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Abstract

In this paper, we establish non-asymptotic bounds for accuracy
of normal approximation for linear two-timescale stochastic
approximation (TTSA) algorithms driven by martingale dif-
ference or Markov noise. Focusing on both the last iterate
and Polyak–Ruppert averaging regimes, we derive bounds
for normal approximation in terms of the convex distance
between probability distributions. Our analysis reveals a non-
trivial interaction between the fast and slow timescales: the
normal approximation rate for the last iterate improves as
the timescale separation increases, while it decreases in the
Polyak–Ruppert averaged setting. We also provide the high-
order moment bounds for the error of linear TTSA algorithm,
which may be of independent interest. Finally, we demonstrate
that our theoretical results are directly applicable to reinforce-
ment learning algorithms such as GTD and TDC.

1 Introduction
Stochastic approximation (SA) methods play an important
role in the field of machine learning, especially due to their
role in solving reinforcement learning (RL) problems (Sutton
and Barto 2018). Recent studies cover both asymptotic (Ne-
mirovskij and Yudin 1983; Polyak and Juditsky 1992) and
non-asymptotic (Moulines and Bach 2011) properties of SA
estimates. In particular, two-timescale stochastic approxima-
tion (TTSA) algorithms (Borkar 1997) refer to the class of
methods that update two interdependent variables with sepa-
rate step size sequences, one typically decreasing faster than
the other. This class of methods is especially important in
RL, where policy evaluation in the off-policy setting requires
TTSA methods such as the Gradient Temporal Difference
(GTD) method (Sutton, Maei, and Szepesvári 2008).

An important question for SA algorithms is related to
the accuracy of Gaussian approximation (GAR) of the con-
structed estimates. Classical results on GAR for SA algo-
rithms, such as (Polyak and Juditsky 1992; Konda and Tsit-
siklis 2004), are asymptotic and do not provide convergence
rates. At the same time, the latter results play an important
role in statistical inference for optimization (Fan 2019), as
they pave the way for non-asymptotic analysis of various pro-
cedures for constructing confidence intervals. We focus on

Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the linear two-timescale SA problem, that is, we aim to find a
solution (θ⋆, w⋆) that solves the system of linear equations:

A11θ +A12w = b1 , A21θ +A22w = b2 , (1)

assuming that the solution (θ⋆, w⋆) is unique and is given by

θ⋆ = ∆−1(b1 −A12A
−1
22 b2), w⋆ = A−1

22 (b2 −A21θ
⋆) ,

with ∆ := A11 − A12A
−1
22 A21. We consider the setting,

where the underlying matrices Aij and vectors bi, i, j ∈
{1, 2}, are not accessible. Instead, following (Borkar 1997),
we assume that the learner has access to a sequence of ran-
dom variables {Xk}k∈N taking values in a measurable space
(X,X ), and vector/matrix-valued functions bi(x), Aij(x),
i, j ∈ {1, 2}, which serves as stochastic estimates of bi and
Aij , respectively. The corresponding recurrence runs as

θk+1 = θk + βk{bk+1
1 −Ak+1

11 θk −Ak+1
12 wk} ,

wk+1 = wk + γk{bk+1
2 −Ak+1

21 θk −Ak+1
22 wk} ,

(2)

where θk ∈ Rdθ , wk ∈ Rdw , and bki , Ak
ij are shorthand

notations for bi(Xk) and Aij(Xk), respectively. The scalars
γk, βk > 0 in (2) are step sizes, and the underlying SA
scheme is said to have two timescales as the step sizes sat-
isfy limk→∞ βk/γk < 1 such that wk is updated at a faster
timescale. In our paper we consider βk = c0,β(k + k0)

−b

and γk = c0,γ(k + k0)
−a with exponents a and b satisfying

1/2 < a < b < 1. When {Xk}k∈N are i.i.d., and under
appropriate technical assumptions on the parameters of (2),
it is known (see e.g. (Konda and Tsitsiklis 2004)), that the
asymptotic normality of the "slow" timescale θk holds:

β
−1/2
k (θk − θ⋆) → N (0,Σθ) , (3)

with some covariance Σθ. The authors in (Mokkadem, Pel-
letier et al. 2006) generalized this result for the averaged
iterates of non-linear SA:

θ̄n := n−1
∑n
k=1 θk , w̄n := n−1

∑n
k=1 wk . (4)

The latter estimates correspond to the Polyak-Ruppert aver-
aging procedure introduced in (Ruppert 1988; Polyak and
Juditsky 1992), a popular technique for stabilization of the
SA algorithms. The authors of the recent paper (Kong et al.
2025) obtained the non-asymptotic convergence rates for the
averaged iterates θ̄n and w̄n in Wasserstein distance of or-
der 1, using the vector-valued versions of the Berry-Essen
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theorem for martingale-difference sequences due to (Srikant
2024). In this paper, we not only generalize these results
for the setting of Markov noise, but also establish the corre-
sponding convergence rates for the last iterate θk. The main
contributions of this paper are the following:
• We derive non-asymptotic bounds for the accuracy of

normal approximation for the Polyak–Ruppert-averaged
TTSA

√
n(θ̄n − θ⋆) and last iterate β−1/2

n (θn − θ⋆) in
terms of convex distance under martingale-difference
noise assumptions. Our results indicate that the normal ap-
proximation for the last iterate improves as the timescale
separation increases and achieves a convergence rate of
order up to n−1/4, up to log n factors. We show that
the Polyak–Ruppert averaged TTSA iterates achieve the
same rate of normal approximation, but require that the
timescales βk and γk coincide up to a constant factor.
While our analysis for the Polyak–Ruppert averaged
TTSA generalizes recent results due to (Kong et al. 2025),
we provide, to the best of our knowledge, the first fully
non-asymptotic analysis of the normal approximation
rates for the last iterate of TTSA.

• We generalize the obtained results for normal approxi-
mation for the averaged TTSA and the last iterate to the
setting of Markov noise. Our results show a convergence
rate of order up to n−1/6, up to logarithmic factors, with
the same conclusion regarding timescale separation as in
the martingale noise case. This is the first result on the
normal approximation rate for TTSA with Markov noise.

Notations. For a matrix A ∈ Rd×d we denote by ∥A∥
its operator norm. For symmetric positive-definite matrix
Q = Q⊤ ≻ 0 , Q ∈ Rd×d and x ∈ Rd we define
the corresponding norm ∥x∥Q =

√
x⊤Qx, and define the

respective matrix Q-norm of the matrix B ∈ Rd×d by
∥B∥Q = supx̸=0 ∥Bx∥Q/∥x∥Q. For sequences an and bn,
we write an ≲logn

bn if there exist c, α > 0 (not depending
upon n), such that an ≤ c(1 + log n)αbn. In the present
text, the following abbreviations are used: "w.r.t." stands for
"with respect to", "i.i.d. " - for "independent and identically
distributed", "GAR" - for "Gaussian Approximation".

Related works Classical results in the stochastic approx-
imation (Borkar 2008) study the asymptotic properties of
the single timescale SA algorithms, with the properties of
averaged estimated studied in (Polyak and Juditsky 1992).
Two-timescale SA schemes were studied in (Borkar 1997;
Tadić 2004; Tadic 2006) in terms of almost sure convergence.
Asymptotic convergence rates of linear two-timescale SA
were studied in (Konda and Tsitsiklis 2004), where the au-
thors showed that asymptotically E[∥θk − θ⋆∥2] = O(βk)
and E[∥wk − w⋆∥2] = O(γk).

Non-asymptotic error bounds for TTSA were first devel-
oped in (Dalal et al. 2018; Dalal, Szorenyi, and Thoppe 2020)
under the martingale noise assumptions and additional pro-
jections used in the update scheme (2). These results were
further improved in (Kaledin et al. 2020) for linear TTSA
problems. (Haque, Khodadadian, and Maguluri 2023) refined
the results of (Kaledin et al. 2020) obtaining the MSE bounds
E[∥θk − θ⋆∥2] and E[∥wk − w⋆∥2] with the leading terms

given by βk TrΣθ and γk TrΣw, where the covariances Σθ
and Σw aligns with the CLT in (3). (Kwon et al. 2024) con-
sidered the version of (2) with constant step sizes and studied
convergence to equilibrium for the corresponding Markov
chain. Non-linear TTSA has been considered in (Doan 2024)
under strong monotonicity assumptions, focusing on obtain-
ing the MSE rate of order O(1/k) for k-th iterate.

Central limit theorem for TTSA iterates has been estab-
lished in (Mokkadem, Pelletier et al. 2006), where the asymp-
totic version of the CLT was proved both for the last iter-
ates (θk, wk) and their Polyak–Ruppert averaged counter-
parts (θ̄n, w̄n). (Hu, Doshi, and Eun 2024) established an
asymptotic CLT for general TTSA under Markov noise and
controlled Markov chain dynamics, without quantifying the
convergence rate. (Kong et al. 2025) studied the CLT for av-
eraged iterates (θ̄n, w̄n) and provided a non-asymptotic CLT
with the convergence rate studied in terms of Wasserstein
distance of order 1.

2 Gaussian Approximation for SA algorithms
We outline a general scheme for proving the normal ap-
proximation. We consider vector-valued nonlinear statistics
T (X1, . . . , Xn) ∈ Rd, which can be represented in the form

T =W +D , (5)

where W is a linear statistic of the random variables
X1, . . . , Xn, and D is a small perturbation. This approach
is well studied when X1, . . . , Xn are i.i.d. random variables
(Chen and Shao 2007; Shao and Zhang 2022) or form a
martingale-difference sequence (Shorack 2017). The case of
Markov random variables can be reduced to the setting of
martingale-difference sequences through the Poisson equa-
tion (Douc et al. 2018, Chapter 21). We consider the de-
composition (5) and assume, without loss of generality, that
E[WW⊤] = Id. To measure the approximation quality, a
common approach is to use the supremum of the difference
between measures taken over some subclass H ⊆ Conv(Rd)
of the collection of convex sets Conv(Rd). Specifically, for
probability measures µ, ν on Rd, we write

dH(µ, ν) = supB∈H |µ(B)− ν(B)| .

Examples of H include the class of all convex sets, half-
spaces, rectangles, ellipsoids, etc. The choice of different
collections of sets H may be motivated by the needs of a
particular application and may introduce differences in the
dependence of the results on the problem dimension d. In-
deed, even this dimensional dependence for linear statistics
W can vary; see (Bentkus 2003) and (Kojevnikov and Song
2022) for the respective results for i.i.d. sequences and mar-
tingale differences. In this paper, we focus on the convex
distance ρConv, defined as

ρConv(µ, ν) = supB∈Conv(Rd) |µ(B)− ν(B)| ,

and rely on the following proposition to reduce the problem
of Gaussian approximation for the nonlinear statistic W +D
to that for the linear statistic W :
Proposition 1 (Proposition 2 in (Sheshukova et al. 2025)).
Let ν be a standard Gaussian measure in Rd. Then for any



random vectors W,D taking values in Rd, and any p ≥ 1,

ρConv(W +D, ν) ≤ ρConv(W, ν)

+ 2c
p/(p+1)
d E1/(p+1) [∥D∥p] ,

where cd is the isoperimetric constant of class Conv(Rd).
Similar results can be derived for other classes of sets H,

with the constant cd depending on the isoperimetric proper-
ties of the specific class H; see, e.g., (Klivans, O’Donnell,
and Servedio 2008). Proposition 1 shows that the estimation
of ρConv(W +D,N (0, I)) can be reduced to:
1. Estimating ρConv(W,N (0, I));
2. Estimating moments E[∥D∥p] for some p ≥ 1.
To bound ρConv(W,N (0, I)), one can apply a Berry–Esseen
bound for the appropriate linear statistic, e.g., (Shao and
Zhang 2022) for i.i.d. random variables or (Srikant 2024;
Samsonov et al. 2025; Wu, Wei, and Rinaldo 2025) for the
martingale-difference setting. The most involved part of the
proof is the proper estimation of E[∥D∥p].

