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Abstract

In this paper, we establish non-asymptotic bounds for accuracy
of normal approximation for linear two-timescale stochastic
approximation (TTSA) algorithms driven by martingale dif-
ference or Markov noise. Focusing on both the last iterate
and Polyak—Ruppert averaging regimes, we derive bounds
for normal approximation in terms of the convex distance
between probability distributions. Our analysis reveals a non-
trivial interaction between the fast and slow timescales: the
normal approximation rate for the last iterate improves as
the timescale separation increases, while it decreases in the
Polyak—Ruppert averaged setting. We also provide the high-
order moment bounds for the error of linear TTSA algorithm,
which may be of independent interest. Finally, we demonstrate
that our theoretical results are directly applicable to reinforce-
ment learning algorithms such as GTD and TDC.

1 Introduction

Stochastic approximation (SA) methods play an important
role in the field of machine learning, especially due to their
role in solving reinforcement learning (RL) problems (Sutton
and Barto||2018). Recent studies cover both asymptotic (Ne{
mirovskij and Yudin|[1983} [Polyak and Juditsky|[1992) and
non-asymptotic (Moulines and Bach|[2011) properties of SA
estimates. In particular, two-timescale stochastic approxima-
tion (TTSA) algorithms (Borkar|[1997) refer to the class of
methods that update two interdependent variables with sepa-
rate step size sequences, one typically decreasing faster than
the other. This class of methods is especially important in
RL, where policy evaluation in the off-policy setting requires
TTSA methods such as the Gradient Temporal Difference
(GTD) method (Sutton, Maei, and Szepesvari|2008]).

An important question for SA algorithms is related to
the accuracy of Gaussian approximation (GAR) of the con-
structed estimates. Classical results on GAR for SA algo-
rithms, such as (Polyak and Juditsky||1992; [Konda and Tsit{
siklis|2004), are asymptotic and do not provide convergence
rates. At the same time, the latter results play an important
role in statistical inference for optimization (Fan|2019), as
they pave the way for non-asymptotic analysis of various pro-
cedures for constructing confidence intervals. We focus on
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the linear two-timescale SA problem, that is, we aim to find a
solution (6*, w*) that solves the system of linear equations:

Al +Apw=">b, Anbl+Apw=>by, (1)
assuming that the solution (8*, w*) is unique and is given by
0* = Ail(bl — A12A521b2), w* = A§21(b2 — Aglg*) s

with A = A;; — A12A2_21A21. We consider the setting,
where the underlying matrices A;; and vectors b;, i,j €
{1, 2}, are not accessible. Instead, following (Borkar|1997),
we assume that the learner has access to a sequence of ran-
dom variables { X}, } xen taking values in a measurable space
(X, X), and vector/matrix-valued functions b;(z), A;;(x),
i,j € {1,2}, which serves as stochastic estimates of b; and
A;j, respectively. The corresponding recurrence runs as

Ok = Or + Bifby ! — AT 10, — Al wn}
Wg41 = Wi —+ ’Yk{bIQHJ — A’;flﬁk — Aggrl’wk} 5

where 0, € R%, w; € R, and b¥, A¥; are shorthand
notations for b;(X},) and A;;(Xy), respectively. The scalars
Yk, Bk > 0 in @) are step sizes, and the underlying SA
scheme is said to have two timescales as the step sizes sat-
isfy limy o0 Bk /vk < 1 such that wy, is updated at a faster
timescale. In our paper we consider 3 = co g(k + ko) ~°
and v, = co,~(k + ko) ~® with exponents a and b satisfying
1/2 < a < b < 1. When {Xj}ren are i.i.d., and under
appropriate technical assumptions on the parameters of (2),
it is known (see e.g. (Konda and Tsitsiklis|2004)), that the
asymptotic normality of the "slow" timescale 6} holds:

B2 (6, — 0%) — N(0,%9) 3)

with some covariance > y. The authors in (Mokkadem, Pel4
letier et al.|[2006) generalized this result for the averaged
iterates of non-linear SA:

O =013 00k, Wyi=ntY 0 jwi. @)

The latter estimates correspond to the Polyak-Ruppert aver-
aging procedure introduced in (Ruppert||1988} [Polyak and
Juditsky|[1992)), a popular technique for stabilization of the
SA algorithms. The authors of the recent paper (Kong et al.
2025)) obtained the non-asymptotic convergence rates for the
averaged iterates #,, and w,, in Wasserstein distance of or-
der 1, using the vector-valued versions of the Berry-Essen
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theorem for martingale-difference sequences due to (Srikant
2024). In this paper, we not only generalize these results
for the setting of Markov noise, but also establish the corre-
sponding convergence rates for the last iterate 6j. The main
contributions of this paper are the following:

* We derive non-asymptotic bounds for the accuracy of
normal approximation for the Polyak—Ruppert-averaged
TTSA /n(f, — 6*) and last iterate B, /*(6,, — 6*) in
terms of convex distance under martingale-difference
noise assumptions. Our results indicate that the normal ap-
proximation for the last iterate improves as the timescale
separation increases and achieves a convergence rate of
order up to n~ /4, up to logn factors. We show that
the Polyak—Ruppert averaged TTSA iterates achieve the
same rate of normal approximation, but require that the
timescales ;. and -y, coincide up to a constant factor.
While our analysis for the Polyak—Ruppert averaged
TTSA generalizes recent results due to (Kong et al.[2025),
we provide, to the best of our knowledge, the first fully
non-asymptotic analysis of the normal approximation
rates for the last iterate of TTSA.

* We generalize the obtained results for normal approxi-
mation for the averaged TTSA and the last iterate to the
setting of Markov noise. Our results show a convergence
rate of order up to n~'/%, up to logarithmic factors, with
the same conclusion regarding timescale separation as in
the martingale noise case. This is the first result on the
normal approximation rate for TTSA with Markov noise.

Notations. For a matrix A € R%*? we denote by | A]|
its operator norm. For symmetric positive-definite matrix
Q =Q" =0, Q € R¥™ and z € R? we define
the corresponding norm ||z||o = /2T Qz, and define the
respective matrix Q-norm of the matrix B € R%X¢ by
Bllq = sup, g |Bx|lg/[|z|lq. For sequences a,, and b,
we write a, Slog, b if there exist ¢, & > 0 (not depending
upon n), such that a,, < ¢(1 4 logn)®b,,. In the present
text, the following abbreviations are used: "w.r.t." stands for
"with respect to", "i.i.d. " - for "independent and identically
distributed", "GAR" - for "Gaussian Approximation".

Related works Classical results in the stochastic approx-
imation (Borkar|2008) study the asymptotic properties of
the single timescale SA algorithms, with the properties of
averaged estimated studied in (Polyak and Juditsky||1992).
Two-timescale SA schemes were studied in (Borkar |1997;
Tadic[2004; [Tadic[2006)) in terms of almost sure convergence.
Asymptotic convergence rates of linear two-timescale SA
were studied in (Konda and Tsitsiklis|[2004), where the au-
thors showed that asymptotically E[||0x — 6*]|?] = O(5%)
and E[[|wy, — w*|[?] = O(y).

Non-asymptotic error bounds for TTSA were first devel-
oped in (Dalal et al.|2018};|Dalal, Szorenyi, and Thoppe|2020)
under the martingale noise assumptions and additional pro-
jections used in the update scheme (2)). These results were
further improved in (Kaledin et al.|2020) for linear TTSA
problems. (Haque, Khodadadian, and Maguluri2023) refined
the results of (Kaledin et al.[2020) obtaining the MSE bounds
E[||0x — 6*||?] and E[||w), — w*||?] with the leading terms

given by By, Tr Xy and ~; Tr 2, where the covariances X
and ¥, aligns with the CLT in (3). (Kwon et al[2024) con-
sidered the version of (2)) with constant step sizes and studied
convergence to equilibrium for the corresponding Markov
chain. Non-linear TTSA has been considered in (Doan|2024)
under strong monotonicity assumptions, focusing on obtain-
ing the MSE rate of order O(1/k) for k-th iterate.

Central limit theorem for TTSA iterates has been estab-
lished in (Mokkadem, Pelletier et al.|2006), where the asymp-
totic version of the CLT was proved both for the last iter-
ates (6, wy) and their Polyak—Ruppert averaged counter-
parts (0, w, ). (Hu, Doshi, and Eun|2024) established an
asymptotic CLT for general TTSA under Markov noise and
controlled Markov chain dynamics, without quantifying the
convergence rate. (Kong et al.[2025)) studied the CLT for av-
eraged iterates (6,,, @, ) and provided a non-asymptotic CLT
with the convergence rate studied in terms of Wasserstein
distance of order 1.

2 Gaussian Approximation for SA algorithms

We outline a general scheme for proving the normal ap-
proximation. We consider vector-valued nonlinear statistics
T(X1i,...,X,) € R% which can be represented in the form

T=W+D, Q)

where W is a linear statistic of the random variables
Xi,...,Xn,and D is a small perturbation. This approach
is well studied when X7, ..., X,, are i.i.d. random variables
(Chen and Shao |2007; [Shao and Zhang|[2022)) or form a
martingale-difference sequence (Shorack|2017). The case of
Markov random variables can be reduced to the setting of
martingale-difference sequences through the Poisson equa-
tion (Douc et al.| 2018, Chapter 21). We consider the de-
composition (5) and assume, without loss of generality, that
E[WW ] = 1,. To measure the approximation quality, a
common approach is to use the supremum of the difference
between measures taken over some subclass H C Conv(R?)
of the collection of convex sets Conv(R¢). Specifically, for
probability measures 1, v on R?, we write

dw(p, v) = suppeyy [0(B) —v(B)| -

Examples of H include the class of all convex sets, half-
spaces, rectangles, ellipsoids, etc. The choice of different
collections of sets H may be motivated by the needs of a
particular application and may introduce differences in the
dependence of the results on the problem dimension d. In-
deed, even this dimensional dependence for linear statistics
W can vary; see (Bentkus|2003) and (Kojevnikov and Song
2022)) for the respective results for i.i.d. sequences and mar-
tingale differences. In this paper, we focus on the convex
distance p©°, defined as

pconv(:uv V) = SUPBeConv(R4) |:u(B) - V(B)‘ )

and rely on the following proposition to reduce the problem
of Gaussian approximation for the nonlinear statistic W + D
to that for the linear statistic W:

Proposition 1 (Proposition 2 in (Sheshukova et al.|2025)).
Let v be a standard Gaussian measure in R®. Then for any



random vectors W, D taking values in R%, and any p > 1,
pConv(W 4 D, l/) < pConv(W I/)
+ 20/ VRV @) (| D),

where cq is the isoperimetric constant of class Conv(R?).

Similar results can be derived for other classes of sets H,
with the constant ¢y depending on the isoperimetric proper-
ties of the specific class H; see, e.g., (Klivans, O’Donnell.
and Servedio/2008)). Propositionﬂ] shows that the estimation
of p“°™ (W + D, N (0,1)) can be reduced to:

1. Estimating p©°™v (W, N(0,1));

2. Estimating moments E[|| D||P] for some p > 1.

To bound p©°™¥ (W, N(0,1)), one can apply a Berry—Esseen
bound for the appropriate linear statistic, e.g., (Shao and
Zhang|2022)) for i.i.d. random variables or (Srikant/|2024;
Samsonov et al.|2025; ' Wu, Wei, and Rinaldo|[2025) for the

martingale-difference setting. The most involved part of the
proof is the proper estimation of E[|| D||?].

3 GAR for TTSA with Martingale noise

Assumptions and definitions. We investigate the linear
TTSA algorithm given by the equivalent form of 2)):
Or+1 = Ok + Br(by — A116k — Apwi + Viegr), (6)
Wrt1 = Wi + Y (be — A210, — Asowi, + Wipr) . (7)
In this recurrence, the noise terms Vi1, Wy are given by:
Vk+1 = EI‘C/JFI — A’ffl(é’k — 9*) — A}fgl(wk — w*),
Wigr = et — A5 (0, — 6%) — ALT! (wy — w?),

®)

where we used the notation AT! := AN — A;; fori, j €
{1,2}, and the random vectors ef;"!, e are given by
o < b AL Al
81;;1 — bl2c+1 _ Al2cl+19* _ Ag;lw* )

We consider a setting where the random elements V1 and
Wi41 form a martingale-difference w.r.t. filtration Fj, =
o(X1,...,Xg), Fo is trivial. We first consider the martingale
noise setting. This setting covers the i.i.d. setting from (Konda
and Tsitsiklis|2004) and also serves as a basis for subsequent
analysis of the Markov noise setting.

€))

A 1. The noise terms are zero-mean given Fy, i.e.,
E7* [Vk_;,_ﬂ =0, and E”* [Wk+1] =0.

Next, for a given p > 2, we impose the following moment
bound on V41, Wi 1:

A2 (p). There exist constants myy, my > 0 such that for
any k € N:

EVP(||[Vipa 7] < my (1 +EVP[)|6), — 67||P] + EVP[||lwy, — w*||?])

EVP[| Wi 7] < muw (1 + EV2[|[6), — 6%([P] + E/P[|wy, — w*|]7])

The assumption A[2(p) appears in a similar form with

p = 2 in (Kaledin et al.|[2020, Assumption A4). Since our
results require to control high-order moments of the TTSA
iterates 6y, and wy, it is natural to require that p-th moment of
Vi+1 and Wy, are finite. Next, we present an assumption
on the quadratic characteristic of Vj, and Wj:

A3. Noise variables %" and et defined in ©) have zero
conditional expectation given Fy, that is, E”* [s@“] =0
and BT« [E‘kj‘fl] = 0. Moreover, there exist matrices v,
Yw, Lvw such that for any k > 0:

E7 [V ey} = Bv  EP [ ey T} ] = Bw
ET* [El‘f/-&-l{ela;&-l}T] = Yvw .

This assumption relaxes the one stated in (Kong et al.
2025)), where the authors required the quadratic characteristic
of the entire vectors V1 and Wy 1 to be constant. However,
this assumption is unlikely to hold due to the structure of
these vectors outlined in (§). We also impose the following
conditions on the problem matrices:

Ad4. Matrices —Ags and — A\ = — (A11 - A12A521A21) are
Hurwitz.

AM]is common for the analysis of both the linear two-
timescale SA, see (Konda and Tsitsiklis|[2004), and single-
timescale SA, see (Durmus et al.|2025; Mou et al]2020). A4]
implies, due to the Lyapunov lemma (stated in the supplement
paper for completeness), that there exist matrices Qg, =
Q22 = 0, QA = Qa = 0, such that

1= yedazllon <1 gt am =y o
II—BrAllgs £1—aaBr, aa:= m J

provided that the step sizes 7, and () are small enough.
Precisely, for p > 2, we impose the following assumption A
Bp) on the step sizes:

A5 (p). Step sizes (Vi )k>1, (Bk)k>1 are non-increasing se-
quences of the form

B = co,5(k + ko) 7,

where 1/2 < a < b < 1, fraction cy g/ co - is small enough,
and constant kg satisfies the bound ko > Cagp*/®, where
the constant C sg does not depend upon p.

Yk = coy(k+ ko)™,

In the subsequent main results, we set the parameter p of
order log(n). Hence, the parameter ko will depend on the
total number of iterations to be performed. The same effect
appears in the single-timescale SA algorithms (Durmus et al.
20255 |Wu et al.|2024)). This effect is unavoidable at least in
the setting of the constant step size algorithms, see (Durmus
et al.[2021a, Theorem 1).

AG6. There exist constants Cp , Cp > 0 such that

supex [[ A ()] V[ Ay () —
supex [[bi(@)[| V [bi(z) = bil <Cp, Vi {1,2}.

We expect that Alf| can be replaced with an appropriate
moment condition, at least in a setting where the noise vari-
ables V, and W}, form a martingale difference. At the same
time, our further generalizations to the Markov noise setting
inherently rely on the boundedness of A;;(x) and b;(z).

3.1 Moment bounds for Martingale TTSA

Given the assumptions A[I]- A[6l we present the classical
reformulation of the two-timescale SA scheme (6)-(7), which

Alj” SCA? \V/Z',jE{l,Z},



is due to (Konda and Tsitsiklis|[2004), see also (Kaledin et al.
2020). We define recursively the following sequence of ma-
trices { Ly }xen, with Lo = 0, and

Lyt := (L — ALy + BkAgglAlek)
X (I — ﬂkUk)_l y Uk =A— Alng .

and define Lo = aaAmax(QA)/(Amin(Q22)2]|A12]]). As
shown in (Kaledin et al.[2020, Lemma 18), under AE] above
recursion on Ly is well-defined, and every L; satisfies the
relation || Lg|| < Leo. In addition, define the matrices:

By i==A—AppLy, Dy = Ly + Ayy Aoy
B3y = (Bi/vk) (Lit1 + Ay As1) Ara + Ags

In a similar vein as performing Gaussian elimination, we
obtain a simplified two-timescale SA recursions:

Proposition 2 (Observation 1 in (Kaledin et al.[2020)). Con-
sider the following change of variables:

ék- = 9k — 9*,
Then the two-timescale SA (0)-(7) is equivalent to:
Ors1 = (1= BeBP)) 0k — BrArahy — B Vit
i1 = (L= By, — Br Di Vi

an

W = wp — w* + Dyp_105.  (12)

(13)
— MWk -

Our further analysis, both for martingale and Markov noise,
will essentially rely on the decoupled TTSA updates (13]). We
refer to this dynamics as to the "decoupled” one, since the

update of the scale wy1 no longer depends directly on O,
only through the noise variables V4, and W ;. Now we
aim to upper bound the quantities

M, = EYPllag]|P), MY, = EVPIG4)] . (14)

Similarly to @]), we show in the supplement paper, that

Bk
IT=BBiillos <1-(1/2)Bkan ,
||I - kB22HQ22 <1- (1/2) kA22 -
The result (T3) together with the structure of the updates (3]
enables us to expand the recurrence and to show that the
error component, associated with the initial error 6y — 6*

and wo — w* decay at the exponential rate. Precisely, the
following bound holds:

Proposition 3. Let p > 2 and assume A[I}AQ|p), AB] AH] A
BIp). and A6} Then for any k € N it holds

M7, STIE, (1= Bjaa/8) + 9282, (16)
MP, STIE o (1= ae/8) +9°%/%, (D)

where < stands for inequality up to constants not depending
upon k and p.

