicting market trends.
Meteorology also heavily relies on regression models to forecast weather conditions. These models
take high-dimensional inputs from various sensors and satellites to predict multiple continuous
variables such as temperature, humidity, and wind speed. Moreover, many reinforcement learning
algorithms include critical regression components, where regression is employed to predict value
functions with the targets being Monte Carlo or bootstrapped returns.

While NC has been extensively studied in classification, to our knowledge, its prevalence and
implications in regression remain unexplored. This paper investigates a new form of neural collapse
within the context of neural multivariate regression. Analogous to the classification problem, we
introduce Neural Regression Collapse (NRC): (NRC1) During training, the last-layer feature vectors
collapse to the subspace spanned by the n principal components of the feature vectors, where n is the
dimension of the targets (for univariate regression, n = 1); (NRC2) The last-layer feature vectors
also collapse to the subspace spanned by the weight vectors; (NRC3) The Gram matrix for the weight
vectors converges to a specific functional form that depends on the square-root of the covariance
matrix of the targets. A visualization of NRC is shown in Figure 1.

Employing six different datasets – including three robotic locomotion datasets, two versions of an
autonomous driving dataset, and an age-prediction dataset – and Multi-Layer Perceptron (MLP)
and ResNet architectures, we establish the prevalence of NRC1-NRC3. This discovery suggests a
universal geometric behavior extending beyond classification into regression models, simplifying our
understanding of deep learning more generally.

To help explain these phenomena, we then apply the UFM model to neural multivariate regression
with an L2 loss function. In this regression version of the problem, the optimization problem aims to
minimize the regularized mean squared error over continuous-valued targets. We show that when the
regularization parameters in the UFM model are strictly positive, then (NRC1)-(NRC3) also emerge
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as solutions in the UFM optimization problem, thereby providing a mathematical explanation of our
empirical observations. Among many observations, we discover empirically and theoretically that
when the regression parameters are zero or very small, there is no collapse; and if we increase the
parameters a small amount above zero, the (NRC1)-(NRC3) geometric structure emerges.

To the best of our knowledge, this is the first empirical and theoretical study of neural collapse in the
context of regression. By demonstrating the prevalence of neural collapse in regression tasks, we
reveal that deep learning systems might inherently simplify their internal representations, irrespective
of the specific nature of the task, whether it be classification or regression.

2 Related work

Neural collapse (NC) was first identified by Papyan et al. [2020] as a symmetric geometric structure
observed in both the last layer features and classification vectors during the terminal phase of training
of deep neural networks for classification tasks, particularly evident in balanced datasets. Since then,
there has been a surge of research into both theoretical and empirical aspects of NC.

Several studies have investigated NC under different loss functions. For instance, [Han et al., 2021,
Poggio and Liao, 2020, Zhou et al., 2022a] have observed and studied neural collapse under the
Mean Squared Error (MSE) loss, while papers such as [Zhou et al., 2022b, Guo et al., 2024] have
demonstrated that label smoothing loss and focal loss also lead to neural collapse. In addition to
the last layer, some papers [He and Su, 2023, Rangamani et al., 2023] have also examined the
occurrence of the NC properties within intermediate layers. Furthermore, beyond the balanced case,
researchers have investigated the neural collapse phenomena in imbalanced scenarios. [Fang et al.,
2021] identified a phenomenon called minority collapse for training on imbalanced data, while [Hong
and Ling, 2023, Thrampoulidis et al., 2022, Dang et al., 2023] offer more precise characterizations of
the geometric structure under imbalanced conditions.

To facilitate the theoretical exploration of the neural collapse phenomena, [Fang et al., 2021, Mixon
et al., 2020] considered the unconstrained feature model (UFM). The UFM simplifies a deep neural
network into an optimization problem by treating the last layer features as free variables to optimize
over. This simplification is motivated by the rationale of the universal approximation theorem [Hornik
et al., 1989], asserting that sufficiently over-parameterized neural networks can be highly expressive
and can accurately approximate arbitrary smooth functions. Leveraging the UFM, studies such as
[Zhu et al., 2021, Zhou et al., 2022a, Thrampoulidis et al., 2022, Tirer and Bruna, 2022, Tirer et al.,
2023, Ergen and Pilanci, 2021, Wojtowytsch et al., 2020] have investigated models with different loss
functions and regularization techniques. These studies have revealed that the global minima of the
empirical risk function under UFMs align with the characterization of neural collapse observed by
[Papyan et al., 2020]. Beyond the UFM, some work [Tirer and Bruna, 2022, Súkeník et al., 2024]
has extended the model to explore deep constrained feature models with multiple layers, aiming to
investigate neural collapse properties beyond the last layer.

In addition to its theoretical implications, NC serves as a valuable tool for gaining deeper insights
into DNN models and various regularization techniques [Guo et al., 2024, Fisher et al., 2024]. It
provides crucial insights into the generalization and transfer learning capabilities of neural networks
[Hui et al., 2022, Kothapalli, 2022, Galanti et al., 2021], inspiring the design of enhanced model
architectures for diverse applications. These include scenarios with imbalanced data [Yang et al.,
2022, Kim and Kim] and contexts involving online continuous learning [Seo et al., 2024].

Despite extensive research on the neural collapse phenomena and its implications in classification,
to the best of our knowledge, there has been no investigation into similar issues regarding neural
regression models. Perhaps the paper closest to the current work is [Zhou et al., 2022a], which
applies the UFM model to the balanced classification problem with MSE loss. Although focused on
classification, [Zhou et al., 2022a] derive some important results which apply to regression as well as
to classification. Our UFM analysis leverages this related paper, particularly their Lemma B.1.

3 Prevalence of neural regression collapse

We consider the multivariate regression problem with M training examples {(xi,yi), i = 1, . . . ,M},
where each input xi belongs to RD and each target vector yi belongs to Rn. For the regression
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task, the deep neural network (DNN) takes as input an example x ∈ RD and produces an output
y = f(x) ∈ Rn. For most DNNs, including those used in this paper, this mapping takes the form
fθ,W,b(x) = Whθ(x) + b, where hθ(·) : RD → Rd is the non-linear feature extractor consisting
of several nonlinear layers, W is a n× d matrix representing the final linear layer in the model, and
b ∈ Rn is the bias vector. For most neural regression tasks, n << d, that is the dimension of the
target space is much smaller than the dimension of the feature space. For univariate regression, n = 1.
The parameters θ, W, and b are all trainable.

We train the DNN using gradient descent to minimize the regularized L2 loss:

min
θ,W,b

1

2M

M∑
i=1

||fθ,W,b(xi)− yi||22 +
λθ

2
||θ||22 +

λW

2
||W||2F ,

where || · ||2 and || · ||F denote the L2-norm and the Frobenius norm, respectively. As commonly
done in practice, in our experiments we set all the regularization parameters to the same value, which
we refer to as the weight-decay parameter λWD, that is, we set λθ = λW = λWD.

3.1 Definition of neural regression collapse

In order to define Neural Regression Collapse (NRC), let Σ denote the n × n covariance matrix
corresponding to the targets {yi, i = 1, . . . ,M}: Σ = M−1(Y − Ȳ)(Y − Ȳ)T , where Y =

[y1 · · ·yM ], Ȳ = [ȳ · · · ȳ], and ȳ = M−1
∑M

i=1 yi. Throughout this paper, we make the natural
assumption that Y and Σ have full rank. Thus Σ is positive definite. Let λmin > 0 denote the
minimum eigenvalue of Σ.

Denote H := [h1 · · ·hM ], where hi is the feature vector associated with input xi, that is, hi :=

hθ(xi). Further denote the normalized feature vector h̃i := hi · ||hi||−1. Of course, W, H, and b
are changing throughout the course of training. For any p× q matrix C and any p-dimensional vector
v, let proj(v|C) denote the projection of v onto the subspace spanned by the columns of C. Let
HPCAn

be the d× n matrix with the columns consisting of the n principal components of H.

We say that Neural Regression Collapse (NRC) emerges during training if the following three
phenomena occur:

• NRC1 =
1

M

M∑
i=1

∣∣∣∣∣∣h̃i − proj(h̃i|HPCAn
)
∣∣∣∣∣∣2
2
→ 0.

• NRC2 =
1

M

M∑
i=1

∣∣∣∣∣∣h̃i − proj(h̃i|WT )
∣∣∣∣∣∣2
2
→ 0.

• There exists a constant γ ∈ (0, λmin) such that:

NRC3 =

∣∣∣∣∣∣∣∣ WWT

||WWT ||F
− Σ1/2 − γ1/2In

||Σ1/2 − γ1/2In||F

∣∣∣∣∣∣∣∣2
F

→ 0.

NRC1 → 0 indicates that there is feature-vector collapse, that is, the d-dimensional feature vectors
hi, i = 1, . . . ,M , collapse to a much lower n-dimensional subspace spanned by their n principal
components. In many applications, n = 1, in which case the feature vectors are collapsing to a line
in the original d-dimensional space. NRC2 → 0 indicates that there is a form of self duality, that
is, the feature vectors also collapse to the n-dimensional space spanned by the rows of W. NRC3
→ 0 indicates that the last-layer weights have a specific structure within the collapsed subspace. In
particular, it gives detailed information about the norms of the row vectors in W and the angles
between those row vectors. NRC3 → 0 indicates that angles between the rows in W are influenced
by Σ1/2. If the targets are uncorrelated so that Σ and Σ1/2 are diagonal, then NRC3 → 0 implies
that the rows in W will be orthogonal. NRC3 → 0 also implies a specific structure for the feature
vectors, as discussed in Section 4.

3.2 Experimental validation of neural regression collapse

In this section, we validate the emergence of NRC1-NRC3 during training across various datasets
and deep neural network (DNN) architectures.
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Datasets. The empirical experiments in this section are based on the following datasets:

• The Swimmer, Reacher, and Hopper datasets are based on MoJoCo [Todorov et al.,
2012, Brockman et al., 2016, Towers et al., 2023], a physics engine that simulates diverse
continuous multi-joint robot controls and has been a canonical benchmark for deep rein-
forcement learning research. In our experiments, we use publicly available expert datasets
(see appendix A.1). Each dataset comprises raw robotic states as inputs (xi’s) and robotic
actions as targets (yi’s). In order to put these expert datasets in an imitation learning context,
we reduced the size of the dataset by keeping only a small portion of the episodes.

• The CARLA dataset originates from the CARLA Simulator, an open-source project de-
signed to support the development of autonomous driving systems. We utilize a dataset
Codevilla et al. [2018] sourced from expert-driven offline simulations. During these simula-
tions, images (xi’s) from cameras mounted on the virtual vehicle and corresponding expert
driver actions as targets (yi’s) are recorded as human drives in the simulated environment.
We consider two dataset versions: a 2D version with speed and steering angle, and a 1D
version with only the speed.

• The UTKFace dataset [Zhang et al., 2017] is widely used in computer vision to study
age estimation from facial images of humans. This dataset consists of about 25,000 facial
images spanning a wide target range of ages, races, and genders.

Table 1 summarizes the six datasets, with the dimensions of the target vectors y ranging from one to
three. The table also includes the minimum eigenvalue of the associated covariance matrix Σ and the
Pearson correlation values between the i-th and j-th target components for i ̸= j. When n = 1, there
is no correlation value; when n = 2, there is one correlation value between the two target components;
and when n = 3, there are three correlation values among the three target components. From the
table, we observe that the target components in CARLA 2D and Reacher are nearly uncorrelated,
whereas those in Hopper and Swimmer exhibit stronger correlations.

Table 1: Overview of datasets employed in our neural regression collapse analysis.

Dataset Data Size Input Type Target Dimension n Target Correlation λmin

Swimmer 1,000 raw state 2 -0.244 0.276
Reacher 1,000 raw state 2 -0.00933 0.0097
Hopper 10,000 raw state 3 [-0.215, -0.090, 0.059] 0.215

Carla 1D 600,000 RGB image 1 NA 208.63

Carla 2D 600,000 RGB image 2 -0.0055 0.156

UTKface 25,000 RGB image 1 NA 1428

Experiment Settings. For the Swimmer, Reacher, and Hopper datasets, we employed a four-layer
MLP (with the last layer being the linear layer) as the policy network for the prediction task. Each layer
consisted of 256 nodes, aligning with the conventional model architecture in most reinforcement learn-
ing research [Tarasov et al., 2022]. For the CARLA and UTKFace datasets, we employed ResNet18
and ResNet34 He et al. [2016], respectively. To focus on behaviors associated with neural collapse and
minimize the influence of other factors, we applied standard preprocessing without data augmentation.

All experimental results are averaged over at least 2 random seeds and variance is displayed by a
shaded area. The choices of weight decay employed during training varied depending on the dataset.
Also, the number of epochs required for training depends on both the dataset and the degree of weight
decay. In particular, we used a large number of epochs when using very small weight decay values.
appendix A provides the full experimental setup.

Empirical Results. Figure 2 presents the experimental results for the six datasets mentioned above.
The results show that the training and testing errors decrease as training progresses, as expected.
The converging coefficient of determination (R2) also indicates that model performance becomes
stable. Most importantly, the figure confirms the presence of NRC1-NRC3 across all six datasets.
This indicates that neural collapse is not only prevalent in classification but also often occurs in
multivariate regression.

5



0 0.375M 0.75M 1.125M 1.5M
0.0

0.5

1.0

NR
C1

-3

Reacher
NRC1
NRC2
NRC3

0.00

0.05

0.10

0 0.375M 0.75M 1.125M 1.5M
Epoch

0.00

0.01

0.02

0.03

Mo
de

l 
Pe

rf
or

ma
nc

e

0.00

0.25

0.50

0.75
Train MSE
Test MSE
R2

0 75K 150K 225K 300K

10 8

10 4

100
Swimmer

NRC1
NRC2
NRC3

10 2

10 1

0 75K 150K 225K 300K
Epoch

0.0

0.5

1.0

0.0

0.5Train MSE
Test MSE
R2

0 25K 50K 75K 100K
0.0

0.5

1.0
Hopper

NRC1
NRC2
NRC3

0.10
0.12
0.14
0.16
0.18

0 25K 50K 75K 100K
Epoch

0.20

0.25

0.30

0.35

0.0

0.2

0.4

Train MSE
Test MSE
R2

0 20 40 60 80
0.0

0.1

0.2

0.3

NR
C1

-3

Carla 2D
NRC1
NRC2
NRC3

0.00

0.02

0.04

0.06

0 20 40 60 80
Epoch

25

50

75

100

Mo
de

l 
Pe

rf
or

ma
nc

e

0.0

0.2

0.4
Train MSE
Test MSE
R2

0 25 50 75 100
0.0

0.2

0.4

0.6
Carla 1D

NRC1
NRC2

0 25 50 75 100
Epoch

100

200

0.0

0.5
Train MSE
Test MSE
R2

0 25 50 75 100
0.0
0.2
0.4
0.6

UTKFace
NRC1
NRC2

0 25 50 75 100
Epoch

0

500

1000

0.0

0.5

1.0

Train MSE
Test MSE
R2

Figure 2: Prevalence of NRC1-NRC3 in the six datasets. Train/Test MSE and the coefficient of
determination (R2) are also shown.
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Figure 3: Explained Variance Ratio (EVR) for the first 5 principal components (PC).