3 GAR for TTSA with Martingale noise
Assumptions and definitions. We investigate the linear
TTSA algorithm given by the equivalent form of (2):

θk+1 = θk + βk(b1 −A11θk −A12wk + Vk+1), (6)
wk+1 = wk + γk(b2 −A21θk −A22wk +Wk+1) . (7)

In this recurrence, the noise terms Vk+1,Wk+1 are given by:

Vk+1 = εk+1
V − Ãk+1

11 (θk − θ⋆)− Ãk+1
12 (wk − w⋆),

Wk+1 = εk+1
W − Ãk+1

21 (θk − θ⋆)− Ãk+1
22 (wk − w⋆),

(8)

where we used the notation Ãk+1
ij := Ak+1

ij −Aij for i, j ∈
{1, 2}, and the random vectors εk+1

V , εk+1
W are given by

εk+1
V = bk+1

1 −Ak+1
11 θ⋆ −Ak+1

12 w⋆ ,

εk+1
W = bk+1

2 −Ak+1
21 θ⋆ −Ak+1

22 w⋆ .
(9)

We consider a setting where the random elements Vk+1 and
Wk+1 form a martingale-difference w.r.t. filtration Fk =
σ(X1, . . . , Xk), F0 is trivial. We first consider the martingale
noise setting. This setting covers the i.i.d. setting from (Konda
and Tsitsiklis 2004) and also serves as a basis for subsequent
analysis of the Markov noise setting.
A 1. The noise terms are zero-mean given Fk, i.e.,
EFk [Vk+1] = 0, and EFk [Wk+1] = 0.

Next, for a given p ≥ 2, we impose the following moment
bound on Vk+1, Wk+1:
A2 (p). There exist constants mW ,mV > 0 such that for
any k ∈ N:

E1/p[∥Vk+1∥p] ≤ mV (1 + E1/p[∥θk − θ∗∥p] + E1/p[∥wk − w∗∥p])
E1/p[∥Wk+1∥p] ≤ mW (1 + E1/p[∥θk − θ∗∥p] + E1/p[∥wk − w∗∥p])

The assumption A 2(p) appears in a similar form with
p = 2 in (Kaledin et al. 2020, Assumption A4). Since our
results require to control high-order moments of the TTSA
iterates θk and wk, it is natural to require that p-th moment of
Vk+1 and Wk+1 are finite. Next, we present an assumption
on the quadratic characteristic of Vk and Wk:

A3. Noise variables εk+1
V and εk+1

W defined in (9) have zero
conditional expectation given Fk, that is, EFk

[
εk+1
V

]
= 0

and EFk
[
εk+1
W

]
= 0. Moreover, there exist matrices ΣV ,

ΣW , ΣVW such that for any k > 0:

EFk
[
εk+1
V {εk+1

V }⊤
]
= ΣV ,EFk

[
εk+1
W {εk+1

W }⊤
]
= ΣW ,

EFk
[
εk+1
V {εk+1

W }⊤
]
= ΣVW .

This assumption relaxes the one stated in (Kong et al.
2025), where the authors required the quadratic characteristic
of the entire vectors Vk+1 andWk+1 to be constant. However,
this assumption is unlikely to hold due to the structure of
these vectors outlined in (8). We also impose the following
conditions on the problem matrices:

A4. Matrices −A22 and −∆ = −
(
A11 −A12A

−1
22 A21

)
are

Hurwitz.

A 4 is common for the analysis of both the linear two-
timescale SA, see (Konda and Tsitsiklis 2004), and single-
timescale SA, see (Durmus et al. 2025; Mou et al. 2020). A4
implies, due to the Lyapunov lemma (stated in the supplement
paper for completeness), that there exist matrices Q⊤

22 =
Q22 ≻ 0, Q⊤

∆ = Q∆ ≻ 0, such that

∥I− γkA22∥Q22
≤ 1− a22γk, a22 := 1

4∥Q22∥ ,

∥I− βk∆∥Q∆
≤ 1− a∆βk, a∆ := 1

4∥Q∆∥ ,
(10)

provided that the step sizes γk and βk are small enough.
Precisely, for p ≥ 2, we impose the following assumption A
5(p) on the step sizes:

A5 (p). Step sizes (γk)k≥1, (βk)k≥1 are non-increasing se-
quences of the form

βk = c0,β(k + k0)
−b, γk = c0,γ(k + k0)

−a ,

where 1/2 < a < b < 1, fraction c0,β/c0,γ is small enough,
and constant k0 satisfies the bound k0 ≥ CA5p

4/b, where
the constant CA5 does not depend upon p.

In the subsequent main results, we set the parameter p of
order log(n). Hence, the parameter k0 will depend on the
total number of iterations to be performed. The same effect
appears in the single-timescale SA algorithms (Durmus et al.
2025; Wu et al. 2024). This effect is unavoidable at least in
the setting of the constant step size algorithms, see (Durmus
et al. 2021a, Theorem 1).

A6. There exist constants CA,Cb > 0 such that

supx∈X ∥Aij(x)∥ ∨ ∥Aij(x)−Aij∥ ≤ CA , ∀ i, j ∈ {1, 2} ,
supx∈X ∥bi(x)∥ ∨ ∥bi(x)− bi∥ ≤ Cb , ∀ i ∈ {1, 2} .

We expect that A6 can be replaced with an appropriate
moment condition, at least in a setting where the noise vari-
ables Vk and Wk form a martingale difference. At the same
time, our further generalizations to the Markov noise setting
inherently rely on the boundedness of Aij(x) and bi(x).

3.1 Moment bounds for Martingale TTSA
Given the assumptions A 1 - A 6, we present the classical
reformulation of the two-timescale SA scheme (6)-(7), which



is due to (Konda and Tsitsiklis 2004), see also (Kaledin et al.
2020). We define recursively the following sequence of ma-
trices {Lk}k∈N, with L0 = 0, and

Lk+1 :=
(
Lk − γkA22Lk + βkA

−1
22 A21Uk

)
×
(
I− βkUk

)−1
, Uk := ∆−A12Lk .

(11)

and define L∞ = a∆λmax(Q∆)/(λmin(Q22)2∥A12∥). As
shown in (Kaledin et al. 2020, Lemma 18), under A5 above
recursion on Lk is well-defined, and every Lk satisfies the
relation ∥Lk∥ ≤ L∞. In addition, define the matrices:

Bk11 := ∆−A12Lk , Dk := Lk+1 +A−1
22 A21 ,

Bk22 := (βk/γk)
(
Lk+1 +A−1

22 A21

)
A12 +A22 .

In a similar vein as performing Gaussian elimination, we
obtain a simplified two-timescale SA recursions:
Proposition 2 (Observation 1 in (Kaledin et al. 2020)). Con-
sider the following change of variables:

θ̃k := θk − θ⋆, w̃k = wk − w⋆ +Dk−1θ̃k. (12)

Then the two-timescale SA (6)-(7) is equivalent to:

θ̃k+1 = (I− βkB
k
11)θ̃k − βkA12w̃k − βkVk+1 ,

w̃k+1 = (I− γkB
k
22)w̃k − βkDkVk+1 − γkWk+1 .

(13)

Our further analysis, both for martingale and Markov noise,
will essentially rely on the decoupled TTSA updates (13). We
refer to this dynamics as to the "decoupled" one, since the
update of the scale w̃k+1 no longer depends directly on θ̃k,
only through the noise variables Vk+1 and Wk+1. Now we
aim to upper bound the quantities

M w̃
k,p := E1/p[∥w̃k∥p], M θ̃

k,p := E1/p[∥θ̃k∥p] . (14)

Similarly to (10), we show in the supplement paper, that

∥I− βkB
k
11∥Q∆

≤ 1− (1/2)βka∆ ,

∥I− γkB
k
22∥Q22

≤ 1− (1/2)γka22 .
(15)

The result (15) together with the structure of the updates (13)
enables us to expand the recurrence and to show that the
error component, associated with the initial error θ0 − θ⋆

and w0 − w⋆ decay at the exponential rate. Precisely, the
following bound holds:
Proposition 3. Let p ≥ 2 and assume A1,A2(p), A3, A4, A
5(p), and A6. Then for any k ∈ N it holds

M θ̃
k+1,p ≲

∏k
j=0

(
1− βja∆/8

)
+ p2β

1/2
k , (16)

M w̃
k+1,p ≲

∏k
j=0

(
1− γja22/8

)
+ p3γ

1/2
k , (17)

where ≲ stands for inequality up to constants not depending
upon k and p.

Discussion. Proposition 3 provides, to best of our knowl-
edge, the first high-order moment bounds in the linear TTSA
with martingale noise. The scaling of the r.h.s. with β1/2

k for
M θ̃
k+1,p and γ1/2k for M w̃

k+1,p coincides with the one previ-
ously obtained for the particular case p = 2 in (Kaledin et al.

2020). Similar asymptotic results were previously obtained in
(Konda and Tsitsiklis 2004). We expect that the dependence
of the r.h.s. of (16) and (17) upon p can be improved based on
applying the Pinelis version of Rosenthal inequality (Pinelis
1994, Theorem 4.1) instead of Burkholder’s inequality (Os-
ekowski 2012, Theorem 8.6), that was used in the current
proof, yet we expect that this approach introduces additional
technical difficulties.

3.2 GAR for Polyak-Ruppert averaged TTSA
Based on the results of the previous section, we can now
quantify the Gaussian approximation rates for

√
n(θ̄n − θ⋆)

for the Polyak-Ruppert averaged estimator θ̄n from (4). Now
we present the key decomposition:

∆(θk − θ⋆) =
θk − θk+1

βk
− A12A

−1
22 (wk − wk+1)

γk

+ (Vk+1 −A12A
−1
22 Wk+1) .

(18)

The proof of the above identity is given in the supplement
paper. Taking sum in (18) for k = 1 to n, and using the
definition of Vk+1,Wk+1 in (8), we get:

√
n∆(θ̄n − θ⋆) = 1√

n

∑n
k=1 ψk+1 +Rpr

n , (19)

where we set ψk+1 = εk+1
V − A12A

−1
22 ε

k+1
W , and Rpr

n is a
residual term defined in the supplement paper. Assumption
A3 implies that the variance Var[εk+1

V − A12A
−1
22 ε

k+1
W ] is

constant for any k, so we can define

Σε := Var[ε1V −A12A
−1
22 ε

1
W ] ∈ Rdθ×dθ . (20)

The following theorem holds:
Theorem 1. Assume A1,A2(log n), A3, A4, A5(logn), and
A6. Then, it holds that

ρConv
(√
n∆(θ̄n−θ⋆),N (0,Σε)

)
≲logn

1

na/2
+

1

n(1−b)/2
.

Proof sketch. We apply Proposition 1 to the decomposition
(19) and obtain, with ν ∼ N (0,Σε), that

ρConv
(√
n∆(θ̄n − θ⋆), ν

)
≤ ρConv

(
n−1/2

n∑
k=1

ψk+1, ν
)

︸ ︷︷ ︸
T1

+ 2c
p/p+1
d E1/(p+1)

[
∥Σ−1/2

ε Rpr
n ∥p

]︸ ︷︷ ︸
T2

.

Due to A 1 and A 6, sequence {ψk+1}k∈N is a bounded
martingale-difference sequence w.r.t. Fk with constant
quadratic characteristic. Hence, T1 can be estimated applying
a slight modification of (Wu, Wei, and Rinaldo 2025, The-
orem 1). It remains to bound the moments of T2, which is
done using Proposition 3.

Discussion. In the theorem above, the coefficients before
the terms depend upon the initial errors ∥θ0−θ⋆∥, ∥w0−w⋆∥,
and upon the factors 1/(1 − a) and 1/(1 − b). That is why
the result in its current form does not apply directly if b = 1.
We expect that the result holds in this case as well, perhaps



at a price of introducing additional logarithmic factors. The
same remark applies to Theorem 2-Theorem 4 stated below.

Since 1/2 < a < b < 1, the bound of Theorem 1 is
optimized when setting a = 1/2 + 1/ logn and b = a +
1/ logn, yielding the final rate of convergence of order

ρConv
(√
n∆(θ̄n − θ⋆),N (0,Σε)

)
≲logn n

−1/4 . (21)

The result of (21) improves upon the previously established
results of (Kong et al. 2025). The authors of that paper ob-
tained a rate of n−1/4, up to logn factors, in terms of Wasser-
stein distance. This implies convergence rate n−1/8 in the
convex distance, which is slower than (21). The choice of a
and b in (21) corresponds to nearly the same scales for βk and
γk, effectively reducing the problem to a single-scale LSA.
The obtained n−1/4 rate aligns with the one established for
this problem with i.i.d. noise in (Samsonov et al. 2024).
3.3 GAR for the last iterate.
In this section, we derive the normal approximation rates for
the last iterate β−1/2

n θ̃n+1. Following (Konda and Tsitsiklis
2004) and using (13), equations for θ̃k and w̃k writes as

θ̃k+1 = (I− βk∆)θ̃k − βkA12w̃k − βkVk+1 + βkδ
(1)
k ,

w̃k+1 = (I− γkA22)w̃k − βkDkVk+1 − γkWk+1 − βkδ
(2)
k ,

where we set

δ
(1)
k = A12Lkθ̃k , δ

(2)
k = −(Lk+1 +A−1

22 A21)A12w̃k .

Throughout the analysis we use the following convention:

G
(1)
m:k :=

∏k
i=m(I− βi∆), G

(2)
m:k :=

∏k
i=m(I− γiA22) .

Enrolling the above recurrence and following (Konda and
Tsitsiklis 2004), we get from the previous recurrence that

θ̃n+1 = −
∑n
j=0 βjG

(1)
j+1:nψj+1 +Rlast

n , (22)

whereRlast
n is a remainder term defined in the supplement pa-

per. The leading term in representation (22) is a linear statis-
tics of εV , εW which are martingale difference sequences
with constant quadratic characteristics due to A3. Now we
define

Σlast
n = Var

[∑n
j=0 βjG

(1)
j+1:nψj+1

]
.

It is known that β−1
n Σlast

n converges to a fixed matrix Σlast
∞

which is a solution of the Ricatti equation

Σlast
∞ = β0(∆Σlast

∞ +Σlast
∞ ∆⊤ −Σε) ,

where Σε is defined in (20). Moreover, the convergence rate
is proportional to βn, i.e.

∥β−1
n Σlast

n −Σlast
∞ ∥ ≲ n−b .

The proof of the above result is given in the supplement paper.
The following assumption guarantees that the covariance
matrix β−1

n Σlast
n is non-degenerate, which is important for

the further applications of Proposition 1.
A7. Step size exponents a, b satisfy 2b > 1 + a. Moreover,
assume that the total number of iterations n satisfies nb ≥
CA7, where CA7 does not depend on a, b, and can be traced
following the supplement paper.

Theorem 2. Assume A1,A2(log n), A3, A4, A5(log n), A6, A
7. Then, it holds that

ρConv
(
β−1/2
n θ̃n+1,N (0,Σlast

∞ )
)

≲logn n
b/2

n∏
j=0

(1− a∆
8
βj) +

1

n(3b−a−2)/2
. (23)

Discussion The proof of Theorem 2 is similar to the one
of Theorem 1, but relies on the decomposition (22) instead
of (19) used in the averaged setting. Additional technical
difficulties arises when controlling the moments of the term
Rlast
n . Bounding the latter term requires additional constraint

2b > 1 + a imposed in A7.
Since 1/2 < a < b < 1, the bound of Theorem 2 is

optimized when setting a = 1/2 + 1/ logn and b = 1 −
1/ logn, yielding the final rate

ρConv
(
β
−1/2
n θ̃n+1,N (0,Σlast

∞ )
)
≲logn n

−1/4 ,

provided that n is large enough. To the best of our knowledge,
this is the first result concerning the Gaussian approximation
rate for the TTSA last iterate.

Note that Theorem 2 reveals phenomenon, which is com-
pletely different from what was previously observed for
the Polyak-Ruppert averaged iterates in Theorem 1. Indeed,
the right-hand side of the bound (23) contains the term
n−(3b−a−2)/2, which favors separation between βk and γk,
and vanishes when the scale exponents are close.

4 GAR for TTSA with Markov noise
In this section we generalize the results obtained in Section 3
to the more practical scenario when {Xk}k∈N form a Markov
chain. Namely, we impose the following assumption:
B1. The sequence {Xk}k∈N is a Markov chain taking values
in a Polish space (X,X ) with the Markov kernel P. Moreover,
P admits π as a unique invariant distribution and is uniformly
geometrically ergodic, that is, there exists tmix ∈ N, such
that for any k ∈ N, it holds that

∆(Pk) := sup
x,x′∈X

dtv(P
k(x, ·),Pk(x′, ·)) ≤ (1/4)⌈k/tmix⌉ .

Moreover, for all k ∈ N and i, j ∈ {1, 2} it holds that

Eπ[Ak
ij ] = Aij and Eπ[bki ] = bi .

Parameter tmix in B 1 is referred to as a mixing time, see
e.g. (Paulin 2015), and controls the rate of convergence of
the iterates Pk to π as k increases.

4.1 Moment bounds for TTSA with Markov noise
First, we introduce a counterpart to A 5 that is needed to
derive moment bounds for the setting of Markov noise.
B 2 (p). (γk)k≥1, (βk)k≥1 are non-increasing sequences of
the form

βk = c0,β(k + k0)
−b, γk = c0,γ(k + k0)

−a ,

where 1/2 < a < b < 1, fraction c0,β/c0,γ is small enough,
and constant k0 satisfies the bound k0 ≥ CB 2p

4/b, where
the constant CB 2 does not depend upon p.



The proof of moment bounds is more involved compared
to the martingale noise case. Following the decomposition
outlined in (Kaledin et al. 2020), we first represent the
noise variables (Vk+1,Wk+1) as a sum of their martingale
(V

(0)
k+1,W

(0)
k+1) and Markovian components (V (1)

k+1,W
(1)
k+1) in

a way that

Vk+1 = V
(0)
k+1 + V

(1)
k+1 , Wk+1 =W

(0)
k+1 +W

(1)
k+1 .

Here EFk

[
V

(0)
k+1

]
= 0 and EFk

[
W

(0)
k+1

]
= 0. This represen-

tation is obtained using the decomposition associated with
the Poisson equation, see (Douc et al. 2018, Chapter 21)
and additional summation by parts. Then we define a pair of
coupled recursions, which form exact counterparts of (13):

θ̃
(i)
k+1 = (I− βkB

k
11)θ̃

(i)
k − βkA12w̃

(i)
k − βkV

(i)
k+1 ,

w̃
(i)
k+1 = (I− γkB

k
22)w̃

(i)
k − βkDkV

(i)
k+1 − γkW

(i)
k+1 ,

where i ∈ {0, 1}. Then it is easy to see that θ̃k =

θ̃
(0)
k + θ̃

(1)
k and w̃k = w̃

(0)
k + w̃

(1)
k . Precise expressions for

θ̃
(i)
k , w̃

(i)
k , V

(i)
k ,W

(i)
k can be found in the supplement paper.

Proposition 4. Let p ≥ 2. Assume A4, A6, B 1, B 2(p). Thus,
it holds for any k ≥ 0 that

M θ̃
k+1,p ≲

∏k
j=0(1−

a∆βj

8 ) + p2
√
βk ,

M w̃
k+1,p ≲

∏k
j=0(1−

a22γj
8 ) + p3

√
γk .

Proof sketch. The idea of the proof is to bound martingale
and Markov parts separately using the techniques from Sec-
tion 3. Note that Proposition 4 directly mimics the similar
result obtained under the martingale noise setting in Proposi-
tion 3. The only difference is that the constants hidden under
≲ additionally depends upon the parameter tmix.

4.2 GAR for Polyak-Ruppert averaged TTSA
To proceed with Gaussian approximation for Polyak-Ruppert
averaging, we use the decomposition (19) to transform the lin-
ear statistic

∑n
k=1 ψk+1 to a sum of martingale-increments.

This transformation is done through the Poisson equation,
see (Douc et al. 2018, Chapter 21). Under A 6, function
ψ(x) = εV (x) − A12A

−1
22 εW (x) is a.s. bounded, which

implies that there exists a function gψ : X → Rdθ , such that

gψ(x)− Pgψ(x) = ψ(x) .

We set gψk+1 := gψ(Xk+1) and define

Mk = gψk+1 − Pgψk ,

which form a martingale-increment w.r.t. Fk. Then we can
rewrite (19) as

√
n∆(θ̄n − θ⋆) = 1√

n

∑n
k=1 Mk +R

pr,m
n , (24)

where Rpr,m
n is a residual term defined in the supplement.

Under B 1 there exists a matrix Σmark
∞ ∈ Rdθ×dθ such that

n−1/2
∑n
k=1{ψk+1 − π(ψ)} d−→ N (0,Σmark

∞ ) . (25)
Due to (Douc et al. 2018, Theorem 21.2.5), we get that

Var[Mk] = Σmark
∞ .

Now we state the counterpart to Theorem 1:

Theorem 3. Assume A4, A6, B 1, B 2(log n). Then it holds
that
ρConv(

√
n∆(θ̄n − θ⋆),N (0,Σmark

∞ )) (26)

≲logn
1

n1/4
+

1

n(1−b)/2
+

1

na−
1
2

+
√
n

n−1∏
j=0

(1− a∆βj
16

) .

Proof sketch. The proof of Theorem 3 consists of two main
parts. First, we derive a Gaussian approximation rate for the
linear statistic 1√

n

∑n
k=1 Mk using an appropriate martingale

CLT. It is especially non-trivial, since EFk
[
Mk{Mk}⊤

]
is

not constant. We circumvent this problem using an appropri-
ate modification of the argument due to (Fan 2019). Next, we
estimate the moments of Rpr,m

n using the techniques estab-
lished in Proposition 3 for θ̃(0)k , w̃

(0)
k and then combining this

with a separate bounds for the Markov part θ̃(1)k , w̃
(1)
k .

Discussion. It is easy to see that, given that b > a, the
right-hand side of (26) is optimized when setting a = 2/3
and b = 2/3 + 1/(log n). This yields the final rate of order
n−1/6 up to logarithmic factors:
ρConv(

√
n∆(θ̄n − θ⋆),N (0,Σmark

∞ )) ≲logn n
−1/6 . (27)

To the best of our knowledge, (27) provides the first result
concerning the Gaussian approximation rates for the TTSA
problems with Markov noise. The suggested step size sched-
ule mimics the one predicted by Theorem 1 and essentially
reduces the TTSA scheme to a single-timescale one.

4.3 GAR for last iterate of TTSA
We start this section by introducing a counterpart to (22)
based on the idea of the decomposition (24) for Polyak-
Ruppert averaging:

β
−1/2
n θ̃n+1 = −

∑n
j=0 βjG

(1)
j+1:nMj +R

last,m
n , (28)

where Rlast,m
n is a residual term that is given in the supple-

ment paper. Note that the leading term in representation (28)
is martingale difference sequence. Now we define

Σlast,m
n = Var

[∑n
j=0 βjG

(1)
j+1:nMj

]
.

It is known that β−1
n Σlast,m

n converges to a fixed matrix
Σlast,m

∞ which is a solution of the Ricatti equation
Σlast,m

∞ = β0(∆Σlast,m
∞ +Σlast,m

∞ ∆⊤ −Σmark
∞ ) ,

where Σmark
∞ is defined in (25). Moreover, the convergence

rate is proportional to βn, i.e.
∥β−1

n Σlast,m
n −Σlast,m

∞ ∥ ≲ n−b .

The proof of the above result is given in the supplement paper.
Now we formulate a counterpart to A7:
B 3. Step size exponents a, b satisfy 2b > 1 + a. Moreover,
assume that the total number of iterations n satisfies nb ≥
CB 3, where CB 3 does not depend on a, b, and can be traced
from the supplement paper.
Theorem 4. Assume A4, A6, B 1, B 2(log n), B 3. Then it
holds that
ρConv(β−1/2

n θ̃n+1,N (0,Σlast,m
∞ )) (29)

≲logn n
b/2

n∏
j=0

(1− a∆
8
βj) +

1

n
b
2−

1
4

+
1

na−
b
2

+
1

n
3b−a−2

2

.



Proof sketch. The proof of Theorem 4 uses the same ma-
chinery of Gaussian approximation for non-linear statistics
based on representation (28). In this setting control of the
moments of the term Rlast,m

n is a delicated problem, which
requires the additional constraint 2b > 1 + a imposed in B 3.

Discussion. It is easy to see that, given that b ≥ a, the
right-hand side of (29) is optimized when setting a = 2/3
and b = 1− 1/(logn), and yields the final rate in terms of n
of order up to n−1/6 up to logarithmic factors:

ρConv(β−1/2
n θ̃n+1,N (0,Σlast,m

∞ )) ≲logn n
−1/6 .

This rate, to the best of our knowledge, is the first one ob-
tained for the last iterate of TTSA with Markov noise.

5 Applications to TDC and GTD
In this section, we show that the results derived in Section 3
and Section 4 apply to the Gradient Temporal Difference
(GTD) (Sutton, Maei, and Szepesvári 2008) and Temporal
Difference with Gradient Correction (TDC) (Sutton et al.
2009) methods. These methods address the problem of classi-
cal TD learning, which is based on single-timescale stochastic
approximation and is known to fail in off-policy RL settings
where data are drawn from a behavior policy different from
the target policy (Baird 1995; Tsitsiklis and Van Roy 1997).
We consider a discounted MDP (Markov Decision Process)
given by a tuple (S,A,P, r, λ). Here S and A denote state
and action spaces, which are assumed to be complete sep-
arable metric spaces with their Borel σ-algebras B(S) and
B(A), and λ ∈ (0, 1) is a discount factor. Let P(·|s, a) be a
state-action transition kernel, which determines the probabil-
ity of moving from (s, a) to a setB ∈ B(S). Reward function
r : S × A → [0, 1] is deterministic. A Policy π(·|s) is the
distribution over action space A corresponding to agent’s
action preferences in state s ∈ S. We aim to estimate value
function

V π(s) = E
[∑∞

k=0 λ
kr(Sk, Ak)|S0 = s

]
,

where Ak ∼ π(·|sk), and Sk+1 ∼ P(·|Sk, Ak). Define the
transition kernel under π,

Pπ(B|s) =
∫
A P(B|s, a)π(da|s) . (30)

We consider the linear function approximation for V π(s),
defined for s ∈ S, θ ∈ Rd, and a feature mapping φ : S →
Rd as V πθ (s) = φ⊤(s)θ. Our goal is to find a parameter θ⋆,
which defines the best linear approximation to V π . We denote
by µ the invariant distribution over the state space S induced
by Pπ(·|s) in (30). Consider the following assumptions on
the generative mechanism and on the feature mapping φ(·):
TD 1. Tuples (sk, ak, s

′
k) are generated i.i.d.with sk ∼ µ,

ak ∼ π(·|sk), s′k ∼ P(·|sk, ak) .
TD 2. Feature mapping φ(·) satisfies sups∈S ∥φ(s)∥ ≤ 1.

As an alternative to the generative model setting TD 1, our
analysis covers the Markov noise setting:
TD3. Suppose that we obtain a Markovian sample trajectory
{(sk, ak, rk)}∞k=0 which is generated when a stationary be-
havior policy π is employed. Assume that the Markov kernel

Pπ admits a unique invariant distribution µ and is uniformly
geometrically ergodic, that is, there exist tmix ∈ N, such that
for any k ∈ N, it holds that

sup
s,s′∈S

dtv(P
k
π(·|s),Pkπ(·|s′)) ≤ (1/4)⌈k/tmix⌉ .

We introduce the k-th step TD error for the linear setting:

δk = rk + λθ⊤k φk+1 − θ⊤k φk ,

where we have defined

φk = φ(sk) , rk = r(sk, ak) .

Generalized Temporal Difference learning. The GTD(0)
algorithm is defined by the following recurrence for k ≥ 1:{
θk+1 = θk + βk(φk − λφk+1)(φk)

⊤wk , θ0 ∈ Rd ,
wk+1 = wk + γk(δkφk − wk) , w0 = 0 .

(31)
It is clear that the GTD(0) recurrence (31) is a particular case
of the linear TTSA given in (6)-(7).

Temporal-difference learning with gradient correction.
The TDC algorithm employs dual updates for the primary
parameter vector θk and the auxiliary weight vector wk. Its
update rule is given by{

θk+1 = θk + βkδkφk − βkλφk+1(φ
⊤
k wk) ,

wk+1 = wk + γk(δk − φ⊤
k wk)φk .

(32)

It is possible to check that both updates schemes (31) and
(32) satisfy the general assumptions A1-A4 and A6 under
TD 1 and TD 2. Similar, B 1 holds under TD 3. Thus, all
the results from Section 3 and Section 4 applies for both
algorithms. We provide details in the supplemental paper.

6 Conclusion
In this paper, we provided, to the best of our knowledge,
the first rate of normal approximation for the last iterate and
Polyak-Ruppert averaged TTSA iterates in a sense of convex
distance, covering both the martingale-difference and Markov
noise settings. A natural further research direction is to con-
sider the problem of constructing confidence intervals for
the TTSA solution (θ⋆, w⋆) based on bootstrap approach or
asymptotic covariance matrix estimation, and perform a fully
non-asymptotic analysis of the suggested procedure. Another
important direction is the construction of lower bounds to
ensure tightness of the rates obtained in Theorem 1-4.
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A Martingale limit theorems
Let {Xk}nk=1 be a martingale difference process in Rd with respect to the natural filtration {Fk}nk=0, Fk = σ(Xs : s ≤ k).
From now on we introduce the following expressions

Vk =

k∑
j=1

EFj−1 [XjX
⊤
j ] , Σk =

1

k

k∑
j=1

E[XjX
⊤
j ] , (33)

where EF [·] stands for the conditional expectation w.r.t. a sigma-algebra F .
In order to derive a modification of (Wu, Wei, and Rinaldo 2025, Corollary 2) we first state (Nourdin, Peccati, and Yang 2022,

Proposition A.1) that controls convex distance in terms of Wasserstein one:
Lemma 1 (Proposition A.1 in (Nourdin, Peccati, and Yang 2022)). Fix d ≥ 1, and let η ∼ N (0,Σ) denote a d-dimensional
centered Gaussian vector with invertible covariance matrix Σ. Then, for any d-dimensional random vector F one has that

ρConv(F, η) ≲ Γ(Σ)1/2dW (F, η)1/2 ,

where dW (·, ·) stands for the Wasserstein distance and Γ(Σ) is the isoperimetric constant defined by

Γ(Σ) := sup
Q∈Conv(Rd),ε>0

P(η ∈ Qε)− P(η ∈ Q)

ε
,

where Qε indicates the set of all elements of Rd whose Euclidean distance from Q does not exceed ε.
Remark 1. Following (Nourdin, Peccati, and Yang 2022, Remark A.2) one can check that for the absolute constants 0 < c <
C <∞ it holds that

c
√
∥Σ∥Fr ≤ Γ(Σ) ≤ C

√
∥Σ∥Fr ,

where ∥ · ∥Fr stands for the Frobenius norm.
Now we give a slight modification of the result proven in (Wu, Wei, and Rinaldo 2025) that can be obtained applying Lemma 1:

Lemma 2 (modified Corollary 2 in (Wu, Wei, and Rinaldo 2025)). Let {Xk}nk=1 be a martingale difference process in with
respect to the filtration {Fk}nk=0. Assume that

Vn = nΣn a.s. ,

and for any 1 ≤ k ≤ n, A ∈ Rd×d it holds that

EFk−1 [∥AXk∥2∥Xk∥] ≤MEFk−1 [∥AXk∥2] .
Then for every Σ ∈ Sd+ it can be guaranteed that

ρConv

(
1√
n

n∑
k=1

Xk,N (0,Σn)

)
≲ Γ(Σn)

1/2[1 +M(2 + log(dn∥Σn∥))+]1/2
√
d logn

n1/4
+ Γ(Σn)

1/2 {Tr(Σn)}1/4

n1/4
.

where Σn is defined in (33).
The following lemma states the upper bound for the convex distance for any bounded martingale difference sequence:

Lemma 3. Let 0 < κ < ∞ and {Xk}nk=1 be a martingale difference process in Rd with respect to the filtration {Fk}nk=0 ,
Fk = σ(Xs : s ≤ k). Assume that

max
1≤i≤n

∥Xi∥ ≤ κ almost surely ,

and there exist constants C1, C2 > 0 such that for all t > 0 it holds that:

P[∥Vn − nΣn∥ ≥ nt] ≤ C1 exp
(
−C2nt

2
)
, (34)

where Vn, Σn are given in (33). Then for any p ≥ 1 it holds that

ρConv

(
1√
n

n∑
k=1

Xk,N (0,Σn)

)
≲

Γ(Σn)
1/2

{
1 + κ

(
2 + log

nd2p1/2∥Σn∥(2κ2 + ∥Σn∥ + C
−1/2
2 )

κ2

)+}1/2

√
d log

(
ndp1/2

2κ2+∥Σn∥+C−1/2
2

κ2

)
n1/4

+ Γ(Σn)
1/2 κ

1/2

n1/4
+ p3/4d

c
2p

2p+1

d

∥nΣn∥
2p

2p+1

{(
n logn

C2

) p
2(2p+1)

+ C
1

2p+1

1

(
2κ2 + ∥Σn∥ + ( lognnC2

)1/2

κ

) 2p
2p+1

}
,

where Γ(·) is introduced in Lemma 1, cd is defined in Proposition 1.



Proof. We adapt the arguments from (Fan 2019) and (Wu, Wei, and Rinaldo 2025, p. 35) for the multidimensional case. Consider
the following stopping time

τ = max{0 ≤ k ≤ n : Vk ⪯ nΣn + tnI} ,

where t ∈ R+ is a parameter we will choose later. Now introduce

m =

⌈
1

κ2
Tr(nΣn + tnI− Vτ )

⌉
, N =

⌈
Tr(nΣn + tnI)

κ2

⌉
+ n .

For the further analyses, we observe that

n ≤ N ≤ nd
2κ2 + ∥Σn∥ + t

κ2
.

Our goal is to construct the sequence {X ′
i}Ni=1 that has a constant quadratic characteristic equal to nΣn. To proceed, consider the

spectral decomposition of nΣn − Vτ :

nΣn − Vτ =

d∑
j=1

λjuju
⊤
j .

Now we set for i ∈ {1, 2, . . . , N}

X ′
i =


Xi , 1 ≤ i ≤ τ ,
1√
m

∑d
j=1(λj)

1/2εijuj , τ + 1 ≤ i ≤ τ +m ,

0 , τ +m+ 1 ≤ i ≤ N ,

where εij are i.i.d. Rademacher random variables. For the natural fitration F ′
i = σ(X ′

s : s ≤ i) one can check that EF ′
i−1 [X ′

i] = 0
almost surely. Moreover, ∥X ′

i∥ ≤ κ and EFi−1 [X ′
iX

′⊤
i ] = 1

m (nΣn − Vτ ) a.s. by the definition of κ and m. Thus, we obtain by
the construction

N∑
i=1

EFi−1 [X ′
iX

′⊤
i ] = Vτ +m · 1

m
(nΣn − Vτ ) = nΣn .

Now we apply Proposition 1 and get

ρConv
(

1√
n
Sn, N (0,Σn)

)
≤ ρConv

(
1√
N
S′
N , N (0,Σn)

)
+ 2c

2p/(2p+1)
d ∥nΣn∥−

2p
2p+1

(
E
[
∥Sn − S′

N∥2p
])1/(2p+1)

,

where we have set

Sn =

n∑
j=1

Xj , S
′
N =

N∑
j=1

X ′
j .

Since X ′ satisfies the assumptions of Lemma 2 with M := κ and, moreover, Tr(Σn) = 1
n

∑n
i=1 E[X⊤

i Xi] ≤ κ2, we get using
Lemma 2:

ρConv( 1√
N
S′
N ,N (0,Σn)) ≲ Γ(Σn)

1/2

{
1 + κ

(
2 + log(dN∥Σn∥)

)+}1/2√
d logN

N1/4
+ Γ(Σn)

1/2 κ
1/2

N1/4
,

≲ Γ(Σn)
1/2

{
1 + κ

(
2 + log

nd2∥Σn∥(2κ2 + ∥Σn∥ + t)

κ2

)+}1/2

√
d log(nd2κ2+∥Σn∥+t

κ2 )

n1/4
+ Γ(Σn)

1/2 κ
1/2

n1/4
,

To control the moments of Sn − S′
N we consider two events:

Ω1 = {ω : ∥Vn − nΣn∥ ≤ tn} , Ω2 = {ω : ∥Vn − nΣn∥ > tn} .

Hence,

E[∥Sn − S′
N∥2p] = E[∥Sn − S′

N∥2p1{Ω1}]︸ ︷︷ ︸
T1

+E[∥Sn − S′
N∥2p1{Ω2}]︸ ︷︷ ︸
T2

. (35)

Now we bound T1, T2 separately.



Bound for T1. On the event Ω1 it holds that Vn ⪯ nΣn + tnI. Thus, τ = n and

Sn − S′
N =

1√
m

n+m∑
i=n+1

d∑
j=1

(λj)
1/2εijuj =

1√
m

d∑
j=1

( n+m∑
i=n+1

εij
)
(λj)

1/2uj .

Note that ∥Vn − nΣn∥ ≤ tn yields λj ≤ tn for any j. Therefore, we obtain

∥Sn − S′
N∥2 ≤ tn

m

d∑
j=1

( n+m∑
i=n+1

εij
)2
.

Thus, applying Minkowski’s inequality combined with Khintchine inequality (Vershynin 2018, Theorem 2.7.5), we get

T1 ≤ E
[∣∣∣∣ tnm

d∑
j=1

( n+m∑
i=n+1

εij
)2∣∣∣∣p] = E

[
(tn)p

mp
EFn

[∣∣∣∣ d∑
j=1

( n+m∑
i=n+1

εij
)2∣∣∣∣p]] ≤ (dtn)pE

[
1

mp
EFn

[∣∣∣∣ n+m∑
i=n+1

εi1

∣∣∣∣2p]] ≲ (2tnpd)p .

Bound for T2. First, we use (34) and get

P[Ω2] ≤ C1 exp
(
−C2nt

2
)
.

Note that

∥Sn − S′
N∥ ≤ 2Nκ ≤ 2nd

2κ2 + ∥Σn∥ + t

κ
.

Thus, we obtain that

T2 ≤ 22pd2pn2p
(
2κ2 + ∥Σn∥ + t

κ

)2p

P[Ω2] ≤ C12
2pd2p

(
2κ2 + ∥Σn∥ + t

κ

)2p

n2p exp
(
−C2nt

2
)
.

Choose t = (2p lognnC2
)1/2. Thus,

T2 ≤ C1(2d)
2p(2p)p

(
2κ2 + ∥Σn∥ + ( lognnC2

)1/2

κ

)2p

,

and

T1 ≲ (8C−1
2 p3d2n logn)p/2 .

Now we substitute the latter inequalities into (35) and get applying Minkowski’s inequality:

E
1

2p+1 [∥Sn − S′
N∥2p] ≲ p3/4d

((
n logn

C2

) p
2(2p+1)

+ C
1

2p+1

1

(
2κ2 + ∥Σn∥ + ( lognnC2

)1/2

κ

) 2p
2p+1

)
,

and the proof follows.

B High-order bounds on the error moments
We follow the decoupling idea of (Konda and Tsitsiklis 2004) and perform the change of variables in the recurrence (6)-(7), which
is similar to the Gaussian elimination. Using Proposition 2, we obtain, with θ̃k and w̃k defined in (12), that the two-timescale SA
(6)-(7) reduces to the system of updates:{

θ̃k+1 = (I− βkB
k
11)θ̃k − βkA12w̃k − βkVk+1 ,

w̃k+1 = (I− γkB
k
22)w̃k − βkDkVk+1 − γkWk+1 .

Recall that the sequence of matrices Dk has a form

Dk = Lk+1 +A−1
22 A21 ,

where Lk are defined in (11). The following proposition shows that norms of matrices Dk are bounded. Moreover, Lk converges
to 0 under A5(2). This result is due to (Kaledin et al. 2020).



Lemma 4 (Lemma 19 in (Kaledin et al. 2020)). Assume A4 and A5(2). Then for any k ∈ N,

∥Lk∥ ≤ ℓ∞
βk
γk

, ∥Dk∥ ≤ c∞ ,

where the value of the constant ℓ∞ can be found in (Kaledin et al. 2020) and c∞ has form

c∞ = ℓ∞rstep + ∥A−1
22 A21∥ , rstep = c0,β/c0,γ . (36)

Let us note the important properties of our steps. Since a < b , the ratio βi/γi decreases as i increases, hence βi/γi ≤ β0/γ0
for all i ∈ N. Moreover, ka−b0 < 1, therefore β0/γ0 ≤ c0,β/c0,γ = rstep. To proceed with the p-th moment bounds for w̃k+1

and θ̃k+1, we introduce the random vectors

ξk+1 = γkWk+1 + βkDkVk+1 .

Our next lemma allows to bound moments of Vk+1,Wk+1, ξk+1 in terms of M w̃
k,p and M θ̃

k,p introduced in (14).

Lemma 5. Assume A2(p), A4, and A5(2). Then it holds that

E1/p[∥Vk+1∥p] ≤ m̃V (1 +M θ̃
k,p +M w̃

k,p) ,

E1/p[∥Wk+1∥p] ≤ m̃W (1 +M θ̃
k,p +M w̃

k,p) ,

E1/p[∥ξk+1∥p] ≤ m̃γk
(
1 +M θ̃

k,p +M w̃
k,p

)
,

where we have defined

m̃V = mV (1 + c∞) , m̃W = mW (1 + c∞) , m̃ = rstepm̃V c∞ + m̃W . (37)

and rstep is defined in (36).

Proof. Since wk − w∗ = w̃k −Dk−1θ̃k, we get applying Lemma 4:

E1/p[∥wk − w⋆∥p] ≤ E1/p[∥w̃k∥p] + c∞E1/p[∥θ̃k∥] .

Combining the above bound with A2(p), we obtain

E1/p[∥Vk+1∥p] ≤ mV (1 + E1/p[∥θk − θ⋆∥p] + E1/p[∥wk − w⋆∥p]) ≤ m̃V (1 +M θ̃
k,p +M w̃

k,p) ,

and

E1/p[∥Wk+1∥p] ≤ m̃W (1 +M θ̃
k,p +M w̃

k,p) .

Similarly,

E1/p[∥ξk+1∥p] ≤ γkE1/p[∥Wk+1∥p] + βkc∞E1/p[∥Vk+1∥p]

≤ γkm̃W

(
1 +M θ̃

k,p +M w̃
k,p

)
+ βkm̃V c∞

(
1 +M θ̃

k,p +M w̃
k,p

)
≤ m̃γk

(
1 +M θ̃

k,p +M w̃
k,p

)
,

where m̃ is defined in (37).

B.1 Bounding the products of deterministic matrices
Now we state and prove the results regarding the stability of matrix products. The key element of the proof is the Hurwitz
stability assumption A4. Below we state and prove the Lyapunov stability lemma:

Lemma 6. Let −A be a Hurwitz matrix. Then there exists a unique matrix Q = Q⊤ ≻ 0, satisfying the Lyapunov equation
A⊤Q+QA = I. Moreover, setting

a = 1
2∥Q∥ , and α∞ = 1

2∥Q∥∥A∥2
Q
,

it holds for any α ∈ [0, α∞] that
∥I− αA∥2Q ≤ 1− αa .



Proof. The fact that there exists a unique matrix Q, such that the following Lyapunov equation holds:

A⊤Q+QA = I ,

follows directly from (Poznyak 2008, Lemma 9.1, p. 140). In order to show the second part of the statement, we note that for any
non-zero vector x ∈ Rd, we have

x⊤(I− αA)⊤Q(I− αA)x

x⊤Qx
= 1− α

x⊤(A⊤Q+QA)x

x⊤Qx
+ α2x

⊤A⊤QAx

x⊤Qx

= 1− α
x⊤x

x⊤Qx
+ α2 x

⊤A⊤QAx

x⊤Qx

≤ 1− α

∥Q∥
+ α2 ∥A∥2Q

≤ 1− αa ,

where used the fact that α ≤ α∞.

Note that Lemma 6 implies the existence of matrices Q22 and Q∆, such that

A⊤
22Q22 +Q22A22 = I, Q∆∆+∆⊤Q∆ = I .

This ensures the contraction in the respective matrix Q-norm: provided that γk ∈ [0, 1/(2∥A22∥2Q22
∥Q22∥)], βk ∈

[0, 1/(2∥A∆∥2Q∆
∥Q∆∥)], it holds, that

∥I− γkA22∥Q22
≤ 1− a22γk, a22 := 1

2∥Q22∥ ,

∥I− βk∆∥Q∆ ≤ 1− a∆βk, a∆ := 1
2∥Q∆∥ .

We now define a few constants related to the matrices Q∆, Q22:

κ∆ :=
λmax(Q∆)

λmin(Q∆)
, κ22 :=

λmax(Q22)

λmin(Q22)
.

Next we show that the factors I− βkB
k
11 and I− γkB

k
22 in the transformed recursion (13) are also contractive in the same matrix

norms induced by Q∆ and Q22, respectively.
Lemma 7. Assume A4 and A5(2). Then it holds that

∥I− βkB
k
11∥Q∆ ≤ 1− (1/2)βka∆ , ∥I− γkB

k
22∥Q22 ≤ 1− (1/2)γka22 . (38)

Proof. Using (10), we observe that

∥I− βkB
k
11∥Q∆

= ∥I− βk∆+ βkA12Lk∥Q∆
≤ ∥I− βk∆∥Q∆

+ βk∥A12Lk∥Q∆

≤ (1− βka∆) + βk
√
κ∆∥A12∥∥Lk∥ ≤ (1− βka∆) + βk

√
κ∆∥A12∥rstepℓ∞

Using rstep ≤ a∆/(2∥A12∥
√
κ∆ℓ∞), the above inequality yields the first part of (38). Similarly, using (10), we get that

∥I− γkB
k
22∥Q22 = ∥I− γkA22 − βkDkA12∥Q22 ≤ ∥I− γkA22∥Q22 + rstepγk

√
κ22c∞∥A12∥

≤ (1− γka22) + rstepγk
√
κ22c∞∥A12∥.

Recalling that rstep ≤ a22/(2∥A12∥
√
κ22c∞), the second part of (38) follows.

Throughout our analysis we use the following notations:

Γ(1)
m:n :=

n∏
i=m

(I− βiB
i
11), Γ(2)

m:n :=

n∏
i=m

(I− γiB
i
22),

P (1)
m:n :=

n∏
i=m

(1− (1/2)βia∆), P (2)
m:n :=

n∏
i=m

(1− (1/2)γia22).

(39)

As a convention, we define Γ
(1)
m:n = I and Γ

(2)
m:n = I if m > n.

Corollary 1. Under the assumptions of Lemma 7, it holds for any n,m ≥ 0, that

∥Γ(1)
m:n∥ ≤

√
κ∆P

(1)
m:n .

Similarly, we have
∥Γ(2)

m:n∥ ≤
√
κ22P

(2)
m:n . (40)



We shall prove that

M θ̃
k+1,p ≤ Cθ̃0

k∏
j=0

(
1− βja∆/8

)
+Cslow p

2β
1/2
k ,

M w̃
k+1,p ≤ Cw̃0

k∏
j=0

(
1− γja22/8

)
+Cfast p

3γ
1/2
k ,

First, we introduce the constants

Cθ̃0 = {C θ̃0}1/2 , Cw̃0 = {Cw̃0 }1/2 , Cslow = {24C θ̃1}1/2 , Cfast = {Cw̃1 + 24a−1
22 C

w̃
2 (2C θ̃0 + 2C2

slow β0)}1/2 .

where Cw̃0 , Cw̃1 , Cw̃2 and C θ̃0 , C θ̃1 are defined in (45) and (50) respectively. In order to prove Proposition 3, we employ the
following scheme. We first consider the moments "fast" scale M w̃

k+1,p and upper bound them in terms of the moments of "slow"

time scale M θ̃
j,p with j ∈ {1, . . . , p}. This is formalized in the following proposition:

Proposition 5. Let p ≥ 2 and assume A1,A2(p), A4, A5(p). Then for any k ∈ N it holds that

(
M w̃
k+1,p

)2 ≤ Cw̃0 P
(2)
0:k + p2Cw̃1 γk + p2Cw̃2

k∑
j=0

γ2jP
(2)
j+1:k

(
M θ̃
j,p

)2
, (41)

where the constants Cw̃0 , C
w̃
1 , C

w̃
2 are given in (45).

Now we derive the following recursive bounds for the moments of "slow" time scale M θ̃
k,p:

Proposition 6. Let p ≥ 2 and assume A1,A2(p), A4, A5(p). Then for any k ∈ N it holds that

(
M θ̃
k+1,p

)2 ≤ C θ̃0P
(1)
0:k + p4C θ̃1βk + p4C θ̃2

k∑
j=0

β2
jP

(1)
j+1:k

(
M θ̃
j,p

)2
, (42)

where the constants C θ̃0 , C
θ̃
1 , C

θ̃
2 are given in (50).

Proof of Proposition 3.
(I) Proof of the bound (16). Now we aim to solve the recurrence (42) and prove the upper bound (16). Towards this, we consider
the recurrence Ũk, which is driven by the right-hand side of (42):

Ũk+1 = C θ̃0P
(1)
0:k + p4C θ̃1βk + p4C θ̃2

k∑
j=0

β2
jP

(1)
j+1:kŨj , Ũ0 = C θ̃0 , (43)

and C θ̃0 is defined in (50). The constructed sequence Ũk provides an upper bound for the moments, that is,

(M θ̃
k+1,p)

2 ≤ Ũk+1 . (44)

To verify (44), observe that (M θ̃
0,p)

2 ≤ Ũ0 by definition of Ũ0 in (43). By induction, assuming the validity of (44) for all j ≤ k,
we establish its correctness for k + 1. Indeed, using Proposition 6, we get

(
M θ̃
k+1,p

)2 ≤ C θ̃0P
(1)
0:k + p4C θ̃1βk + p4C θ̃2

k∑
j=0

β2
jP

(1)
j+1:k

(
M θ̃
j,p

)2
≤ C θ̃0P

(1)
0:k + p4C θ̃1βk + p4C θ̃2

k∑
j=0

β2
jP

(1)
j+1:kŨk = Ũk+1 .

Using the definition of the product P (1)
j+1:k in (39), we observe that

Ũk+1 = (1− βka∆/2 + p4C θ̃2β
2
k)Ũk + p4C θ̃1 (βk − βk−1 + βk−1βka∆/2) .

Since βk ≤ a∆/(4p
4C θ̃2 ) due to A5, and βk−1 ≤ 2βk, we have

Ũk+1 ≤ (1− βka∆/4)Ũk + p4C θ̃1a∆β
2
k .



Enrolling the above recurrence, we get

Ũk+1 ≤ C θ̃0

k∏
j=0

(
1− βj

a∆
4

)
+ p4C θ̃1a∆

k∑
j=0

β2
j

k∏
i=j+1

(
1− βi

a∆
4

)
.

Applying Lemma 31-(ii), the bound (44), and the inequality
√
a+ b ≤

√
a+

√
b, we get (16).

(II) Proof of the bound (17). Substituting (16) into Proposition 5 we obtain that

(
M w̃
k+1,p

)2 ≤ Cw̃0 P
(2)
0:k + p2Cw̃1 γk + p2Cw̃2

k∑
j=0

γ2jP
(2)
j+1:k

(
M θ̃
j,p

)2
≤ Cw̃0 P

(2)
0:k + p2Cw̃1 γk + p2Cw̃2

k∑
j=0

γ2jP
(2)
j+1:k

(
2C θ̃0

j−1∏
i=0

(
1− βia∆/4

)
+ 2p4 C2

slow βj
)

≤ Cw̃0 P
(2)
0:k + p2Cw̃1 γk + p2Cw̃2 (2C θ̃0 + 2p4 C2

slow β0)24γka
−1
22

≤ Cw̃0 P
(2)
0:k + p6γk (C

w̃
1 + 24a−1

22 C
w̃
2 (2C θ̃0 + 2C2

slow β0))︸ ︷︷ ︸
C2

fast

.

The inequality
√
a+ b ≤

√
a+

√
b completes the proof.

Now we derive a moment bound for wk+1 − w⋆ using Proposition 3.

Lemma 8. Let p ≥ 2. Assume A1,A2(p), A3, A4, A5(p), and A6. Then it holds for k ∈ N that

E1/p[∥wk+1 − w⋆∥p] ≤ Ĉ
w̃

0

k∏
j=0

(1− βj
a∆
8
) + p3Ĉfastγ

1/2
k ,

where we have set

Ĉ
w̃

0 = c∞ Cθ̃0 +Cw̃0 , Ĉfast = Cfast +r
1/2
stepc∞ Cslow .

Proof. Recall thatwk+1−w⋆ = w̃k+1−Dk(θk+1−θ⋆). Since A5 guarantees that βk/γk ≤ 2a22/a∆, we have (1−γka22/8) ≤
(1− βka∆/8). Hence, applying Lemma 4, Proposition 3 together with Minkowski’s inequality we get

E1/p[∥wk+1 − w∗∥p] ≤M w̃
k+1,p + c∞M

θ̃
k+1,p ≤ (c∞ Cθ̃0 +Cw̃0 )

k∏
j=0

(1− βj
a∆
8
) + p3γ

1/2
k (c∞ Cslow r

1/2
step +Cfast) ,

and the proof is complete.

Now we prove Proposition 5 and Proposition 6.

Proof of Proposition 5. We first introduce the constants:

Cw̃0 = 2κ22∥w̃0∥2 , Cw̃1 =
72

a22
κ22m̃

2 , Cw̃2 = 6κ22m̃
2 . (45)

The recursion (13) implies that

w̃k+1 =

k∏
j=0

(I− γjB
j
22)w̃0 −

k∑
j=0

k∏
i=j+1

(I− γiB
i
22)(γjWj+1 + βjDjVj+1) = Γ

(2)
0:kw̃0 −

k∑
j=0

Γ
(2)
j+1:kξj+1 , (46)

where Γ
(2)
j+1:k is defined in (39). Using Minkowski inequality and (40), we get

(
M w̃
k+1,p

)2
= E2/p[∥w̃k+1∥p] ≤ 2κ22

(
P

(2)
0:k

)2∥w̃0∥2 + 2E2/p
[
∥

k∑
j=0

Γ
(2)
j+1:kξj+1∥p

]
.



Now we proceed with the second term. Applying Burholder’s inequality (Osekowski 2012, Theorem 8.6), we obtain that

E2/p
[∥∥ k∑
j=0

Γ
(2)
j+1:kξj+1

∥∥p] ≤ p2E2/p
[( k∑
j=0

∥Γ(2)
j+1:kξj+1∥2

)p/2] ≤ p2
k∑
j=0

∥ Γ
(2)
j+1:k∥

2E2/p
[
∥ξj+1∥p

]
≤ 3p2m̃2κ22

k∑
j=0

γ2j
(
P

(2)
j+1:k

)2(
1 +

(
M θ̃
j,p

)2
+

(
M w̃
j,p

)2)
,

where in the last step we have used Lemma 5 and (40). Finally, we get(
M w̃
k+1,p

)2 ≤ Cw̃
′

0

(
P

(2)
0:k

)2
+ p2Cw̃

′

1

k∑
j=0

γ2j
(
P

(2)
j+1:k

)2(
1 +

(
M θ̃
j,p

)2
+
(
M w̃
j,p

)2)
, (47)

where Cw̃
′

0 = 2κ22∥w̃0∥2, Cw̃
′

1 = 6κ22m̃
2. Define the sequence Uk by the following recurrence:

Uk+1 = Cw̃
′

0

(
P

(2)
0:k

)2
+ p2Cw̃

′

1

k∑
j=0

γ2j
(
P

(2)
j+1:k

)2(
1 +

(
M θ̃
j,p

)2
+ Uj

)
, U0 = Cw̃

′

0 . (48)

The constructed sequence Uk+1 provides an upper bound for the moments, that is,

(M w̃
k+1,p)

2 ≤ Uk+1 . (49)

To verify (49), observe that (M w̃
0,p)

2 ≤ U0 by definition of U0 in (48). By induction, assuming the validity of (49) for all j ≤ k,
we establish its correctness for k + 1. Indeed, using (47), we get(

M w̃
k+1,p

)2 ≤ Cw̃
′

0

(
P

(2)
0:k

)2
+ p2Cw̃

′

1

k∑
j=0

γ2j
(
P

(2)
j+1:k

)2(
1 +

(
M θ̃
j,p

)2
+ Uj

)
= Uk+1 .

Using the definition of the product P (2)
j+1:k, we observe that the sequence

(
Uk

)
k≥0

satisfies the following recursion:

Uk+1 = (1− a22γk/2)
2Uk + p2Cw̃

′

1 γ2k
(
1 +

(
M θ̃
k,p

)2
+ Uk

)
, U0 = Cw̃

′

0 .

Since γk ≤ a22/(2p
2Cw̃

′

1 + a222/2), we have

Uk+1 ≤ (1− a22γk/2)Uk + p2Cw̃
′

1 γ2k
(
1 +

(
M θ̃
k,p

)2)
which implies

Uk+1 ≤ Cw̃
′

0 P
(2)
0:k + p2Cw̃

′

1

k∑
j=0

γ2jP
(2)
j+1:k

(
1 +

(
M θ̃
j,p

)2)
.

Applying Lemma 31-(ii) we get (41).

Proof of Proposition 6. First we introduce the constants

C θ̃0 = 4κ∆∥θ̃0∥2 + 4κ∆κ22∥A12∥2r2step(C
P
γ )

2∥w̃0∥2 , (50)

C θ̃1 = 144(a∆)
−1

(
m̃2
V κ∆ + (CPγ )

2κ∆κ22m̃
2∥A12∥2

)(
1 + Cw̃0 + γ0C

w̃
1

)
,

C θ̃2 = 12
(
m̃2
V κ∆ + (CPγ )

2κ∆κ22m̃
2∥A12∥2

)(
Cw̃2 CPγ γ0 + 1

)
.

Expanding the recursion (13), we get with Γ
(1)
j+1:k defined in (39), that

θ̃k+1 = Γ
(1)
0:kθ̃0 −

k∑
j=0

βjΓ
(1)
j+1:kA12w̃j −

k∑
j=0

βjΓ
(1)
j+1:kVj+1 . (51)

Next, we substitute w̃j from (46):
k∑
j=0

βjΓ
(1)
j+1:kA12w̃j =

k∑
j=0

βjΓ
(1)
j+1:kA12

(
Γ
(2)
0:j−1w̃0 −

j−1∑
i=0

Γ
(2)
i+1:j−1ξi+1

)
=

k∑
j=0

βjΓ
(1)
j+1:kA12Γ

(2)
0:j−1w̃0 −

k−1∑
i=0

( k∑
j=i+1

βjΓ
(1)
j+1:kA12Γ

(2)
i+1:j−1

)
ξi+1 .



Define the quantity

Tm:n =

n∑
ℓ=m

βℓΓ
(1)
ℓ+1:nA12Γ

(2)
m:ℓ−1 , m ≤ n .

Thus, with P (1)
k:j , P (2)

k:j defined in (39), it holds that

∥Tm:n∥ ≤
√
κ∆κ22∥A12∥

n∑
ℓ=m

βℓP
(1)
ℓ+1:nP

(2)
m:ℓ−1 . (52)

Now we rewrite (51) as follows:

θ̃k+1 = Γ
(1)
0:kθ̃0 − T0:kw̃0 +

k−1∑
j=0

Tj+1:kξj+1 −
k∑
j=0

βjΓ
(1)
j+1:kVj+1 .

Applying Minkowski inequality and (40), we obtain that

(
M θ̃
k+1,p

)2 ≤ 4κ∆
(
P

(1)
0:k

)2∥θ̃0∥2︸ ︷︷ ︸
R1

+4∥T0:k∥2∥w̃0∥2︸ ︷︷ ︸
R2

+ 4E2/p
[∥∥ k∑

j=0

βjΓ
(1)
j+1:kVj+1

∥∥p]
︸ ︷︷ ︸

R3

+4E2/p
[∥∥ k−1∑

j=0

Tj+1:kξj+1

∥∥p]
︸ ︷︷ ︸

R4

.

Next, we get the upper bounds for Ri separately. Applying Lemma 32 with j + 1 = 0 and using βj ≤ rstepγj , one can get:

R2 ≤ 4κ∆κ22∥A12∥2
( k∑
j=0

βjP
(1)
j+1:kP

(2)
0:j−1

)2∥w̃0∥2 ≤ 4κ∆κ22∥A12∥2r2step
( k∑
j=0

γjP
(1)
j+1:kP

(2)
0:j−1

)2∥w̃0∥2

≤ 4κ∆κ22∥A12∥2r2step(C
P
γ )

2
(
P

(1)
0:k

)2∥w̃0∥2 .

Applying Lemma 5 and Burholder’s inequality, we obtain that

R3 ≤ 4p2E2/p
[( k∑
j=0

β2
j ∥Γ

(1)
j+1:kVj+1∥2

)p/2] ≤ 4p2
k∑
j=0

β2
j ∥ Γ

(1)
j+1:k∥

2E2/p
[
∥Vj+1∥p

]
≤ 12p2m̃2

V κ∆

k∑
j=0

β2
j

(
P

(1)
j+1:k

)2(
1 +

(
M θ̃
j,p

)2
+

(
M w̃
j,p

)2)
.

In order to derive a bound for R4, we apply Lemma 5, (52) and Burholder’s inequality:

R4 ≤ 4p2E2/p
[( k−1∑

j=0

∥Tj+1:kξj+1∥2
)p/2] ≤ 4p2

k−1∑
j=0

∥Tj+1:k∥2
(
E2/p[∥ξj+1∥p]

)
≤ 12p2κ∆κ22m̃

2∥A12∥2
k−1∑
j=0

γ2j
( k∑
i=j+1

βiP
(1)
i+1:kP

(2)
j+1:i−1

)2(
1 +

(
M θ̃
j,p

)2
+
(
M w̃
j,p

)2)
≤ 12p2κ∆κ22m̃

2∥A12∥2
k−1∑
j=0

β2
j

( k∑
i=j+1

γjP
(1)
i+1:kP

(2)
j+1:i−1

)2(
1 +

(
M θ̃
j,p

)2
+

(
M w̃
j,p

)2)
(a)

≤ 12p2(CPγ )
2κ∆κ22m̃

2∥A12∥2
k−1∑
j=0

β2
j

(
P

(1)
j+1:k

)2(
1 +

(
M θ̃
j,p

)2
+

(
M w̃
j,p

)2)
,

where the inequality (a) follows from Lemma 32. Combining the above bounds, we get(
M θ̃
k+1,p

)2 ≤
(
4κ∆∥θ̃0∥2 + 4κ∆κ22∥A12∥2r2step(C

P
γ )

2∥w̃0∥2
)(
P

(1)
0:k

)2
(53)

+ 12p2
(
m̃2
V κ∆ + (CPγ )

2κ∆κ22m̃
2∥A12∥2

) k−1∑
j=0

β2
j

(
P

(1)
j+1:k

)2(
1 +

(
M θ̃
j,p

)2
+

(
M w̃
j,p

)2)
,



Moreover, applying Proposition 5 and Lemma 31-(ii) we bound last term in (53) as follows

k∑
j=0

β2
j

(
P

(1)
j+1:k

)2(
M w̃
j,p

)2 ≤
k∑
j=0

β2
j

(
P

(1)
j+1:k

)2(
Cw̃0 P

(2)
0:j−1 + p2Cw̃1 γj + p2Cw̃2

j−1∑
i=0

γ2i P
(2)
i+1:j−1

(
M θ̃
i,p

)2)
≤ p2Cw̃0

k∑
j=0

β2
jP

(1)
j+1:k + p2γ0C

w̃
1

k∑
j=0

β2
jP

(1)
j+1:k + p2Cw̃2

k∑
j=0

β2
j

(
P

(1)
j+1:k

)2 j−1∑
i=0

γ2i P
(2)
i+1:j−1

(
M θ̃
i,p

)2
≤ p2

(
Cw̃0 + γ0C

w̃
1

) 12
a∆

βk + p2Cw̃2

k−1∑
i=0

k∑
j=i+1

β2
j γ

2
i P

(2)
i+1:j−1P

(1)
j+1:k

(
M θ̃
i,p

)2
.

Using β2
j ≤ β2

i for j ≥ i+ 1 and γ2i ≤ γ0γi, we get

k∑
j=0

β2
j

(
P

(1)
j+1:k

)2(
M w̃
j,p

)2 ≤ p2
(
Cw̃0 + γ0C

w̃
1

) 12
a∆

βk + p2Cw̃2 γ0

k−1∑
i=0

β2
i

( k∑
j=i+1

γiP
(2)
i+1:j−1P

(1)
j+1:k

)(
M θ̃
i,p

)2
(a)

≤ p2
(
Cw̃0 + γ0C

w̃
1

) 12
a∆

βk + p2Cw̃2 γ0 C
P
γ

k−1∑
i=0

β2
i P

(1)
i+1:k

(
M θ̃
i,p

)2
,

where (a) follows from Lemma 32. Substituting the above inequalities into (53) we obtain (42).

C CLT for the Polyak-Ruppert averaged estimator
We preface the proof of Theorem 1 with a key decomposition isolating a linear statistics of εk+1

V , εk+1
W , which form a martingale

difference sequences w.r.t. the natural filtration Fk = σ(Xs : s ≤ k).
Lemma 9. The following decomposition holds:

∆(θk − θ∗) = β−1
k (θk − θk+1)− γ−1

k A12A
−1
22 (wk − wk+1) + (Vk+1 −A12A

−1
22 Wk+1) . (54)

Moreover, it holds that
√
n∆(θ̄n − θ⋆) =

1√
n

n∑
k=1

(εk+1
V −A12A

−1
22 ε

k+1
W ) +Rpr

n , (55)

where the residual term Rpr
n = Y1 + Y2 + Y3, and Y1, Y2, Y3 are given by

Y1 =
1√
n

n∑
k=1

β−1
k (θk − θk+1) ,

Y2 = − 1√
n

n∑
k=1

A12A
−1
22 γ

−1
k (wk − wk+1) ,

Y3 =
1√
n

n∑
k=1

{(A12A
−1
22 Ã

k+1
21 − Ãk+1

11 )︸ ︷︷ ︸
Rθ

k+1

θ̃k+1 + (A12A
−1
22 Ã

k+1
22 − Ãk+1

12 )︸ ︷︷ ︸
Rw

k+1

(wk+1 − w⋆)} .

Proof. First, we prove the representation (54). Equation (7) implies:

wk = (γkA22)
−1(wk − wk+1) +A−1

22 (b2 −A21θk +Wk+1) . (56)

Substituting (56) into the slow-time-scale variable’s recursion (6) we obtain that

θk+1 = θk + βk(b1 −A11θk + Vk+1)− βkA12(γkA22)
−1(wk − wk+1)− βkA12A

−1
22 (b2 −A21θk +Wk+1) (57)

= (I− βk∆)θk −
βk
γk
A12A

−1
22 (wk − wk+1) + βk(b1 −A12A

−1
22 b2) + βk(Vk+1 −A12A

−1
22 Wk+1) ,

Recall that (θ∗, w∗) is the solution of the system (1). This implies that b1 − A12A
−1
22 b2 = (A11 − A12A

−1
22 A21)θ

∗ = ∆θ∗.
Substituting this equality into (57), we obtain the formula (54). To establish (55), we sum (54) over k = 1, . . . , n using the
expressions for Vk+1, Wk+1 (8) and unrolling the corresponding recurrence.

To proceed with Theorem 1, we first formulate the moment bounds for Y1, Y2, Y3.



Lemma 10. Let p ≥ 2. Assume A1,A2(p), A3, A4, A5(p), and A6. Then for any k ∈ N it holds that

E1/p[∥Y1∥p] ≤
CY1

1√
n

+CY1
2 (1 + k0)

b+1 (n+ k0)
b/2

√
n

,

where we have set

CY1
1 = Cθ̃0 , C

Y1
2 = 5Cslow c

−1/2
0,β + c−2

0,βC
θ̃
0 (c0,β +

8

a∆(1− b)
) + c−1

0,β(C
θ̃
0 +Cslow c

1/2
0,β ) .

Lemma 11. Let p ≥ 2. Assume A1,A2(p), A3, A4, A5(p), and A6. Then for any k ∈ N it holds

E1/p[∥Y2∥] ≤
CY2

1√
n

+CY2
2 (1 + k0)

b+1 (n+ k0)
a/2

√
n

,

where we have set

CY2
1 = ∥A12A

−1
22 ∥Ĉ

w̃

0 rstep , C
Y2
2 = 5∥A12A

−1
22 ∥c

−1/2
0,γ Ĉfast + ∥A12A

−1
22 ∥

(
rstep
c0,γc0,β

(c0,β +
8

a∆(1− b)
) + c−1

0,γ(Ĉ
w̃

0 + c
1/2
0,γ Ĉfast)

)
.

Lemma 12. Let p ≥ 2. Assume A1,A2(p), A3, A4, A5(p), and A6. Therefore, it holds that

E1/p
[
∥Y3∥p

]
≤ CY3

1

p4

na/2
+CY3

2

k
b/2
0 p√
n

,

where X is defined in (19) and we have set

CY3
1 = 2qR Cslow

(
c0,β
1− b

)1/2

+ 2qRĈfast

(
c0,γ
1− a

)1/2

, CY3
2 = 2c

−1/2
0,β qR

(
1 +

2
√
2√

a∆(1− b)

)
(Cθ̃0 +Ĉ

w̃

0 ) ,

and

qR = CA +∥A12A
−1
22 ∥ CA . (58)

Proof of Theorem 1. Our proof starts from the error decomposition (19), which allows us to write

√
n∆(θ̄n − θ⋆) =

1√
n

n∑
k=1

(εk+1
V −A12A

−1
22 ε

k+1
W ) +Rpr

n ,

where the term Rn is given in Lemma 9. Note that the term

1√
n

n∑
k=1

(εk+1
V −A12A

−1
22 ε

k+1
W )

is a linear statistic of the random variables ψk+1 = εk+1
V −A12A

−1
22 ε

k+1
W , while Rpr

n is a "remainder" term, which moments are
small, as we show below. Under A1, {ψk+1}k∈N form a martingale-difference w.r.t. Fk. Since the convex distance is invariant to
non-degenerate linear transformations,

ρConv
(√
n∆(θ̄n − θ⋆),N (0,Σε)

)
= ρConv

(√
nΣ−1/2

ε ∆(θ̄n − θ⋆),N (0, I)
)
.

Set p = logn. To control this term we apply Proposition 1 and obtain

ρConv
(√
n∆(θ̄n − θ⋆), N (0,Σε)

)
≤ ρConv

( 1√
n

n∑
k=1

ψk+1, N (0,Σε)
)

︸ ︷︷ ︸
T1

+2c
p/p+1
dθ

E1/(p+1)
[
∥Σ−1/2

ε Rpr
n ∥p

]︸ ︷︷ ︸
T2

, (59)

where cd is the isoperimetric constant of the convex sets, see Proposition 1 for detailed discussion. Hence, now it remains to
estimate the normal approximation rate for T1, and to control T2. To proceed with T1, we use the martingale CLT (Wu, Wei,
and Rinaldo 2025, Theorem 1). For completeness, we state this result in the current paper, see Lemma 2. It is important to
acknowledge that this result requires that ψk+1 are a.s. bounded and have constant quadratic characteristic. Both assumptions
hold in our setting, since, due to A6,

∥ψk+1∥ ≤ (1 + ∥A12A
−1
22 ∥)(Cb +CA(∥θ⋆∥ + ∥w⋆∥) =: Ψ ,



and assumption A3 implies that

EFk
[
ψk+1ψ

⊤
k+1

]
= ΣV +A12A

−1
22 ΣW (A12A

−1
22 )

⊤ +ΣVW (A12A
−1
22 )

⊤ +A12A
−1
22 Σ

⊤
VW =: Σε .

Hence, applying Lemma 2, we get:

ρConv
( 1√

n

n∑
k=1

ψk+1, N (0,Σε)
)
≲ [1 + (2 + log(dθn∥Σε∥))+]1/2

√
dθ log n

n1/4
.

Now we proceed with the term T2 defined in (59). We use the representation Rpr
n = Y1 + Y2 + Y3 and Lemmas 10 to 12 to

control the moments of each Yi. Combining these lemmas,

E1/p
[
∥Rpr

n ∥p
]
≤ E1/p

[
∥Y1∥p

]
+ E1/p

[
∥Y2∥p

]
+ E1/p

[
∥Y3∥p

]
≤ CY1

1

1√
n
+CY1

2 kb+1
0

(n+ k0)
b/2

√
n

+CY2
1

1√
n
+CY2

2 (1 + k0)
b+1 (n+ k0)

a/2

√
n

+CY3
1

p4

na/2
+CY3

2

k
b/2
0 p√
n

≲ p4+4/b

(
1

na/2
+

1

n(1−b)/2

)
,

where we use inequality (1 + k0)
b+1 ≲ p4+4/b. Combining the above inequalities, we obtain

ρConv
(√
n∆(θ̄n − θ⋆), N (0,Σε)

)
≲ [1 + (2 + log(dθn∥Σε∥))+]1/2

√
dθ log n

n1/4
+ cdθp

p
p+1 (4+4/b)

( 1

na/2
+

1

n(1−b)/2
) p

p+1

Note that (nα)
log n

1+log n ≲ nα for all α ∈ R and for all a, b > 0 and q ∈ (0, 1) it holds that (a+ b)q ≤ aq + bq . Hence, we get

ρConv
(√
n∆(θ̄n − θ⋆), N (0,Σε)

)
≲ {logn}4+4/b

(
1

na/2
+

1

n(1−b)/2

)
.

We finish this section by giving the proofs for Lemmas 10-12.

Proof of Lemma 10. Observe that

Y1 =
1√
n

n∑
k=1

β−1
k (θk − θk+1) =

1√
n
β−1
1 θ̃1 −

1√
n
β−1
n θ̃n+1 +

1√
n

n−1∑
k=1

(β−1
k+1 − β−1

k )θ̃k+1 .

Applying Minkowski’s inequality and an elementary inequality β−1
k+1 − β−1

k ≤ (kβk)
−1, we obtain that

E1/p[∥Y1∥p] ≤
1√
n
β−1
1 E1/p[∥θ̃1∥p] +

1√
n
β−1
n E1/p[∥θ̃n+1∥p] +

1√
n

n−1∑
k=1

(kβk)
−1E1/p[∥θ̃k+1∥p] .

Using Proposition 3 we get:

β−1
n E1/p[∥θ̃n+1∥p] ≤ β−1

n Cθ̃0

n∏
j=0

(
1− βj

a∆
8

)
+ p2 Cslow β

−1/2
n

(i)

≤ Cθ̃0 +p
2 Cslow β

−1/2
n ,

where in (i) we have used the inequality
∏n
j=0

(
1− βj

a∆
8

)
≤ βn. Next, we observe that

β−1
1 E1/p[∥θ̃1∥p] ≤

p2(1 + k0)
b

c0,β
{Cθ̃0 +Cslow c

1/2
0,β } ,

n−1∑
k=1

(kβk)
−1E1/p[∥θ̃k+1∥p] ≤ Cθ̃0

n−1∑
k=1

(kβk)
−1

k∏
j=0

(
1− βj

a∆
8

)
+ p2 Cslow

n−1∑
k=1

(kβk)
−1β

1/2
k ,

Now we derive an upper bound for the r.h.s. of the latter inequality. Applying Lemma 31-(iii) and (kβk)
−1 ≤ c−1

0,βk0, we get:

Cθ̃0

n−1∑
k=1

(kβk)
−1

k∏
j=0

(
1− βj

a∆
8

)
≤ Cθ̃0

k0
c0,β

n∑
k=1

k∏
j=0

(1− βj
a∆
8
) ≤ Cθ̃0

kb+1
0

c20,β
(c0,β +

8

a∆(1− b)
) .

Bound for the second term can be obtained from the straightforward computations:

p2 Cslow

n−1∑
k=1

(kβk)
−1β

1/2
k =

p2 Cslow

c
1/2
0,β

n−1∑
k=1

(k + k0)
b/2

k
≤ p2 Cslow

c
1/2
0,β

(1 + k0)
2

b
(n+ k0)

b/2 ≤ 4p2 Cslow

c
1/2
0,β

(1 + k0)(n+ k0)
b/2 .

The proof follows from gathering the above inequalities.



Proof of Lemma 11. Observe that

Y2 = A12A
−1
22

1√
n

n∑
k=1

γ−1
k (wk−wk+1) = A12A

−1
22

(
1√
n
γ−1
1 (w1−w∗)− 1√

n
γ−1
n (wn+1−w∗)+

1√
n

n−1∑
k=1

(γ−1
k+1−γ

−1
k )(wk+1−w∗)

)
.

Applying Minkowski’s inequality and γ−1
k+1 − γ−1

k ≤ (kγk)
−1, we obtain that

E1/p[∥Y2∥p] ≤ ∥A12A
−1
22 ∥

(
1√
n
γ−1
1 E1/p[∥w1 − w∗∥p] + 1√

n
γ−1
n E1/p[∥wn+1 − w∗∥p] + 1√

n

n−1∑
k=1

(kγk)
−1E1/p[∥wk+1 − w∗∥p]

)
.

Using Lemma 8 we get:

γ−1
n E1/p[∥wn+1 − w∗∥p] ≤ Ĉ

w̃

0 γ
−1
n

n∏
j=0

(1− βj
a∆
8
) + p3Ĉfast

(n+ k0)
a/2

c
1/2
0,γ

≤ Ĉ
w̃

0 rstep + p3Ĉfast
(n+ k0)

a/2

c
1/2
0,γ

,

where the last inequality follows from the inequalities γ−1
n ≤ β−1

n rstep and
∏n
j=0

(
1− βj

a∆
8

)
≤ βn. Note that

γ−1
1 E1/p[∥w1 − w⋆∥p] ≤ p3

(1 + k0)
a

c0,γ
(Ĉ

w̃

0 + Ĉfastc
1/2
0,γ ) ,

n−1∑
k=1

(kγk)
−1E1/p[∥wk+1 − w∗∥p] ≤ Ĉ

w̃

0

n−1∑
k=1

(kγk)
−1

k∏
j=0

(
1− βj

a∆
8

)
+ p3Ĉfast

n−1∑
k=1

(kγk)
−1γ

1/2
k ,

We bound the r.h.s of the latter inequality using Lemma 31-(iii):
n−1∑
k=1

(kγk)
−1

k∏
j=0

(
1− βj

a∆
8

)
≤ kb+1

0 rstep
c0,γc0,β

(c0,β +
8

a∆(1− b)
) .

Bound for the second term can be obtained from the straightforward computations:

p3Ĉfast

n−1∑
k=1

(kγk)
−1β

1/2
k =

p3Ĉfast

c
1/2
0,γ

n−1∑
k=1

(k + k0)
a/2

k
≤ p3Ĉfast

c
1/2
0,γ

(1+k0)
2

a
(n+k0)

a/2 ≤ 4p3Ĉfast

c
1/2
0,γ

Cslow(1+k0)(n+k0)
a/2 .

The proof follows from gathering the above bounds.

Proof of Lemma 12. Note that since Vk+1, Wk+1 and εV , εW are martingale difference sequences, Rθk+1θ̃k +Rwk+1(wk − w⋆)
is a martingale difference sequence. Therefore, Burkholder’s inequality (Osekowski 2012, Theorem 8.1) implies that

E1/p
[
∥ 1√

n

n∑
k=1

(Rθk+1θ̃k+1 +Rwk+1(wk+1 − w⋆))∥p
]
≤ p

( 1
n

n∑
k=1

E2/p[∥Rθk+1θ̃k+1 +Rwk+1(wk+1 − w⋆)∥p]
)1/2

≤ p
( 2
n

n∑
k=1

(E2/p[∥Rθk+1θ̃k+1∥p] + E2/p[∥Rwk+1(wk+1 − w⋆)∥p])
)1/2

Using A 6 easy to see that ∥Rθk+1∥ ≤ qR and ∥Rwk+1∥ ