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Abstract
The selection of a machine-learning (ML) algo-
rithm is indispensable for tabular AutoML train-
ing. Finding an optimized algorithm from a search
space can be expensive for large tabular datasets,
especially under time constraints. In this study,
we introduce a novel Regression-Stratified Sam-
pling approach that optimizes algorithm selection
by minimizing distribution distance between a
subset of data and the target variable(s) in the
full-scale dataset via Probability Density Function
(PDF). Additionally, we introduce a PDF Energy
metric, based on relative entropy, to identify an
optimized ML algorithm from the search space.
Our comprehensive evaluation results demon-
strate that the proposed approach successfully se-
lects optimized algorithms from a search space of
atomic and ensemble models, outperforming sim-
ple random sampling methods. We also conduct
a thorough evaluation against Kullback-Leibler
(KL) divergence, where the PDF Energy metric
proves superior in algorithm selection. Further-
more, we validate our approach for ML algorithm
selection in an end-to-end scenario across 31 pub-
lic datasets using 6 tabular AutoML tools. The em-
pirical results indicate that our proposed method
efficiently utilizes Regression-Stratified Sampling
and reliably identifies an optimized machine learn-
ing algorithm for tabular data through the PDF
Energy metric under time constraints.

1. Introduction
An Automated Machine Learning (AutoML) platform aims
to automate the entire process of feature engineering,
data engineering (Milo & Somech, 2020), hyperparame-
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ter optimization, model training, prediction, and deploy-
ment, where it requires minimal human supervision at all
stages (He et al., 2021). One of the popular applications of
AutoML platforms is tabular (structured) datasets for clas-
sification and regression tasks (Chui et al., 2018). Tabular
AutoML can be used in diverse domains, such as material
science (Conrad et al., 2022), healthcare domains (Mustafa
& Rahimi Azghadi, 2021) and many other domains (Santu
et al., 2020). Due to the popularity and widely used of
structured datasets across domains (Feurer et al., 2015), the
use of AutoML on tabular data is growing rapidly. Ad-
ditionally, tabular datasets are the most common market
for artificial intelligence (Nti et al., 2020). Traditional ma-
chine learning algorithms tend to perform well on tabular
datasets (Shwartz-Ziv & Armon, 2022) in compared to deep
learning algorithms (Grinsztajn et al., 2022). The study by
Grinsztajn et al. shows that i) deep learning models are sensi-
tive to unbalanced features, while tree-based models (Liang
et al., 2019) tend to be more robust; and ii) tree-based mod-
els tend to easily learn irregular functions (Gorishniy et al.,
2021; Shwartz-Ziv & Armon, 2022), unlike deep learning
models(Zhu et al., 2023). Recently, (Jin et al., 2023) intro-
duced AutoKeras, which leverages prior knowledge of the
search space. However, these studies leave readers with the
question, “How do we select an optimized algorithm from
the search space, including tree-based ML algorithms, for
a time-constrained setup?” Algorithm selection (Kotthoff
et al., 2019; Yang et al., 2019) is indispensable for training
a model as it determines an optimized machine learning
algorithm for a given input dataset.

Sampling. One of the popular approaches for exploring dif-
ferent machine-learning algorithms under time constraints
is a simple random sampling approach (Rao, 1964), which
involves selecting a subset of the dataset to find an op-
timized machine-learning algorithm from a search space.
However, this approach can result in poor algorithm selec-
tion (Yakovlev et al., 2020) due to the limited nature of the
observation and it can be unreliable when the sampling ratio
is changed. Stratified sampling (Fisher, 1936) divides the
population of a target value into strata. Then, it uses random
sampling to draw a set of samples from each of the strata.
However, stratified sampling is widely used for target val-
ues with a single target in classification tasks. (Trost, 1986;
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Meng, 2013; Liberty et al., 2016). To the best of our knowl-
edge, for the first time our study introduces an investigation
into the effectiveness of optimized algorithm selection and
its application in the context of tabular AutoMLs for regres-
sion tasks by utilizing stratified sampling, as opposed to the
widely used stratified sampling for classification tasks.

Contributions. In this study, we introduce a stratified sam-
pling approach for regression tasks that aims to select an
optimized algorithm from a search space of both atomic and
ensemble models. This study reduces the required computa-
tion time for structured tabular AutoML algorithm selection
by using a subset of data. The following are our key contri-
butions in this study.

A. Develop a regression stratified sampling approach that
can be divided into two steps: i) drawing samples from a
dataset in a way that ensures a maximal distribution similar-
ity of Probability Density Function (PDF) (Pearson, 1894)
between the target variable(s) in the sample data, and the
full-scale data; ii) defining a novel evaluation metric, PDF
Energy which intuitively combines standard metric evalua-
tion and relative entropy methods. PDF Energy computes
performance of each algorithm on sampled data with respect
to PDF distribution errors.

B. We conduct two comprehensive performance evaluations
on two benchmarks of 31 and 14 different real-world public
datasets. i) we compare the performance of the proposed
approach for algorithm selection in different ratios and com-
pare the performance results against widely used a simple
random sampling (SRS) approach; we also compare our
proposed PDF Energy for an algorithm selection against
Kullback-Leibler Divergence(Csiszár, 1975); ii) We conduct
another thorough empirical evaluation of our proposed ap-
proach within an end-to-end scenario in the tabular AutoML
context. We compare the performance of our proposed
approach against six tabular AutoML tools for predicting
outcomes across two benchmarks for a regression task. The
evaluation includes a baseline, and 6 popular tabular Au-
toML tools including MLJAR (Plońska & Ploński, 2021),
FLAML (Wang et al., 2021), H2O (LeDell & Poirier, 2020),
TPOT (Olson & Moore, 2016), Auto-ScikitLearn (Feurer
et al., 2015), and AutoGluon (Erickson et al., 2020). Our
evaluation results demonstrate that our proposed approach
was able to identify an optimized algorithm within a time-
constrained budget, compared to other baseline methods
and popular tabular AutoML tools.

2. Related Works
Simple random sampling (SRS) (Fisher, 1936) is the pri-
mary sampling approach that randomly draw a sample from
the population with an equal probability for each selection.
However, selecting an an algorithm based on a subset of data

may not represent the correct representation of a full-scale
dataset. For example, some linear and logistic regression
algorithms are sensitive to outliers (Feng et al., 2014), there-
fore if the subset does not cover the outliers (edge cases),
it causes an unreliable and poor algorithm selection that
required additional outlier detection(OD) methods, such
as RoLR (Feng et al., 2014). Meng presented a scalable
simple random sampling algorithm (ScaSRS), which uses
probabilistic thresholds to accept, reject, or wait-list. How-
ever, the study focuses on classification problems where
it aims to select samples on-the-fly without consideration
of algorithm selection. (Li et al., 2023) studies effect of
pre-processing of tabular data on algorithm selection and
(Hollmann et al., 2024) is a similar study on feature engi-
neering but the authors utilizes LLMs. (Wu et al., 2024) also
introduce the effectiveness of an autoencoders for tabular
data. (Pérez-Cruz, 2008) introduced a method for estimat-
ing the KL divergence between continuous densities and
proved it converges almost surely. We utilize this approach
as a baseline in our evaluation of continuous variable targets
(regression tasks). Additionally, our extension to relative
entropy-based algorithm selection permits the algorithm of
a trained model to be chosen, if it exhibits superior relative
entropy, employing a PDF Energy in place of KL. Later in
experiment section, we demonstrate that our results indicate
that our proposed approach provides superior algorithm se-
lection in compared to relative entropy computation using
KL divergence. Yang et al. introduced a filtering approach
to select a model; however, the adaptation metric is sensitive
and a generic approach is required. Sampling approaches
have been widely used previously, but there have been lim-
ited studies on machine-learning algorithm selection. For
instance, Zogaj et al. conducted an empirical study on down-
sampling for tabular AutoMLs. In a recent study, Vincent &
Jidesh introduces an improved hyperparameter optimization
framework for AutoML systems using evolutionary algo-
rithms; however, it is mainly applied to high-dimensional
data (i.e., images). In comparison to our study, we introduce
a novel sampling approach and demonstrate its effective-
ness both theoretically and empirically. In another study,
Nayar studies how to optimize resource allocation for al-
gorithm selection by down-sampling data. However, the
author found that additional studies needed in order to have
a reliable algorithm selection in compared to simple random
sampling. In Section 4.2, we demonstrate that our proposed
approach is both theoretically and empirically reliable com-
pared to SRS when applied to a large number of datasets.
The results can have a broader impact due to the widespread
use of SRS. Our proposed approach not only offers a supe-
rior and efficient sampling method with respect to the PDF
of the target variable(s) but also provides a performance
gain prediction on regression task by selecting an optimized
algorithm based on sub-sampled data. Additionally, there
have been few attempts by machine-learning researchers and
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practitioners (Boehmke & Greenwell, 2019) to manually
handle regression target variables using data engineering
and feature engineering as two use cases to enhance model
performance. For example, mapping each cluster of data to a
class might improve model predictions. However, to the best
of our knowledge, neither researchers from academia nor
the industry sector have focused on automating this process
(instead of defining a custom class), nor have they studied
the effects of hyperparameter selections, such as the number
of strata. Our comprehensive evaluation in this study can
bridge the gap between the practical use case of regression
stratified sampling and manual feature/data engineering.

3. Preliminary
Let D be a given input tabular dataset to a tabular AutoML.
We define the distribution of the target variables (Y) for a
regression task as DY where DY := Rs×k and s denotes
the number of stratum of Y(k). We consider a single target
output when k = 1, and a multi-target outputs when k > 1.
Let M be a Bayesian model in a supervised setting for the
given input X to predict Y with a parameter of θ with DY
distribution as follows.

P(y, θ|x) = P(y|x, θ)P(θ) (1)

Since we have a Bayesian model, parameters follow a dis-
tribution of P(θ) (Kirsch & Gal, 2022) where θ is latent
parameters as proven by Harrison et al.. The prediction de-
notes as P(y|x) = E[P(y|x, θ)]. Let A(.) denote a function
that selects a machine-learning algorithm by maximizing
the prediction via E[P(y|x, θ)] and returns an optimized al-
gorithm from n number of algorithm choices (search space).
Our objective is to identify an optimized algorithm, an un-
known function, based on the distribution of the posterior
predictive density. Let PDF(f(·)) represent the probability
density function of the unknown function f(·). For our pur-
poses, we consider PDF(·) as equivalent to D, and DŶ is
the probability density function of the predicted values for
f(X ρ), where X ρ ∈ X and ρ denotes a subset (sampled)
of observations. Our hypothesis in this study to be tested is
PDF(f(X ρ)) ≈ PDF (f(X )) if PDF (Yρ) ≈ PDF(Y).
In another word, if we select a set of sample data (X ρ)
where its target variable(s) (Yρ) has the same distribution to
the full-scale target variables (Y), the distribution of predic-
tion differences between full-scale data and sampled data
are close to zero. Finally, the distribution of predictions
for a subset of data of f(X ρ) follows the same distribution
of f(X ρ), DY with a parameter distribution of f(P(θ)) as
indicated in Eq. 1.