We also experimentally analyze the explained variance ratio (EVR) of principal components to further
verify the collapse to the subspace spanned by the first n components. In Figure 3, we investigate
the EVR of the first 5 principal components of H during the training process. For all datasets, there
is significant variance for all of the first n components after a short period of training; for other
components, there is very low or even no variance. This also supports that a perfect collapse occurs
in the subspace spanned by the first n principal components.

Our definition of NRC3 involves finding a scaling factor γ for which the property holds. Figure 4
illustrates the values of NRC3 as a function of γ for W obtained after training. We observe that each
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dataset exhibits a unique minimum value of γ. More details about computing NRC3 can be found in
appendix A.3.
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Figure 5 investigates neural regression collapse for small values of the weight-decay parameter λWD.
(appendix A.4 contains results on all 6 datasets.) We see that when λWD = 0, there is no neural
regression collapse. However, if we increase λWD by a small amount, collapse emerges for all three
metrics. Thus we can conclude that the geometric structure NRC1-3 that emerges during training is
due to regularization, albeit the regularization can be very small. In the next section, we will introduce
a mathematical model that helps explain why there is no collapse when λWD = 0 and why it quickly
emerges as λWD is increased above zero.
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Figure 5: Phase change in neural collapse for small weight-decay values

4 Unconstrained feature model

As discussed in the related work section, the UFM model has been extensively used to help explain
the prevalence of neural collapse in the classification problem. In this section, we explore whether
the UFM model can also help explain neural collapse in neural multivariate regression.

Specifically, we consider minimizing L(H,W,b), where

L(H,W,b) =
1

2M
||WH+ b1T

M −Y||2F +
λH

2M
||H||2F +

λW

2
||W||2F , (1)

where 1T
M := [1 · · · 1] and λH, λW are non-negative regularization constants.

The optimization problem studied here bears some resemblance to the standard linear multivariate
regression problem. If we view the features hi, i = 1, . . . ,M , as the inputs to linear regression,
then ŷi := Whi + b is the predicted output, and ||yi − ŷi||22 is the squared error. In standard linear
regression, the hi’s are fixed inputs. In the UFM model, however, not only are we optimizing over
the weights W and biases b but also over all the “inputs” H.
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For the case of classification, regularization is needed in the UFM model to prevent the norms of
H and/or W from going to infinity in the optimal solutions. In contrast, in the UFM regression
model, the norms in the optimal solutions will be finite even without regularization. However, as
regularization is typically used in neural regression problems to prevent overfitting, it is useful to
include regularization in the UFM regression model as well.

4.1 Regularized loss function

Throughout this subsection, we assume that both λW and λH are strictly positive. We shall consider
the λW = λH = 0 case subsequently. We also make a number of assumptions in order to not get
distracted by less important sub-cases. Throughout we assume n ≤ d, that is, the dimension of the
targets is not greater than the dimension of the feature space. As stated in a previous subsection, for
problems of practical interest, we have n << d. Recall that Σ is the covariance matrix of the target
data. Since Σ is a covariance matrix and is assumed to have full rank, it is also positive definite. It
therefore has a positive definite square root, which we denote by Σ1/2. Let λmax := λ1 ≥ λ2 ≥
· · · ≥ λn := λmin > 0 denote the n eigenvalues of Σ. We further define the n× n matrix

A := Σ1/2 −
√
cIn, (2)

where c := λWλH. Also for any p× q matrix C with columns c1, c2, . . . , cq , we denote [C]j to be
the p× q matrix whose first j columns are identical to those in C and whose last q − j columns are
all zero vectors, i.e., [C]j = [c1 c2 · · · cj 0 · · ·0]. All proofs are provided in the appendix.

Theorem 4.1. Any global minimum (W,H,b) for (1) takes the following form: If 0 < c < λmax,
then for any semi-orthogonal matrix R,

W =

(
λH

λW

)1/4

[A1/2]j∗R, H =

√
λW

λH
WT [Σ1/2]−1(Y − Ȳ), b = ȳ, (3)

where j∗ := max{j : λj ≥ c}. If c > λmax, then (W,H,b) = (0,0, ȳ). Furthermore, if
(W,H,b) is a critical point but not a global minimum, then it is a strict saddle point.

Theorem 4.1 has numerous implications, which we elaborate on below.

4.2 One-dimensional univariate case

In this subsection, we highlight the important special case n = 1, which often arises in practice (such
as with Carla 1D and the UTKface datasets). When n = 1, Σ is simply the scalar σ2, which is the
variance of the one-dimensional targets over the M samples. Also, W is a row vector, which we
denote by w. Theorem 4.1, for n = 1 provides the following insights:

1. Depending on whether 0 < c < σ2 or not, the global minimum takes on strikingly different
forms. In the case, c > σ2, corresponding to very large regularization parameters, the
optimization problem ignores the MSE and entirely focuses on minimizing the norms ||H||2F
and ||w||22, giving ||H||2F = 0, ||w||22 = 0.

2. When 0 < c < σ2, the optimal solution takes a more natural and interesting form: For any
unit vector e ∈ Rd, the solution (H,w, b) given by

wT =

√
λH

( σ

c1/2
− 1

)
e, H =

√
λW√
λHσ

wT (Y − Ȳ), b = ȳ, (4)

is a global minimum. Thus, all vectors w on the sphere given by ||w||22 = λH( σ
c1/2

− 1)
are optimal solutions. Furthermore, hi, i = 1, . . . ,M , are all in the one-dimensional
subspace spanned by w. Thus the optimal solution of the UFM model provides a theoretical
explanation for NRC1-NRC2. (NRC3 is not meaningful for the one-dimensional case.) Note
that the hi’s have a global zero mean and the norm of hi is proportional to |yi − ȳ|.

4.3 General n-dimensional multivariate case

In most cases of practical interest, we will have c < λmin, so that [A1/2]j∗ = A1/2 in Theorem 4.1.
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Corollary 4.2. Suppose 0 < c < λmin. Then the global minima given by (3) have the following
properties:

(i) All of the d-dimensional feature vectors hi, i = 1, . . . ,M , lie in the n-dimensional subspace

spanned by the n rows of W. (ii) WWT =
√

λH

λW

[
Σ1/2 −

√
cIn

]
, (iii) λH||H||2F = MλW||W||2F ,

(iv) L(H,W,b) = nc/2 +
√
c||A1/2||2F , (v) WH+ b1T

M −Y = −
√
c[Σ1/2]−1(Y − Ȳ).

From Theorem 4.1 and Corollary 4.2, we make the following observations:

1. Most importantly, the global minima in the UFM solution match the empirical properties
(NRC1)-(NRC3) observed in Section 3. In particular, the theory precisely predicts NRC3,
with γ = c. This confirms that the UFM model is an appropriate model for neural regression.

2. Unlike the one-dimensional case, the feature vectors are no longer colinear with any of the
rows of W. Moreover, after rotation and projection (determined by the semi-orthogonal
matrix R), the angles between the target vectors in Y − Ȳ do not in general align with the
angles between the feature vectors in H. However, if the target components are uncorrelated,
so that Σ is diagonal, then A is also diagonal and there is alignment between H and Y− Ȳ.