5)

Discussion. Proposition [3| provides, to best of our knowl-
edge, the first high-order moment bounds in the linear TTSA

with martingale noise. The scaling of the r.h.s. with ﬁk/ for

M,fH and wk/ for M}C"H coincides with the one previ-
ously obtamed for the partlcular case p = 2 in (Kaledin et al.

2020). Similar asymptotic results were previously obtained in
(Konda and Tsitsiklis|2004). We expect that the dependence
of the r.h.s. of (16) and upon p can be improved based on
applying the Pinelis version of Rosenthal inequality (Pinelis
1994, Theorem 4.1) instead of Burkholder’s inequality (Os-
ekowski| 2012, Theorem 8.6), that was used in the current
proof, yet we expect that this approach introduces additional
technical difficulties.

3.2 GAR for Polyak-Ruppert averaged TTSA

Based on the results of the previous section, we can now
quantify the Gaussian approximation rates for /n(6,, — 6*)
for the Polyak-Ruppert averaged estimator 6,, from (4). Now
we present the key decomposition:

O — Op1 A1 A5y (W, — wit1)
Bk Vi (18)
+ (Viey1 — A1a Ay Wiq)

A(By —67) =

The proof of the above identity is given in the supplement
paper. Taking sum in (I8) for & = 1 to n, and using the
definition of Vj.1, Wy41 in (), we get:

ViA(l, — 0*) = ﬁ Shoi Uk R (19)

where we set Y1 = EV — A12A22 EW , and RP" i~s a
residual term defined in the supplement paper. Assumption
A implies that the variance Var[el™ — A0 A5 el is
constant for any k, so we can define

Ea = Var[s%, — A12A2_21611/V] S RdeXd9 . (20)

The following theorem holds:

Theorem 1. Assume AI}A2{1ogn), AB} AH] A3[logn), and
Al6] Then, it holds that

_ 1 1
Conv *
P (\/ﬁA(Qn—H ),N(O b )) Slogn a/2+m .

Proof sketch. We apply Proposition|I|to the decomposition
(T9) and obtain, with v ~ N (0, 2. ), that

pConv<\/ﬁA(9 _9*) ) pConv —1/2 Zwk+1’
k=1
T
+265/11—&-1IE1/(;;+1)“|2;1/2Rgr”p] '

T>

Due to Al[l] and A6} sequence {ty+1}ken is a bounded
martingale-difference sequence w.r.t. Fj with constant
quadratic characteristic. Hence, 77 can be estimated applying
a slight modification of (Wu, Wei, and Rinaldo|[2025| The-
orem 1). It remains to bound the moments of 75, which is
done using Proposition 3]

In the theorem above, the coefficients before
||

Discussion.
the terms depend upon the initial errors ||6o—6* ||,
and upon the factors 1/(1 — a) and 1/(1 — b). That is why
the result in its current form does not apply directly if b = 1.
We expect that the result holds in this case as well, perhaps




at a price of introducing additional logarithmic factors. The
same remark applies to Theorem [2} Theorem [ stated below.

Since 1/2 < a < b < 1, the bound of Theorem |l . is
optimized when setting a = 1/2+ 1/logn and b = a +
1/ log n, yielding the final rate of convergence of order

pConV(\/ﬁA(gn _ 9*)’/\/(0 > )) Slogn —1/4 . 2D

The result of (2T)) improves upon the previously established
results of (Kong et al.|2025)). The authors of that paper ob-
tained a rate of n =/, up to log n factors, in terms of Wasser-
stein distance. This implies convergence rate n~'/8 in the
convex distance, which is slower than (21)). The choice of a
and b in (ZT)) corresponds to nearly the same scales for 8, and
&, effectively reducing the problem to a single-scale LSA.
The obtained n~'/* rate aligns with the one established for
this problem with i.i.d. noise in (Samsonov et al.[2024).

3.3 GAR for the last iterate.

In this section, we derive the normal approximation rates for
the last iterate ﬂn 07+1. Following (Konda and Tsitsiklis
2004) and using @I), equations for Hk and 10}, writes as

Or1 = (I — BrA)0), — BrAratiy, — BiVir1 + ﬁms;(cl) ,

Wrs1 = (I =y A22)Wk — BrDiVir1r — eWg1 — ﬁkéj(f)

where we set
5;(:) = ALy 5;(3) = —(Lpy1 + ASy) Agy) Agpiy,

Throughout the analysis we use the following convention:

1 k 2) k
Gl =TI (1= Bid), G2 = TTE,, (1 - 7ids) .
Enrolling the above recurrence and following (Konda and
Tsitsiklis[2004), we get from the previous recurrence that

n+1 Z =0 6] +1 nz/}jJrl + Rl&bt (22)

where R!%* is a remainder term defined in the supplement pa-
per. The leading term in representation (22)) is a linear statis-
tics of ey, ey which are martingale difference sequences
with constant quadratic characteristics due to A3| Now we
define

Bt = Var[Y]o 85G5 1 ty] -

It is known that 3 1 X125 converges to a fixed matrix X125¢
which is a solution of the Ricatti equation

ELZSt _ /30(A21§5t + ELiStAT o 26) ,

where 3. is defined in (20). Moreover, the convergence rate
is proportional to 3, i.e.

HB 121ast E?OStH S nfb

The proof of the above result is given in the supplement paper.
The following assumption guarantees that the covariance
matrix 3, 1315t is non-degenerate, which is important for
the further applications of Proposition [I]

A7. Step size exponents a,b satisfy 2b > 1 + a. Moreover,
assume that the total number of iterations n satisfies n® >
Camp where C g does not depend on a, b, and can be traced
following the supplement paper.

Theorem 2. Assume logn), AB| AH] ABflogn), A6 A

[A Then, it holds that
pConV (Bfl/Zén+1’N(0 Elast))

1
Stogn /% H =S e @

Discussion The proof of Theorem [2]is similar to the one
of Theorem [T} but relies on the decomposition instead
of (I9) used in the averaged setting. Additional technical
difficulties arises when controlling the moments of the term
R!2st, Bounding the latter term requires additional constraint
%>1+a imposed in A7

Since 1/2 < a < b < 1, the bound of Theorem [2] is
optimized when setting a = 1/2 + 1/lognand b = 1 —
1/ log n, yielding the final rate

pConv (ﬁgl/2én+1,/\/(0, E&St)) Slogn n71/4 ;

provided that n is large enough. To the best of our knowledge,
this is the first result concerning the Gaussian approximation
rate for the TTSA last iterate.

Note that Theorem [2]reveals phenomenon, which is com-
pletely different from what was previously observed for
the Polyak-Ruppert averaged iterates in Theorem [I] Indeed,
the right-hand side of the bound contains the term
n~(30=a=2)/2 '\yhich favors separation between 5, and 7,
and vanishes when the scale exponents are close.

4 GAR for TTSA with Markov noise

In this section we generalize the results obtained in Section 3]
to the more practical scenario when { X}, } xen form a Markov
chain. Namely, we impose the following assumption:

B1. The sequence { X}, }ren is a Markov chain taking values
in a Polish space (X, X) with the Markov kernel P. Moreover,
P admits m as a unique invariant distribution and is uniformly
geometrically ergodic, that is, there exists tyix € N, such
that for any k € N, it holds that

A(PF) = supxdtv(Pk(J:, 3, PR ) <

T,z €

(1/4) [k/tmix]

Moreover, for allk € Nand i,j € {1,2} it holds that
E-[A}] = A;j and E-[b}] = b; .

Parameter ¢, in B[I]is referred to as a mixing time, see
e.g. (Paulin/[2015)), and controls the rate of convergence of
the iterates P* to 7 as k increases.

4.1 Moment bounds for TTSA with Markov noise

First, we introduce a counterpart to A[j] that is needed to
derive moment bounds for the setting of Markov noise.

B2 (p). (7&)k>1, (Br)k>1 are non-increasing sequences of
the form
B =coplk+ko)™0 vk =co(k+ko)®,

where 1/2 < a < b < 1, fraction co g/co - is small enough,

and constant kg satisfies the bound ko > C BQ]p4/ b where
the constant C'gp does not depend upon p.



The proof of moment bounds is more involved compared
to the martingale noise case. Following the decomposition
outlined in (Kaledin et al.[2020), we first represent the
noise variables (Viy1, Wi11) as a sum of their martingale
(Vk(i)l, ngi)l) and Markovian components (Vk( +)1, W,Sr)l)

a way that

0) 1 0 1
Vip1 = Vk(+1 Vk(+)1 v Wi = W15+)1 + W/i+)1 :
Here E/* {Vk(o) } = 0 and E7* {W(O) } = 0. This represen-
tation is obtained using the decomposition associated with
the Poisson equation, see (Douc et al.[[2018, Chapter 21)
and additional summation by parts. Then we define a pair of
coupled recursions, which form exact counterparts of (I3):

el(cll = (I- B B})6) — BrArzi 51@‘/&1 )

~1(Q1 =1~ %322)101@ ﬂkaVk V 7kW1£+)1 )

where i € {0,1}. Then it is easy to see that 0, =
é,(co) + 5,&1) and Wy, = w,(co) + u?,(cl). Precise expressions for
é,(j), zl},(j), Vk(l), W,El) can be found in the supplement paper.

Proposition 4. Let p > 2. Assume AH) A6} B[I} B{p). Thus,
it holds for any k > 0 that

~ i 8,
M]erl,p S Hj:o(l - GATJ) —|—p2 Bk

M S TTj—o(l = “2) + /7 -
Proof sketch. The idea of the proof is to bound martingale
and Markov parts separately using the techniques from Sec-
tion [3] Note that Proposition [ directly mimics the similar
result obtained under the martingale noise setting in Proposi-
tion 3] The only difference is that the constants hidden under
< additionally depends upon the parameter ¢,iy.

4.2 GAR for Polyak-Ruppert averaged TTSA

To proceed with Gaussian approximation for Polyak-Ruppert
averaging, we use the decomposition to transform the lin-
ear statistic Y _,_; {1 to a sum of martingale-increments.
This transformation is done through the Poisson equation,
see (Douc et al.[[2018] Chapter 21). Under Al6 function
Y(z) = ey(z) — AjpAy ew(z) is as. bounded, which

implies that there exists a function g% : X — R% such that
g"(x) — Pg¥(x) = ¢(x) .
We set g}fH := g¥(Xx1) and define
Mk: = g;f+1 - ng;w )

which form a martingale-increment w.r.t. F;. Then we can

rewrite (T9) as
VA, —0%) = 2= 370 M +RPV™,(24)

where RP™™ is a residual term defined in the supplement.
Under B||there exists a matrix Zm4% ¢ R90*de guch that

nTV2SR (ks — ()} S N0, B L (25)
Due to (Douc et al.| 2018, Theorem 21.2.5), we get that
Var[M,,] = Zmak

Now we state the counterpart to Theorem [T}

Theorem 3. Assume AH| Al6] B[l BR{1logn). Then it holds

that
PO (VA (O, — 6%), N (0, Z14)) (26)
n—1
1 1 1 anB;
< o J
Slogn 771 + n(—0)/2 + % +Vn ]-_-[)(1 16 )
j=

Proof sketch. The proof of Theorem 3|consists of two main
parts. First, we derive a Gaussian approximation rate for the
linear statistic % > %—y My, using an appropriate martingale

CLT. It is especially non-trivial, since E7* [M{M;} "] is
not constant. We circumvent this problem using an appropri-
ate modification of the argument due to (Fan|2019). Next, we
estimate the moments of RP"™ using the techniques estab-
lished in Propositionlfor Qko , 1I1,(€0) and then combining this

with a separate bounds for the Markov part Gk b, w,(cl).

Discussion. It is easy to see that, given that b > a, the
right-hand side of (26) is optimized when setting a = 2/3
and b = 2/3 4+ 1/(log n). This yields the final rate of order
n~1/6 up to logarithmic factors:

PO (/A (6, — 6%), N (0, B20%)) <100, n=1/6 0 (27)
To the best of our knowledge, (27) provides the first result
concerning the Gaussian approximation rates for the TTSA
problems with Markov noise. The suggested step size sched-
ule mimics the one predicted by Theorem|[T]and essentially
reduces the TTSA scheme to a single-timescale one.

4.3 GAR for last iterate of TTSA

We start this section by introducing a counterpart to (22)
based on the idea of the decomposition (24) for Polyak-
Ruppert averaging:

—-1/25 1 ast,m
Bn / "+1 _Z] OﬂJG(+1nMj +R1L + ’ (28)
where Rt ig a residual term that is given in the supple-

ment paper. Note that the leading term in representation (28)
is martingale difference sequence. Now we define

- n (1

- Var [Zj:o /BjGj+1:n MJ} .

It is known that 3, 1X1astm converges to a fixed matrix
slastm which is a solution of the Ricatti equation

ELiSt’m — 50(A2§St’m + EaSt’mAT o Eggirk) ,

where Eg‘jrk is defined in (23). Moreover, the convergence
rate is proportional to [3,,, i.e.

Hﬁglzfst,m _ E?C)St’m” SJ n—b .
The proof of the above result is given in the supplement paper.
Now we formulate a counterpart to
B 3. Step size exponents a,b satisfy 2b > 1 + a. Moreover,
assume that the total number of iterations n satisfies n® >
Cpr, where C'pgdoes not depend on a, b, and can be traced
from the supplement paper.
Theorem 4. Assume AH| Al6] B[I} B2[logn), B3| Then it
holds that

last,m
27

pConv(ﬁfl/2én+17N(O Elast,m)) (29)
1 1 1
<logn n b/2 H - 7/8] %7i + a—t + n3b72(172



Proof sketch. The proof of Theorem 4] uses the same ma-
chinery of Gaussian approximation for non-linear statistics
based on representation (28). In this setting control of the
moments of the term Rfshm is a delicated problem, which
requires the additional constraint 2b > 1 + a imposed in B[]

Discussion. It is easy to see that, given that b > a, the
right-hand side of (29) is optimized when setting a = 2/3
and b = 1 — 1/(logn), and yields the final rate in terms of n
of order up to n =/ up to logarithmic factors:
Pconv(ﬂgl/Qén-{—l,N(O, ELiSt’m)) <logn nfl/ﬁ )

~

This rate, to the best of our knowledge, is the first one ob-
tained for the last iterate of TTSA with Markov noise.

5 Applications to TDC and GTD

In this section, we show that the results derived in Section [3]
and Section [ apply to the Gradient Temporal Difference
(GTD) (Sutton, Maei, and Szepesvari||2008) and Temporal
Difference with Gradient Correction (TDC) (Sutton et al.
2009) methods. These methods address the problem of classi-
cal TD learning, which is based on single-timescale stochastic
approximation and is known to fail in off-policy RL settings
where data are drawn from a behavior policy different from
the target policy (Baird| 1995} [Tsitsiklis and Van Roy|[1997).
We consider a discounted MDP (Markov Decision Process)
given by a tuple (S, A, P,r, \). Here S and A denote state
and action spaces, which are assumed to be complete sep-
arable metric spaces with their Borel o-algebras B(S) and
B(A),and A € (0,1) is a discount factor. Let P(+|s, a) be a
state-action transition kernel, which determines the probabil-
ity of moving from (s, a) toaset B € B(S). Reward function
r: S x A — [0,1] is deterministic. A Policy 7(:|s) is the
distribution over action space A corresponding to agent’s
action preferences in state s € S. We aim to estimate value
function

V7(s) = E[> 72 A r(Sk, Ax)|So = 5] ,

where Aj, ~ 7(:|sk), and Sky1 ~ P(:|Sk, Ax). Define the
transition kernel under T,

P (Bl|s) = [, P(Bls,a)n(dals) . (30)

We consider the linear function approximation for V™ (s),
defined for s € S, § € R?, and a feature mapping ¢: S —
R as V7 (s) = ¢ (s)6. Our goal is to find a parameter 6*,
which defines the best linear approximation to V™. We denote
by w the invariant distribution over the state space S induced
by P7(:|s) in (30). Consider the following assumptions on
the generative mechanism and on the feature mapping ¢(+):

TD 1. Tuples (sk, ax, s)) are generated i.i.d.with s, ~ [,
a ~ m(-[sk), sp, ~ P(lsk, ar) .
TD 2. Feature mapping ¢(-) satisfies sup,cs ||o(s)|| < 1.

As an alternative to the generative model setting TDJ[I] our
analysis covers the Markov noise setting:

TD 3. Suppose that we obtain a Markovian sample trajectory
{(Sks ar, i) } 32 which is generated when a stationary be-
havior policy m is employed. Assume that the Markov kernel

P, admits a unique invariant distribution 1 and is uniformly
geometrically ergodic, that is, there exist tyix € N, such that
forany k € N, it holds that

sup_dey (PE(:|s), PE(-[s")) < (1/4)1F/tmix]
s,s’€S

We introduce the k-th step TD error for the linear setting:
Ok = Tk + A rr1 — O or
where we have defined
or=p(sK), Tr=r(sk,ar) .

Generalized Temporal Difference learning. The GTD(0)
algorithm is defined by the following recurrence for k > 1:

{9k+1 = Ok + Br(r — Aort1) (or) Twr
Wit1 = Wi + Ye(Orpr —wg) , wo=0.

HoeRd,

€2))
It is clear that the GTD(0) recurrence (31)) is a particular case
of the linear TTSA given in (6)-(7).

Temporal-difference learning with gradient correction.
The TDC algorithm employs dual updates for the primary
parameter vector 0 and the auxiliary weight vector wy,. Its
update rule is given by

{9k+1 = Ok + Brlrpr — BrAort1(op wi)

32
Wit1 = Wi + Vi (0k — @;wk)@k . 2

It is possible to check that both updates schemes (31) and
(32) satisfy the general assumptions A[TFA@]and Al6]under
TD[I] and TD[2} Similar, B[T] holds under TD[3] Thus, all
the results from Section [3] and Section [] applies for both
algorithms. We provide details in the supplemental paper.

6 Conclusion

In this paper, we provided, to the best of our knowledge,
the first rate of normal approximation for the last iterate and
Polyak-Ruppert averaged TTSA iterates in a sense of convex
distance, covering both the martingale-difference and Markov
noise settings. A natural further research direction is to con-
sider the problem of constructing confidence intervals for
the TTSA solution (6*,w*) based on bootstrap approach or
asymptotic covariance matrix estimation, and perform a fully
non-asymptotic analysis of the suggested procedure. Another
important direction is the construction of lower bounds to
ensure tightness of the rates obtained in Theorem [T}4]
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A Martingale limit theorems
Let { X} }?_, be a martingale difference process in R? with respect to the natural filtration {Fy}7_,, Fi = (X5 : s < k).
From now on we introduce the following expressions
k
Vi =Y E5 XX/,
Jj=1

k
Z (X; X7, (33)

R‘\»ﬁ

where E7 [] stands for the conditional expectation w.r.t. a sigma-algebra F.
In order to derive a modification of (Wu, Wei, and Rinaldo 2025} Corollary 2) we first state (Nourdin, Peccati, and Yang|2022,
Proposition A.1) that controls convex distance in terms of Wasserstein one:

Lemma 1 (Proposition A.1 in (Nourdin, Peccati, and Yang|2022)). Fix d > 1, and letn ~ N (0, X)) denote a d-dimensional
centered Gaussian vector with invertible covariance matrix 3.. Then, for any d-dimensional random vector F' one has that

pConv(F’ 77) /S F(Z)l/QdW (F7 77)1/2 ’
where dyy (-, -) stands for the Wasserstein distance and T'(X) is the isoperimetric constant defined by
P f)-P
N sup (n € Q) (n€q) ’
QEConv(R4),e>0 €

where @ indicates the set of all elements of R? whose Euclidean distance from @ does not exceed e.
Remark 1. Following (Nourdin, Peccati, and Yang|2022, Remark A.2) one can check that for the absolute constants 0 < ¢ <

C < o it holds that
eV [Er <T(E) < CVIElm

where || - |- stands for the Frobenius norm.
Now we give a slight modification of the result proven in (Wu, Wei, and Rinaldo[2025) that can be obtained applying Lemma [T}

Lemma 2 (modified Corollary 2 in (Wu, Wei, and Rinaldo|[2025)). Let {X}}_, be a martingale difference process in with
respect to the filtration {Fy, }7_,. Assume that

V, =nX, as. ,
andforanyl1 <k <n, A € R4X jt holds that
E7* 4[| AX k2| Xk]]] < METE1 [ AX ] .

Then for every 3 € Si it can be guaranteed that

o[ 1 & dlogn Tr(%,) /4
oo (30 K N0.2,) ) £ TS0+ (2 + Tog(an, )12 TR o s, 2
k=1

where ,, is defined in (33).
The following lemma states the upper bound for the convex distance for any bounded martingale difference sequence:

Lemma 3. Let 0 < k < oo and {X}}_, be a martingale difference process in R? with respect to the filtration {Fetio »
Fi = o0(Xs : s < k). Assume that

max || X;|| < & almost surely ,

1<i<n
and there exist constants C1,Cy > 0 such that for all t > 0 it holds that:
PV, — nXy|| > nt] < Cy exp(fCQntQ) , (34)

where V,,, 3, are given in (33). Then for any p > 1 it holds that
Conv< Z ka > /S
1/2

nd2p/2 ||, || (262 + || S| + 02_1/2)> }1/2 \/dlog ndp!/2 2 HE 1 T
nl/4

r(zn)1/2{1 + H(2 + log

1/2 2p+1 1 % , 2:‘4)2 + Zn + logny\1/2 2p+1
+ F(En)l/Q% +p3/4d Cq - {(’ﬂ ogn> + 012p+1 ( ” || (nC2 ) > } ,
n ISR "

K2

where I'(+) is introduced in Lemmall| cq is defined in Proposition



Proof. We adapt the arguments from (Fan|2019) and (Wu, Wei, and Rinaldo|2025| p. 35) for the multidimensional case. Consider
the following stopping time

T=max{0 <k <n:Vy Xn%, +tnl},
where ¢ € R is a parameter we will choose later. Now introduce

1 Tr(nX tnl
m= L@ Tr(nZn—FtnI—VT)w , N = [r(nn—kn)—‘ +n

2
For the further analyses, we observe that

262 + |2, +t

n<N <nd 5

K

Our goal is to construct the sequence { X/}, that has a constant quadratic characteristic equal to n%,,. To proceed, consider the
spectral decomposition of nX,, — V;:

d
ny, -V, = Z )\juju;r

Jj=1

Now we set fori € {1,2,...,N}

- 2

, 1<i< 7,
X[ = =2 () Peuy . THI<i<T4m,
7 T+m+1<i<N,

O

where ¢;; are i.i.d. Rademacher random variables. For the natural fitration 7/ = o(X/ : s < i) one can check that E7i-1[X!] = 0
/|l < kand EFi—1[X/X/T] = L (nX, — V;) a.s. by the definition of x and m. Thus, we obtain by

the construction

N
1

S BF XX =V, +m- —(nSy = Vy) =0, .
m

i=1

Now we apply Proposition[T]and get

)

Pconv(ﬁsm N(O,En)) < PCOHV(\/%SM N(O,Zn)) Jr2031)/(211-‘:-1)”77]2"“—25%(E[”Sn 7SEV||217])1/(2P+1)

where we have set

n N
SnZZ;Xj,sgvz;X}.

Since X" satisfies the assumptions of Lemmalw1th M := £ and, moreover, Tr(%,,) = 1 37" | E[X,T X;] < k2, we get using
Lemma [2}

12 /dlog N
N1/4

n F(Zn)l/Q Kk1/2

pCOHV(Tlﬁ‘S’;\hN(O7Zn)) SP(Zn)l/Q{l +l€<2+10g(dN||En)> } N1/4°

1/2

12k
+F(Zn) / Wa

K2 n ¢
nd?|[ S, ]| (262 + ||| + t))+}1/2 /dlog(na2=Zelet)
I€2

<T(%, )1/2{1+m<2+1g .z
To control the moments of S,, — S we consider two events:
Q) ={w: ||V, —=nZy| <tn}, Qo={w:||V,—nX,| >in}.
Hence,
E[|Sn — Sn[1*] = E[lSn — SNIPP1{}] + E[l|Sn — Sy[I*P1{2}] . (35)
T T2

Now we bound 77, T3 separately.



Bound for 7;. On the event 2, it holds that V,, < nX,, + tnl. Thus, 7 = n and

n+m d d n+m
1 1
Sn =Sy = Do D ) ey == (D ei)(N) P

Vim i=n+1j=1 Vim j=1 i=n+1

Note that ||V, — nX,|| < tnyields A\; < tn for any j. Therefore, we obtain
n d n+m )
1S, — Sivl? < EZ( i)

=1 i=n+1

Thus, applying Minkowski’s inequality combined with Khintchine inequality (Vershynin/2018, Theorem 2.7.5), we get

n d nt+m ) p (tn)p . d n+m ) p ) 1 - n+m 2p _ )
7. <E E;(iz;lgij) =E|~E ;(i;f”) < (dtn)’E| —F i;ﬂ;lsﬂ < (2tnpd)P .

Bound for 75. First, we use (34) and get
]P)[QQ] S Cl exp(ngntz) .

Note that
1Sn — Si|l < 2Nk < zndw .
Thus, we obtain that

2p 2p
Ty < 22pd2pn2p( " > P[] < 0122pd2p< . ) n? exp(—antQ) .

Choose t = (%)1/2. Thus,

26° + S + (I;L’%Z)l”)%
K )

T < cl<2d>2p<2p>”(

and
Ti < (8C5 YpPd®nlogn)P/? .
Now we substitute the latter inequalities into (33]) and get applying Minkowski’s inequality:

TS logn _2p
oY BT (I (S5
H b

E1 (15, — Si[[%] < p3/4d((
2

and the proof follows. O

B High-order bounds on the error moments

We follow the decoupling idea of (Konda and Tsitsiklis[2004) and perform the change of variables in the recurrence (©)- (7, which
is similar to the Gaussian elimination. Using Proposition we obtain, with 0, and @y, defined in (I2)), that the two-timescale SA
(6)-(7) reduces to the system of updates:

{ékJrl = (I— BuBY)) 0k — BrAr2ty, — BrVit
W1 = (1= wB)wx — BrDrVis1 — Wiyt -
Recall that the sequence of matrices Dy, has a form

Dy = Lyt + Asy Aoy,

where Ly, are defined in (TI)). The following proposition shows that norms of matrices Dy, are bounded. Moreover, Ly, converges
to 0 under A[5|(2). This result is due to (Kaledin et al.2020).



Lemma 4 (Lemma 19 in (Kaledin et al.|2020)). Assume AHand ADY2). Then for any k € N,

Bk
||Lk|| Séooia ||Dk||SCOO7
Tk

where the value of the constant £, can be found in (Kaledin et al.|2020) and c~. has form
Coo = goorstep + ||A521A21‘| y  Tstep = CO,B/CU,W . (36)

Let us note the important properties of our steps. Since a < b, the ratio (3; /7; decreases as i increases, hence 3;/v; < 5o/70
for all ¢ € N. Moreover, k:g*b < 1, therefore By /o < co,8/ €0,y = Tstep- 10 proceed with the p-th moment bounds for w1
and 041, we introduce the random vectors

Eer1 = VWit1 + BeDi Vs -

Our next lemma allows to bound moments of Vi1, Wy 1, k41 in terms of M ,}fp and M ,‘?’p introduced in (IEI)
Lemma 5. Assume AQ(p), A4} and ABY2). Then it holds that

EVP(|[Via 7] < iy (1 4+ MY, + ME,) |

VP (Wi ] < i (1+ M, + M)

EYP[| st 7] < oy (1+ MY, + MZ,)
where we have defined

my =my(l+cw), Mw=mw(l+cx), M= TsepMyCoo+ My . (37)

and Tsyep is defined in (36).
Proof. Since wy, — w* = Wy, — Dk,lék, we get applying Lemma@

EYP[||lwy, — w*[|P] < BYP[|[de]|P] + co B /P[]|6k ] -
Combining the above bound with AZ{p), we obtain

EY7[|Viga 7] < mv (1 + BYP[0 — 0*17] + EMP[flwg, — w*||P]) < s (1 + M{, + M2,

and
EVP[|Wi1 7] < i (1 4+ M, + Mi,) -
Similarly,
EVP[€krllP] < B2 (| Wiit 7] + Brcoc B[ Vies1 7]
S WmW(l + lem + M;;pr) + Brmy coo (1 + Mgm + Mlgjp)
< iy (1+ Mg,p + Mlg)p)v
where m is defined in (37). U

B.1 Bounding the products of deterministic matrices

Now we state and prove the results regarding the stability of matrix products. The key element of the proof is the Hurwitz
stability assumption A4} Below we state and prove the Lyapunov stability lemma:

Lemma 6. Let —A be a Hurwitz matrix. Then there exists a unique matrix Q = Q' > 0, satisfying the Lyapunov equation

ATQ + QA = 1. Moreover, setting
1
2[QIMAN °

@=grgr . and Qoo =

it holds for any o € [0, ao| that
IT— ozA||é <l-aa.



Proof. The fact that there exists a unique matrix (), such that the following Lyapunov equation holds:
ATQ+QA=T,

follows directly from (Poznyakl[2008, Lemma 9.1, p. 140). In order to show the second part of the statement, we note that for any
non-zero vector x € R%, we have

T (I1-ad)"QI - ad)x _q_ T (ATQ + QA)x o ATQAx

T Qx @ T Qx @ T Qx
T TAT A

gt L2t QAx

T Qux 2T Qx

«
<1———+a? ||A|?

@l ©
<1l-aa,
where used the fact that o < . O

Note that Lemma@implies the existence of matrices (22 and Q) A, such that

AgyQaz + Qa2Asy =1, QaA+ATQaA=1.
This ensures the contraction in the respective matrix (-norm: provided that v, € [0,1/ (2||A22||%322‘\Q22||)}7ﬁk €
[071/(2HAA||2QAHQAH)],itholds, that

HI - A/kA22||Q22 S 1- @22k @22 := QHC}MH ’
1

HI - /BkAHQA < 1- aAﬂka ap ‘= 21Q
We now define a few constants related to the matrices Qa, Q22:

KA = )\max(QA) Ko 1= /\max(Q22)

Amin(Qa)’ Amin(Q22)

Next we show that the factors I — 3;, BY; and I — 7 B, in the transformed recursion (T3)) are also contractive in the same matrix
norms induced by QA and 22, respectively.

Lemma 7. Assume A4 and AD]2). Then it holds that
L= BrBlillos <1 = (1/2)Bran [T = Bllgum <1 (1/2)maz . (38)

Proof. Using (10), we observe that

L= BeBrilloa = 1= B + BrArzLillQa < 11— Brlllqa + BrllAizLillos

< (1= Bran) + BuvEall A2l Le|| < (1 — Braa) + BrvEallAiz] Tsteploo

Using rstep < an/(2]|A12]|\/kaleo). the above inequality yields the first part of (38). Similarly, using (I0), we get that

I =Bl Qze = 1= A2z — BeDrArzll Qe < 1 YieA22llQuz + TstepThv/mazcoo [ Az

< (1 — Yka22) + Tstep Vi v/ R22Co0 || A12 ]

all -

Recalling that rgep < a22/(2]|A12]|\/R22¢ ), the second part of (38)) follows. O
Throughout our analysis we use the following notations:
P, =110 = (/2)ian), P, =[] (1= (1/2)viaz).

As a convention, we define F%)n =Tand Fg,%)n =Tifm >n.

Corollary 1. Under the assumptions of Lemmal7] it holds for any n,m > 0, that

T, < VRaPh), -
Similarly, we have
TG < VR22 PG, - (40)



We shall prove that

(]- - ﬁ]aA/8) + Cslow P251/2 )

=

6 6
Mpia,p = Co

7=0

(1 - ’Yja22/8) + Cfast p37]1/2 )

—

D w
M, < Ch
0

J

First, we introduce the constants
Ch={CEY?, CT={CT}?, Cuow ={24C{}'/2 | Cros = {CT + 2403, CF (2CF +2C2,, fo)}'/?.

where C¥, C%, C¥ and CO, C’a are defined in (@3] and (B0) respectively. In order to prove Proposition |3 l we employ the
following scheme. We first con51der the moments "fast" scale M;’,, , and upper bound them in terms of the moments of "slow"

time scale M 2 p With j € {1,...,p}. This is formalized in the following proposition:
Proposition 5. Let p > 2 and assume A|Z|A|Zk D), AE] A D). Then for any k € N it holds that

W p(2) 2 2
(Miy1,)" < CF PG + PO + p°C5 Z 7Py (M), @41
7=0
where the constants C, C®, C¥ are given in (@3).

Now we derive the following recursive bounds for the moments of "slow" time scale M, ,f’p:
Proposition 6. Let p > 2 and assume AT}A2(p), AH| ADp). Then for any k € N it holds that

0 2 0 0 2
(MZ,1,)° < COPS) +p* B +p*CY Zﬂ?P}iﬁ L(M0,)7, (42)
7=0

where the constants C§,C?, CS are given in (50).

Proof of Proposition 3]
(I) Proof of the bound (T6). Now we aim to solve the recurrence (@2)) and prove the upper bound (T6). Towards this, we consider
the recurrence Uy, which is driven by the right-hand side of (#2):

Upir = CPY 4 p*ClB, + p*Cl Z B2PY LU, Uo=CP (43)
7=0
and Cg is defined in (30). The constructed sequence Us provides an upper bound for the moments, that is,
(le+1,p)2 < Upy1 - (44)
To verify (@), observe that (Mg p)? < Uy by definition of Uy in @3). By induction, assuming the validity of (@) for all j < k,
we establish its correctness for k + 1. Indeed, using Proposition [0} we get
5 2
(Mf41,)" < COPG) +p*CY B+ p*CY ZBJZPJ(il +(7,)
1
< YRS +p 0B+ p*C > 2P Uk = Uni -
j=0
Using the definition of the product P( 1., in (39), we observe that
Urs1 = (1= Braa/2 + p* CY BT + p*CY (Bk — Br—1 + Br-18ran/2) -

Since i, < aA/(4p4C’§) due to A , and B,_1 < 28y, we have

Ups1 < (1 = Bran/4)Uy, +p401§aA51? .



Enrolling the above recurrence, we get

K ok k
U1 < Ch H 5J 1 +p4CfaAZﬁJ2- H (1—@'%)'

Jj=0  i=j+1

Applying Lemma [31}{(ii)| the bound (#4)), and the inequality v/a + b < \/a + Vb, we get (T6).
(II) Proof of the bound (T7). Substituting (T6) into Proposition [5 we obtain that

(M,?H’pf <CY PéQk) + p*C v + p*CY Z QP]JQF)1 k(M9 )2
7=0

i-1
< CPPZ) + p*Clryy + p*CP Z VP2 L C T (1 - Biaa/a) + 2p* oy, ;)
7=0 =0
< CSUPSQIC) + p*CPyy, + p*CY (200 + 2p* quow 50)24%&2_21
< CP P 4 poyy (CF + 2403, CF (2C8 +2C2,, Bo)) -
02

fast

The inequality va + b < v/a + v/b completes the proof. O

Now we derive a moment bound for w1 — w* using Proposition 3]
Lemma 8. Let p > 2. Assume A[l|A2{p), AB} AH} A3[p), and Al6| Then it holds for k € N that

71)
El/p[Hwk-H —w*[[P] <Gy H (1- 5] +p30fdbt’)/k/ )

where we have set
N ] b A 1/2
Co = Cxo CO + Co y Crast = Crast +Tstepcoo Cslow -

Proof. Recall that wy, 11 —w* = Wr41 — Dk (041 —6%). Since Alguarantees that Bi /vk < 2a99/an, we have (1 —vgaz2/8) <
(1 — Braa/8). Hence, applying Lemmad] Proposition [3|together with Minkowski’s inequality we get

k
* @) 1 1/2
El/p[”wkﬂ —w ” ] < Mk+1 D + COOMk+1 p COO C + C H ﬂj ) +p37k/ (Coo Cslow Tst/cp + Cfast) s
7=0
and the proof is complete. O
Now we prove Proposition 5] and Proposition 6}
Proof of Proposition[5] We first introduce the constants:
D ~ 12 o _ 12 ~2 ] ~2
00 = 2/&22“1110“ y Cl = THQQm s CQ = 6;‘6322777, . (45)
22
The recursion (T3) implies that
K ko k k
. i~ 2) - 2
W1 = [[A=2Bly)wo — > [ (1= 1iBi)(Wis1 + BiD;Visr) = Do — > T8 (46)
7=0 j=0i=5+1 =0

where I‘g?l: . is defined in (39). Using Minkowski inequality and @0), we get

k

o 2 - 2I\2 | ~ 2
(MP1 )" = EXP[[ @1 |P] < 2622 (PE))  Nol|? + 2B || ST ).
j=0



Now we proceed with the second term. Applying Burholder’s inequality (Osekowski 2012, Theorem 8.6), we obtain that

E2/? ||Zr<2’1kfg+1|| < p?E/7| anﬁlk&mn )72 <p22|| T RIPE2P (€5 17)
j=0 7=0

< 3p m? K22 Z’Y] P](i)1 k) (1 + (Mjé,p)Q + (M}?p>2) ’
7=0

where in the last step we have used Lemma 5| and (@0). Finally, we get
N 5 o(2) 72 52
(Mlqqurl,p) <Cy (PO:k> +p201 Z’YJ j+1 k) (1 + (Mj,p) + (M;’fp) ) ) (47)
7=0
where C' = 2kg;||wo|2, CF = 6roym?. Define the sequence Uy, by the following recurrence:

U1 = CF (P + p*C Z% W) A (M) Uy, Up=Cy . (48)
7=0

The constructed sequence Uy provides an upper bound for the moments, that is,
(M, )% < Upys - (49)

To verify [@9), observe that (Mg",)* < Uy by definition of U in (@8). By induction, assuming the validity of @9) for all j < k,
we establish its correctness for k - + 1. Indeed, using @7), we get

@ 2 W (p(N2 2 (2) 0 \2 —

(Mih,)” < G5 (Po)” +p7Ch Z% Pi) (14 (M) 4 Uj) = Vs
j=0

Using the definition of the product P! +)1 .x» We observe that the sequence (Uk) , satisfies the following recursion:

Upr = (1= aso7k/2)2 Uk + p*CY 2 (1 + (M{,)° + Up), =cy'.
Since vj, < ag2/(2p2C" + a3,/2), we have

o' 0 \2
Urtr < (L = asone/2)Ux +0°CF 22 (L+ (M{,)7)

which implies

k
Up+1 < C’éblpé?k) +p20ly Z zpj(i)1 k(l + (Mjg,p)z) :

j=0
Applying Lemma 3T}{(iD)] we get (&T). O
Proof of Proposition[6] First we introduce the constants

C8 = 4kallfol® + 4k arsa]| Ara|*rie, (CD)? 0|2 , (50)

Cl = 144(CLA)_1(’I7~”LVKA + (C,IY)) HAK22m2||A12|| )(1 + Céb + 'yOC}D) R
C) = 12(m ki + (CF)kakam?|| Ar2]?) (CF CF 5o + 1) .

Expanding the recursion (I3)), we get with Fﬁ)l: . defined in (39), that

k k
Ore1 =T 000 — > 5jF§1+)1:kA12@j -3 ﬂjrﬁ)l;k‘/jﬂ : (Sh
=0 3=0

Next, we substitute w; from (@6):

k j—1
1 2

Zﬂjrgﬁhk“h?wﬂ Zﬁﬂ J+1 kA2 Foj 1Wo — ZFE+)1:J‘—1&'+1)
7=0 7=0 =0
k k—1

1) 1)
= Z F(J,»l k;A12F0] lwo - Z Z ﬁ]r(+1 k:A12F’L+)1 — 1)61_’_1 .
Jj=0

1=0 j=i+1



Define the quantity

T n = Z ﬁzrgi)l:nA:mrszz)@fl ; M S n.

l=m

Thus, with P{), P} defined in (39), it holds that

|Toninll < vRaFzlAszll Y- 8P, Prcies - (52)
{=m
Now we rewrite (31)) as follows:
) k—1
Ok1 = Fo ;ﬁo — To.pwo + ZT]—H kEj+1 — Zﬂy ]+1 & Vit -
7=0 7=0

Applying Minkowski inequality and (@0), we obtain that

- k—1
(M{11,)" < 4 (P) 180l + 4 Tosi |l o> + 4E/» Hzﬂafﬁlk Visll"T+ 4B [ 3 Tisanin '] -
Ry Ro 7=0 7=0
Rg R4

Next, we get the upper bounds for R; separately. Applying Lemmawith j+1=0andusing 3; < rgtepy;, ONE can get:

1 (2 2 2 ~
Ro < draras||Arz|*( E:méﬁk%fﬂnww<@mwﬂ&ﬂﬁm>zhbﬁM%JﬁHWW
j=0 j=0

< draranl| Ara2r2 e, (CD)2 (PL) 0|2 -

Applying Lemma [5]and Burholder’s inequality, we obtain that

2
Ry < 4p°E*7 | Z/lelfﬁlk Vi)™ <4P2Zﬂ2|| T4 PE2P ||V 7]
j=0 7=0

< 12]9 mVKA Zﬂ P(il k)2(1 + (Mf,p)z (M;?p)2) :
7=0

In order to derive a bound for R4, we apply Lemma[5] (52) and Burholder’s inequality:

k—1 k—1
Ry < 40°E7 (S Ty 1 )] < 402 S 152 (B27 1€ 44117])
j=0 j=0
k—1 _— o
< 12 kAR Avs|2 Y 7 ( Z BiP AP i) (L4 (M],)" + (M]F,)7)
j=0 _J+1
k—1 _ 9
<12p KAH22m2HA12H 252 Z Vi zi)l kPJ(er)lz 1) (1+ (Mjg,p) + (Mﬁ)p) )
7=0 =741

(@) B k—1 ; i
< 1202(CF) P harkgei® | Arz|® > B2 (PLL)  (1+ (M1,)7 + (MF,)?)
§=0

where the inequality (a) follows from Lemma[32] Combining the above bounds, we get

(M{1,)7 < (4rallfo]® + draranl| Ara| 72 e (CT)2 (|0 ||?) (PS)

k—1 )
+ 129 (M ra + (CF)Ramoai®|[Asal®) D7 87 (P20  (L+ (M],)" + (MF,)7) |
=0

(53)



Moreover, applying Proposition [5]and Lemma [3TH{ii)] we bound last term in (53)) as follows

k k j—1
> ) 085" < X F ) CERE. + 08 + 7 CE S atPEE (046,))
7=0 7=0 =0
~ k: ) k 2
<p*CP N P+ 700“’25 D + PPN B2 (P Zv?Pfi)l] L (M)
Jj=0 j=0 j=0

<p*(CY +'7001) Bk +pCy Z Z By QPzi)u 1 j(i)l k(MiQ:p)Q :

1=0 j=1i+1

Using 52» < BZforj>i+1and~? < vpvi, we get

252 PJ(-li-lk ’ JP) sp (Co +7001) 5k+P 0270262 Z Vi 1+)1J 1 ](-l‘r)lk)(Me )2

Jj=i+1

< B(CF +200T) 5= 01+ P CF 0 or S g, (0)°
=0

where (a) follows from Lemma[32] Substituting the above inequalities into (33) we obtain (@2). O

C CLT for the Polyak-Ruppert averaged estimator

We preface the proof of Theorem |1|with a key decomposition isolating a linear statistics of s’f/“ s’;‘f ! which form a martingale

difference sequences w.r.t. the natural filtration F, = o(Xs : s < k).

Lemma 9. The following decomposition holds:
A — 0%) = By (0 — Ors1) — v "A12455 (Wi — wip1) + (Vier — A12 A5 W) (54)
Moreover, it holds that

VnA(6, —0%) = \f Z V= ApAyteltt) + R (55)
where the residual term RV =Y, + Y, + Y3, and Y1, Yz, Y3 are given by

1 &
leﬁgﬁk (ek—9k+1)7

1 « 1
Yo=—— Z A1 Ay v (wie — wig1)

v
Y= fz{ (A1 AZ ALY — AN Oy + (A2 Agy) ASTT — AT (wir — w*)}
RZJrl Ry

Proof. First, we prove the representation (534)). Equation (7)) implies:
wi, = (YAz2) " (W — wit1) + Ay (ba — A210k + Wig1) - (56)
Substituting (36) into the slow-time-scale variable’s recursion (6) we obtain that
Ors1 = Ok + Br(br — A1160k + Viey1) — BeAr2(veAz2) ™ (wp, — wigr) — BrAi2Asy (ba — AnOk + W) (57)
= (I - BrlA)or — %A12A521<wk — wii1) + Bi(br — A12453b2) + B (Vier1 — A12 Az Wit1)

Recall that (0*,w™*) is the solution of the system (). This implies that by — A;12A5, 1by = (A1 — A12A5, A21)9* = AG*.
Substituting this equality into (57), we obtain the formula (54). To establish (53], we sum (34) over k = 1 ,n using the
expressions for Vi1, W1 (8) and unrolling the corresponding recurrence. O

To proceed with Theoremm we first formulate the moment bounds for Y7, Y5, V3.



Lemma 10. Let p > 2. Assume A[I|ARYp), AB| A4} AP p), and Al Then for any k € N it holds that

Yy
Gy + C3 (1 4 ko)t (n + ko)"/?

1/p P
E [”YlH]S\/ﬁ N

where we have set

~ _ B - 8 B ~
e =0l C¥ =5Cq0 co,}/Q +c52C8(cop + ~ ) + ¢o 5(Ch + Catow 03{5) .

(1-0)
Lemma 11. Let p > 2. Assume AI}A2]p), ABYp), and A} Then for any k € N it holds
cr n+ ko)e/2
EV7[¥al] < S5 4 OF(1 4 kot RO

vn Vi

where we have set

1AW 1y —1/2A _ T RPN ~
CY? = [| 41245, [Co rstep » O3 = 5] 41245, [lcg Y *Coast + |A12A2;|(“ep (co,8 + —~——) + g4 (Cy +cé(30fast>> '
Co,4C0,8 aa(l—0)
Lemma 12. Let p > 2. Assume AI}A2]p), AH} A3 p), and Al] Therefore, it holds that
4 b/2
1 y; P vs ko' P
E /p[||Y3||p} < C/‘13 na/2 + (\}23 \/ﬁ ’

where X is defined in (19) and we have set

1/2 1/2 B _
c ~ c _ 2v/2 ~1D
CY* = 2qr Culow (10_"1)) + 2qRCfast(1 O*VG) . Y =2¢, 1 ar (1 + )) (CH+Cy)

and
qr = Ca +||A1245 || Ca - (58)

Proof of Theorem[I] Our proof starts from the error decomposition (I9), which allows us to write
_ 1 & N
\/’TLA(QTL — 9*) = ﬁ Z(sl\f/ﬁ_l - A12A221€€Ij_1) + Rgr ’
k=1
where the term R,, is given in Lemma([9] Note that the term

1 & s
+1 —1 _k+1
Z(EV —ApAy ey )
k=1

S

n

is a linear statistic of the random variables ¥y = s’f/“ — A12A2_21s’§;r 1, while RP" is a "remainder” term, which moments are
small, as we show below. Under {¥k+1}ren form a martingale-difference w.r.t. F. Since the convex distance is invariant to
non-degenerate linear transformations,

P (VA (O, — 0%),N(0,%.)) = p (VnEV2A0, — 6*),N(0,1)) .
Set p = log n. To control this term we apply Proposition [I]and obtain

_ 1 <&
pConv(\/ﬁA(en_a*)’ N(O,Eg)) SpConv(ﬁz:wk+17 N(O,EE))+2C§£p+1E1/(p+l)[||2;1/2R2r||p} ’ (59)
k=1

T

T

where cg is the isoperimetric constant of the convex sets, see Propositionmfor detailed discussion. Hence, now it remains to
estimate the normal approximation rate for 77, and to control 7. To proceed with 77, we use the martingale CLT (Wu, Wei.
and Rinaldo|[2025| Theorem 1). For completeness, we state this result in the current paper, see Lemma 2] It is important to
acknowledge that this result requires that v;41 are a.s. bounded and have constant quadratic characteristic. Both assumptions
hold in our setting, since, due to A[f]

lrsrll < (14 [[Ar2A4%' )(Co + CalllO*]| + [lw*]) =¥,



and assumption AJ3|implies that
E7* [rs194] = By + A1245) Sw (A1 45)) T + Sy (A1245)) T + A1245) Sy = B
Hence, applying Lemma[2] we get:
onv/ 1 " Vdglogn
PO (= D2 sty N(0,32) S 1+ (2 + log(donl | Be)) /245
k=1

Now we proceed with the term T3 defined in (39). We use the representation RE" = Y7 4 Y, + Y3 and Lemmas [T0]to [T2]to
control the moments of each Y;. Combining these lemmas,

EV7[||REF|P] < BVP[IVA|P] + EMP[|Y2]P] + EVP[||Y3)17]

1 +k b/2 1
SOt k8+1(n\/72) O 5+ G (ko)

1 1
< A4/ - -
~P (na/Q + n(l—b)/2> ’

where we use inequality (1 + ko)**! < p**+4/. Combining the above inequalities, we obtain

onv = " Vdglogn p_ 1 1 e
P (VA (O, — 0%), N(0,2.)) S 1+ (2+ log(denllﬁall))ﬂl”# + cgpprrT H/P) (2 * o)

Note that (n®) THise <n®forall @ € Rand forall a,b > 0and ¢q € (0,1) it holds that (a + b)? < a? + b?. Hence, we get

- 1 1
Conv * 44+4/b
P (VnA(@y, — 0%), N(0,%.)) S {logn}*+/ (na/2 + n(lb)/2> :

We finish this section by giving the proofs for Lemmas [TOH12}
Proof of Lemma[I0} Observe that

n—1

1 & 1
leﬁkzzlﬁk_l(ek—%ﬂ) fﬁllel \fﬁ 19n+1+\f26’€+1 B Db

Applying Minkowski’s inequality and an elementary inequality ﬁk 1 Bt " < (kBk)~', we obtain that

n—

EVP[IVA||P] < %BflE”p[llélllp] + %ﬂ;lE”p[HéﬂHII”] Vi & (kﬂk) EVP[|6k41 |

Using Proposition 3| we get:
_ = AT an PR ON B
B B 0n |7 < Bt CO [T (1= 855) + 9 Catow B2 < CF 497 Caton 5,1/
j=0

where in (i) we have used the inequality H?:o (1 — ;%) < B,. Next, we observe that

- ~ (14 ko), d
BTEM (6, 7) < PR vl 4y 2y
n—1 ~n—7 k n—1
D (kB BP0k 7) < 82 kBr) H -5 )+ 0 Cuaone D (kB 57
k=1 k=1 7=0 k=1

Now we derive an upper bound for the r.h.s. of the latter inequality. Applying Lemma and (kB,) ! < o, bko, we get:

1 9 ko “ il an 0 k8+1 8
Zkﬁk H1—5J8 ZHI—,BJ ) < CY (c05+m).
B k=1j=0 075

Bound for the second term can be obtained from the stralghtforward computations:

n—-1 2 n—1 b/2 2 2

PG _ P” Csiow (k + ko) P~ Cslow 4p* Cslow

P’ Cslow Z kBr) 187 = 1/520 ’ < 1/520 (1+ ko) (n + k)% < %(1 + ko) (n + ko)*? .

=1 o3 k=1 0.8 0,8

The proof follows from gathering the above inequalities. O



Proof of Lemmal[I1} Observe that

1 n 1 1 1 n—1
Y, = A A_li —1 _ = A A—l - 1 P P § 1 — ap* )
2= Audy 2 ;% (Wi —wit1) = A1245, NG (wi—w") T (Wn+1 NG ; T ) (W1 —w")
Applying Minkowski’s inequality and -y, jl — ;' < (kvyg)~?, we obtain that
n—1
* 1 — * 1 — *

EVP[|Ya|”] < [|Ar2A5 | i EVPlwn = w|P] + == B Pl — 0 P14+ —= Y (k) T EYP[Jwgga — w7 )

\f Vn ni
Using Lemmal[g] we get:

— * ~W n + k a/2 ~D 35 n -+ k a/2
o 1E1/p[||wn+1 —w Hp] < CO Tn H(l - /8] ) +p30fast% < CO Tstep T P Cfast% ,
7=0 CO,'y O'y

where the last inequality follows from the inequalities v, ' < S, 'rsep and [[7_o (1 — ;%) < f,.. Note that

. (14 ko) ~w

,Y;I]El/p[nwl _ w*”P] < (CO + CfastCO'y) 5

CO’Y
n—1 _n—1 k n—1
_ * P~ — 1/2
D k) Y Py — w7} < Co > v T ] ( 1- ;%8 8 ) + 0 Crast Y_ (k) 2,
k=1 k=1 j=0 k=1

We bound the r.h.s of the latter inequality using Lemma|31|

]fb+1’f'ste 8
kzlzm 1H 1%y < B e ).

€07C0,8 an(1—0b)

Bound for the second term can be obtained from the straightforward computations:

N n—1 36 n—1 k—'—k a/2 36 4 36
P Crase S ()12 = BChst 5~ (R Ro)T_p f“t(1+l<;o) (n+ko)™? < B0 0o (L ko) (n+ ko )™/ .
L2 L /2 1/2
k=1 Coy k=1 Co,~ Co,y
The proof follows from gathering the above bounds. O

Proof of Lemma@ Note that since Vi1, Wiy and ey, ey are martingale difference sequences, RZ +1§k + Ry, (wp — w*)
is a martingale difference sequence. Therefore, Burkholder’s inequality (Osekowski|2012, Theorem 8.1) implies that

1 0 w * 1 = n w * 1/2
=S (RO + B (s — w)P] < p(c STEYPIIRE 0k + By (g —w)P))
k=1

n

El/p[”

k 1
S » . 1/2
Z (E2/P[|| Rp 1 041 [IP] + E¥P|| Ry (wier 1 — w*)|P]))

"=
Using Al6| easy to see that |R), || < qr and |RY, || < qgr, where qg is defined in (38). Hence, Proposition [3| and
Lemma 3]] imply that:

Z(EZ/p[HR 1Ok ||P) < 2qu:{{CO}2 H (1 —BJ 3 ) + p{Caiow }*Br11 }

k=1 k=1
< 2¢%{CY }2 ( L)+2 (e }26‘”’7”17
qR A(l b) qRrp slow b
Similarly, one can get using Lemma 8}
n an R
Z (E*P[| RY 4y (whg1 — w*) 7] < 2q7 Z{ Co H - Bj?) + P {Crast Vi1 }
k=1 §=0
kG 8 conte
< 203Gy )P0 (1 + ) + 2¢%p {Cfasti’zo’yi

Co,B an (1 b) a
The proof follows from gathering similar terms. O



D CLT for the Last iteration estimator

The proof of Theorem [2]is conceptually similar to Theorem [I|but is complicated by two additional factors. First, the covariance
of the linear statistic formed by martingale differences now depends on n, which complicates the identification of the limiting
covariance matrix. Second, the analysis of the remaining terms becomes more involved.

Before proceeding to the main part of the proof, we state an auxiliary lemma that decomposes the approximation error at the
final iteration into linear and nonlinear components.

Lemma 13. The following decomposition holds:

1_j+1 Jj+1 last
n+1 E B;G g+1 n(A12A22 Ew — €&y ) R
=0

where the residual term R is defined in (64).

Proof. Following (Konda and Tsitsiklis|2004) and using (T3), the equations for én+1 and w,,+1 can be rewritten as follows:

Oni1 = (1= Bul)by, — BuAiotn — B Visr + Ba85Y
W1 = (I — Y A22)n — BaDnVat1 — Wit + BadP)
where we have set
o) = ApaLn0, , 63 = —(Lny1 + Ay Azy) A1, .

Throughout the analysis we use the following convention:

n

Gobi=T[a-824), GR = [T —An).

i=m

Hence, 6,11 and @, 1 can be rewritten as follows:

9~n+1 = Géi)léo - Z BjGﬁ}lmAmwj Z 53 ]+1 nVit1 + Z&G% n5](1 ) (60)
=0
2) 2)
Wpt1 = G(() nWo — Z 53G§+1 nDiVit1 — Z'YJ J+1 WWit1 + Z B;iG g+1 ’n5§ . (61)
j=0 7=0 7=0

We substitute the right-hand side of (61)) into (60) and obtain:

Opis = Gg,{eo—ZﬂjGQMAmGOJ 1w0+ZB] D 0+ 80 4 5 4 )
7=0

+ Z 3G (A AR Wit — Vi) |
where

S =- Zﬂa J+1nA122fszii)u 10 (62)
(2) ZB] J+1nA12ZBz l+1j 1Di‘/i+17

Jj—1 n
5(3) Z ﬁJ ]+1 nA12 Z ’in'E?k)l:jflwi-‘rl - Z ﬁng’ir)l:nAlQAQ_Ql Wj+1 .

i=0 j=0

Recall that 11 = ev — A Ay EW Substituting V1, Wj1 from (8) we get

Oni1 = Zﬁg i + RS (63)
=0



where we have set

R?St = 0 neo - ZBJ j+1 nA12GOJ 1’(1)0 + Zﬁngle)ln 651) + 57(11) + 57(12) + 57(13) (64)
j=0
R R

+ ZBJ ]+1 DA — A A ALY 0, + {A]S — A Ay AL (w) — w™))

H,
O

Now we proceed with Theorem 2] applying the decomposition that is proven above together with Lemmas [[4{T8] which imply
a moment bound for Rt

Lemma 14. Let p > 2. Assume All} A2{p), AB| AH} AB| A6} A7} Therefore, it holds that
n 2b—a/2—1
EVP[I 8,658 7] S (2 —a— )7 Py + 942 —a = 1) 8 T
Lemma 15. Let p > 2. Assume All} A2{p), AB| AH} AB| A6} Therefore, it holds that

- a bta
EVP[||Ha 7] < p(2b— D)7 = 28 0"
j=0

Lemma 16. Let p > 2. Assume All} A2{p), AB| AH} AB] A6} Therefore, it holds that
El/p [Hs(l) Hp] < P( +p4ﬁ(3b 2a)/2b

where Sr(Ll) is defined in (62).
Lemma 17. Let p > 2. Assume All} A2{p), AB| AH} AB| A6} Therefore, it holds that
EVP[ISOIP) S ptoa ™

where S\ is defined in (62).

Lemma 18. Let p > 2. Assume D), AW} AB] Al6] Therefore, it holds that
EVP[[SPOIP] < p*6a"

where S is defined in (©2).

Proof of Theorem[2] Our proof starts from the error decomposition (63), which allows us to write
B2, 40 =~/ Z BiG) e + B V2R
where the term R!2% is given in Lemma@ Assumption Af3|implies that
St = Zﬂ2G(+1n 1+)1n)T :

As established in Proposition EI, the sequence X125 converges to the matrix 3!25¢. Since the convex distance is invariant to
non-degenerate linear transformations, we get

pConv (,8;1/2@71+1,N(0, Eloaost)) — pConv (ﬁ;l/Q(Eg}st) én—&-l , N(O, I)) )
Hence, to control this term we apply Proposition [T]and triangle inequality for the convex distance and obtain

pConv(ﬁ;1/2§7L+1 ,N(O,E}fo“)) < QCP/P+1E1/(]D+1)[”(Elast)—l/Q 1/2Rlast|| ] (65)

—1/2

o 1/?2@G§imwj+l> A >)

+ pConv (N(O>Bn lzlsst) ,N(O, ELZSt))) ,



To handle the second term in (63)) we apply Lemma[2]and get
Vdglogn 1/4H1 121astH1/4

o ( 1/2Zﬁja<imwj+1) N, 5;155) S [+ (2 + log(dg18, S 1)) 112" + v
(a) 11172 Vdglogn

S 1+ 2+ log(do|ZE54])) ]2 Y7

where in (a) we have used Af7] i.e. 3| 2125 < |8, 12!t < [|2125¢]|. The bound for the third term in (&3) follows from
(Devroye, Mehrabian, and Reddad 2018 Theorem 1. 1) and Proposmon@

Vi
nb )\min (E&St) .
Now we proceed with the first term in (63). The moment bound for R3¢ follows from Lemmas that we have stated above.

2b—a/2—1

2b—a 3b—2a 2b—a bta
Combining these lemmas together with the inequality 5, ° > B2 > fBr? and 5,2 > (,%® , we obtain

PO N0, BT, N (0, 255Y) S IS 208, E (B 2 — Tl S

n 1 2b—a/2-1 bta 3b—2a 2b—a
El/P last ||p] < b 1— an 5 4 S .20 ., 2 20
[P II]NQb_leZIO( 3 B +pi(5y——=5 + 607 BT B )
n 4 2b—a/2-1
p aA p g
< _ . ] b
N2b71H(1 85J)+2b7a716”

Il
=)

J

Now we set p = logn . Next, the bound for the first term in (63]) follows from (n~%) THios T Snm%and (3 a;)? <> al for
a; >0andq € (0,1):

- _ 1y logn an So=2 log* n
El/(p+1) Zlast 1/2 1/2Rlast P < 1/2 1— - =
)™ o) < o T L) p gl
Gathering previous bounds we obtain
_1/2; . logn 1 an log’ n
Conv 1/2 last\) < ,,b/2 _ 243,
P (571 Ont1, N (0,855 )) ~ T 2b—-1 jl;[()(l 8 Pi (20 —a — 1)7131)7;72

Now we give proofs for Lemmas [T4{T8]
Proof of Lemma Recall that

j—1 j—1
08 = Ao Li{T4) 100 — Y BTG A = > BT Vi)
=0 =0

Therefore, easy to see that

1 1 1 1 ~
Zﬁg j+1n5§ ZﬁngjlmAijFg:; 190—2 Z B; J+1nA12Lj5iF§+)1:j_1A12wi

7=0 =0 j=i+1
T T
n—1 n
(1) (1)
=D > BiGH AL BT Vin
i=0 j=i+1
T3

First, we derive a bound for 7 using Minkowski’s inequality

n. g2
N an — 1 B 1
EVPIITLP] < nalo [ Aral100ll(1 = 260) 1P Y- 2 S @b —a = 1)7HRL
j=0 "



where the last transition employs Al7]and integral bound

2 n a+1—2b
& .8 ko

ZBZ 05 Z ko)™ < < b5
Jj= Ofy :0]+ CO,Y2b—Cl—1 CO:’Y(Zb_Cl—l).

We conclude that EV/? [||T1||P] < (26— a — 1)_1P0(:172 . Since V1 is a martingale difference sequence, Burkholder’s inequality
(Osekowski[2012| Therorem 8.1) implies

k—1

E2/P[||T5]P) < p* > 82| Z B;GN L AL LTY, BR[| Vig|17]
=0 J=i+1

On the other hand, bounding the term Z?:Z- 41 BJQ- /7; via integral estimates gives

[ Z 3G AL, T | < BallAille pay i B} _ mall Azl 5( + ko) 20 )
J ]+1 n +1 J—1 1— %BO i+1n 7 = (1 _ aTAﬁO)CO,'y(Zb —a— 1) i+1:n

J=i+1 j=i+1
2b—a—1 1
<8 ¢ (2b—a-1)7'PYL

Note that EY/?[||Vi11]|?] < p? due to Proposition Thus, Lemma implies the following bound

2(2b—a—1)

E2/P[||T5)7) S p5(2b—a — 1)~ 252* T P S @b —a—1)"p86,"

2(2b a—1)

Now we will get a bound for E'/?[||T5||?]. Minkowski’s inequality and Propositionimply that

kalso|l A " B3
EV?[|Ty]) < A_” i Z@Pﬁ%n > ZCP P+ Cont D)

an
Po j=it+1
n—1 |
_ +2 1 2
S@2b—a—1) lzﬁi e Pz(—i-)l n(PO(:i)—l ‘*‘pg\/%fl) :
i=0
Using AP5|and Lemma B2}[(iD)| we get
n—1
1428= (1) 2) (a 2) 1
Z/Bz g F)1+1np(§z 1<ZBP1+)ITLPO(1 ISP()
i=0
and
n—1
1+2b—a—1 2b—a/2—1
Z/Bz ’ z+1n\/,yl 1§Zﬁz b Pz(i)lnwﬁn ’
i=0
Hence,
2b—a/2—1
EVP(IToIP) £ @b —a=1)7 ("8 *  +Fi) -
We finish the proof applying Minkowski’s inequality
2b—a—1
EVP[ ||Z BiGS a0V 1] ZEW ITiP] £ (20 —a—1)7 (Po) +9'8 7).

O

(’roof of Lemma |7;5[ Note that since V41, Wi1 and ey, ey are martingale difference sequences, RZ +10~k+1 + Ry 1 (w, —w*)
is a martingale difference sequence. Recall that

1 a 1 w *
Hy = ZBJGEQM +10+251G§+)1n 1 (w; —w”).



Note that | RY ||| < qr and ||R}Y,, || < qr, where g is defined in (38). Burkholder’s inequality (Osekowski|2012, Theorem
8.1) implies that

1/ 1/2
1 *
EVP[|H, 7] <p(zﬂf PO EP(RY, 4 J) +p< fP}+’1nE2/p[|R§+1<wj—w>p]) .
7=0

Hence, we get applying Proposition [3|and Lemma |3 1H(11)

n

j—1
an
2521321 BRG] S (arCE)” Y B3P, [T = 5780 + 0 (arClion)” Zﬁ i
7=0 = t=0 7=0

j=0
T an
S@-07 [Ja- T8+
7=0
Now we use Lemma|[§ and obtain the similar bound

J—1
Zﬂ?Pfil EVP[IRY, 1 (w; — w)P))? < (4Cy) ZﬁZP@MH (1= =280 + +9°(4rCrust) Zﬁ““/” W en
7=0 t=0 3=0

n

(2b—1)" H B;) + P8t

Square-root operation followed by dominant-term selection proves the claim. O
Proof of LemmalI6] First, rewrite 62(2) as follows:

1—1
017 = =(Liy1 + Ay An)) Az (T6) 0 — Y T2, 1&41) -
t=0

Thus, we get

n j—1
Sl)_ ZZBJ J+1nA12Bz z+1] 1( i+1 +A22 A21)A12FE)Z) 1w0
7=0 =0
T
n j—1i—1
+ Z Bi G§+1 nAlzﬁiGﬁ)Ljﬂ(LiH +A2_21A21)A12Fg1:i715t+1 :
§=04i=0 t=0
T>
First, we derive a bound for 7T}
n—1 n—1
1) 2) 2
EVP[|T3[[7) = | T3 < kaav/mallAull (oo + 1455 Ast D) [ Avall 0]l Y- D" BB Py Py 1 P
=0 j=i+1
and using Lemma [32}{(ii)]and 5; < ; when j < ¢ we get
n—1 n—1 n—1
2 (2 b—a)/a 1 2
Z Z 6Zﬂ] j+1n z+1] 1 01 1<Zﬁ’bp(§1) 1 Z 62 j+1n z+)1j 1<C§ZB171( / Pz(+)17zp()(:i)—1
=0 j=i+1 j=i+1 i=0

~

P\ 1 2 1
<C[3 Zﬂ Pz(+)1npl(7) 1§P( ) :
Collecting these results yields the bound E'/7[|| T3 [|P] < Pélg To write a bound for 75 we change the order of summation

Z Z Z ﬂJGE:-)l nAlQBiGz('-Q&-)l:j—l(LiJrl + A521A21)A12F§i)1;i—1) §t+1

t=0 i=t+1j=i+1

Ut



and combine Burkholder’s inequality (Osekowski2012, Theorem 8.1) with E'/P[||&,1|P] < p®ys:

k—2 1/2
EV?[|1T37] 5p4(2 |Ut||273) .

t=0

Now we use Lemma [32}{(i)] and get

n—1

b—a)/a 2 1 2(b—a)/a
||UtH S Z Z BJBZ j+1n 7,+1] 1 t+1’L 1~ Z Bl ( /Pz(+11 nPt(Jr)l:iflrSPt(-i-)l:nrYt( /

i=t+1 j=i+1 i=t+1
Note that due to Lemma |3 1{{(11)|
n—2
2+4(b— 4b—2a)/b (1 _
Z,y ( a)/a t+1 L < Zﬂ( a)/ Pt(+) . < 57(1311 2a)/b ]
t=0

The latter inequality yields the required bound.
Proof of LemmalI7] First, recall that

n 7j—1
S =336 AR Y BGEL  DiVisa .

=0 i=0
We change the order of summation and get
n—1

Zﬁz Z Bj 521 nA12G1+1J 1)Dz“/;+1-

Jj=i1+1
Burkholder’s inequality (Osekowskil|2012, Theorem 8.1) immediately implies that

n—1 1/2
E'/P[[|S@)P] SP(Z | Z BiGDAGE | ]E2/p[ll‘/2+1||”]> .

1=0 Jj=i+1
Now we use Lemma [32}{(ii)] and get

” Z Bi J+1"A12G( +1:5— 1” S Z ﬁJPJ(-l‘rln 1-12-11 1S (b a)/apz(j-)ln7
Jj=i+1 j=i+1

and the desirable result follows from Lemma|[31]

1/2 n-l 1/2 3b—2a
RIS 50(s S st M) St (T Aere,) s

=0

Proof of Lemmal(I8] Recall that
n j—1 n
S =3 3,60 A1 Y G Wipr = > BGY L A A WL
=0 i=0 §=0
Changing the order of summation, rewrite S,(f’ ) as follows
1 Yi - 1 -1 2 _
57(13 Zﬁl 5-4-)1 n 5 Z 5]’ (Gz(‘-l-)lzj) A12Gz('+)1:j—1 - A12A221)Wi+1 :

1=0 j=1+1
We can rewrite the term inside the brackets in (66) as

(66)

o _ n Z;'L=z'+1 Vi
9= 0 { 3 (G E) " 046+ A 3 6= [ el )
]

j=it+1 j=it+1
zM z®
i . i
_A12A2_21 exp ( — Z ’}/jAQQ) }Wi+1 .
j=it1




Consider the real valued positive sequence {¢} defined by the equations:

Brr1 _ Bk (
Vk+1 Tk
As shown in (Konda and Tsitsiklis|[2004), the following estimates hold:

1ZPN S Bifvi+e 1220 S

1—evk) -

(Godunov|[1997) implies that:

1 n
123 < Vrmexp (= 55— . %) -
2(|Qa2ll .=
j=i+1
Using AP] easy to see that:
a/b a b
ek =Yt = BB ity < Ve B (Br — Brar) S By B8 = B

Thus, HZi(l) I < ﬂil_a/b. Now we use EV/?[||[W;,1]|?] < p® together with Burkholder’s inequality (Osekowski|2012, Theorem
8.1) and get:

1 1 2 3
E2/7[||S®)||7] 8262Pf+)1n 1ZON2 + 122012 +1232112)

<P <ZB4/V2PZ(3M+25?@bei)ln+Zﬁg z+1n+2ﬁ2exp ——||Q22|| I )Pfiin)-
1=0

1=0 Jj=i+1

Rewriting ~; in terms of 3; and applying Lemma.mtogether with AE]we get:

3b—2a —2a
B2/ SOIP] < p(Bn T+ Bn T B ) DB

E Markov noise
E.1 High-order moment bounds

We preface this section with a brief reminder of notation used in the Markov chains literature. For a Markov kernel P on (X, X),
and a measurable function f : X — R, we set
/ f(y)P(x,dy) .

Define also total variation distance dt, (u, /) for probability measures p, v
dtv(uvy): sSup |M(f)_y(f)| .

Il £lloo <

B|I| ensures that P is uniformly geometrically ergodic and, moreover, for all k it holds that

A(PF) := sup d(P*(z,-), PF(2’,-)) < (1/4)F/tmix] (67)
z,x’ €X

where t,,ix € N is the mixing time that controls the rate of convergence to the stationary distribution.
We proceed with the proof based on the Poison decomposition, following (Kaledin et al.|2020). Note that under B[I] the
Poisson equation, associated with P, that

gf<.’1?)—ng($):f($>—7T(f> ’ J?EX, (68)

has a unique solution for any bounded measurable f, which is given by the formula

=Y {P*f(x) - ()}
k=0

Moreover, using B and the inequality (67)), one can show that g/ is also bounded with
—+o0 —+o0

g lloo <D sup[P* f(2) = 7(f)lloo < 2[lloc Y (1/4)*/ ) < (8/3)tmix | f oo - (69)

k=0 EX k=0



Throughout this chapter, we use a shorthand notation

gl =g’ (X)) . (70)

We use the above notations for the solution to Poisson equation with different vector- and matrix-valued functions in the equation
@). To proceed with the proof, we follow the idea of (Kaledin et al.|2020), where the authors have obtained similar results
for the 2nd moment bounds. The main idea is to decompose the TTSA updates 6, and wy, into a sum of two coupled TTSA

recursions. Namely, 0, = 9(0) + 9,(61) and wy, = w,(co) + w,(cl), where

(0) (71)

el(c%rl = 9(0) + Br(br — A119(0) A12w1(co) + Vko ) »9(()0) =0,
1(6(:21 = ( " iy — 410 — A + W,ﬁ‘fl) Jwy = wp

and

k+1

o), =0 — Br(And)) + Apwl) v 6 =0,
wiy _wl(cl — (A6 )+A2w ~ W) w (1) =0.

In the above recursions the noise variables Vk(o), Vk(l), W,EO), W,El) are defined as follows:

VO = {gsy, — Pgev} — {git — Pgi}(6r — 0%) — (g2 — Pgi2}(wy — w*)
W, = (g5, — Pgtw} — {ghs — Pgpo}(0r — 0%) — (g2 — Pgi22}(wy — w*)

Vith = {Pgi” = Pgili} + {Pali — Pal }0h —0%) + {Pgt — P Hun — ),
1 21 21 * 22 22 *
Wil = {Pgi — Poith} + (Pgs} — Pal ) (6 — 0%) + (Pl — P} (i — ).
It is easy to see that E7* {Vk@l} = 0 and E7* {W,gi)l} = 0 P-a.s. Similar to (I2)), we do a change of variables and define
él(cO) _ 0](:)) — 0, é’(fl) _ 91(:) , a2
00 —w® — w10y 180 @l = wl + Dy i)

It is easy to notice that 6, = 0(0) + 0(1) and Wy, = w(o) + w(l) Introduce the following notation

fk+1 = ’yka+1 + BrDi k+)1 ,1€{0,1}.
Now we prove the lemma, which is a direct counterpart to A2 previously obtained under a martingale noise assumption.
Lemma 19. Let p > 2. Assume A4 Al] B[I] B2{p). Then, for i € {0,1} and any k € N U {0} it holds that

EVP[|VEL 7] S 1+ MY, + M,
EVPIWE P S 1+ ME, + ME,
EVP[IE0 7] S vl + MY, + MP,) .
Proof. Alf|implies that
levll < Ch+Ca [[0%]| + Ca [[w*| and ew || < Cp +Ca 0] + Ca 0] -

It remains to note that, due to construction of 1y, in (T2)), it holds that E'/?[||lwy — w*||?] < M, ,g”p + cooM ,f ,- Then it remains to
gather similar terms and apply (69). O

To prove Proposition [ we first state the counterparts to Proposition [5|and Proposition 6}
Proposition 7. Let p > 2. Assume A4} Al6| B[1} BR|p). Then it holds that

(Mi%1,,)* S P(2) + %% + Z 2PJ(J2r)1 k(Me ) (73)
7=0

Proposition 8. Let p > 2. Assume A4} Al6] B[1} B2|p). Then it holds that

0 1
(M{11,)* S P+ 1By +p4z g2P0 (M0 )?
7=0



Proof of Proposition[d). First, we proceed with the bound for M, ,fyp. Using Proposition we get
§ 1
(My1,)? %g+p%k+ﬁ§jfﬁﬁAgMef.
7=0
Hence, there exists a constant C'j such that
1 ¢!
(ME,1,)% < C3RY +p'CsB + p'Cy Z B2PY L (ME )2
7=0

Denote the right hand side of the latter inequality by Uy, Uy = Cj. Thus, since (M ﬁ p)2 < Uj forall j > 0, we get

Aﬂk an B aAﬂk
2

(a)
Upt1 < (1 - VWi + p*C3B, — p*C3Br—1(1 — ——) + p*BrC;U < (1 — VUi +p*anC;87 ,

where in (a) we used B Hence, enrolling the latter recursion and applying Lemma it is easy to get

aap;
(M1, < Uk S [T = =572) +0" 65 (74)
7=0
and,
k anf
A
M, S [T0= =) + VB
j=0
Now we substitute (74) to (73), apply Lemma [3T]and get
@ 2 2
(M ,)* S Py + 0P +p22 2P(+)1 ] 1 - 7ﬁt +p62736] P
7=0
S P+ 00+ 9B+ P°Br

and the proof follows. O

Thus, the following bound holds for the initial fast scale:
Lemma 20. Let p > 2. Assume AH| Al B[1} B2[p). Then it holds for all k € N that

k

A an A
EVP ([l 7] S T (1 - 3 i) + PPk, where Wi 1 = wi g1 — w”
§=0
Proof. Note that B guarantees that “& 3; < “22+;. Thus, the proof follows from PropositionEl O

For completeness we also provide the following technical lemma, which is proved in (Kaledin et al.|2020).

Lemma 21 (Lemma 11 in (Kaledin et al[2020)). Let (a;);>0 be a sequence of dg-dimensional vectors and (bj);>0 be a
sequence of d,,-dimensional vectors. Then it holds that

Z@yr(21 (@ — aj1) = Bl ao — Brarsr + Z (BB TS, + (B — Bi—)T S )a;

7=0 j=1
k
2 2
S T (b = byi1) = 90T Cpbo — Ybrsr + E (VBRT ) + (4 = v—)T s

Proof of Proposition[7]  First, since wy41 = wl(gzl + wl(izl, we get

~ ~(0 ~(1
E2/P ([ i1 ||P) < 2E2/P[ @), [|P) + 2E2/7[|@f}) |7 .

From now on, we provide bounds for ]EQ/‘”[Hw,C_H |I”] and ]EZ/”[HzI),il_gl |I”] separately.



(D) Bound on E>/[|| &%, ||7].

First, we derive a bound for El/P [||w(0) ||”]. Since Vk( 4y and W,E 1, are martingale-difference sequences w.r.t. F, we obtain,
following the lines of Proposition 5] that

B P (RS 4 Y22 (P )’ (14O + 015)°) 7>
7=0

(I) Bound on E>/[|[@\"), ||7].
Let us introduce the notation

3
E;="D,.
Vi
Thus, a counterpart to (@6) with initial condition u?((,l) = 0, we get
k
oW = (2) 1) 1)
Wy = Z Fj+1:k’YJ Wi +E; Vj+1) . (76)

From now on for any vector or matrix sequence {.5;};>0 we let S; = 0if i < 0. From now on, using algebraic manipulations
and recursion (71)), we get, following (Kaledin et al]2020| Derivation of Eq. (63), p. 39), that for any j > 0:

W+ BV =00 =05+ 00 (041 — 0;) + P (0, — 6;1) (77)
+E2W (@541 — @) + EP (@) — @;-1)
+ 180500 -8+ 1P, - 16,
—|—A§+)1wj+1 A( )b +A< )b —A( ) b
+ 1190, + P05 + (Ej1 — )(PQJH)
where we have defined

U; = —Pgs" — E;(PgY) |

B = Py % = 5, \(Pg™) + (PgA)D, s + By A(PghD,
=Y = —pgi . =Y =B, (Pgl),
1) =Pgt TP = B(Pgl}) - (Pg)Djm1 — E;(Pgi)D;1
Agl) PgA22 , A@) = E-Pgﬁ}f ,
I = —(E; — Ej 1)(P9A“) (Pg**)(Dj—1 — Dj_s) + (E; — E;_1)(Pg**)D;_5 + E;(Pg*)(D;j—1 — Dj ),

Iy = —(E; — Ej1)(Pg;2) .
Alf] B[1} and Lemma[d]imply that for all j > 0 and i € {0, 1}, it holds that
1950 v @) v IES v TP v AP <1

Now we derive a bound for H? and H;”. First, note that

[De1 = Dl = [[ L1 — Lell < 41 (78)
Now, using Lemma ] and assumption B[2}
IBus = Bl = 122 Doy = 24 5 D + 222Dy S
Vi1 Tt
Finally, we get that
TG v L)< (79)

Introduce

Vi1 = W41 + T§21éj+1 + T;Q)éj + A;21@j+1 + AS»Q)’[Z)J- .



Expanding now the recurrence (76) together with representation (77), we obtain that

k k
~(1 2 2 2 1
1&.421 = Z’erj('-gl:k(vﬁrl —vj) — ’Yk‘I) 9k+1 - 9k Z{VJF5_¢21 k(ﬂ. ) +vi—1 F( )(I)( )1}( ~1)
=0 i=1

Tl T2

k
—(1)/ ~ ~ 2 2)—
‘*Vb:£RU%+1‘Wwd‘*E:{Yﬂﬁﬁ1k~()+”7— {22, Y1, — ;1)

Ts

2
—Z%FSM{H% + 110 + (Ej — Ej)(Pgsty)} -

Ty
Now we estimate the terms T} to T} separately. To proceed with 77, we use Lemma [21]and obtain

k
2 j 2 2
T = 0T oo + mven = 33 BUT g+ (5 = 2500wy
j=1

Hence,

2 2 D 9 W
EVP|Ty|P) S P2 4+ (1 + M{, , + My, + MJ, + M) +Z VP (U MYy + My, + MY, + M)
Jj=1

Using Lemma[I9) we get for any j > 0

0 7] w D 0 w
MHlel—i—M +ME L MP, ST+ M+ M

Thus, we get combining (8T)) with (80):

EVP[|TP) S P2 + 91+ MY+ M)+ szP(” (1+MJ, + M) .

j+1:k
7=0
Then, using Lemma 3TH{D)] we get
2 0 2) 7] o 2
EP(IT1) £ (PG00 + R+ (ML) + (ME,)*) + {Z VP (4 My + M)

2 7 2 7 D
S (PN + A2 (14 (ME)? + (MP,)? +wZ VPP (L4 (M) + (ME)?) .

To derive bounds for 75, T3 we use the definition of éj, w;, Lemma , and Lemmato obtain that
EYP(16; — 0;-1[1P] S vjma(L+ MYy 4+ M ) BYP([dy — iy |IP] S vjma (L+ MYy, + M)
Thus, the moment bound for 15 + T3 writes as follows:

k i ~ 2
Ez/p[HTQ + T3||p] g {Z’Y]zpj+1ik(1 + Mf—l,p + Mjw—l,p)} S ~ Yk Z’YJ j+1 k(]' + (M] 1 p)2 + (Mjw—l,p)2) .
— =0

Finally, the term 7T); can be bounded using (79):

k
EVP(|T|P] S D 43P a(1+ M, + M)
7=0

(80)

(81)

(82)

(83)

(84)

(85)



Then Lemma [3T}{(i1)] implies that

E¥/P[|| Ty 7] <%Z P (1 + (ML) + (M5)?) .
7=0

Gathering the bounds (82), (84), (83) we obtain
~ 2 o 2 A @D
B2l 1 17) £ (P)? + R (L (ML) + (M,)?) + Z P+ (M, + (M) (86)

(III) Gathering (I) and (II).
Equations (73) and (86) from the previous paragraphs imply

~ 2 A ~]
(MP1,)° < (P)? + 7 ZvQPfH KU (ML) + (MF,)%)
Thus, there exists a constant C'z > 0 such that
(2 (2 i W
(M ,)* < Cal PSR +p*Cls Z%Pgﬁl L+ (M) + (M]5)2)) .
7=0

Denote the right hand side of the latter inequality by Uy for k > 0, Uy = Cyg. Hence, for all s > 0 it holds that (M ;‘:’p)z < Us.
Thus, we get

a _
Ukir < (1= 292Uk + p°Cani (1+ Uk + (ME,)%) -
The conditions on k in B2] guarantee that
a _
U1 < (1= =)0k + P°Cani(1+ (M )%) -

Enrolling the latter recursion and applying Lemma STH{D)] we get

D 2 0
(MP1,)? S PO+ pyi + 97 wa (MY )2

=0
O
Proof of Proposition[8] Expanding the recursion (71)) yields, with I‘gi)l: . defined in (39), that
k k
Ori1 = F((f;)céo - Z ﬂjrﬁ)lzk/luwj - Z 5jF§21;k‘/}+1 (87)

j*O j*O
1 0) 1)
= Fé:zte Z BJ ]+1 kA12w Z rBJ g+1 k‘Vj(Jrl Z BJ ]+1 kAl?w Z BJ g+1 kV](Jrl

Next, we recursively expand 71);0) using the relation (@6):

1) 0
Zﬁﬂ J+1 kAl?w Zﬁjfgﬂ wAr2 (T o — ZFHI 18 z(+)1

1 1) 0
= Zﬁjfﬁl kA12F03 1Wo — Z Z 6JF(+1 kA12Fz+1 - 1)51(-5-)1 :
§j=0

=0 j=i+1

Define, for m < n, the quantity

1 n = Z 5ZF§-&-)1 71A12Fm€ 1>



and note that, with P{), P*) defined in (39), it holds that

1 2
||Tmn|| S Z 6EP£(+)1 nP'r(n)é 1

{=m

With the above notations, we can rewrite (87) as follows:

) Z Z (€] (0 } : oW 2 : 1) a
Or+1 = Fé 1190 — To:xwo + Tjtr: kfj+1 BJFH-l ng+)1 51 ]+1 kAl? BJF]-H ng+)1
7=0 7=0

Thus,

k—1
7] 1) - 0 0)
(M1 ,)% S EYP[08)06l|P) + B/ | Toxio|?] +1E2/p[||ZTj+1:k§§+)1||p E*/7] IIZBJ i1 ViR
=0

R1 R

Rs Ra

~(1 1
+ /7] ||Z/Bj ) AV 7]+ E2/?| ||Z/Bj r'Y Vi)

j=0 7=0

R5 RG

(I) Bounds on {R;}1_,.
Easy to see that
Ri S (o))

To proceed with Ro, we apply Lemma@with Jj+1=0anduse 3; < rsep;:
1) (2) 2 (€0) (2) 2 (1)2
ZBJP]-‘,J kPOj 1 ZWJP]-&-l kPO:j—l) Sx (PO:k)

Applying Lemma[5]and Burkholder’s inequality, we obtain that

/2
Rs < p"E7[( Zﬁzﬂfﬁlk viIaIH") < ZZBZHFJH ePE2P [V 7]
j=0 7=0

1 w
v Zﬂ? (P) (1 + (M) + (MP,)?) .
7=0

Applying Lemma[5} (88) and Burkholder’s inequality to the R4, we obtain that

k—1

R S B (S 1T 1)) < 0 Z 1Ty 1.l1? (B [11€ 7))
j—O 7=0

<pQZ’YJ Z BiP, 1+1k g+1’L 1) (1+(MJ(';7P)2+(MJI',UP)2)

__]+1

o \2 O\ 2

S P2 262 Z VJPL(J,l-)l kPJ(—Z&-)l = 1) (]‘ + (Mfap) + (Mj,p) )
i=j+1

<p2252 Pj(ilk 1+(Ma )2+(M;?p)2)’

where the inequality (a) follows from Lemma [32]

(88)

(89)

(90)

oD

92)



(IT) Bounds on R 5 and Rg.
To proceed with R5, we combine Minkowski’s inequality together with Lemma 3T}{(iD)]and get

Rs < Z@P“’ E/7[||a" 7]

j+1:k
Applying (86) we obtain
k
1 (1 2 W 7
Z@P}A EPIOIP) S D B PP 1+Zﬂy o (1 (M) + (M],)%)
7=0 7=0

2 @ 7
+ Z Z Bivi- I'Vt j+1 th(+)1:j—1(1 + (Mt,p)2 + (Mte,p)Q) .
t=0 j=t+1

2
Now we use Lemmaand B < rstepy; together with 72 < l"ﬂj:

1 ~ 1 1 1 w
ZBJPJH EXPa]P) S P HZB?PH’M (14 (ME)% + (M2)?) .
Thus,

Rs S P+ ZﬁQPj}Ql (L (MP )2+ (M) . (93)

3=0
Set W, = wr, — w*. Hence
Wj = Wjt1 = Wjt1 = Wj = Dj10j + Djbj41
and

1 11 1 0 1 N
Vih = (Pg5” — (Pl )f; — (Pg)iy) — (PgSyy — (Pg)0 — (P )iyan)
+ (Pgﬁli)(@j —0;41) + (Pg3) (I + D;) (41 — ;) + (Pg3)(D; — Dj_1)6; .
Now we derive a couple of auxiliary bounds. First, from the definition of %; and w; we get
EVP[|liy P S M, + Mj,
Set for simplicity
u; =Pgsv — (Pgtt)0; — (Pgi=)i;

and note that ~

usl| S 14 M), + M, .
Thus, using Lemma@ and Equation (78)) we obtain

1 1 1 1 7] D
EV/| ZBJFSL VEOPY S PS) + B+ M, + ML) + Zﬁfpjﬁl J+ MO+ MP)
Jj=1

+ Zﬁg D EYP 10541 — 0]17) + Ca VRa Z@P;ﬂ WEVP([51 — 5|7

j=1
+ Z Biv; P g+1 kMLp
Next, applying (§T), @ we get

1 1
EV/7] HZBJ LVinP) S P+ Be( + MP, + MY ) +Zﬁm P+ M+ M)

7=0
Hence, Lemma 3T}(D)] unphes that
k
1 D ] 1 o ]
Ro S (Pyp)? + B+ (M) + (M{ )2 + > BiPLD 22 (1 + (M) + (MY ,)?) (94)

j—O

1 O 1 w
S (BUD? + BR(1+ (ME,)? + (M],)?) +Zﬂ§P}+ﬁk1+<Mj,p>2+<Mf,p>2>.



(IIT) Gathering (I) and (IT).

Gathering the similar terms in (89), (90), @1), (92), (©3), (94) we obtain

(M1 ,)? < Pos + 92 ZBszi)l WL+ (M2 + (M) . (95)
7=0

Applying Proposition [5]and Lemma [3T] we obtain

<.
o

k
B?(Pj(-l‘r)l:k 2 ZB Pj(j—)lk ’ éj) PP 1—|—p22%2 1+1j 1(M9 )2)
j=0 =0

<p225_72pj+1k+p2262 ]+1k Z’YZQP'H%)IJ 1 Me )2
7=0

Sp 5k+P2Z Z 52’723@13 1 f?m(Me )2'
=0 j=i+1

Using that 6.72 < BZforj>i+1and~? < vpvi, we get that

k

2 ( 2
ZB?(P](}&-)lk) ( ]P) szﬂk"‘pQZﬁQ Z %Pz(i)lj 1PJ(-1+)11<)(M0 ) < p2ﬂk+p2252pf_ﬂk Mg )
=0 j=i+1 =0

where (a) follows from Lemma The proof follows from substituting the latter ineqaulity into (93). O

E.2 CLT for the Polyak-Ruppert averaged estimator

From equations (8) and (T8), we derive the extended version of (T9):

_ 1 <&
VA0, —0%) :7 (ev! — Az Ay eyt
=1

Z{ A12A 11AkJrl A'Iffq) 9k + (A12A221Ak+1 A]fzrl)(wk - w*)}

DPry1 Wpt1

fZﬁk (O — Oky1) — IZAUAQQ Vi (Wi — wiga)

Setting

_ 1_j+1
Yjy1 = Ev _A12A22€W )



we derive a decomposition of \/nA(f,, — 6*) using the Poisson equation construction (70):

3

VA9, —0*) = 7 > {9 —Pai} (96)
pet

[mark

1 _ _ i i
+ %{Pg? —Pgl 1 + (Pg?)(I+ D)0y — (Pgy, )1+ Dp)0ni1 + (Pgy )by — (Pgyy))bns1}

Ry
n

1 _
+— {(gt.1 —PgP)b + (grr1 — Pgi ) (wy, — w*)
\/ﬁ k:1{ k+1 k k+1 k }

R2

N ) S (g
+\/E;Bk {0k — Op 41} \/HI;(PQHI){GIC fir)

R3
1

n
nz Pgis1) {wr — w1} -
k:l

I — _ _
- % Z Tk 1A12A221{wk — Why1} —
k=1

Ry

Note that B[I]implies that
1 < d
7n Z Yr1 = N(0, 25
k=1
for some covariance matrix XMk ¢ R90* 46 Dye to the properties of Poisson equation, we have using the notation of (96):
Var[T™] = S0k

Using the decomposition we assume that 7™ is a leading term, while

4
rm __
R *E R;
1=1

corresponds to a residual one. The proof of Theorem [3]is given below and is based on Proposition [T|and Lemma [22]
Lemma 22. Let 2 < p < logn. Assume A4} A6} B[I| B2{logn). Then it holds that

rm log®(n 1—a) '+ (1—=0b"1 log*tn)(1—a)?
El/p[HRp n=1/? H 76] nl- b)/)2 +log3(n)( )nafl/(2 ) + ( n(a/2 :

Proof of Theorem[5]. Note that for all & it holds that
16
k1 = P ll < - tmisup ()] < oo,
zeX
Inroduce

hXi) =El(g) ., — Pg})(g),, —Pgy)" | Xp] — Bmrk

One can check that 7(h) = 0 using Poisson equation properties, where 7 is given in B Thus, h satisfies the assumptions of
Lemma[29] Hence, we get applying Lemma 3| with p = 1:

1+ logn
Conv k
p f Z{gk+1 Pgy }, N (0, Z5%)) S i



Since for all ¢ € (0,1) and a1, ..., a, > 0itholds that (3 /", a;)? < > al, Proposmonl Lemmanlmply that

0 * mar onv 1 - mar] I 1
PO (VA0 — 07), N (0, Z5)) < p© (vﬁ§jwﬁH—mwﬁﬂhAmazmk»+cg'@ﬂWMR1+R2+R3+Rdmp+

1—|—logn
~T /4

o7 2. log®(n) | o
H{ - 1/21_[ 1_*@ p+1 tc +l{n(1fb)/2}p+1

l1—a 1-b 1 1—a)" 1, 2
Pﬂ{lc’g ( )na 1/(2 - }+1+ p“{Og(ZL(a/Z ) pr

logn
Note that (n®) Tioen < n exp(|a|) for all o € R. Thus, substituting p := log n into the latter inequality we get

nv ) * mar] 1 + 1Og n 10g3 (n)
p° (\/ﬁA(Qn —6%),N(0, 232 k)) S W nb=1/2 H 1 - 75.] +Cd9W
3, (L—a)” 1+(1—b)‘1 log*(n)(1 —a)~"
+ ¢4, log (’I’L) na—1/2 + Cdy na/2 >
and the proof follows. O

Proof of Lemma[22] First, we use Minkowski’s inequality
4 4
EVP(I 2o RillP) < 325  EVP[IR:|17) -

Proposition and B directly imply that EY/?[|| Ry ||P] < pSn~=/2 < n=1/210g®(n). To proceed with Ry, we note that Ry is a
sum of martingale difference sequence due to the properties of Markov kernel P. Thus, Burkholder’s inequality (Osekowski
2012, Theorem 8.1) and Proposition H]imply that

n k-1

2
% P a 7 Aﬂ
E*/7[|| Ry |”] Z{]EQ/‘” 10&11] + E2/P[llwg — w* [P} S ;Z{H( — 214 H —L) + %%}
k=1 j=0
Optkg _ p° © log ()
~on n%(l—a) ~ n2(l—a)

where in (a) we have additionally used Lemma and (b) holds because Blog n) implies k5 = O(log* n). Now we
derive bounds for R3 and R,4. Rewrite R3 as follows:

R\MM1IWMwIZmImm4wammem}

Note that since (1 + x)® < 1+ bx for b € [0, 1], we get ﬁk+1 — Byt < b(kBy,) ", Therefore, Proposmonand Lemma [3 1(iii)
imply that

n—1 - n—1 k
— an
Z(ﬁkil Mk+1 VRN Z kBr) 1Mk+1 BN Z H - Bi— 8 ) +p? Z kBr) 1B < kY + pPnl/?
k=1 k=1 k=1 j=0
Now, using Proposmonland El/p[HGk — 041]”) < py;, we obtain
bzl , 2 b2 b 2. b/2 3
f \f s ) Vn vn (1-— b)ynb—1/2
b-1/2 H B aaﬁ] | Jog’(n) log’(n) _ log*(n)
n(l—b)/2 (1 —b)nb=1/2 Jn

To bound Ry it is sufficient to apply El/”[Hwk —wr|”] < M,ip + M;fjp. Thus, using v;, ' < B85, and aaB; < a2, to bound

the terms with M, ,gp and M, ,g’p separately, one can check that

log?(n) log®(n) 1 1
1/p nb-1/2 _aa g g
E [”R || H /BJ n(1-0)/2 + (1 _ b)nb—l/Q + n(l—a)/2 + (1 _ a)na—1/2
log®(n) 1—a) '+ (1-0b)"" log*(n)
nb- 1/2 “a 3
H BJ na-b/2 +log”(n) na—1/2 + Jn



The proof follows from gathering similar terms. O

E.3 CLT for the Last iteration estimator
First, we start from the same decomposition as in the martingale noise setting (63):

Z 5] +1 anJrl + G Zﬁj +1 nA12G _1Wo o7

+ Z 8GN, 6 + 8D + 5P 4 8

Pjt1 Vit

+Zﬁ] JH” j—H — A12 4, 1AJ+1}9 + {AJH A2 A5, 1AJ+1}(wj —w*)) )

where

Vi1 = e — AnAglelt o = A12L‘§j , 0 = —(Ljsr + Ay A1) Arpiy

S(l) = Zﬁ7 J+1: nAlQZﬁngilj 1 ’

S = Zﬂﬂ g+1nA12zﬁle-2+)1] 1DiViga,

7=0 =0
n j—1 n
1 2 1 _
SO =3 86N A Y G Wi = > BGW L, A AS Wi
j=0 i=0 §=0
Now we apply the Poisson equation technique and obtain from (97):

Opsr ==Y 5JG§21:7,(9f+1 ~Pg)+> »3jG§'£r)1;n(ng+1 —Pg! + @410, + Uy 100) +Gii o
j=0 j=0

mark H,

last
- Z BJ ]+1 nAIQGO = 1w0 + Z BJGE:Ll n 6g(1 + Sr(zl) + 57(12) + 57(13) )
7=0
Also define
Rlxtm — i, — Z BiG W, A1GS)_ o + Z 8,6, 0 4+ 8+ 5P + 8O+ 1, .

7=0
The proof of Theorem 4| I is based on gaussian approximation of Tg;fk and the moment bound for R!25%™ which follows from
Lemmas 23127] that we state below:
Lemma 23. Let p > 2. Assume A4} Al6| B[1) B2{p), BB3| Then it holds that

4 2b—a/2—1
1 1 p z
El/p || E 6 Gg )1 n(;]( )P } b

(1
R T

2b —

Lemma 24. Let p > 2. Assume AEI A@ B[l| B2p). Then it holds that

EV?(ISOP) S P +p'
Lemma 25. Let p > 2. Assume A4} Al6| B[I) B2{p). Then it holds that
2b—a
EVP|SP7) S pPR,) + B
Lemma 26. Let p > 2. Assume A4} Al6| B[I) B2{p). Then it holds that

0 a 2b—a
EVP[|SP|1P) S pP Py + 0B + 98,



Lemma 27. Let p > 2. Assume AH| Al6] B[l) B2[p). Then it holds that

3 n
EVP[|H, 7] < - 1- %4 dga/b
12171 5 gy TT0 =) '3

Proof of Theorem[d) First, we introduce

¢j+1 gj+1 - ng ’ Rhgt - Gglk% Zﬁj J+1 nA12G0] 1w0 + Zﬁ] j4+1: n(s](l + H, + »5'7(11) + ST(LQ) + ST(LS) .
j=0 7=0

Set p = log n. Thus, applying Lemma [32{(1)| we get:

EVP(|R||P] < P + P{L) + BV Z@G” SV |P) + EVP[|| H, 7] + EYP[| SO + EVP[|SPP] + EVP|ISP 7] -

J+1n J

2b—a/2—1 2b—a

Now we use Lemmas together with the inequality 5, ° > B,% and get

3 n 4 2b—a/2—1
as p an a p =
EVIRS S o= [T = 080 +9°80 + =B "

Therefore, Proposition[T]implies that:
PO (B e N (0, SZ0™) S pOO™ (8, VPTRES N(0, 5,1 350™) (98)
OO (N(0, B SR, N (0, Bl m))
e Y6 R P
The bound for the second term follows from (Devroye, Mehrabian, and Reddad|2018, Theorem 1.1) and Proposition Et
PO N (0, B ), N (0, BhUm)) S {mlastim} 1/ (gL plastam) {lastan} <12 g < nb%iggt,m) ~

Next, the bound for the third term in (98)) follows from (n~%) s <Sn ®and (3 a;)? <Y alfora; >0andq € (0,1):

B log?(n = log'(n) e

P » n
cé’;l (JEl/P[HB;l/QRfStHP])W Scegy————— T H (1— 7@ +Cd95n o 1og (n) + ca, 5 ﬁn » . (99)

Now we derive a bound for pConv (3, "/ drmark Af(0, Bt lastm)) Introduce
- 1
M; =5, 1/2ﬁiG§+)1:nwi+1 .
Hence, we get
1M < 828R -
Note that B2]implies that

1
ﬁi+1PZ(+)2 m _ 1 - 1 - 1 o
ﬁlPl(i)l " (1- %ﬂiﬂ)% T (= Bir) A+ 55 B8i+1) T (1= % Biv1) (1 + % Bita)

Thus, for all 4 it holds that ﬁzpz(h . < Bnand | M;]| < B4/, Now we introduce the function
hX;) =EX[M;M], Fj=0(Xs:s<j).
Note that ||h(X;)|| < B,. Thus, since

1 Elast m Z E

Lemma 29)implies that

n 2

t
I A0 - 55 B 2 nt < dexpl- gt

vard S0dt 2



Hence, the assumptions of Lemmahold with C7 = 4 and Cy = (80dtmix32) "1, which yiels with x := B}/ % and p :=logn:

pConv(Z Mi’ﬁglzilast,m) _ pConv( nl+1 ZMiaN(Oa ,ﬁlﬁglzf“’m))
=0

1=0
(a )(log 3/4{,31/2 1/4(10gn)1/4+61/2 1 4 ﬂn\/m}

nﬂ}/Z Vn

logn
~ pb/2—=1/4 0

where in (a) we have used an elementary inequality (n’a)lfi;n < n® together with 1||Xlastm| < || g slastm|| <

|| Sast:m|| which holds due to B and Proposition @ Now we combine (99) with the latter inequality and get:

~ nb/?log*(n) 15 a log®(n) log*(n) logn
Conv —1/29 Elast,m < g 1— YA o g g i g )
P (B Ony 1, N(0,285™M)) S H_a—1 jEI(:)( 3 Bj) + na—b/2 + @ —a— 12 + Pb/2—1/1

To prove Lemmas we formulate an auxiliary result that controls the moments of 9,(;), d},(gl):
Lemma 28. Let p > 2. Assume A4} Al| B[I) B2{p). Then it holds for all k € N that

EV?[|a"|P] S P2 + gt BMP[I00)P] S pPPLY + P

Proof. The bound for w( ) follows from Equation applying Proposition 4{and Lemma To proceed with 5,&1), we use
the decomposition that follows from ™2):

k-1
(1) r® ~ (1) (1) 1
E :51 z+1:k—1A12w§ *E ﬂiri-ﬁ-l:k—l‘/i(-s—i :
i=0

Z4 Z3

The bound for Z; follows from Minkowski’s inequality and the bound for 11),(61):

(a)
El/p 1Z:07] £ Zﬁz-Pl(-ql—)lk 1 1+P3252%Pl(_51_)1k 1 S P( )+P Yk
=0

where in (a) we additionally used Lemma and Lemma

V) = (Pgev —(Pgt)d,— (Pgi)id;)—(Pgey, —(PgAi1)0i 1 — (Pg12 )iy 1 )+ (PG ) (0,—0; 11 )+ (Pg™2) (ti—tbi 1) -

Introduce the following notation:
vi =Pgf¥ — (Pg*)b; — (Pgi*)a;
Thus, we rewrite Z5 using Lemma@

= Bol'\p 1vo—6m+2 (BBLT 0y + (B — B )DL

i=1

+z@ O e {(PGAY(0; — Oiir) + (PgA2) (0 — i)} -

Therefore, we get applying Minkowski’s inequality together with Lemma and v; < Bf /b,
EV9(|Z)17) S pP P + 0° Bk + 0281 S RS + o

The proof follows from gathering bounds for Z; and Zs. O



Proof of Lemma[23] First, we introduce:
30 = 41,16 | i€ {0,1}.

Thus, we rewrite the initial sum

(1) 5(1,0) s
Z/BJ j+1’n6j Zﬁj j+1nj +ZBJ j+1nj :

Zy Zs

Z; can be bounded repeating the lines of Lemma [T4]due to the recurrence properties (72):
Up(liz,|IP ~1p1) | 4 1 g
EVPIIZiP) S (26 —a = 1) Py +p7(2b —a = 1)"" fn
To estimate E'/P[|| Zy||P] we first use Lemma Lemmaand obtain
B8 1) S 2 PS )

Thus,
1 3 1) 3 P pW
EV7(||Z:|7) < p* Py Z +p S — Py + B -

The proof follows from gathering the bounds for Z; and Z together with applying B[2] O
Proof of Lemma First, we introduce:
5](»2’i) = 7(Lj+1 + A2_21A21)A121D§i) , 1€ {07 1} .

Thus, we rewrite the initial sum as follows:

S = — Zﬁa +1nA1zzﬁz z+1] 162 Zﬁa +1n‘412zjﬁZ %+1J D

Z4 Za

One can obtain the bound on Z; following the lines of Lemmadue to the fact that 1115»0) is a martingale-difference sequence
wrt. F; =o(Xs s < j):

B2 2, (7] S B+ pifa ™

To derive a bound for Z, we use Minkowski’s inequality and Lemma 28}

n j—1
1 2 (2 1 2
]El/p ||Z2||p Zzﬁ Pj(-‘r)l n‘Pz( )1] 1{P01)+p ’YZ}_ZBZ{PO(z +p 72} Z /BJPj(-‘r)l 'IL‘P1,(+)1] 1
j:0 =0 =0 j=i+1

() 7 )
< Zm = (PP +pPyiy P, < PN 4 p%8,

where in (a) and (b) we have used Lemma together with Lemma The proof follows from gathering similar terms
in the bounds for Z; and Zs. O

Proof of Lemma[23] First, we decompose Sﬁf) as follows:

0) 2 1
5(2) ZBJG§+1 nA1225z 'L+1j 1D ‘/;(—‘rl—’_zﬁj g+1 nA12 Zﬂng-s-)lg 1D Vf-& .

=0

4 Z2

Since V(ﬁ is a martingale difference sequence w.r.t. F;, repeating the lines of Lemma one can obtain that

VP 21]7) S p*Ba™



To proceed with Zs, recall the decomposition

Vi = (Pgsv —(Pgt)0,—(Pg12)i;) — (Pgsy, — (PgAY )0isr — (PgA12 )iy )+ (Pt ) (0, —0i1 )+ (P ) (i

Introduce the following notation:

Vs = Pgiev - (Pg?u)éi - (PgA12 U}z ,Qz - Z BJGEi_)l kA12G§_2~_)1;j_1Di .
Jj=i+1

Lemma implies that ||Q;|| < 'yi(b_a)/aPi(i)lzk. Then we estimate ||Q; — @Q;+1|| using Lemma ,

1 2 1 2
1Qi — Qi < Z B8P P IDi = Dic || + Bis a1 Py + i Z BiPY P

Jj=i+1 =142
b—a)/a (1) b—a a
S ’71’71( )/ R(+1 n + ﬂl z+1 n + 71,71( )/ 1+1 n ~ ﬁl z+1 n
Now we swap the order of summation and rewrite Z5 as follows:
n—1 n—1 B ~
= > QiBi(vi —vip1) + > QiB{(PgR)(0; — Oipr) + (Pg?) (i — iyn)} -
i=0 i=0
Z21 Z22

Then we further decompose Zs1:

n—1

Zo =Y {(QiBivi = Qir1Bir1vig) + (Qir1 — Q)Bivirs + Qi(Birr — Bi)visa} -

=0

Now note that for all 7 it holds that E*/?[||v;]|P] < p? due to Proposition Thus, we get using Lemma [3 15(ii)

n n—1
EY?[[| Zaa||P) S EY?[1QoBovoll”] + EYP[|QnBrvnll’] + 3 p2 {82 + B3P, + 3 028y P,

i=0 =0

()
< PP + 2B,

W;iy1]|P] < p®vi, we obtain applying Lemma

—Wiq1) -

where in (a) we have additionally used v; < 3%/ and Lemma [31{(ii)l Since EX/?[||f; — 6;41]|?] < pv; and EV/?[||w; —
-'.

P zlf) 57 3 il S
Finally,

EVP[|S|P] < BVP[| Z4||P) + B[ Zaa ||P) + EV2[| Zoal|?) S 0 PEL) + B

Proof of Lemma[26] First, we decompose S, ) into two parts:

3 (2 0 (0
S() Zﬂj j+1nA12Z'71 Z—‘r)l_] 1Wz(+)1 Zﬁ] j+1nA12A W]+)1

7=0

Z1

n j—1
1 2 1 1) (1
+ ZﬂjG]('-‘zl:nA12ZﬁylG§+)1J 1W1(+)1 ZﬂJGE—ﬁ-l nAlQA 1W_7+)1 .
i=0

Jj=0

Za

Note that Z; can be bounded following the lines of Lemma [T8] Precisely,

2b—a
EVP Z1|P) S 9" Bn ™

(100)



To proceed with Z,, we derive a decomposition for Wl( +)1
w®

Introduce the following notation:

k
v; = Pg;" — (PQZA“)Qi - (nglz)wi Qi = Z 5jG§'21:kA12Gz(‘-2+)1:j—1 J
j=i+1

1 (1
ZBJG§—£1 TLA12 Z’y’b z+1 j— 1 'L(J,-)l ) Z22 - Zﬁj ]+1 nAlQA 1WJ+)1 .
7=0

Lemma implies that ||Q;|| < "~ a)/aPZ(Jr)l , and
1 1
||Ql - Qi-i-l” S 61P1(+)1 mn + 7171 = Pz(—i-)l n o~ ﬁlpz(-l-)l m

Now we swap the order of summation and rewrite Zs; as follows:

n—1 n—1
Zo1 = Z YiQi (v — vig1) + Z Qiﬁi{(Pgﬁ.zll)(éi - éiﬂ) (Pgﬁff)( —Wiy1)} -

Za11 Z212
Then we further decompose Z11:

n—1

Zoni = Y {(Qivi — Qu1¥ir1vi41) + (Qir1 — Qi)vivier + Qi(vip1 — o)vig1} -
i=0

Therefore, using Lemma and v; < B¢ & easy to see that:

atb_ g
EY2(|| Zou1 ) S pPPSY) + pPyn + 9PBa® L SPPPL) +pPB8000

To derive a bound for Z512 we use Minkowski’s inequality and get

14bzage
EYP[|| Zo12||P] S Zﬂ% P z+1n—p325 R, <P

i1 = (Pgf —(Pg " )0i—(Pg;*2 )iy~ (Pl — (Pgiy 01— (Pgi* i1 )+(Pgiy ) (Bi—0ir 1) +(Pgi ) (;

—’Lf}iJrl) .

(101)

(102)

(103)

Thus, EVP[|| Zo1 ||P] < pSPé:sz + p3p2/°. Substituting the decomposition (T0T)) into the expression for Za2 one can check

applying Lemma 2] that
EY/7[ Z52|") S 9P + 0° B + PPy S P PSS + 977"
The proof follows from gathering the bounds (100), (T02), (T03), (T04).
Proof of Lemma[27) First, we rewrite H,, using the solutions g}, g’ of the corresponding Poisson equations:
‘I)j+19~j = (Q;‘I)H - PQ] ) + {(PQJ ) (ng+10J+1)} + (ng+1)(9~j+1 - éj) )
Uy = (PQ;PH - ng )wj +{( ng )wj - (P9j+1wj+1)} + (ng+1)(wj+1 - wj) )
Now we rewrite H;, as follows

1 ~ N
H, Zﬁj G {vy — vj+1}+2ﬁya§£1n (g%, —PgD)d; + (g1 — Pgl )i}
j=0 j=0

Hy H»>

+ Z 8,6 {(Pg?y ) (B — 6)) + (Pg¥oy) (e — i)}

Hs

(104)
O



where we have set
vi = —Pg5’ + (Pg?)0; + (Pg} ),
The bound for H; follows from Lemmalzl and Lemma [31H(11)|

EYP[| Hy|[”] S p*Pih) + 9°Bn + Z P SPPPE) 4+ 0% - (105)
7=0

Next, we note that H5 is a sum of martingale difference sequence w.r.t. the filtration F;, = o(X : s < k). Thus, we get applying
Burkholders inequality (Osekowski|2012} Theorem 8.1), Proposition [ and Lemma 3T]

bta

B IP) S 0° 30 2P h P ) S s P+ 0 (106)

Finally, we derive a bound for H3 using Minlio;)vski’s inequality
E/7[|| Hs|”] ZP%W P, S pPBet (107)
The proof follows from gathering the bounds (103)), @), ?@. O

E.4 Matrix concentration inequality

In this section we state the lemma that derives a McDiarmid-type concentration inequality for matrix-valued functions of an
UGE Markov chain.

Lemma 29. Assume BI Let {gz 1 be a family of measurable functions from Z to R such that M = sup 47 ||9(Z2)|| < o
and 7(g;) = 0 forany i € {1,. n} Then, for any initial probability £ on (Z,Z), n € N, t > 0, it holds

t2

Proof. The function (21, ...,2,) = | Zi:l gz(zl)|| on Z™ satisfies the bounded differences property:
lo(215 -y 2n) —@(2], ..oy 20)| < Z2M1{zi £ 2}
i=1

Hence, since (1/2)sup, ¢z [|[P™>(z,-) — PPx(2’,-)|[rv < 1/4 by definition of ¢, under B applying (Paulin/[2015}
Corollary 2.10), we get for t > E¢[|| >-", 9:(Z:)| ]

Pf(zi_lgxzi)n z:s) gaexp{ 20t — Eelll iy 01 i>lll>2}_2exp{<t—ﬁg[n E?_lgi(zmm’ﬂ} .

9(n - 4AM?)tmix 18n M2t ix
It remains to upper bound E¢[|| >°7"_; ¢:(Z;)||]. Note that

Bl Y, 20l < Bell 0, aZ0IR] = 00, Bellan(2) 13 + 23 S o(Belon(20) T anse(Zusel])

and, using B and m(gx+¢) = 0, we obtain
Tr(Es[gk(zk)Tng(ZkH)]) = /ZTT{Qk(Z)T (P grse(2) — W(9k+tz))}§Pk(dZ)
< 2dM?A(PY) .

Together with the definition of ¢,,x, this implies

F o T (Eg [gk<zk>Tgk+z<Zk+e>1) < 2ndM? " A(PY) < (8/3)dM tyien .
=1
Combining the bounds above, we upper bound E¢[|| Y7, g;(Z, ) |H as

n ‘ 1/2
Eell > (2ol < {Eell > < 2VAnM Vi =: vy -
Plugging this result in (T08), we obtain that

p 1, t<uw,, 09
>
g(llZ Al t) sexp{~ L) ¢3 0, (109)

18v2

Now it is easy to see that right-hand side of (T09) is upper bounded by 4 exp{—t*/(20v2)} for any ¢ > 0, and the statement
follows. -



F Limit of matrix sums
Fix A, ¥ € R4*4 Introduce the following notation:

En = ZBEGk—i—l:nE(Gk-&-l:n)T P
k=1

where 3; = co,a/(n + ko)® and G, = [15_,, (1 — BA).

Proposition 9. There exists a matrix X, such that
nler;o{ﬁ;12n} =
Moreover, there exists a constant Cyx; that depends on the problem parameters such that
18,80 — Bec| < Cxn™" .

Proof. First, we define £(9), (1) ag a solution of the system of Ricatti equations

SO0 = 5 {ARO) 4 ROAT) — 25 (110)

20 _ 930 = 5 {ARO £+ BOAT —(AZD + ZOAT} 4+ BZ{ASOAT — 23}
Our goal is to compute X,,. To derive a closed form solution, we observe that 3J,, can be iteratively computed as
Sot1 = (1= Bus1 D)0l = Bur1d) T + 571 B (111)

Now we consider the diminishing step size rule with 8,, = Bon " for b € (%, 1] and Sy > 0. Note we have ignored kg in the
step size selection as we focus on the asymptotic expression with n >>> 1. Arranging terms in (T11)) yields

S -2, = —Bo(n+ 1) {AZ, + £,AT} + 85 (n+1)"*{AB,AT + T} (112)
Set
2, =nt20 4 p=2x® 4 p (113)
where D,, is a residual term whose order will be determined later. Note that for any b > 0, it holds
b(b+1
(n+1)P=nb—bn 14 ( ;‘ )nfsz L Om Yy,

We focus on the case b = 1. Applying the above with b = 1, we observe that
S =S ={n+ 1) =00 4 {n+ 1) 2-nHzV + D, - D,
= {24020 _9n32W L D, —D,+0n?).
On the other hand, observe that the right hand side of @) can be written as follows
—Bo(n+ 1) HAS, + 2,AT} = —fo(n! —n 2+ O(n?){AS, + =,AT}
= —Bo(n ' —n?)(nHAS® + BOATY 4 HAZW + SOATYH + O™ + 07| D, |)

‘We also have

(114)

Bn+1)"HAZ, AT+ 3} =B2(n 2 —2n ) {AZ, AT + 21+ O(n™%)
= B2 =2 ) {(nTTASOAT 4 n2ASWAT £ 3} + O(n~* 4+ 072D, )
Matching terms of the same order with (T14) shows that
(n=2) S0=5{AZO) L TOATY - 525
=3 2O _2x0= 3 {ADO 4 ZOAT — (AZD + TOAT)} 4+ B2{ADOAT — 25},

We observe that the remaining terms are all in the order of at most O(n~%). As such, we also conclude that the residual term in

(TT3)) is of the order at most D,, = O(n~3). In particular, solving the system of Riccati equations (TT0) yield £(*), £(1) i.e. the
asymptotic expression for ¥, is

n

Z BszJrl:nE(GlH»l:n)T - n—lE(O) + n_zE(l) + O(TL_?))
k=1



Note that as the above analysis assumes the asymptotic case when n >> 1, it actually covers the case when 3,, = By(n + ng) .
The similar computations with b € (1/2,1) imply that

%, =n"S0 4 07?50 4 On~17)
Therefore, setting 3., = () /3, we get

N Tt
where C;, depends only on b. ’ O
The next lemma controls the minimal eigenvalue of X,,:
Lemma 30. Under the assumptions of Proposition @ it holds for all n® > % that

_ >\min 200
Amin(ﬂnlzn) Z % .

Proof. First, we use Proposition 0] and obtain

_ s Cx
18, 18 — Zt|| < prl

Hence, Lidskiy’s inequality implies that

>\min Eoc
)\min(ﬁglzn) — )\min(ﬂglzn - 2]oo + Eoo) 2 )\min(zoo) - Hﬂglxn - Eoo” Z % .

G Applications

In this section, we verify that the GTD and TDC algorithms satisfy A] Verification of the remaining assumptions is straightfor-
ward and thus omitted. We concentrate on the Markovian setting, as it is more prevalent in practical applications. Recall that the
behavior policy 7 generates a trajectory {(sg, ar, 7t) }5o o » Where ay ~ (- | sx), Sg+1 ~ P(:|sg, ax) for all k& > 0 and the
corresponding Markov kernel P satisfies TD[3]

Generalized Temporal Difference learning. The GTD algorithm was first introduced in (Sutton, Maei, and Szepesvari|[2008)).
Recall its update rule:

{9k+1 = Ok + Brlpr — Mowr1) (o) "wi , 0o € RY,
Wit1 = W + Yk (Orpr —wr) ,  wo=0.
The above recursion is a special case of our linear two-timescale SA in (6), (7) with the notations:

by =0, An=0, Ap=-E[(per— )\Sok—&-l)%@];r] )
b =Elprrr], Az = —Eloe(Apri1 —or)'], An =14,
Virr = ((er — Mprr1)en — El(or — Aprr1)ep |) we,

Wit = oir — Elorre] + ((or — Aers1)en — El(or — Aorr1)en]) Ok
where the above expectations are taken with respect to the randomness of the policy 7. The noise boundedness follows from TD
while Al]holds since Az = Iand A = E[(ox — Aprt1)@p JE[@r(0r — Apri1) ] is positive definite.

Temporal-difference learning with gradient correction. The TDC algorithm was first introduced in (Sutton et al.[2009). Its
update rule is:

{9k+1 = Ok + Bulror — Bryers (o wr)
wi1 = Wi, + k(0 — o Wi, -
Reformulating these updates as an instance of (@)—(7) yields:

b1 = Elprril,  An = Elpr(er — Aoet1) )], Az = EDgrrae) ],
by = Elprre], Az = Elpr(or — A1) )], Az2 = Elorpy |,
Virr = {Elpr(or — Aoes1) ] — 0r(or — Aprr1) "1k + {EA@rr10) ] — Aorqrop Ywr,
W1 = {Eler(or — Aort1) )] — @r(or — Aprr1) " Wk + {Elorer | — orpp Ywr. -
The relations A1y = Aoy and Ajs = Aoy — A], imply that A is positive definite:
A=Ay — A1pAyy) Aoy = Apy — (Ao — Aj)AS) A = A1 A Avy



H Technical lemmas
We begin this section with technical lemmas that allows to upper bound the sums of the form

k
Za? H (1 —ayb) .
j=1 l=j5+1

Lemma 31. The following statement holds:

(i) Letb> 0and (ar)r>0 be a non-increasing sequence such that oy < 1/b. Then
k k 1 k
>o; IT -am = 3 {1-T[a-an} .
Jj=1  l=j+1 =1

(i) Letb>0and oy = G357 € (0, 1), such that co < 1/band kg7 > 8“/ . Then for any q € (1,4] it holds that

Zag H 1—a4b)§§ a-1

l=75+1

Moreover, for any real-valued sequence (b;) ;> it holds that

k 2 k
6 4
{§jba [T ¢ 1—a4b)} §5az Y o2l T (10— aed) (113)
l=j+1 j=1 l=j+1

(iii) Letb,co, ko > 0and ap = co(£ + ko)~ forv € (1/2,1) and £ € N. Assume that bcy < 1 and kl L > 4o Then, for any
l,n €N, ¢ <n,itholds that

Eﬂ:
=

(1—b04j)§60+7.
k=t j=t+1 b(1 =)

Proof. Lemma [BT}(D)] follows from Lemma 24 in (Durmus et al.[2021b). The first part of Lemma.-mfollows from Lemma 33
in (Samsonov et al.[2025) and the second one (T13)) is a consequence of Jensen’s inequality applied to f(x) = 2. Lemma 3 1}{(iii)
is elementary. O

Lemma 32. Assume AD\or B2| Then it holds for all j, k € N that

(i)
24
P(l 2 CP P(l h CP = T Co RGA~
—zy;rl% Tk Hll ' dL o WHETE Ty aga(l — =572
(ii)
1 2 b—a)/a (1 24co,p
Z BJP1(+)1 kP](+)1 i—1 CP ( / P](-‘r)l ko where Cg /a Co,8aA Y
Pt ag2Co . (1 = =57)

Proof. First, we prove Since the step size was chosen such that S /v, < Tstep < a22/(2aa) we have

_ axn (2 i—1
m (1 - %w) and P}Ezi < 6:11 (1- %w)
Now proposition follows from Lemma (3]
k p3
Z %Pﬁl ’“Pﬁ“ 1= (1= ﬁjaA J+1k Z Vi ]HZ L < (1- 6OGA j+1k Z Yj H 1_%74
i=j+1 i=j+1 Pj+11 1 i=j+1  f=j+1
~ ag(l —2400’132(1A)PJ(il kT CP Pj(il k



co,8 . 1+(b—a)/a

To proceed with|(ii)} we note that §; = . Hence, we get using the technique similar to Lemma combined with

b/a j
Lemma|3]]
1) p@ 5JU‘A —1p(1) PJ(-ZHZ 1 C0,8 pm b/a a22
Z BiPiia P = (1 - Pyt Z & pWM < b/a(l _ Boaa Piiin H (1- TW)
=i+l i=j+1 GHLii—1 0,y > =11 =it
24c b=a)/a
T ameg(1 - )

Lemma 33 (Lemma 36 in (Samsonov et al.|[2025)). Forany A > 0,any 1 <i<n —1, and~y € (1/2,1) it holds

n—1 _1 1 _1 i i1—y _1 .
ZeXP{A(jlv - ilv)} < {1 + el 1_7}A1/<1*7>(1—7)F(1—7) , AT S 15

1+ W” , if AitmY >
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