4. Approach
In this section, we introduce our sampling approach, which
defines the PDF (·) function to select a subset of contin-

uous target variable(s). The function draws samples from
D, which is the posterior distribution of Y , and defines
X ρ and Yρ for sub-sampled feature and target variables,
respectively.

Problem Definition. Our objective is to select an algo-
rithm that achieves superior performance on the D dataset.
In practice, a finite set of models [M1,M2, ...,Mn] can
be trained from D where each Mi is produced by fitting
a machine-learning algorithm to D (including different hy-
perparameters). Mi can be either an atomic model (i.e.,
a linear regression) or an ensemble model (i.e., a stack of
atomic models or any other ensemble structure) for tabular
data. Some studies, such as Zhang et al. and (Erickson
et al., 2020) have found that decoupling the algorithm from
hyperparameter optimization is beneficial, especially for tab-
ular data. There are two problems that need to be addressed.
First, how to construct Dρ with minimal distribution dis-
tance to D so that we can test our hypothesis. Second, which
algorithm is the optimized choice? For the first problem,
we introduce Regression Stratified Sampling (RSS) in the
next section. This method divides the continues target vari-
ables into a set of strata, and a subset of each stratum is
selected to ensure that it constructs minimal distribution
distance between PDF (Yρ) and PDF(Y). For the second
problem, we define a loss function L(·), where a model
based on the selected optimized algorithm minimizes the
distribution distance between D and Dρ. Let MO be an
optimized model that minimizes a loss function, and let a
model be selected via A(·), where A = 1

m

∑m
i=1 Li(·) and

m represents the number of sample data in the full-scale
dataset. MO selects an algorithm from a search space of
n algorithm choices including different hyperparameters
based on the loss function as follows.

Mo = argmin
i=[1,..,n]

(A(Li(D))) (2)

The loss function Li(D) defines the distribution error to the
full-scale dataset for the ith model (Mi). Similarly, a model
can be selected on sampled data (Dρ) as follows.

Mρ = argmin
i=[1,..,n]

(A(Li(Dρ))) (3)

In an ideal case, where Mo = Mρ, this indicates that the
algorithm selection on Dρ is equivalent to an optimized
algorithm selection on D based on given search space. The
ultimate loss function can be defined as follows.

L = PDF(f (X ρ))− PDF (f (X )) (4)

The loss function computes the distribution divergence be-
tween the probability density function (PDF) error distri-
bution of the target variable(s) in the full-scale data and
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Figure 1. Overview of the proposed approach for algorithm selection in tabular AutoML

the distribution of predicted values for each trained model.
Various methods exist for computing the differences be-
tween two distributions, and Kullback-Leibler (KL) diver-
gence (Csiszár, 1975) is a widely employed approach. Note
that pointwise KL-divergence for Eq. 4 can be defined as
LKL(p, q) =

∫
p(xρ) log p(xρ)

q(x) dx where pi(xρ) is the PDF
of the predicted distribution for model i and q(x) is the PDF
of the true distribution. In the next section, we introduce the
concept of PDF Energy, which can be employed to identify
the minimal distribution error between the target variable in
full-scale data and the distribution of predictions from all
trained models based on algorithm search space candidates.
In Section 4.2, we empirically evaluate our proposed PDF
Energy against KL where both methods aim to identify the
closest distributions based on prediction on sampled data.

4.1. Regression Stratified Sampling

Figure 1 shows the overall process of our proposed approach.
In the Step 1, we produce PDF of each target variable and
use Algorithm 1 in Step 2 to draw samples from D. In this
algorithm, Line 2-4 split each target variable into a set of
number of strata (||β||) where β is a hyperparameter in our
algorithm. Next, Line 6-9 represent processing of multi-
target outputs by computing PDF on each target variable
and finding intersection of data point per strata across all
target variables. For instance, if [d1, d5] ∈ β1

2 (where d1

refers to 1st data point which is in range of β1
2 , and it refers

to 1st stratum of the 2nd target variable) and [d4, d5] ∈ β1
1 ,

therefore
−−−→
UIDB = [d5] (a candidate for the 1st stratum

across two target variables). In the case of a single target,
−−−→
UIDB applies only to one target variable. Finally, Lines

11-13 utilize uniform random sampling to achieve a propor-
tional allocation of elements (ρ) in each intersection stratum
(
−−−→
UIDB), where ρ and β are two hyperparameters. In Step

3 of Figure 1, a set of algorithms, including different hyper-
parameters, can be listed as the search space. An algorithm
may produce an atomic model (Ai) or an ensemble model
(Ej). Each algorithm from the search space can be applied
to Dρ in Step 4. Note that since ||Dρ|| ≪ ||D||, this step
can be performed quickly in compared to Step 7. Further-
more, ρ can be dynamically selected based on ||D|| (i.e.,
ρ = 0.01 or ρ = 0.3 if D is a large dataset or a small dataset,
respectively).

Why Regression Stratified Sampling?

In practice, as shown in Eq. 4, a trained model in Step 4 is
expected to generate a PDF distribution with minimal diver-
gence to the PDF distribution of the original data, including
outliers. We utilize the upper bound value of the total num-
ber for drawing samples in each stratum, as described in
Line 11 of Algorithm 1, to achieve two main goals: i) gen-
erating a distribution with minimal distance to the full-scale
target variable(s); ii) covering edge cases because some al-
gorithms are sensitive to outliers (Sugiyama & Borgwardt,
2013; Lucic et al., 2016). Consequently, due to the coverage
of edge cases, sensitive algorithms have a chance of being
selected. In addition, RSS aims to maximize the chance of
exploration by utilizing sampling and efficiently selecting
an algorithm.

Limitation. In a multi-target regression task, Lines 6-9 of
Algorithm 1 determine the intersection of data points across
all strata for all target variables. In a scenario where the
number of samples is limited and ρ is also small, the number
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of drawn samples for
−−−→
UIDB will be constrained. In such

cases, implementing an automated approach to increase the
sampling ratio (ρ) can help alleviate this limitation.

Algorithm 1 Regression Stratified Sampling Procedures
1: procedure REGRESSION_STRATIFIED_SAMPLING(X ,Y, β, ρ)

▷ Sampling data from a dataset with continuous target vari-
able(s) Y , the list of strata β, and a sampling ratio
(ρ)

2: for y in Y do: ▷ process each target of given dataset
3: W = |max(y)−min(y)|

||β||
4: Py, IDy := GET_DENSE(y, β,W)
5:
6: for y in Y do:
7: for i in range[Min(y),Max(y),W] do:
8: ▷ find common element across targets’ strata

9:
−−−→
UIDB :=

⋂−−−→
IDβi

y

10:
▷ ρ percentage of proportional allocation through drawing

uniform random samples from each stratum
11:

−−→
SIDB ∼ Uniform(yi) | ∀yi ∈

−−−→
UIDB

n =

⌈
||
−−−→
UIDB||

ρ

⌉
▷ Covers edge cases within each stratum

12: X ρ = X [i] ∀ i in
−−→
SIDB

13: Yρ = Y[i] ∀ i in
−−→
SIDB

14: return X ρ, Yρ

15: procedure GET_DENSE(y, β,W)
▷ Obtain the density of target variable, partition the target t
into β strata, returns the density and elements within each
stratum.

16: for i in range[Min(y),Max(y),W] do
17: Pβ := PDF (yi) s.t. βi ≤ yi < βi+1

18:
−→
IDβ := Index(yi) s.t. βi ≤ yi < βi+1]

19: return P,
−→
ID

4.2. PDF Energy Metric

In Step 5 of Figure 1, our objective is to identify the top-
performing model that exhibits the best performance on
both X and X ρ in accordance with our sampling approach.
In other words, the selection of a model is crucial such that
it demonstrates superior performance on both the full-scale
dataset and a subset of the data, where both possess a mini-
mal probability density function (PDF) distribution distance.
For instance, as depicted in the figure, a comparison is made
between the PDF distribution of a target variable (y) and the
predictions of three trained models ([ŷ1, ŷ2, ŷ3]) and it aims
to find the lowest distribution distance to the original target.
The underlying hypothesis of this study is that opting for the
minimal PDF distribution divergence will guide us towards
an optimized algorithm, given that the sampled data repli-
cate the same PDF distribution as the full-scale data. To
select an optimized algorithm for X ρ and Yρ, we define a
new evaluation metric that extends the concept of relative
entropy. This metric selects a model based on the distri-

bution distance between f(X ) and the posterior, f(X ρ) as
follows.

S(ŷi) =
{

D(yi) βi ≤ ŷi < βi+1

−D(yi) ∗ ||βi − β̂i|| ŷi < βi or ŷi > βi+1

(5)
where D(yi) denotes the density of yi according to Y within
the range of [βi, βi+1], and ||βi − β̂i|| represents the distri-
bution distance between the actual target strata (βi) and the
predicted target strata (β̂i) with respect to the strata distance
(strata error). This equation aims to penalize the predic-
tion error of strata based on the probability density function
(PDF) of the original data. This equation computes higher
energy when f(X ρ) has lower strata allocation error w.r.t.
the density of each strata in Y . We explain a simple example
of this computation in Appendix B. Next, we compute PDF
Energy in Step 5 as follows.

EX(ŷ) =

||Dρ||∑
k=1

S(ŷk) (6)

Finally, we identify an optimized model (M) as follows.

M = argmax
γ∈Γ

(Eγ
X(ŷ)) (7)

where Γ corresponds to the total number of algorithms in
the search space. n optimized model corresponds to an
algorithm and its hyperparameters, which are used for train-
ing. In Appendix C, we prove that selecting a model based
on RSS results in a better PDF Energy score. In the ex-
periment section, we compare our proposed PDF Energy
score against the Kullback-Leibler (KL) divergence(Csiszár,
1975) for algorithm selection where KL divergence and PDF
Energy aims to find minimal distance between distributions
of PDFs (y versus ŷi for i ∈ [1, .., n]).

Once an algorithm is chosen using the PDF Energy method,
the algorithm is then applied to D in Step 7. Through the
utilization of sample data rather than the entire dataset, a
Bayesian model-based approach (Eq. 1) effectively incorpo-
rates various algorithms with distinct hyperparameters from
the search space. This approach facilitates result comparison
using the PDF Energy metric.

5. Experiments
Benchmark. For the purpose of reproducibility, we utilized
a publicly available benchmark from OpenML(Vanschoren
et al., 2014) that was introduced by Grinsztajn et al.. We de-
signed two sets of sub-benchmarks: Benchmark #1, which
consists of 31 datasets, and Benchmark #2, which includes
14 real-world datasets for regression tasks. While there
is overlap between these two benchmarks, we employed
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distinct seeds to generate two sets of comprehensive bench-
marks for each sub-experiment. The dataset details includ-
ing the random seeds, and the GitHub repository for result
reproducibility, are explained in Appendix D.2.

Search Space. The search space includes 12 widely used
machine-learning algorithms for tabular data with hyper-
parameters. In addition, we define 2 different ensembles
models on top of atomic models where it uses 2 different
estimators of Ridge regression (Hoerl & Kennard, 1970)
and Stochastic Gradient Descent Regressor (SGDRegres-
sor) (Zhang, 2004) to stack top 3 outperformed atomic mod-
els from search space with respect to experiment configura-
tion (i.e., R2 metric or PDF Energy). The ensemble models
are dynamically (on-the-fly) selected based on the top 3 al-
gorithms and built based on experiment configuration. Refer
to Appendix D.3.1 for a comparison of our search space
against other tabular AutoML tools which indicates that our
search space is competitive.

Sampling Ratio(ρ). All experiments were conducted on
25% of hold-out data. We chose a set of reasonable sampling
ratios, ranging from 20% to 40%, for our experiments. RSS
can be applied to larger datasets with lower sampling ratios
(i.e., 1%), as it only requires sufficient examples per stratum.

We repeat each experiment on different configurations (i.e.,
β, ρ, time budget, and evaluation metric), and report two
metrics of R2/RMSE on test after the algorithm selection.
In each experiment set, we partition each dataset D into
DTrain and DTest using a 75-25 split ratio based on a
random seed number. We defines two set of experiments as
follows.

5.1. Algorithm Selection

This experiment aims to evaluate: i) the proposed sampling
algorithm, and ii) the performance of PDF Energy with
different hyperparameters by utilizing Benchmark #2.

i) Sampling. The objective of this experiment is assessing
how the use of different sampling algorithms may influence
the final outcome in terms of performance on hold-out data.
We define three methods for sampling as follows.

- Random Sampling: This method utilizes a simple random
sampling (SRS) method to draw sample from full-scale
data by employing a widely used implementation of Scikit-
Learn (Ojala & Garriga, 2010; Pedregosa et al., 2011) 1.

- PDF Sampling: This method draw samples based on
our regression stratified sampling as shown in Algorithm 1,
which guarantees in each stratum: i) an equal opportunity
for selecting samples is provided based on the total number
of strata; ii) draw sample for possible edge cases (n) as
mentioned in Algorithm 1 (Line 11).

1Use model_selection.train_test_split API call

- Dynamic Stratified PDF Sampling: This method utilizes
PDF Sampling, but instead of assigning a fixed value for
the number of strata, we use nh = Nh

KSh√
Ch

as suggested
in (Kish, 2011) to compute the size of strata per dataset
dynamically. In this equation, nh dynamically determines
the number of strata per input dataset. The method then
employs the highest PDF Energy to sort and select the best
possible model. Basically, this method utilizes the standard
deviation of the target value to determine the number of
strata (β). The computed β per each dataset/seed is listed in
Appendix (Table 6).

ii) Evaluation Methods. To evaluate each algorithm in
Step #4 with respect to the sampling method and ratio
(ρ), we assess the prediction results using three evaluation
methods in Step #5: the Standard Metric, KL, and PDF
Energy. The results can be arranged in ascending order
for RMSE and KL, and in descending order for R2 and
PDF Energy. Finally, we record the error rate or score
based on two standard metrics: Root-mean-square deviation
(RMSE)(Hyndman & Koehler, 2006)(Armstrong & Collopy,
1992) and R2 for each selected model. By evaluating all
methods based on RMSE/R2 at the end, we ensure a fair
comparison across all different sampling and evaluation
methods for each input dataset.

- Metric: We use RMSE and R2 as two baseline evaluation
methods. These metrics indicate the error rate and coeffi-
cient of determination across all predictions, respectively.
An algorithm is selected based on the lowest and highest
values on sampled data for RMSE and R2 metrics, respec-
tively.

- KL: We use Kullback-Leibler (KL) divergence (Csiszár,
1975) as another baseline where an algorithm is selected
based on the lowest relative entropy of DY w.r.t. DŶ . There
are several approaches for KL constructions; note that in
this study, similar to Moreno et al., we report the evalua-
tion based on DKL(DY ||DŶ ) to recommend an algorithm.
This method compares PDF distribution of each candidate
trained model against distribution of target(s) in full-scale
dataset and it selects the lowest value of DKL(.) as the best
model. Note that once a model is selected based on KL, then
RMSE/R2 on test data is reported.

- PDF Energy: We employ Eq. 6 to select an algorithm,
where the highest energy value indicates the lowest PDF
Error predictions. It is important to note that the value in
the PDF Energy does not represent the actual energy value;
instead, it reports the RMSE/R2 score of the top-selected
algorithm prediction on test data.

5.2. AutoML Evaluation

To evaluate our proposed approach in a real-world, end-
to-end scenario, we utilize Benchmark 1 with 31 datasets
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primarily for AutoML evaluation, using 10 seeds because
AutoML is known to be noisy. We define a baseline using a
meta-learning-based open-source AutoML tool, SapientML
Saha et al., which allows us to conduct feature engineer-
ing on the input dataset. Baseline mainly selects a model
based on a pre-trained model insist of our method that ex-
plore data.In addition, we utilized the most popular and
widely used AutoML tools for structured data, including
FLAML (Wang et al., 2021), H2O (LeDell & Poirier, 2020),
TPOT (Olson & Moore, 2016), AutoScikitLearn (Feurer
et al., 2015), and AutoGluon (Erickson et al., 2020), in
our AutoML evaluation. Finally, we utilize our Regres-
sion Stratified Sampling (RSS) approach where we add our
proposed PDF sampling to recommend an algorithm with
respect to the highest PDF Energy. In the context of Au-
toML experiments, we use hyperparameters of β = 100 (the
number of stratum) and ρ = 0.3 (sampling ratio). There
are no limitations on each AutoML tool besides specify-
ing the assigned training data as input and the time bud-
get. We present the average R2 scores across all random
seeds for each dataset and time budgets of (in seconds):
[30, 60, 120, 180, 300, 600, 1200]. Given that the primary
aim of this study is to evaluate AutoML platforms against
our PDF sampling approach, our main focus lies on lower
time budgets as a stress test. However, it is important to
note that in general, these shorter time constraints do not
hinder AutoML from producing at least one model.

5.3. Experiment Results

Algorithm Selection Results. Figure 2 shows a compre-
hensive performance evaluation of Avg. R2 and its standard
deviation on a hold-out data on benchmark #2 with 3 random
seeds based on SRS (random) and PDF sampling methods
with a sampling ratio between 20% to 40% with 4 differ-
ent hyperparameters of β. The results indicate that PDF
Sampling and utilizing PDF Energy outperformed SRS sam-
pling by considering β = 100 and β = 1000. Table 1 shows
more detail of this experiment results with two metrics of
R2/RMSE. Each value is averaged across 3 different seeds
on each sampling ratio of 20%, 30% and 40%. β = 100
indicates the best configuration across all datasets where our
approach (PDF) is selected as a champion (the best score)
for 10 out of 14 datasets. Furthermore, the average perfor-
mance of both RMSE/R2 scores across all datasets show
that PDF outperforms random sampling across all stratum
configurations. The results of lower sampling ratio (0.2) sug-
gest that the models are inconsistent and likely struggling
with insufficient data. However, at a sampling ratio of 0.3,
the model aims to achieve better generalization compared to
SRS. We can also observe a potential overfitting issue with
the lower bound hyperparameter of β = 10. The results
indicate that β ≥ 100 leads to a more generalized model
selection.

See Appendix E.1 for fined-grain results and further discus-
sions.

Figure 2. A Comparison of Average R2 Scores between Random
Sampling and PDF Sampling with four different values of hyper-
parameters for β across Benchmark 2 using three seeds. Note that
the y-axis starts at 0.6 for better readability of results.

Relative Entropy. Figure 3 shows the ultimate perfor-
mance of R2 on a hold-out data of 14 different datasets
where a model is selected based on relative entropy com-
parison based on i) Kullback-Leibler divergence (KL),
and ii) PDF Energy computation. Each sub-figure shows
different values of hyperparameter of β in the range of
[10, 100, 1000,dynamic] where in dynamic setting, β̄ = 6.
The overall average (PDF ) on 4 different hyperparameters,
shows that the PDF Energy algorithm selection is more
effective than using KL (PDF championed in 4 out of 4).
Furthermore, KL divergence is asymmetric; however, PDF
Energy is a symmetric approach and it can be used as a met-
ric to evaluate relative entropy. Detailed results for different
sampling ratios (ρ) are explained in Appendix E.3.

Why does PDF Energy outperform standard metrics and
KL? PDF Energy combines both metric evaluation and bin
density error by penalizing bin errors with respect to the
density of the original data (Eq. 5). The evaluation approach
computes prediction errors across different algorithms’ pre-
dictions while also finding the the lowest prediction distri-
bution distance to the expected distribution of the original
data. Note that the sampled data have been drawn from the
original data, producing a similar distribution as shown in
Algorithm 1.

AutoML Evaluation. Table 2 presents the evaluation results
based on the R2 metric across Benchmark #1 (31 datasets),
considering 10 random seeds per dataset per time budget.
Our objective here is to validate our proposed approach un-
der stringent time budget conditions. These results highlight
the following key findings. (i) Our approach outperforms
across all stress time budget constraints; (ii) By utilizing
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Final Evaluation on 25% hold-out data
β 10 100 1000 Dynamic Stratified

Sampling Method Eval. Method R2↑ RMSE↓ R2↑ RMSE↓ R2↑ RMSE↓ R2↑ RMSE↓
Average Random Sampling Metric 0.8425± 0.012 9.6812± 0.359 0.8425± 0.012 9.6812± 0.3590 0.8425± 0.012 9.6812± 0.359 0.8425± 0.012 9.6812± 0.359

PDF Sampling (our) PDF Energy (our) 0.8183± 0.024 9.5147± 0.356 0.8455± 0.0160.8455± 0.0160.8455± 0.016 9.5432± 0.3639.5432± 0.3639.5432± 0.363 0.8468± 0.010.8468± 0.010.8468± 0.01 9.6453± 0.3329.6453± 0.3329.6453± 0.332 0.8254± 0.036 9.6757± 0.87
Total Number of Champions Metric 3 3 4 4 5 5 5 5

(Top rank across 14 possible datasets) Equal Results 2 2 0 0 1 1 1 1
PDF Energy (our) 9 9 10 10 8 8 8 8

Table 1. Performance Comparison on Benchmark #2; "Eval. Method" refers to the metric evaluation method for algorithm selection; the
values are averaged across 3 time budgets of ρ = [0.2, 0.3, 0.4] with 3 seeds per ρ for algorithm selection through PDF Sampling (our
approach), β = [10, 100, 1000, Dynamic]. The best score per setting is marked in bold, based on the lowest RMSE and the highest R2 in
each setting. See results per hyperparameter/dataset/time budget in Appendix (Table 13).

Figure 3. R2 Performance comparison (higher is better) between KL and PDF (our) for algorithm selection based on relative entropy
across Benchmark #2 with different hyperparameter of β; Values are averaged of 9 experiments (3 seeds per each sampling ratios of
[0.2, 0.3, 0.4]). See Appendix (Figure 7) for detailed results per Sampling Ratio (ρ).

Time (s) Baseline MLJAR FLAML AutoSKLearn H2O TPOT AutoGluon RSS (our)

30 0.7601 ± 0.28 0.7662 ± 0.28 0.8069 ± 0.21 0.6607 ± 0.35 0.7885 ± 0.22 0.6597 ± 0.33 0.7047 ± 0.32 0.8222 ± 0.21
60 0.7663 ± 0.27 0.7764 ± 0.27 0.8152 ± 0.2 0.7179 ± 0.3 0.8004 ± 0.21 0.689 ± 0.32 0.7341 ± 0.3 0.8239 ± 0.2
120 0.7629 ± 0.28 0.7691 ± 0.28 0.8177 ± 0.2 0.7518 ± 0.27 0.8039 ± 0.22 0.7506 ± 0.27 0.7751 ± 0.27 0.8242 ± 0.2
180 0.7598 ± 0.28 0.7365 ± 0.28 0.819 ± 0.2 0.7819 ± 0.24 0.8054 ± 0.22 0.7618 ± 0.26 0.777 ± 0.27 0.8243 ± 0.2
300 0.761 ± 0.28 0.7277 ± 0.28 0.8217 ± 0.2 0.7923 ± 0.23 0.8131 ± 0.21 0.7748 ± 0.25 0.7716 ± 0.28 0.8262 ± 0.2

Table 2. AutoML evaluation (R2 score - higher is better) across 31 datasets (Benchmark #1); RSS utilize feature engineering by Baseline,
and proposed PDF Sampling/PDF Energy for algorithm selection with ρ = 0.3 and β = 100; Each data point averaged over 310
experiments (10 seeds) with a standard deviation of ±; Bold values show the highest score per time budget (row).

the PDF Sampling and PDF Energy metric, we can iden-
tify an optimized algorithm within tight time budget con-
straints. An increase in the time budget results in a minor
performance enhancement, indicating successful algorithm
selection even under more restricted time limits (more sus-
tainable); (iii) The addition of time budget enables our ap-
proach to enhance its performance when the most optimized
algorithm selection was missed due to the time constraints
(i.e., chance of other algorithm explorations); (iv) Across all
AutoML tools, our proposed approach achieves the highest
overall average R2 score among all other AutoML tools,
and the lowest standard deviation (std = ±0.2) alongside
FLAML. We defer the details and additional AutoML exper-
iments with higher time budgets in the Appendix (Table 12).

6. Conclusion
We examined the effectiveness of the stratified sampling
approach on regression tasks for algorithm selection, mark-

ing the first instance of such a study. We introduced RSS
by utilizing Probability Density Function (PDF) for both
sampling and evaluation. Our extensive evaluation results
revealed that our proposed approach outperformed Simple
Random Sampling (SRS) in algorithm selection across 31
distinct datasets. Our proposed PDF Energy metric iden-
tifies an algorithm by combining the concept of relative
entropy method and an evaluation metric, where it showed
a superior performance compared to the Kullback-Leibler
divergence-based selection. This study concludes with a
comprehensive empirical evaluation encompassing an end-
to-end scenario on 31 datasets using 6 popular tabular Au-
toML tools. The overall evaluation results indicate that by
utilizing PDF Sampling algorithm in conjunction with the
PDF Energy metric, our approach achieves top rankings in
identifying an optimized algorithm under time constraints.
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A. Appendix Outline
The Appendix section of this study aims to define all the required details of our experiments, additional experiments, and
provide all the necessary information for the reproducibility of our results. The artifacts from our study are available on
GitHub at:https://marscod.github.io/Regression_Stratified_Sampling
This appendix is organized as follows.

• Appendix B shows a simple example of PDF Energy computation.

• Appendix C proofs that the selected algorithm by RSS computes an optimized PDF energy score.

• Appendix D shows the details of experiment setup that includes configuration environment for both algorithm selection
and AutoML experiments (Appendix D.1) which includes our benchmarks detail (Appendix D.2), a comparison of
algorithm search space between this study and AutoML tools, and the list of utilized APIs in our experiments for
reproducibility (Appendix D.3).

• In Appendix E, we provide the detail of evaluation results that include β parameter values for Dynamic PDF Stratified
Sampling, where the value vary in each experiment (Appendix E.2), relative entropy comparison where we provide
macro analysis of comparison between PDF and KL (Appendix E.3), and Appendix E.4 shows the fine-grained details
of our comprehensive AutoML evaluations per dataset/time budget on Benchmark #1 with 31 datasets, the list of
AutoML assumptions, and a report on AutoML failure cases.

• Although the objective of our AutoML experiment is validating sampling approach under time stress constraint,
Appendix F aims to answer the question on AutoML experiments with higher time budgets.

• Finally, Appendix G explains our disclaimers of this study.

B. Example of PDF Energy Computation
As explained in Eq. 5 and Eq. 6, PDF Energy is computed based on both the density of Y and ŷρ. In this section, we explain
an example of this computation.

In Figure 4, the green curve depicts the density (percentage) of a single target (Y) with two prediction values on the x-axis
(height is ignored). The yellow boxes outline the strata. In this example, ŷ1 is predicted incorrectly (due to incorrect strata
allocation), while ŷ2 is predicted correctly because it falls within the y2 stratum. In this example, a penalty value equal to
the density of the original stratum (D1) times the distribution distance between the two strata (||β1 − β̂1||) is computed as a
penalty for ŷ1 prediction. However, ŷ2 is predicted correctly (the same strata), a positive energy equivalent to the density of
Dy2 is added.

C. Algorithm Selection
A selected algorithm by RSS computes PDF energy score as noted in Eq. 5- 7.

Proof. By considering the PDF of a single continuous target variable of y, the density can be defined as follows (Mardia,
1973). ∫ ∞

−∞
fX(y)dy = 1 (8)

where fX denotes to an unknown function which is produced by fitting AΓ(X) and resulting fX(y) = Aγ(X)
γ = {1, 2, ..,Γ} where Aγ denotes γth algorithm, and Γ denotes the total number of algorithms in our search space. We can
define PDF over target variable of y as follows.∫ β2

β1

fX(y)dy +

∫ β3

β2

fX(y)dy + ..+

∫ βL

βL−1

fX(y)dy = 1 (9)

where βL refers to each strata and L denotes the total number of stratum for the target y values.
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Figure 4. An example of PDF Energy computation for a correct (ŷ2) and incorrect (ŷ1) predictions

Let S(.) : Rd → Rρ be our RSS sampling as explained in Algorithm 1, by using a uniform sampling per strata,−−→
SIDB ∼ Uniform(yi) | ∀yi ∈

−−−→
UIDB which draws ρ percentage of samples per strata as a proportional allocation (Henry,

1990) and defines n1

N1
= n2

N2
= ... = nL

NL
where NL and nL denotes the total number of samples in Y and Yρ per strata,

respectively.

Let D(Yt, βi) denotes the probability density function of ith strata on tth target variable, where t = 1, ..., T and it is
abbreviated as Di

Yt (T = ||Y||). The following equation shows the density of each strata on predicted values.

Di
yρ =

T∑
t=1

Di
Yt + αt

i (10)

where αt
i denotes the fraction differences after applying S(.) and αt

i ≈ 0; let assume that αt
i = 0, the density of both target

values and predicted values per each target and strata remains the same.

T∑
t=1

∫ βi

βl−1

fX(yρt )dy
ρ =

T∑
t=1

∫ βi

βl−1

fX(yt)dyt l = 1, .., L (11)

Note that yρt = Ytρ and yt = Yt are used for the simplicity.

The predicted values from fX(yρt ) may include an error per strata (ϵti) and similarly it defines PDF as follows where a
prediction error per target variable/strata is added.

T∑
t=1

L∑
i=2

∫ βi

βi−1

fX(ŷρt )dŷ
ρ
t − ϵti = ||Y|| (12)

Note that for a single target variable
∑L

i=2

∫ βi

βi−1
fX(ŷρt )dŷ

ρ
t − ϵti = 1. In an optimized model selection, fX(yρt ) predicts

values in correct strata and with minimal PDF divergence as follows.
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T∑
t=1

(

∫ β2

β1

fX(ŷρt )dŷ
ρ
t − ϵt1) + (

∫ β3

β2

fX(ŷρt )dŷ
ρ
t − ϵt2)

+ ...

+ (

∫ βL

βL−1

fX(ŷρt )dŷ
ρ
t − ϵtm)

=
T∑

t=1

(

∫ β2

β1

fX(yt)dyt +

∫ β3

β2

fX(yt)dyt

+ ...

+

∫ βL

βL−1

fX(yt)dyt)

=||Y||

where we assume that ϵti = 0, i = [1, ..., L] and t = [1, .., T ] (optimized model selection across all target variables).

As shown in Eq. 6, EX(ŷ) computes the highest value for all correct stratum predictions (βt
l ≤ yti < βt

l+1 where
i = [1, ...,m], T = [1, ..., T ]) and the maximum value of PDF Energy is defined as follows.

max (EX(ŷ)) =
T∑

t=1

L∑
i=2

nt
i−1Dt

yi

nt
i = ||yti || s.t. βt

i ≤ yti < βt
i+1

(13)

where nt
i denotes the total number of samples in range of [βt

i , β
t
i+1] of Yt.

Finally, the selected algorithm predicts values where the energy score is optimized and can be defined as follows.

max (EX(ŷ)) =

T∑
t=1

L∑
i=2

(nt
i−1

∫ βt
i

βt
i−1

fX(ŷρt )dŷ
ρ
t ) (14)

Note that in certain cases when one of the two condition met, there is a possibility of equal maximum PDF Energy between
at least two algorithms predictions of Ai and Aj , where i ̸= j: i) all values within all strata are predicted correctly; ii)
at least two models predicts all values equally. In this scenario, increasing the number of strata defines a fined-grained
evaluation by identifying an optimized algorithm among all equal algorithm prediction. However, this is a limitation of PDF
Energy where it may requires additional computation time on repeating the process with different hyperparameter of β.

D. Experiments Setup Detail
D.1. Configuration Environment.

Our proposed approach process is completed on a machine with Ubuntu, an Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz
(56 cores) with 128 GB RAM, Quadro P5000 GPU with 16GB graphic RAM and 2 TB disk. All experiments are developed
in Python with version ’3.9’ in Anaconda environment.

As AutoML platforms are known to produce noisy results, we conducted a comprehensive evaluation of our proposed
approach by running experiments on Benchmark #1 (31 different real-world datasets). We repeat the experiments across 10
different random seeds, with 5 different time budgets, totaling 1,550 experiments on each AutoML tool.

To produce the AutoML results on Benchmark #1, we used nine Ubuntu virtual machines with identical software and
hardware configurations of Intel(R) Xeon(R) Platinum 8176 vCPU @ 2.10GHz and Ubuntu 20.04.3 LTS (GNU/Linux
5.13.0-27-generic x86_64) with 16 GB RAM and 67GB Disk. Processing all datasets per seed on each AutoML/method took
approximately six hours of computation time on a standard CPU machine, excluding any debugging issues. We encountered
some crashes and restarts with H2O and MLJAR, which slightly prolonged the overall computation time. Overall, each
AutoML/method required 57.5 hours of machine computation time in Benchmark #1, and for eight different platforms, it
required a total of 460 hours of computation time, which was divided among the nine computing machines and completed in
five days.
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Figure 5. R2 percentage improvements were compared for 20 different seeds per fraction, ranging from 10% to 100%, with a full-scale
R2 average of 0.487 on the 42570 OpenML dataset.

Algorithm Selection Experiments. To reproduce Table 1, about 29 hours computation is required to complete for each
configuration (i.e., β = 100, ρ = 20,metric = R2) across Benchmark #2 with considering 3 seeds. The following seeds
have been used in this experiment: [181, 185, 189] (similar seeds have been used for AutoML experiments of Benchmark #2)
to split each dataset into training/test with a ratio of 75/25 by using a simple random sampling. Both RMSE/R2 scores
are reported based on evaluation on unseen test dataset. We use the same feature engineering across all experiments for
algorithm selection. Therefore only hyperparameters are changed in each experiment.

AutoML Experiments. Since we restrict each AutoMLs in a set of time budget, each AutoML takes 11 minutes and 30
seconds to complete each experiment per seed in Benchmark #2. It requires around 8 hours computation time for processing
all datasets on each AutoML. Overall around 64 hours computation time is required to complete all experiments on all
AutoMLs of Benchmark #2.

D.2. Benchmark

we used datasets that were recently collected by Grinsztajn et al. and publicly available from OpenML. In this bench-
mark, we have both numerical regression 2 and categorical regression 3 and both groups of datasets are publicly avail-
able. More detail about the benchmark including downloading scripts can be found in Grinsztajn et al.. First, we use
Scikit-Learn train_test_split function4 to split the given input data set of dataset from the benchmark into 75%/25%.
In both benchmarks, we use 25% of each dataset as hold-out. We conduct 10 and 3 experiments based on each con-
figuration on each dataset for Benchmark #1 and Benchmark #2, respectively. We use the following random seeds of
[101, 112, 121, 168, 173, 193, 194, 219, 683, 761] and [181, 185, 189] to split datasets in Benchmark #1 and #2, respectively.
The same random seeds have been used in both algorithm selection and AutoML experiments. Table 3 shows the total
number of features and samples per dataset for both benchmarks. As a future work, we plan to extend study by utilizing
(Gijsbers et al., 2024).

D.3. Search Space

Table 4 shows the list of algorithms and utilized API libraries for choice of algorithm selection. We use random_state=0
as a parameter for all algorithms. We also do not discriminate against any algorithm; therefore each algorithm has an
equivalent chance of selection based on evaluation which is computed per configuration metric (i.e., PDF Energy, R2 metric
or KL divergence). Our objective in this study is: "how to select a an algorithm effectively?" and the list of algorithms can
be extended or decreased per use case.

2OpenML benchmark 297:https://www.openml.org/search?type=benchmark&study_type=task&sort=
tasks_included&id=297

3OpenML benchmark 300:https://www.openml.org/search?type=benchmark&sort=tasks_included&
study_type=task&id=300

4https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_
split.html

15

https://www.openml.org/search?type=benchmark&study_type=task&sort=tasks_included&id=297
https://www.openml.org/search?type=benchmark&study_type=task&sort=tasks_included&id=297
https://www.openml.org/search?type=benchmark&sort=tasks_included&study_type=task&id=300
https://www.openml.org/search?type=benchmark&sort=tasks_included&study_type=task&id=300
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html


Regression-Stratified Sampling for Optimized Algorithm Selection in Time-Constrained Tabular AutoML

Dataset 361072 361073 361074 361075 361076 361077 361078 361079 361080 361081 361082

#Features 22 27 17 614 12 34 9 17 7 9 7
#Samples 8192 15000 16599 7797 6497 13750 20640 22784 53940 10692 17379
Benchmark No. 1,2 1,2 1 1 1 1 1,2 1 1,2 1,2 1,2

Dataset 361083 361084 361085 361086 361087 361088 361089 361090 361092 361093 361094

#Features 10 16 7 4 14 80 9 6 63 8 5
#Samples 581835 21613 10081 163065 13932 21263 20640 18063 8885 4052 8641
Benchmark No. 1,2 1 1,2 1,2 1,2 1,2 1,2 1,2 1 1 1

Dataset 361095 361096 361097 361098 361099 361101 361102 361103 361104 42570

#Features 10 10 360 12 12 17 18 7 10 377
#Samples 166821 53940 4209 10692 17379 581835 21613 394299 241600 4209
Benchmark No. 1 1 1 1 1 1 1 1 1 2

Table 3. The number of features and samples per dataset in both benchmarks

Algorithm API Version

RandomForestRegressor Scikit-Learn (Pedregosa et al., 2011) 5 0.24.2
ExtraTreesRegressor Scikit-Learn 1.1.3
LGBMRegressor LightGBM(Ke et al., 2017) 6 3.3.5
XGBRegressor XGBoost (Chen et al., 2015) 7 1.7.1
CatBoostRegressor CatBoost (Dorogush et al., 2018) 8 1.1.1
GradientBoostingRegressor Scikit-Learn 1.1.3
AdaBoostRegressor Scikit-Learn 1.1.3
BaggingRegressor Scikit-Learn 1.1.3
DecisionTreeRegressor Scikit-Learn 1.1.3
LinearRegression Scikit-Learn 1.1.3
StackingRegressor-RidgeCV Scikit-Learn 1.1.3
StackingRegressor-SGDRegressor Scikit-Learn 1.1.3

Table 4. Search space algorithms and the list of used API implementations for RSS evaluations

D.3.1. SEARCH SPACE DETAIL

RSS aims to select an optimized algorithm from search space. We considered 12 different atomic models where each model
can be trained from an algorithm, however, any number of choices can be applied to RSS because RSS sub sampled based
on the distribution of each trained model. Table 5 shows a comparison between the number of algorithm search space in
popular tabular AutoMLs. This summary of algorithm search space across popular tabular AutoML tools, shows that our
search space, consisting of 14 base choices, is competitive with traditional ML algorithms like tree-based methods, which
perform effectively on tabular data. Our primary objective is centered around selecting an optimized algorithm.

Note that the current experiments are completed on a set of diverse algorithms and it can be extended to any number of ML
algorithms. For instance, we consider leveraging PDF Sampling and PDF Energy metric for Network Architecture Search
(NAS) as a future work.

AutoML # of Choices Source/Reference
MLJAR 10 MLJAR Website - Compete mode 9

AutoGuon 6 Erickson et al.
H2O 5 categories includes 14 algorithms LeDell & Poirier
Auto-Scikit Learn 15 Feurer et al.
TPOT 6 Olson & Moore
FLAML 6 (w/ hyperparameters) Wang et al.
Baseline+RSS (Our) 14 this study

Table 5. A comparison of search space for algorithm selection in different tabular AutoMLs
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Figure 6. A Critical Difference (CD) diagram of algorithm selection based on KL and PDF Energy on R2 score across three hyper-
parameters of β (strata) and Benchmark #2; β = 0 refers to Stratified PDF Sampling with dynamic value where β̄ = 6; See Table 13 for
the detail of this experiment.

D.4. Sampling Ratio

Selecting a sampling ratio might be a challenging task. For instance, we use an oracle search in a simple experiment by
using PDF Sampling on a set of ratio to identify the algorithm, and then compare it against SRS. Figure 5 shows percentage
improvement that selecting the right ratio may cause significant performance changes where ratio between 20% to 80% has
a lower standard deviation (more reliable) in compared to other ratios. A simple heuristic approach can be used to select the
ratio according to input dataset size. However as noted earlier, sampling ratio selection is a limitation of our study and it is
considered as a future work on selecting the correct ratio for possibility of additional performance gains.

E. Detail of Evaluation Results
E.1. Detail of Algorithm Selection Results

Table 13 shows R2/RMSE results per dataset with different hyperparameters, which is a fine-grained detail of Figure 2 and
Table 1. Note that in some experiments such as 361083 dataset and β = 10, the same algorithm has been selected; therefore,
the same prediction score can be observed. As shown in this table, the results of both metric evaluations indicate that using
PDF sampling and using PDF Energy with distinct values of hyperparameter of β has a better performance in compared to
simple random sampling (SRS) where the best algorithm is selected based on SRS and the performance of standard metrics.

Figure 6 shows a Critical Difference (CD) (Demšar, 2006) diagram of algorithm selection for R2 score in Benchmark #2 by
comparing KL against PDF Energy with three hyperparameters of β (strata). In this figure, a lower rank signifies better
performance, and the results shown that the utilization of PDF Energy led to a lower ranking in terms of CD. Note that
in this figure, β = 0 pertains to Stratified PDF Sampling with a dynamic value, where values are chosen dynamically as
discussed in the Relative Entropy experiment (5.3), with β̄ = 6. In this figure, the connected methods and their associated
hyperparameters, represented by a bar, do not exhibit significant differences.

E.2. Stratified PDF

In Stratified PDF Sampling, the number of stratum (β) is selected per input dataset. Since we have 3 different seeds β in
Benchmark #2, the value can be varied based on target variable(s). Table 6 shows the value of β per dataset/seed which is
used in our experiments and reported in Table 1.

E.3. Relative Entropy Comparison

Figure 7 shows the performance evaluation on Benchmark #2 and 3 random seeds) across different sampling ratios (ρ) of
[0.2, 0.3, 0.4]. Each column represents different values of hyperparameter of β in range of [10, 100, 1000,Dynamic] where
Dynamic refers to stratified regressor PDF and the value is selected dynamically per dataset/seed as discussed in previous
section. The detail results per sampling ratio (ρ), show the effectiveness of algorithm selection across different configurations
and sampling ratios through KL and PDF Energy where both are relative entropy based approach. The performance is
averaged across 3 different seeds. The results demonstrate that PDF is either competitive (equal) or outperforms other
methods in all experiments. Overall, the average performance of PDF is remarkable where it achieves the highest R2 score
with the lowest standard deviation in each configuration of β and ρ.
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(a) 20% Sampling Ratio (ρ = 0.2)

(b) 30% Sampling Ratio (ρ = 0.3)

(c) 40% Sampling Ratio (ρ = 0.4)

Figure 7. The performance comparison of KL and PDF (our) on hold-out data for algorithm selection across Benchmark #2 with
hyperparameters of four different values of β and three sampling ratios of (a) ρ = 0.2, (b) ρ = 0.3, (c) ρ = 0.4. Each data point
represents the average of 3 experiments with 3 random seeds.
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Dataset Seed β Dataset Seed β

361072 181 5 361086 181 6
185 5 185 6
189 5 189 6

361073 181 2 361087 181 6
185 2 185 6
189 2 189 6

361078 181 6 361088 181 3
185 6 185 4
189 6 189 4

361080 181 4 361089 181 5
185 4 185 5
189 4 189 5

361081 181 7 36190 181 4
185 8 185 4
189 8 189 4

361082 181 4 42570 181 7
185 4 185 15
189 4 189 7

361083 181 13 361085 181 20
185 13 185 18
189 13 189 18

Table 6. The total number of strata (β) was selected per seed per dataset for stratified PDF sampling across all datasets in Benchmark #2,
with an average of β̄ = 6.

Figure 8. A comparison between KL and PDF (our) for algorithm selection on Benchmark #2 with the total number of champions per
dataset based on highest R2 score.

Figure 8 shows a comparison between KL and PDF in term of the total number of highest R2 score per dataset. Each dataset
includes 9 different experiments (3 seeds per 3 sampling ratios) with the configuration of β = 100. We also observed
the same outcome for each individual ratio where PDF outperformed significantly on selected models. With the same
configuration (total 126 experiments per method), Figure 9 shows a comparison of the list of recommended algorithms
between KL and PDF per dataset across all experiments. Note that stacking represents a model which is trained from top 3
atomic algorithms. In this figure, we do not discriminate different type of stacking (architecture) and all diverse architectures
including diverse estimator of ensemble models considered as a single "ensemble" type. These results show that PDF aims
to select more diverse algorithms as suggested by Nam et al., which is an important factor when recommending an ensemble
model. In this experiments, KL recommends more decision tree regressor algorithm; however, PDF tends more on CatBoost
algorithm selection.
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(a) Diversity of Algorithm Selection based on KL

(b) Diversity of Algorithm Selection based on PDF Sampling + PDF Energy evaluation

Figure 9. A comparison between (a) KL and (b) PDF (our) for diversity algorithm selection per dataset on Benchmark #2; 9 experiments
per dataset that includes 3 different seeds per 3 sampling ratios, considering β = 100 and total computation time of 126 across all time
budgets.

E.4. AutoML Evaluation Detail

As explained in Section 4.2, we use 6 different AutoML platforms on top of baseline to train a model on each training
dataset and evaluate each AutoML platform on test dataset by using R2 metric. We use the latest version of open-source
tabular AutoML platforms of FLAML 10 (Wang et al., 2021), MLJAR 11 (Płońska & Płoński, 2021), AutoGluon 12 (Erickson
et al., 2020), H2O 13 (LeDell & Poirier, 2020), TPOT 14 (Olson & Moore, 2016) and AutoSK-Learn 15 (Feurer et al., 2020).
In each experiment similarly DTrain fit into each AutoML and reported the averaged R2 score across all different seeds on
test dataset with respect to given time budget. Note that 210 different experiments have been conducted on each AutoML
that include 5 different time budgets restriction with 3 different random seeds on 14 different datasets for Benchmark #2.
The configuration and version of each AutoML tool which is used in both experiments, is shown in Table 7.

In Benchmark #2, only TPOT and Auto-SKLearn failed to generate a model in all experiments due to the lack of text
processing. By removing failure cases (R2=0) and considering 185 experiments and 195 experiments for TPOT and
AutoSKLearn (out of 210) the overall average is Avg(ATPOT ) = 0.847, Avg(AAutoSKLearn) = 0.76. (see failures in
Appendix E.4.1). Table 11 shows the performance of all AutoML experiments per dataset on Benchmark #2 where RSS is
the top performer by reaching the highest R2 score among 6 AutoMLs and baseline (8 out of 14 datasets) with an overall
average of 0.852 over 210 experiments per platform. These evaluation results on Benchmark #2, similar to Section 5.2 on
Benchmark #1, show that i) our algorithm selector was able to outperform in all of time budget constrains (4 out of 5 time
budgets); ii) PDF energy identifies the algorithm with respect to the time budget constrain as early as 30 second time budget
because adding additional time budget slightly increases the performance; iii) adding time budget enables our proposed

10https://microsoft.github.io/FLAML/
11https://supervised.mljar.com/
12https://auto.gluon.ai/stable/api/autogluon.task.html
13https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
14https://github.com/EpistasisLab/tpot
15https://automl.github.io/auto-sklearn/master/
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# AutoML Version Parameters
1 MLJAR 0.11.2
2 FLAML 1.0.14
3 TPOT 0.11.7
4 H2O AutoML 3.38.0.4 ’max_models’: 20
5 AutoGluon 0.6.2 presets:’best_quality’
6 Auto-SKLearn 0.15.0

Table 7. AutoML Configurations that have been used in both Benchmark #1 and Benchmark #2.

approach to improve its performance in case of missed optimized algorithm (i.e., second choice from sorted algorithm
recommendation w.r.t. PDF Energy); iv) our proposed approach and H2O achieved the lowest standard deviation with
std = ±0.15 among all AutoMLs; v) our proposed approach achieved the best overall averaged R2 score of 0.852 across
all AutoMLs.

Table 14 shows the detail results on Benchmark #2 by representing R2 score evaluation per dataset/time budget. As shown
in this table, RSS selects an optimized algorithm for 7 out 14 datasets within the first time budget of 30 seconds. One further
improvement as future work is increasing the number of algorithm exploration to enhance the performance by utilizing PDF
Sampling and PDF Energy metric.

Table 2 shows the overall R2 score per time budget per AutoML in Benchmark #1. Each data point represents an average
of 310 experiments with ± standard deviation. The champions per time budgets (rows) are highlighted in bold where
RSS shows the best performance across all platforms. Note that the baseline does not take into account the time budget
(model selection is the same across all time budgets). However, for a fair comparison, we repeat the training and prediction
procedure to obtain a more accurate report. Figure 11 shows R2 performance comparison (higher is better) where each
sub-figure represents the performance of all AutoMLs including our RSS approach per selected time budget in seconds. As
shown in this figure, RSS is leading in most of the experiments.

In addition to the results as shown in Table 2 and Figure 11, Figure 10 shows AutoML Critical Difference (CD) plot on
Benchmark #1. AutoML Tools connected by a bar are not significantly different. The lower rank is better where RSS
achieves the best ranking among all AutoML tools by utilizing PDF Sampling and PDF Energy.

Assumptions. Our evaluation is based on fitting 75% of datasets into different AutoML tools and predicting 25% of
the test dataset on all AutoMLs based on all different random seeds. Therefore, we did not consider any update on any
specific AutoML platform beside using the same hyperparameters such as evaluation metric, time budget and etc. The same
configuration allows us to have a fair comparison between different AutoML tools according to the given input dataset.
Therefore, we assume that any small fixes beside system configuration are out of scope in our evaluation. In addition,
AutoML platforms are evaluated based on our split test dataset which has been used to fairly test all AutoML tools.

12345678

RSS (our)

FLAML
H2O
AutoSKLearnAutoGluon

Baseline
TPOT

MLJAR

AutoML Critical Difference (CD) Plot

Figure 10. Critical Difference (CD) diagram for test score (R2) on 31 datasets with 10 random seeds (see Figure 11 for the detail); The
lower rank represents the better performance; The AutoML tools which are connected by a bar, are not significantly different.

E.4.1. AUTOML FAILURES.

Note that there were some failure cases in Benchmark #1 where AutoSKLearn and TPOT failed due to the input data type
issue. We also observe that H2O failed due to time budget limitations. In each experiment, if there was any error, we marked
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it as R2 = 0. After collecting all individual results, we reprocess records with R2 = 0 on another refreshed machine to be
ensured that there is no any environment concern. Table 8 are the results of the number of R2 = 0 per AutoML in the first
and the second attempt. Note that only baseline, FLAML and our proposed approach (RSS) were able to generate all results
without any repetitions.

AutoML # Failure in first attempt # Failure in 2nd attempt Issue

AutoGluon 11 0 -
AutoSKLearn 163 163 data format
H2O 159 48 time budget
MLJAR 5 3 time budget
TPOT 72 65 data format

Table 8. The number of failure cases in the first and the second repetitions of the process

Issues. We observed several issues where only 2 AutoML platforms were not able to produce any model (failure cases) for
40 different experiments of Benchmark #2. Table 9 shows the detail of errors for each AutoML tool.

AutoML # of Failure Dataset Seed Time Budget Error/Comment

TPOT
10 361083 [181,185,189] [30, 60] Liblinear failed to converge, increase; due time budget limitation
15 42570 [181,185,189] [30, 60, 120,180,300] could not process text feature

Auto-SKLearn
15 42570 [181,185,189] [30, 60, 120,180,300] could not process text feature

Table 9. AutoML failures on Benchmark #2 (14 different datasets with 3 different random seeds and 5 different time budgets)

Time (S) Baseline MLJAR FLAML H2O TPOT AutoSKLearn AutoGluon RSS (our)

30 0.7795 ±0.2 0.7693 ±0.19 0.8349 ±0.18 0.8391 ±0.15 0.6821 ±0.36 0.4924 ±0.42 0.8384 ±0.16 0.8510 ±0.15
60 0.7795 ±0.2 0.8194 ±0.18 0.8348 ±0.2 0.8427 ±0.15 0.7084 ±0.36 0.6899 ±0.35 0.8428 ±0.15 0.8517 ±0.15
120 0.7795 ±0.2 0.8469 ±0.15 0.8468 ±0.15 0.8471 ±0.15 0.7757 ±0.28 0.7817 ±0.28 0.8480 ±0.16 0.8520 ±0.15
180 0.7795 ±0.2 0.8480 ±0.15 0.8483 ±0.15 0.8476 ±0.15 0.7799 ±0.27 0.7826 ±0.28 0.8508 ±0.15 0.8520 ±0.15
300 0.7795 ±0.2 0.8490 ±0.15 0.8511 ±0.15 0.8482 ±0.15 0.7837 ±0.27 0.7833 ±0.28 0.8530 ±0.15 0.8522 ±0.15
Avg(A) 0.7795±0.21 0.8265±0.16 0.8432±0.16 0.8449±0.15 0.7459±0.29 0.7060±0.28 0.8466±0.16 0.8518±0.15

Table 10. AutoML evaluation based on R2 score (higher is better) on Benchmark #2; averaged over 3 random seeds per dataset for each
time budgets in second (averaged of 42 experiments per data point) with a standard deviation of approximately ±.; bold values shows the
highest score per time budget. See per dataset detail in Table 11 and fined-grain results in Table 14.

Dataset 361072 361073 361078 361080 361081 361082 361083 361085 361086 361087 361088 361089 361090 42570 Avg(A)

Baseline 0.984 0.988 0.789 0.890 0.981 0.664 0.301 0.835 0.979 0.773 0.896 0.684 0.683 0.467 0.779
MLJAR 0.984 0.991 0.821 0.945 0.976 0.663 0.542 0.802 0.979 0.885 0.910 0.864 0.690 0.519 0.827
FLAML 0.982 0.990 0.848 0.947 0.992 0.697 0.646 0.881 0.979 0.931 0.923 0.848 0.690 0.448 0.843
H2O 0.985 0.988 0.859 0.947 0.994 0.705 0.648 0.822 0.978 0.930 0.914 0.861 0.690 0.508 0.845
TPOT 0.983 0.985 0.832 0.946 0.986 0.694 0.226 0.817 0.798 0.918 0.747 0.828 0.684 0.000 0.746
AutoSKLearn 0.982 0.990 0.806 0.943 0.789 0.701 0.243 0.835 0.587 0.925 0.713 0.683 0.687 0.000 0.706
AutoGluon 0.978 0.994 0.869 0.947 0.992 0.708 0.593 0.873 0.979 0.935 0.917 0.860 0.694 0.512 0.847
RSS (our) 0.986 0.990 0.857 0.947 0.994 0.689 0.678 0.884 0.979 0.936 0.916 0.859 0.691 0.519 0.852
Avg(D) 0.983 0.989 0.835 0.939 0.963 0.690 0.485 0.844 0.907 0.904 0.867 0.811 0.688 0.372 0.806

Table 11. AutoML evaluation per dataset on Benchmark #2; averaged R2 Score (higher is better) over 3 random seeds for each time
budget of [30, 60, 120, 180, 300] (averaged of 15 experiments per data point); highest score per dataset is marked bold. See fined-grain
results in Table 14.

F. Ablation Study on Higher Time Budget
In the previous experiments, we focused on short time budgets for each experiment, with a maximum of five minutes. Our
objective was to test different AutoML tools under stress test conditions (limited time budget) where our proposed sampling
approach compared to AutoMLs performances. To further evaluate each AutoML platform, we have set up an additional
ablation study with an extra time budget.

22



Regression-Stratified Sampling for Optimized Algorithm Selection in Time-Constrained Tabular AutoML

Setup. We limited each experiment to 10 and 20 minutes, where the time budgets were 3X+ and 5X+ times higher than
in the previous experiments, respectively. We used 10 different datasets (361083, 361085, 361086, 361084, 361080,
361081, 361082, 361072, 361073, 361074) with 10 random seeds (761, 193, 121, 101, 112, 168, 173, 194, 219, 683)
for reproducibility. In this ablation study, we allowed RSS to generate an ensemble model with the top 6 and top 10
outperforming models within its time budget (n_stacking=3 in the two previous sets of experiments for Benchmark #1 and
#2).

Results. Table 12 shows the results of the time budget ablation study on 10 datasets with 10 random seeds for two time
budgets of 10 and 20 minutes. The results of the ablation study indicate that increasing the time budget still leads to improved
performance in 10 minutes and competitive with AutoGluon in 20 minutes. Specifically, our study found that increasing the
time budget allowed RSS to identify an optimized model more accurately. AutoGluon’s performance tends to improve with
a higher time budget compared to short time budgets, but it still performs less well than RSS in the 10-minute experiment.
Note that AutoGluon is able to expand the search space when there is sufficient time (i.e., ensemble models); however, RSS
uses a limited search space in this study. We expect that if we similarly increase the search space (i.e., allowing RSS to
ensemble more model), RSS could potentially outperform AutoGluon. Since increasing the search space and higher time
budgets are not the main focus of this study, we consider it a potential area for future work. These results support our earlier
conclusions, even with the increased time budget. Note that, since our objective is sampling evaluation, drawing a conclusion
on a shorter time budget might be more effective in evaluating each AutoML tool against our proposed sampling approach,
RSS, for tabular data. Note that since each experiment ran independently, an AutoML may use a different strategy to find an
optimized algorithm based on given time budget. As a result, some AutoMLs (i.e., AutoSKLearn) may suffer performance
degradation due to the use of different strategies, even with a given additional time budget. Therefore, increasing a time
budget does not necessarily mean that an AutoML will always have improved performance.

Time(s) Baseline MLJAR FLAML AutoSKLearn H2O TPOT AutoGluon RSS (our)

600 0.8888 ± 0.12 0.8865 ± 0.15 0.8996 ± 0.11 0.5553 ± 0.45 0.8940 ± 0.12 0.8689 ± 0.16 0.8973 ± 0.12 0.900 ± 0.11
1200 0.8888 ± 0.12 0.8866 ± 0.15 0.8999 ± 0.11 0.5577 ± 0.45 0.8956 ± 0.11 0.8737 ± 0.15 0.9021 ± 0.11 0.9012 ± 0.11

Table 12. Proposed approach evaluation against AutoMLs in ablation higher time budget study on 10 datasets with 10 different random
seeds; Each data point represents an average of 100 experiments with a standard deviation of approximately ±. Champions for each time
budget (row) are highlighted in bold.

G. Disclaimers
• Although a sampling approach has been introduced in this study, the authors do not anticipate that the sampling

algorithm or ML algorithm selection will suffer from bias or discriminatory selection. However, if the full-scale data
consist of biased and discriminatory data points, the sampled data and/or algorithm selection may inherently exhibit
these issues.
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Regression-Stratified Sampling for Optimized Algorithm Selection in Time-Constrained Tabular AutoML

Dataset Time(s) Baseline MLJAR FLAML H2O TPOT AutoSKLearn AutoGluon RSS (Our)

361072 30 0.9836 ±0.0 0.9839 ±0.0 0.9829 ±0.0 0.9835 ±0.0 0.9827 ±0.0 0.9797 ±0.01 0.9846 ±0.0 3 0.9861 ±0.0
60 0.9836 ±0.0 0.9828 ±0.0 0.9803 ±0.0 0.9856 ±0.0 0.9827 ±0.0 0.9811 ±0.01 0.9454 ±0.07 0.9861 ±0.0

120 0.9836 ±0.0 0.9847 ±0.0 0.9823 ±0.0 0.9853 ±0.0 0.9828 ±0.0 0.9826 ±0.0 0.9868 ±0.0 0.9861 ±0.0
180 0.9836 ±0.0 0.9849 ±0.0 0.9816 ±0.0 0.9851 ±0.0 0.9828 ±0.0 0.9823 ±0.0 0.9876 ±0.0 0.9861 ±0.0
300 0.9836 ±0.0 0.9852 ±0.0 0.9833 ±0.0 0.9851 ±0.0 0.9824 ±0.0 0.9827 ±0.0 0.9875 ±0.0 0.9861 ±0.0

361073 30 0.9878 ±0.0 0.9867 ±0.0 0.9897 ±0.0 0.9814 ±0.0 0.9835 ±0.0 0.9828 ±0.0 3 0.9931 ±0.0 0.9904 ±0.0
60 0.9878 ±0.0 0.9898 ±0.0 0.9906 ±0.0 0.9878 ±0.0 0.9839 ±0.0 0.9877 ±0.0 0.9937 ±0.0 0.9904 ±0.0

120 0.9878 ±0.0 0.9913 ±0.0 0.9906 ±0.0 0.9897 ±0.0 0.9856 ±0.0 0.9886 ±0.0 0.9943 ±0.0 0.9904 ±0.0
180 0.9878 ±0.0 0.9915 ±0.0 0.9904 ±0.0 0.9898 ±0.0 0.9855 ±0.0 0.9946 ±0.0 0.995 ±0.0 0.9904 ±0.0
300 0.9878 ±0.0 0.9946 ±0.0 0.991 ±0.0 0.9893 ±0.0 0.9859 ±0.01 0.9946 ±0.0 0.9956 ±0.0 0.9904 ±0.0

361078 30 0.7885 ±0.08 0.6587 ±0.17 0.8418 ±0.02 0.8541 ±0.01 0.8199 ±0.01 0.6853 ±0.01 3 0.8616 ±0.01 0.8532 ±0.01
60 0.7885 ±0.08 0.8588 ±0.01 0.8482 ±0.0 0.8591 ±0.01 0.832 ±0.01 0.7937 ±0.09 0.8667 ±0.01 0.8551 ±0.01

120 0.7885 ±0.08 0.8615 ±0.0 0.8474 ±0.0 0.8608 ±0.0 0.8334 ±0.02 0.8471 ±0.01 0.8712 ±0.01 0.8581 ±0.01
180 0.7885 ±0.08 0.8627 ±0.01 0.8483 ±0.0 0.8589 ±0.0 0.8379 ±0.02 0.8507 ±0.01 0.8719 ±0.01 0.8581 ±0.01
300 0.7885 ±0.08 0.8637 ±0.0 0.8528 ±0.0 0.86 ±0.01 0.8379 ±0.02 0.8511 ±0.01 0.8726 ±0.01 0.8581 ±0.01

361080 30 0.8903 ±0.02 0.9369 ±0.0 3 0.9468 ±0.0 3 0.9466 ±0.0 0.9462 ±0.0 0.9364 ±0.01 3 0.9454 ±0.0 3 0.9456 ±0.0
60 0.8903 ±0.02 0.9471 ±0.0 0.9471 ±0.0 0.947 ±0.0 0.9462 ±0.0 0.9399 ±0.0 0.9463 ±0.0 0.9472 ±0.0

120 0.8903 ±0.02 0.9473 ±0.0 0.9471 ±0.0 0.9474 ±0.0 0.9462 ±0.0 0.9466 ±0.0 0.9473 ±0.0 0.9472 ±0.0
180 0.8903 ±0.02 0.9474 ±0.0 0.9471 ±0.0 0.9474 ±0.0 0.9464 ±0.0 0.9468 ±0.0 0.9476 ±0.0 0.9472 ±0.0
300 0.8903 ±0.02 0.9473 ±0.0 0.9471 ±0.0 0.9474 ±0.0 0.9465 ±0.0 0.9468 ±0.0 0.9477 ±0.0 0.9472 ±0.0

361081 30 0.981 ±0.02 0.949 ±0.0 0.9924 ±0.01 3 0.9922 ±0.01 0.9778 ±0.02 -0.0005 ±0.0 0.9937 ±0.01 3 0.9942 ±0.0
60 0.981 ±0.02 0.9693 ±0.01 0.9922 ±0.01 0.993 ±0.0 0.9778 ±0.02 0.988 ±0.01 0.998 ±0.0 0.9942 ±0.0

120 0.981 ±0.02 0.9855 ±0.01 0.9918 ±0.01 0.9947 ±0.0 0.989 ±0.01 0.9869 ±0.01 0.9952 ±0.0 0.9942 ±0.0
180 0.981 ±0.02 0.9859 ±0.01 0.9927 ±0.01 0.994 ±0.0 0.989 ±0.01 0.9864 ±0.01 0.9884 ±0.02 0.9942 ±0.0
300 0.981 ±0.02 0.99 ±0.01 0.9934 ±0.01 0.9944 ±0.0 0.9943 ±0.0 0.9866 ±0.01 0.9835 ±0.02 0.9942 ±0.0

361082 30 0.6637 ±0.01 0.5516 ±0.01 0.6915 ±0.02 0.7017 ±0.01 0.6918 ±0.01 0.6939 ±0.01 3 0.7075 ±0.01 0.6861 ±0.0
60 0.6637 ±0.01 0.6832 ±0.01 0.6968 ±0.0 0.7058 ±0.01 0.692 ±0.01 0.7029 ±0.01 0.7052 ±0.01 0.6899 ±0.01

120 0.6637 ±0.01 0.692 ±0.01 0.699 ±0.01 0.7065 ±0.01 0.6948 ±0.01 0.7028 ±0.01 0.7088 ±0.01 0.6899 ±0.01
180 0.6637 ±0.01 0.6907 ±0.01 0.699 ±0.01 0.7066 ±0.01 0.6948 ±0.01 0.7026 ±0.01 0.7082 ±0.01 0.6899 ±0.01
300 0.6637 ±0.01 0.6995 ±0.01 0.699 ±0.01 0.7065 ±0.01 0.6948 ±0.01 0.7035 ±0.01 0.7086 ±0.01 0.6899 ±0.01

361083 30 0.3006 ±0.0 0.4043 ±0.0 0.6157 ±0.03 0.6361 ±0.01 0.0 ±0.0 -0.0 ±0.0 0.5356 ±0.0 3 0.6784 ±0.0
60 0.3006 ±0.0 0.4043 ±0.0 0.6452 ±0.01 0.6483 ±0.0 0.0 ±0.0 0.3034 ±0.0 0.5821 ±0.0 0.6784 ±0.0

120 0.3006 ±0.0 0.6306 ±0.0 0.6304 ±0.03 0.6496 ±0.0 0.3446 ±0.08 0.3034 ±0.0 0.5811 ±0.01 0.6784 ±0.0
180 0.3006 ±0.0 0.6335 ±0.0 0.6551 ±0.02 0.6549 ±0.0 0.3918 ±0.08 0.3034 ±0.0 0.6168 ±0.01 0.6784 ±0.0
300 0.3006 ±0.0 0.6371 ±0.0 0.6836 ±0.01 0.6513 ±0.0 0.3918 ±0.08 0.3034 ±0.0 0.6517 ±0.01 0.6784 ±0.0

361085 30 0.8351 ±0.05 0.7053 ±0.02 0.8739 ±0.04 0.7954 ±0.05 0.8122 ±0.04 0.8262 ±0.05 0.8696 ±0.04 3 0.8837 ±0.04
60 0.8351 ±0.05 0.7353 ±0.03 0.8864 ±0.04 0.7986 ±0.05 0.8122 ±0.04 0.8363 ±0.05 0.8718 ±0.04 0.8839 ±0.04

120 0.8351 ±0.05 0.8521 ±0.06 0.8871 ±0.04 0.8338 ±0.05 0.8209 ±0.04 0.8355 ±0.05 0.8743 ±0.05 0.8839 ±0.04
180 0.8351 ±0.05 0.8624 ±0.06 0.8809 ±0.04 0.836 ±0.05 0.8209 ±0.04 0.8355 ±0.05 0.8742 ±0.05 0.8839 ±0.04
300 0.8351 ±0.05 0.8542 ±0.06 0.8779 ±0.04 0.8449 ±0.04 0.8209 ±0.04 0.8416 ±0.05 0.8739 ±0.05 0.8839 ±0.04

361086 30 3 0.9786 ±0.0 3 0.9764 ±0.0 3 0.9793 ±0.0 0.9775 ±0.0 0.4023 ±0.51 -0.0 ±0.0 3 0.9791 ±0.0 3 0.9789 ±0.0
60 0.9786 ±0.0 0.9791 ±0.0 0.9793 ±0.0 0.9784 ±0.0 0.652 ±0.56 -0.0 ±0.0 0.9793 ±0.0 0.9789 ±0.0

120 0.9786 ±0.0 0.9793 ±0.0 0.9794 ±0.0 0.9787 ±0.0 0.9783 ±0.0 0.9789 ±0.0 0.9794 ±0.0 0.9794 ±0.0
180 0.9786 ±0.0 0.9795 ±0.0 0.9794 ±0.0 0.9788 ±0.0 0.9783 ±0.0 0.9791 ±0.0 0.9795 ±0.0 0.9794 ±0.0
300 0.9786 ±0.0 0.9795 ±0.0 0.9794 ±0.0 0.9791 ±0.0 0.9783 ±0.0 0.9793 ±0.0 0.9794 ±0.0 0.9794 ±0.0

361087 30 0.7728 ±0.0 0.6925 ±0.01 0.9309 ±0.0 0.9257 ±0.0 0.9166 ±0.0 0.9226 ±0.0 0.9321 ±0.0 3 0.9354 ±0.0
60 0.7728 ±0.0 0.9293 ±0.0 0.9305 ±0.0 0.9263 ±0.0 0.9166 ±0.0 0.9242 ±0.0 0.9327 ±0.0 0.9354 ±0.0

120 0.7728 ±0.0 0.9334 ±0.0 0.9315 ±0.0 0.9331 ±0.0 0.9166 ±0.0 0.9242 ±0.0 0.9358 ±0.0 0.9356 ±0.0
180 0.7728 ±0.0 0.9338 ±0.0 0.9314 ±0.0 0.9332 ±0.0 0.9209 ±0.01 0.9259 ±0.0 0.9375 ±0.0 0.9356 ±0.0
300 0.7728 ±0.0 0.934 ±0.0 0.9318 ±0.0 0.9331 ±0.0 0.9209 ±0.01 0.9267 ±0.0 0.938 ±0.0 0.9356 ±0.0

361088 30 0.8964 ±0.01 0.8576 ±0.11 3 0.9194 ±0.01 0.9107 ±0.0 0.5104 ±0.47 0.1847 ±0.0 0.896 ±0.01 0.9152 ±0.01
60 0.8964 ±0.01 0.9218 ±0.01 0.9231 ±0.01 0.9131 ±0.0 0.6121 ±0.53 0.6661 ±0.42 0.9154 ±0.01 0.9152 ±0.01

120 0.8964 ±0.01 0.9234 ±0.01 0.924 ±0.01 0.9142 ±0.01 0.8569 ±0.11 0.9053 ±0.01 0.9242 ±0.01 0.9152 ±0.01
180 0.8964 ±0.01 0.9239 ±0.01 0.9235 ±0.01 0.9148 ±0.01 0.8569 ±0.11 0.9054 ±0.01 0.9257 ±0.01 0.9152 ±0.01
300 0.8964 ±0.01 0.9237 ±0.01 0.9238 ±0.01 0.9171 ±0.0 0.9007 ±0.03 0.9054 ±0.01 0.9257 ±0.01 0.9168 ±0.01

361089 30 0.6844 ±0.0 3 0.8594 ±0.0 0.8493 ±0.01 0.8574 ±0.0 0.8269 ±0.01 -0.0007 ±0.0 0.8386 ±0.0 0.8587 ±0.0
60 0.6844 ±0.0 0.8638 ±0.0 0.8477 ±0.0 0.8577 ±0.0 0.8269 ±0.01 0.8488 ±0.0 0.8571 ±0.0 0.8594 ±0.0

120 0.6844 ±0.0 0.8662 ±0.0 0.8457 ±0.0 0.863 ±0.01 0.8269 ±0.01 0.8551 ±0.0 0.8646 ±0.0 0.8597 ±0.0
180 0.6844 ±0.0 0.8662 ±0.0 0.8469 ±0.0 0.8636 ±0.0 0.8291 ±0.01 0.8551 ±0.0 0.8694 ±0.0 0.8597 ±0.0
300 0.6844 ±0.0 0.8662 ±0.0 0.8528 ±0.01 0.8645 ±0.0 0.8282 ±0.01 0.8557 ±0.0 0.8722 ±0.0 0.8597 ±0.0

361090 30 0.6826 ±0.0 0.6904 ±0.0 0.6876 ±0.0 0.6859 ±0.0 0.6787 ±0.0 0.683 ±0.01 3 0.6911 ±0.0 0.6897 ±0.0
60 0.6826 ±0.0 0.6893 ±0.0 0.6899 ±0.0 0.6911 ±0.0 0.683 ±0.01 0.687 ±0.0 0.6931 ±0.0 0.6911 ±0.0

120 0.6826 ±0.0 0.69 ±0.0 0.6896 ±0.0 0.6919 ±0.0 0.6835 ±0.01 0.6872 ±0.0 0.6947 ±0.0 0.6911 ±0.0
180 0.6826 ±0.0 0.6901 ±0.0 0.6904 ±0.0 0.6915 ±0.0 0.6842 ±0.01 0.688 ±0.0 0.6953 ±0.0 0.6911 ±0.0
300 0.6826 ±0.0 0.6912 ±0.0 0.6919 ±0.0 0.6904 ±0.0 0.6886 ±0.0 0.6882 ±0.0 0.6955 ±0.0 0.6911 ±0.0

42570 30 0.4675 ±0.03 3 0.5175 ±0.02 0.3872 ±0.27 0.4998 ±0.03 0.0 ±0.0 0.0 ±0.0 0.5089 ±0.03 3 0.5187 ±0.04
60 0.4675 ±0.03 0.5181 ±0.02 0.3291 ±0.36 0.5054 ±0.04 0.0 ±0.0 0.0 ±0.0 0.5117 ±0.03 0.5188 ±0.04

120 0.4675 ±0.03 0.5196 ±0.02 0.5088 ±0.04 0.5101 ±0.02 0.0 ±0.0 0.0 ±0.0 0.5147 ±0.03 0.5193 ±0.04
180 0.4675 ±0.03 0.52 ±0.02 0.5089 ±0.04 0.5118 ±0.02 0.0 ±0.0 0.0 ±0.0 0.5139 ±0.03 0.5193 ±0.04
300 0.4675 ±0.03 0.5201 ±0.02 0.5082 ±0.04 0.5121 ±0.03 0.0 ±0.0 0.0 ±0.0 0.5104 ±0.03 0.5193 ±0.04

Avg(A) 0.7795 0.8265 0.8432 0.8449 0.7459 0.706 0.8466 0.8518

Table 14. A comparison between our proposed approach against baseline and 6 different AutoMLs on Benchmark #2; each value is an
average of 3 different experiments (3 random seeds); champions per dataset/time budget (row) marked in bold; 3 indicates Method/AutoM
champion per dataset (rows) across all AutoMLs based on the average of 3 seeds and 5 time budgets (15 experiments).
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Figure 11. R2 performance comparison (higher values indicate better performance) of RSS (our) against a baseline and 6 different
AutoML tools per time budget; each sub-figure represents the performance of tool/method for a given time budget (second); Note that the
x-axis represents the sorted names of 31 datasets from Benchmark #1 (24 labels hidden for readability).
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