Theorem 4.1 also provides insight into the “strong regularization” case of c > λmin. In this case, the
rows of W and the feature vectors H in the global minima belong to a subspace that has dimension
even smaller than n, specifically, to dimension j∗ < n. To gain some insight, assume that the target
components are uncorrelated so that Σ is diagonal and λj = σ2

j , i.e., σ2
j is the variance of the j-th

target component. Then for a target component for which c > σ2
j , the corresponding row in W will

be zero and the component prediction will be ŷ
(j)
i = ȳ(j) for all examples i = 1, . . . ,M . For more

details, we refer the reader to Section D.1 in the appendix.

4.4 Removing regularization

In the previous theorem and corollary, we assumed the presence or L2 regularization for W and H,
that is, we assumed λW > 0 and λH > 0. Now we explore the structure of the solutions to the UFM
when λW = λH = 0. In this case, the UFM model is modeling the real problem with λWD equal to
or close to zero. The loss function becomes:

L(W,H) =
1

2M
||WH−Y||2F . (5)

For this case, we do not need bias since we can obtain zero loss without it.
Theorem 4.3. The solution (W,H) is a global minimum if and only if W is any n × d full rank
matrix and

H = W+Y + (Id −W+W)Z, (6)
where W+ is the pseudo-inverse of W and Z is any d×M matrix. Consequently, when there is no
regularization, for each full-rank W there is an infinite number of global minima (W,H) that do
not collapse to any subspace of Rd.

From Theorem 4.3, when there is no regularization, the feature vectors do not collapse. Moreover, any
full rank W provides an optimal solution. For example, for n = 2, the two rows of W can have any
angle between them except angle 0 and angle 180. This is very different from the results we have for
λH, λW > 0, in which case W depends on the covariance matrix Σ. Note that if we set λH = λW

and let λH → 0, then the limit of W still depends on Σ. Thus there is a major discontinuity in the
solution when λH, λW goes to zero. We also observed this phase shift in the experiments (see Figure
5). We can therefore conclude that neural regression collapse is not an intrinsic property of neural
regression alone. The geometric structure of neural regression collapse is due to the inclusion of
regularization in the loss function.

4.5 Empirical results with UFM assumptions

We also provide empirical results for the case when we train with the same form of regularization as
assumed by the UFM model. Specifically, we turn off weight decay and add an L2 penalty on the
last-layer features hi, i = 1, . . . ,M , and on the layer linear weights W. Additionally, we omit the
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ReLU activation function in the penultimate layer, allowing the feature representation produced by
the feature extractor to take any value, thus reflecting the UFM model. For these empirical results,
when evaluating NRC3, rather than searching for γ as in the definition of NRC3, we use the exact
value of γ given by Theorem 4.1, that is, γ = λWλH = c.

0 5K 10K

0.034

0.036

0.038

0.040

0.042

0.044

Tr
ai

n 
M

SE

Train MSE

Sw
im
me
r

0 5K 10K
0.0

0.2

0.4

0.6

NR
C1

NRC1

0 5K 10K
0.0

0.2

0.4

0.6

0.8

1.0

NR
C2

NRC2

0 5K 10K
0.00

0.05

0.10

0.15

0.20

0.25

NR
C3

NRC3

WD = 1e 2
WD = 1e 3
WD = 1e 4
WD = 1e 5
WD = 0

0 50
Epoch

0

20

40

60

80

100

Tr
ai

n 
M

SE
Ca
rl
a 
2D

0 50
Epoch

0.2

0.4

0.6

NR
C1

0 50
Epoch

0.10

0.15

0.20

0.25

0.30

NR
C2

0 50
Epoch

0.00

0.05

0.10

0.15

0.20

NR
C3

WD = 1e 1
WD = 1e 2
WD = 5e 3
WD = 5e 4
WD = 0

Figure 6: Empirical results with UFM assumption where L2 regularization on H and W are used
instead of weight decay.

Figure 6 illustrates training MSE and NRC metrics for varying values of c. (For simplicity, we only
considered the case where λW = λH. Appendix B contains results on remaining datasets.) As we
are considering a different model and loss function for these empirical experiments, convergence
occurs more quickly and so we train for a smaller number of epochs. We can conclude that the
UFM theory not only accurately predicts the behavior of the standard L2 regularization approach
with weight-decay for all parameters (Figure 5), but also accurately predicts the behavior when
regularization follows the UFM assumptions (Figure 6).

5 Conclusion

We provided strong evidence, both empirically and theoretically, of the existence of neural collapse
for multivariate regression. This extension is significant not only because it broadens the applicability
of neural collapse to a new category of problems but also because it suggests that the phenomena of
neural collapse could be a universal behavior in deep learning. However, it is worth acknowledging
that while we have gained a better understanding of the model behavior of deep regression models
in the terminal phase of training, we have not addressed the connection between neural regression
collapse and model generalization. This crucial aspect remains an important topic for future research.
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A Experimental details for Section 3.2

A.1 MuJoCo

For Reacher and Swimmer environments, the datasets come from an open-source repository [Gal-
louédec et al., 2024] and contain expert data collected by a policy trained by PPO [Schulman et al.,
2017]. The hopper dataset is part of the D4RL datasets [Fu et al., 2020], a well-acknowledged bench-
mark for offline reinforcement learning research. Table 2 summarizes all model hyperparameters and
experimental settings used in section 3.2. In all experiments, we train the models long enough so that
the model weights converge. We provide more details below about the MuJoCo datasets employed
and some hyperparameter settings depending on each dataset.

Table 2: Hyperparameter settings for experiments with weight decay on MuJoCo datasets.

Hyperparameter Value

Number of hidden layers 3
Model Architecture Hidden layer dimension 256

Activation function ReLU
Number of linear projection layer (W) 1

Epochs 1.5e6, Reacher
1e6, Swimmer
2e5, Hopper

Batch size 256
Optimizer SGD
Learning rate 1e-2

Training Weight decay 1.5e-3, Reacher
1e-2, Swimmer
1e-2, Hopper

Seeds 0, 1, 2
Compute resources Intel(R) Xeon(R) Platinum 8268 CPU
Number of CPU compute workers 4
Requested compute memory 16 GB
Approximate average execution time 16 hours

MuJoCo environment descriptions We use expert data obtained from Gallouédec et al. [2024] and
Fu et al. [2020] for the Reacher, Swimmer, and Hopper environments. Reacher is a robot arm with
two joints; the goal of this environment is to control the tip of this arm to reach a randomly generated
target point in a 2-dimensional plane. Swimmer is a linear-chain-like robot with three different body
parts connected by two rotors; the goal of Swimmer is to move forward on a 2-dimensional plane as
fast as possible. Similarly, Hopper is a 2-dimensional one-legged robot with four body parts, and
the goal is to hop forward as fast as possible. All three simulated robots are controlled by applying
torques on the joints connecting the body parts. Those torques are therefore the actions. In creating
the datasets, online reinforcement learning was used to find expert policies [Gallouédec et al., 2024,
Fu et al., 2020]. To generate the offline expert datasets, the expert policy is then applied to the
environment to generate episodes consisting of states xi and actions (that is, targets) yi. The state xi

includes robot positions, and angle, velocity, and angular velocity of all robot joints, and the targets
yi include the torques on joints.

Low data regime Using regularized regression to train a neural network with expert state-action
data is often referred to as imitation learning. In this paper, we follow the common practice of using
relatively small MLP architectures for the MuJoCo environments [Tarasov et al., 2022]. In imitation
learning, it is desirable to learn a good policy with as little expert data as possible. We therefore
train the models with subsets of the expert data in the datasets for each of the three environments.
Specifically, we use 20, 1, and 10 episodes (complete expert demonstrations) for Reacher, Swimmer,
and Hopper, respectively. This corresponds to 1,000, 1,000, and 10,000 data points for the three
environments, respectively. For each environment, we also take a subset of the full validation (test)
dataset and keep the number of data 20% of training data size. As we are using fewer full expert
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demonstrations for Swimmer, we increase the weight decay value to further mitigate overfitting in
this case.

A.2 CARLA and UTKface

The Carla dataset is collected by recording surroundings via automotive cameras, while a human
driver operates a vehicle in a simulative urban environment [Codevilla et al., 2018]. The recorded
images are states xi of the vehicle and the expert control from the driver, which includes speed and
steering angles, serves as actions yi ∈ [0, 85] × [−1, 1] in the dataset. A well-trained model on
this dataset is expected to drive the vehicle safely in the virtual environment. The UTKface dataset
consists of full-face photographs xi of humans whose ages range from 1 to 116 [Zhang et al., 2017].
The goal of this dataset is to accurately predict the age yi of the person in each photo.

In both cases, ResNet network [He et al., 2016] is employed as the model backbone to extract image
features. And the full dataset is used for training both models, as learning a good feature extractor
from visual inputs requires a large number of images [He et al., 2016, Sun et al., 2017]. To adapt
ResNet architecture, a native of classification tasks, to regression tasks, we replace the last layer
classifier with a fully connected layer to map learned features to the continuous targets. Depending
on the task complexity, we select ResNet18 for Carla and ResNet34 for UTKface. The experimental
setup for CARLA 1D/2D and UTKface datasets are summarized in Table 3.

Table 3: Hyperparameters of ResNet for Carla and UTKface datasets.

Hyperparameter Value

Backbone of hidden layers ResNet18, Carla
Architecture ResNet34, UTKface

Last layer hidden dim 512
Final layer activation function ReLU

Epochs 100
Batch size 512
Optimizer SGD
Momentum 0.9
Learning rate 0.001

Training Multistep_gamma 0.1
Seeds 0, 1
Compute resources NVIDIA A100 8358 80GB
Number of compute workers 8
Requested compute memory 200 GB
Approximate average execution time 42 hours

A.3 Computing NRC3

For univariate regression, note that WWT = ||w||22, and Σ1/2 − γ1/2In = σ − γ1/2, where w is a
vector of the final linear layer of the model; σ is the standard deviation of the one-dimensional targets.
Thus, NRC3 is trivially zero. Alternatively, to align with the theory in Section 4.2, one may define
one-dimensional NRC3 as:

NRC3 =
∣∣∣||w||22 − γ2(σ − γ

1/2
1 )

∣∣∣2 → 0,

for some γ1 ∈ (0, λmin) and γ2 > 0. However, this is also trivially true, e.g. for any γ1 ∈ (0, σ2)

(note that λmin = σ2) and γ2 = ||w||22(σ−γ
1/2
1 )−1 after parameters w become stable. Therefore, we

found NRC3 for univariate regression to be not as meaningful, and therefore omitted the corresponding
plots.

For multivariate regression, we run all experiments long enough in order to ensure that the training
has entered the terminal phase of training as measured by R2 (see Figure 2). After training, we
extract the W matrix and identify γ that minimizes NRC3 for that specific W. This γ was then used
to compute the NRC3 metric for all W matrices during training, resulting in the NRC3 curves shown
in Figure 2. Figure 4 visualizes NRC3 as a function of γ for the final trained W.
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In Appendix F, we show that under a condition that is satisfied if λWD is reasonably large, a non-
normalized version of NRC3, see (32), is convex and it has a unique minimum. Since we employ
relatively large weight decay for experiments in Figure 2, the condition of Theorem F.1 is satisfied,
and thus Figure 4 displays a unique optimal γ for all datasets.

A.4 Results for small weight decay

Figure 7 and Figure 8 include results on studying small weight decay values for all datasets. When
weight decay approaches zero, NRC1-3 typically become larger, compared with NRC1-3 obtained
with larger weight decay values.

Particularly, when there is no weight decay, we observe that NRC1-3 has a strong tendency to
converge (There is a relatively small amount of collapse since gradient descent tends to seek solutions
with small norms.), while the test MSE increases on small MuJoCo datasets. Theorem 4.3 provides
some insight: when there is no regularization, there is an infinite number of non-collapsed optimal
solutions under UFM; whereas Theorem 4.1 shows that when there is regularization, all solutions are
collapsed. When there is regularization, we are seeking a small norm optimal solution, which leads
to NRC1-3.
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Figure 7: Train/Test MSE, R2, and NRC1-3 under different weight decays for MuJoCo datasets.
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Figure 8: Train/Test MSE, R2, and NRC1-3 under different weight decays for Carla and UTKFace
datasets.
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B Additional experimental results

In this section, we delve into additional experiments aimed at further exploring the phenomena of
neural regression collapse.

Complete experiments under UFM assumption As studied in Section 4.5, we run experiments
that align with the UFM assumption and verify the theoretical NRC1-3. In addition to the L2
regularization on both H and W, the model thus is empowered with more expressive learned feature
H, e.g. removing ReLU in the penultimate layer to allow negative feature values and incorporating
more training data. Complete results for all six datasets are shown in Figure 9. As we can see,
NRC1-3 do not converge to very low values as is when regularization is stronger. This confirms our
NRC theory in Section 4 and also corresponds to the results observed in Figure 7 and Figure 8 where
we apply weight decay to all model parameters in practice.
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Figure 9: Empirical results with UFM assumption where L2 regularization on H and W are used
instead of weight decay for all six datasets.

Norms of H and W As demonstrated in Corollary 4.2(iii), the norms of the last layer weight
matrix and the feature matrix depend on the ratio of regularization parameters λH/λW. In Figure
10, we empirically demonstrate how the regularization parameters impact the norms of the last layer
weight matrix and the feature matrix. Specifically, we fixed λW = 0.01 and varied the value of λH.
We observe that with increasing λH, the feature norm monotonically decreases, and the norms of the
rows of the weight matrix monotonically increase, which is consistent with our theoretical result.

Connection to whitening In statistical analysis, whitening (or sphering) refers to a common
preprocessing step to transform random variables to orthogonality. A whitening transformation
(or sphering transformation) is a linear transformation that transforms a set of vectors of random
variables with a known covariance matrix into a new set of vectors of random variables such that the
components of the transformed vectors are uncorrelated and have unit variances. The transformation
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Figure 10: Comparison of the norms of W and H with fixed λW and varying λH. The columns from
left to right represent the model’s average feature norm and the norms for w1 and w2, respectively.
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Figure 11: Residual errors ε(2) versus ε(1) for both the randomly initialized model and the trained
model after convergence on the Reacher dataset. The color of the points indicates the ratio z(2)/z(1).

is called “whitening” because it changes the input vector to white noise. Due to rotational freedom,
there are infinitely many possible whitening methods, and consequently there is a diverse range
of whitening procedures in use such as PCA whitening, Cholesky whitening, and Mahalonobis or
zero-phase component analysis (ZCA) whitening among others. In the latter, the matrix used for the
procedure of whitening is WZCA = [Σ1/2]−1, where Σ is the covariance matrix of the original data.
Interestingly, WZCA is obtained as the whitening transformation that minimizes the MSE between
the original and the whitened data, which is appealing since in many applications, it is desirable
to remove correlations with minimal additional adjustment, with the aim that the transformed data
remains as similar as possible to the original data.

From Corollary 4.2(v), we get the residual error of the regression model, E ∈ Rn×M , which can be
formulated as

E = −
√
c[Σ1/2]−1(Y − Ȳ).

The residual error matrix is proportional to the ZCA-whitened centered target matrix. If we denote
the ZCA-whitened target matrix by

ZZCA = [Σ1/2]−1(Y − Ȳ),

we have that
M−1ZZCA(ZZCA)T = In.

As a consequence, the residual error matrix can be represented as E = −
√
cZZCA, from which a

significant implication arises. After the model converges, the residual error matrix will be mean zero
white noise with sample covariance matrix given by M−1EET = cIn, i.e., the errors are uncorrelated
across the n target dimensions and each has variance equal to c.
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For any given sample, upon examining individual dimensions, it becomes apparent that the j-th
dimension of the residual error, ε(j), is proportional to the j-th dimension of the standardized
target variable z(j). We trained a 4-layer MLP model on the Reacher dataset for which the target
variable is 2-dimensional to validate the above-mentioned properties. We created scatter plots of
the residual error ε(2) versus ε(1) for both the randomly initialized model and the trained model
after convergence. Figure 11 illustrates these scatter plots, with the color of the samples indicating
z(2)/z(1). As observed from the plot, after the model converges, the residual errors reduce to white
noise. Additionally, from the right plot (for the model after convergence), we observe that the plot
exhibits a circular pattern where the color of the samples gradually changes as they move from
one quadrant to another. This indicates the consistency between ε(2)/ε(1) and z(2)/z(1), which is
consistent with the result in Corollary 4.2(v).
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C Supplementary lemmas

Let us recall the form of the objective:

L(H,W,b) =
1

2M
||WH+ b1T

M −Y||2F +
λH

2M
||H||2F +

λW

2
||W||2F , (7)

where 1T
M = [1 · · · 1] and λH, λW > 0 regularization constants.

In Lemma C.1, we demonstrate that if (H,W,b) is critical for (7), then W can be written as a
closed-form function of H and the residual error. In an analogous way, H can be written as a
closed-form function of W and the residual error. Furthermore, b = ȳ, where ȳ is the mean of the
targets. In addition, we provide the identity that connects the matrix norms of the two, see (iii) below.
Lemma C.1. i) If (H,W,b) is a critical point of (7), then

H = −λ−1
H WT (WH+ Ȳ −Y),

W = −
λ−1
W

M
(WH+ Ȳ −Y)HT ,

b = ȳ.

ii) If (H,W,b) is a critical point of (7), for fixed (H,W), b = ȳ minimizes L(H,W,b).
iii) λH||H||2F = MλW||W||2F .

Proof. i) To prove the first part of the lemma, we will proceed by equating to zero the gradients w.r.t.
the variables of the optimization objective L. Those can be written in the form of a matrix in the
following way:

∂L
∂H

= WT 1

M
(WH+ b1T

M −Y) +
λH

M
H, (8)

∂L
∂W

=
1

M
(WH+ b1T

M −Y)HT + λWW, (9)

∂L
∂b

=
1

M
(WH+ b1T

M −Y)1M . (10)

We set ∂L
∂b = 0 in (10) and observe that

b =
1

M
(Y −WH)1M =

Y1M

M
−W

H1M

M
= ȳ −Wh̄, (11)

recalling that ȳ = M−1
∑M

i=1 yi and h̄ = M−1
∑M

i=1 hi.

We set ∂L
∂W = 0 in (9) and observe that

λWW = − 1

M
(WH+ b1T

M −Y)HT . (12)

We set ∂L
∂H = 0 in (8) and observe that

λHH = −WT (WH+ b1T
M −Y), (13)

λHhi = −WT (Whi + b− yi), ∀i = 1, ..,M, (14)

λHh̄ = −WT (Wh̄+ b− ȳ). (15)

We derived (15) by summing both sides of (14) over i, and subsequently dividing them by M .
Substituting b for ȳ −Wh̄, see (11), we get

h̄ = 0, b = ȳ. (16)

Thus, combining (12), (13), and (16) completes the first part of the proof of i).

ii) If (H,W,b) is a critical point of (7), noting that for fixed (H,W), the objective L(H,W,b) is
convex w.r.t. b, readily yields that b = ȳ minimizes L(H,W,b).
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iii) Let us now verify that λH||H||2F = MλW||W||2F . If (H,W,b) is a critical point, then
∂L
∂H

HT −WT ∂L
∂W

= 0. (17)

Recalling the first-order gradients of L w.r.t. H and W respectively, see (8) and (9), and substituting
those in (17), implies[

WT 1

M
(WH+ Ȳ −Y) +

λH

M
H

]
HT = WT

[
1

M
(WH+ Ȳ −Y)HT + λWW

]
,

which gives
λH

M
HHT = λWWTW.

By definition,
λH

M
||H||2F =

λH

M
tr(HTH) =

λH

M
tr(HHT ) = λWtr(WTW) = λW||W||2F ,

and this establishes the assertion λH||H||2F = MλW||W||2F .

Next, we touch upon various implications of Theorem 4.1 in the case when 0 < c < λmin, so that
[A1/2]j∗ = A1/2, where

A = Σ1/2 −
√
cIn. (18)

For convenience, let us break the form of a global minimum (H,W,b), see (3), into three parts.

W =

(
λH

λW

)1/4

A1/2R, (19)

H =

(
λW

λH

)1/4

RTA1/2[Σ1/2]−1(Y − Ȳ), (20)

b = ȳ, (21)

where R ∈ Rn×d is semi-orthogonal, i.e., RRT = In. In the following lemma, we demonstrate that
the residual error is a rescaled version of the centered targets, the value of the loss function at the
global minimum can be computed directly by invoking the value of c and the matrix norm of A1/2.
Lemma C.2. Suppose 0 < c < λmin. For a global minimum (H,W,b) of (7), we have that the
residual error takes the following form:

WH+ Ȳ −Y = −
√
c[Σ1/2]−1(Y − Ȳ),

Moreover, the value of the loss function L at the global minimum is calculated as

L(H,W,b) =
nc

2
+
√
c||(Σ1/2 −

√
cIn)

1
2 ||2F .

Proof. By (19)-(21), for the first assertion,
WH+ Ȳ −Y = A1/2RRTA1/2[Σ1/2]−1(Y − Ȳ)− (Y − Ȳ)

=
[
A[Σ1/2]−1 − In

]
(Y − Ȳ)

= −
√
c[Σ1/2]−1(Y − Ȳ),

noting, for the first equality, that RRT = In, A1/2A1/2 = A. For the third equality, see (18).
Therefore,

1

M
(WH+ Ȳ −Y)(WH+ Ȳ −Y)T = c[Σ1/2]−1Σ[Σ1/2]−1 = cIn. (22)

Using Lemma C.1(iii) and (22), we deduce

L(H,W,b) =
nc

2
+ λW||W||2F =

nc

2
+ λW

√
λH

λW
tr(A) =

nc

2
+
√
c||A1/2||2F ,

which completes the proof of the lemma.

The proof of Corollary 4.2 directly follows:
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C.1 Proof of corollary 4.2

(i) is derived in the proof of Lemma C.1, see (14) and (16). It is also easy to derive them from the
form of H as given in (3). (ii) follows by the form W, see (3). By Lemma C.1(iii) and Lemma C.2,
(iii)-(v) follow immediately.

D Proof of theorem 4.1

The proof of Theorem 4.1 leverages [Zhou et al., 2022a, Lemma B.1]. For clarity, we now restate
their lemma in our notation.
Lemma D.1. [Zhou et al., 2022a, Lemma B.1] For n, d,M with d ≥ n, and Ỹ := Y− Ȳ ∈ Rn×M

with SVD given by Ỹ = UΣ̃V T =
∑n

i=1 σiuiv
T
i , where σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 are the singular

values, the following problem

min
H∈Rd×M ,W∈Rn×d

L(H,W, ȳ)

is a strict saddle function with no spurious local minima, in the sense that
i) Any local minimum (H,W, ȳ) of (7) is a global minimum of (7), with the following form

WH = U [Σ̃−
√
MλWλHIn]+V

T .

Correspondingly, the minimal objective value of (7) is

L(H,W, ȳ) =
1

2

n∑
i=1

(ηi − σi)
2 +

√
MλWλH

n∑
i=1

ηi,

where ηi := ηi(λH, λW) is the i-th diagonal entry of [Σ̃−
√
MλWλHIn]+.

ii) Any critical point (H,W, ȳ) that is not a local minimum is a strict saddle point with negative
curvature, i.e., the Hessian at this critical point has at least one negative eigenvalue.

Let Ỹ = Y − Ȳ = UΣ̃V T =
∑n

i=1 σiuiv
T
i , denote the compact SVD of Ỹ ∈ Rn×M , where

σ1 ≥ σ2 ≥ · · · ≥ σn > 0 are the singular values, and Σ̃ ∈ Rn×n is diagonal, containing the
aforementioned singular values. Furthermore, U ∈ Rn×n, V ∈ RM×n are orthogonal and semi-
orthogonal respectively, i.e., UUT = UTU = In and V TV = In respectively. For the proof, recall
the value of c = λWλH.

Proof of Theorem 4.1. Let (H,W, ȳ) be a global minimum of (1). By Lemma D.1, (H,W, ȳ) has
the following form:

WH = U [Σ̃−
√
McIn]+V

T . (23)

In light of Lemma C.1 and the identity λH||H||2F = MλW||W||2F , from (23), we have that

W =

(
λH

MλW

)1/4

U [Σ̃−
√
McIn]

1
2
+R, (24)

H =

(
MλW

λH

)1/4

RT [Σ̃−
√
McIn]

1
2
+V

T , (25)

for all R ∈ Rn×d such that RRT = In. Furthermore, using the SVD of Ỹ = UΣ̃V T ,

Σ =
ỸỸT

M
= U

Σ̃√
M

V TV
Σ̃√
M

UT = U

[
Σ̃√
M

]2

UT ,

which deduces Σ1/2 = U Σ̃√
M
UT . Since UT = U−1, this further yields

√
M [Σ1/2 −

√
cIn] = U

[
Σ̃−

√
McIn

]
U−1, (26)

which implies that the matrices
√
M [Σ1/2 −

√
cIn] and Σ̃−

√
McIn are similar. As a result, they

have the same eigenvalues. The n× n matrix on the left-hand side of (26) has eigenvalues given by
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√
Mλi −

√
Mc, i = 1, ..., n, where λi is the i-th eigenvalue (in descending order) of Σ whereas

σi −
√
Mc, i = 1, ..., n are the (ordered) diagonal elements of the n× n matrix on the right-hand

side of (26). So, √
λi =

σi√
M

, for all i = 1, ..., n. (27)

Case I: If 0 < c < λmin, then by (27), it is the case that σi >
√
Mc, ∀i, and thus [Σ̃−

√
McIn]

1
2
+ =

[Σ̃−
√
McIn]

1
2 . By (26),

U [Σ̃−
√
McIn]

1
2 = M1/4[Σ1/2 −

√
cIn]

1
2U, (28)

and thus (24) becomes

W =

(
λH

λW

)1/4

[Σ1/2 −
√
cIn]

1
2 R̃,

for R̃ := UR ∈ Rn×d semi-orthogonal. The first assertion of the theorem follows by recalling the
definition of A =

[
Σ1/2 −

√
cIn

]
.

For the second assertion of the theorem, it remains to observe that

[Σ1/2]−1Ỹ =
√
MUΣ̃−1UTUΣ̃V T =

√
MUV T .

So, V T = M−1/2UT [Σ1/2]−1Ỹ, and from (25), we get

H =

(
λW

λH

)1/4

RTM−1/4[Σ̃−
√
McIn]

1
2UT [Σ1/2]−1Ỹ

=

(
λW

λH

)1/4

R̃T [Σ1/2 −
√
cIn]

1
2 [Σ1/2]−1(Y − Ȳ)

=

√
λW

λH
WT [Σ1/2]−1(Y − Ȳ),

where the second equality follows from (28).
Case II: If c > λmax, then by (27), it is the case that σi <

√
Mc, ∀i, and thus [Σ̃−

√
Mc]

1
2
+ = 0. By

(24) and (25), (H,W, ȳ) = (0,0, ȳ) as desired.
Case III: If λmin < c < λmax, by (27), it is the case that

[σi −
√
Mc]+ =

{
σi −

√
Mc, if i ≤ j∗

0, otherwise,

where j∗ = max{j : λj ≥ c}, and thus [Σ̃−
√
Mc]

1
2
+ = [Σ̃−

√
Mc]

1
2
j∗ . By (26),

U
[
Σ̃−

√
McIn

]1/2
j∗

= M1/4

[[
Σ1/2 −

√
cIn

] 1
2

]
j∗
U, (29)

and thus (24) becomes

W =

(
λH

λW

)1/4 [[
Σ1/2 −

√
cIn

] 1
2

]
j∗
R̃,

for R̃ := UR ∈ Rn×d semi-orthogonal. The first assertion of the theorem follows by recalling the
definition of A =

[
Σ1/2 −

√
cIn

]
.

For the second assertion of the theorem, it remains to observe that

[Σ1/2]−1Ỹ =
√
MUΣ̃−1UTUΣ̃V T =

√
MUV T .

So, V T = M−1/2UT [Σ1/2]−1Ỹ, and from (25), we get

H =

(
λW

λH

)1/4

RTM−1/4
[
Σ̃−

√
McIn

] 1
2

j∗
UT [Σ1/2]−1Ỹ

=

(
λW

λH

)1/4

R̃T

[[
Σ1/2 −

√
cIn

] 1
2

]
j∗
[Σ1/2]−1(Y − Ȳ)

=

√
λW

λH
WT [Σ1/2]−1(Y − Ȳ),
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where the second equality follows from (29).

D.1 Examples for theorem 4.1 (uncorrelated target components)

In this subsection, we examine closely the case when n = 3 and the target components are uncorre-
lated. This simplifies considerably the problem as now the covariance matrix Σ is a diagonal matrix
with entries given (in order) by σ2

j , where σ2
j denotes the variance of the j-th target component, for

j = 1, 2, 3. The unique positive definite and symmetric matrix A1/2, see (18), is given by

A1/2 =

(σ1 −
√
c)

1
2 0 0

0 (σ2 −
√
c)

1
2 0

0 0 (σ3 −
√
c)

1
2

 . (30)

Without loss of generality, assume that σmax := σ1 ≥ σ2 ≥ σ3 := σmin > 0.

• If 0 < c < σ2
min = σ2

3 , by Theorem 4.1, j∗ = 3, and therefore any global minimum
(H,W,b) of (7) takes the following form:

W =

(
λH

λW

)1/4

A1/2R, H =

√
λW

λH
WT [Σ1/2]−1(Y − Ȳ), b = ȳ,

for any semi-orthogonal matrix R ∈ R3×d. The form of A1/2, see (30), readily yields

wT
j =

√
λH

( σj

c1/2
− 1

)
ej , j = 1, 2, 3,

c.f., (4), where {ej : j = 1, 2, 3} is any collection of vectors lying in Rd such that ej is a
unit vector, for all j = 1, 2, 3, and ek is orthogonal to ek′ , for all k ̸= k′.
To interpret the landscape of global minima in the case when the target components are
uncorrelated, the UFM “forces” the angle between the weight matrix rows to be π/2 (fixes
the weight matrix rows to be orthogonal). Then, the configuration of the bwj’s is exactly
as in the 1-dimensional target case, that is those are restricted to lie on spheres of certain
radiuses. The feature vector hi that corresponds to the i-th training example is then on the
3-dimensional subspace spanned by w1, w2 and w3.

• If σ2
min < c < σ2

max, by Theorem 4.1, j∗ = 1 or j∗ = 2. We analyze the latter, in which case
c < σ2

1 , c < σ2
2 but c > σ2

3 . By Theorem 4.1, any global minimum (H,W,b) of (7) takes
the form below:

W =

(
λH

λW

)1/4

[A1/2]2∗R, H =

√
λW

λH
WT [Σ1/2]−1(Y − Ȳ), b = ȳ,

for any semi-orthogonal matrix R ∈ R3×d. The form of [A1/2]2∗, see (30), readily yields

wT
j =

√
λH

( σj

c1/2
− 1

)
ej , j = 1, 2,

wT
3 = 0,

c.f., (4), where e1, e2 ∈ Rd unit vectors orthogonal to each other. It is also worth mentioning
that

hi =

√
λW

λH

[
wT

1 wT
2 0

]
[Σ1/2]−1(yi − ȳ)

=

√
λW

λH

[
(y

(1)
i − ȳ(1))

σ1
wT

1 +
(y

(2)
i − ȳ(2))

σ2
wT

2

]
,

for all i = 1, ...,M . In other words, for fixed i, the feature vector hi lies on span{wT
1 ,w

T
2 }.

Moreover, the previous formula indicates that the inner product between hi and wT
j is

proportional to the j-th standardized target component.
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The analysis of the case j∗ = 1, i.e., c < σ2
1 but c > σ2

2 , c > σ2
3 is analogous, therefore we

just record the form of the wj’s and hi’s, omitting any further details:

wT
1 =

√
λH

( σ1

c1/2
− 1

)
e, wT

2 = wT
3 = 0,

hi =

√
λW

λH

(y
(1)
i − ȳ(1))

σ1
wT

1 ,

for all i = 1, ...,M . In other words, for fixed i, the feature vector hi is colinear with wT
1 .

• If c > σ2
max = σ2

1 , by Theorem 4.1, (H,W,b) = (0,0, ȳ).

E Proof of theorem 4.3 (no regularization)

We first show
min
W,H

L(W,H) = 0

Clearly L(W,H) ≥ 0 for all W and H. Now consider any fixed n×d matrix W with rank(W) = n.
Since W has rank n, {Wh : h ∈ Rd} = Rn. Thus there exists hi ∈ Rd such that Whi = yi

for all i = 1, . . . ,M . Let H = [h1 · · ·hM ]. For this W and H we have L(W,H) = 0. Thus
minW,H L(W,H) = 0.

Now let W be any n×d matrix with full rank n, and consider the set of H that satisfy L(W,H) = 0
w.r.t. this W. This is a standard least squares problem for which the solution is well known:

H = W+Y + (Id −W+W)Z (31)

where W+ is the pseudo-inverse of W and Z is any d×M matrix.

To complete the proof, we need to show that if rank(W) < n, then W cannot be part of an optimal
solution for L(W,H). Suppose rank(W) < n. Wh = y only has a solution if y lies in the column
space of W. Thus L(H,W) = 0 only if y1, . . . ,yM all lie in the column space of W. Since
rank(Y) = n and rank(W) < n, there will be at least one yi that is not in column space of W. Thus
for this yi there is no hi such that Whi = yi. Thus for this yi we will have (yi − Whi)

2 > 0,
implying W cannot be part of an optimal solution W,H.

Finally, we note from (6) that a column h in H is the sum of two vectors, with the first vector lying
in the row space of W and the second vector lying in the (orthogonal) null space of W. Since W
has full rank, this implies that the columns of H can span all of Rd.

F Proof of the uniqueness of γ

Mathematically, we can show that, under a condition that is satisfied if λWD is reasonably large,

NRC3(γ) :=
∣∣∣∣∣∣WWT −Σ1/2 + γ1/2In

∣∣∣∣∣∣2
F
, (32)

as given in the definition of NRC3, without normalizing the Gram matrix of W and Σ1/2 − γ1/2In,
is convex and it has a unique minimum.

Theorem F.1. If
tr(Σ1/2) > tr(WWT ),

NRC3(γ), as given in (32), is minimized at

γ∗ :=

[
tr(Σ1/2)− tr(WWT )

n

]2
.

Moreover,

NRC3(γ∗) =

∣∣∣∣∣∣∣∣(WWT − tr(WWT )

n
In

)
−

(
Σ1/2 − tr(Σ1/2)

n
In

)∣∣∣∣∣∣∣∣2
F

.
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Proof. Expanding the squared matrix norm appearing in the definition of NRC3(γ), it is necessary
and sufficient to minimize

f(γ) := 2γ1/2
[
tr(WWT )− tr(Σ1/2)

]
+ nγ,

which has first and second derivatives given by

f ′(γ) =
tr(WWT )− tr(Σ1/2)

γ1/2
+ n,

f ′′(γ) =
tr(Σ1/2)− tr(WWT )

2γ3/2
.

Since tr(Σ1/2) > tr(WWT ), by the 2nd derivative test, f , and consequently NRC3(γ), is convex
with unique minimum achieved at

γ∗ :=

[
tr(Σ1/2)− tr(WWT )

n

]2
.

28



NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the abstract, we claim to empirically demonstrate the phenomenon of
Neural Regression Collapse as discussed in Section 3.2, and then we provide a theoretical
explanation from the perspective of the Unconstrained Feature Model, see Section 4 and
Appendix B,C,D. Thus, we show that the phenomena of neural collapse could be a universal
behavior in deep learning both empirically and theoretically.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Section 5, we point out that our explanation of neural regression collapse
doesn’t have implications for model generalization.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g.„ independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when the image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: In Section 4 and Appendix B,C,D, E, we provide full set of assumptions and
proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in the appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In Sections 3.2 and Appendix A, we provide a comprehensive description of the
experimental setup, including detailed information on the datasets used, model architectures,
and hyperparameter settings. This detailed disclosure ensures that other researchers can
reliably reproduce the experimental results and validate the claims made in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g.„ in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g.„ a large language model), then there

should either be a way to access this model for reproducing the results or a way to
reproduce the model (e.g.„ with an open-source dataset or instructions for how to
construct the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g.„ to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We upload the code with environment in the supplemental materials. The
datasets used are all open-source datasets.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g.„ for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g.„ data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In Sections 3.2 and Appendix A, we provide a comprehensive description of the
experimental setup, including detailed information on the datasets used, model architectures,
and hyperparameter settings. More details can be found in the code in the supplemental
materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]
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Justification: All the results are reported in terms of learning curves, and each figure includes
many plots, so error bars are not reported. But we do run the experiments multiple times
and observe very similar performance in terms of NRC, testing loss, etc.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g.„ Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g., negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In Appendix A, we provide the details for computation resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g.„ preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We are sure that the research presented in this paper adheres to the NeurIPS
Code of Ethics in all respects.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g.„ if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper mainly focuses on showing and understanding the neural regression
collapse phenomena observed in practical neural networks and unconstrained feature models.
No potential negative societal impact is expected of this work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g.„ disinformation, generating fake profiles, surveillance), fairness considerations
(e.g.„ deployment of technologies that could make decisions that unfairly impact
specific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g.„ gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g.„ pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g.„ code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All the owner of assets are properly cited in the reference and main body of
our paper.
Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g.„ CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g.„ website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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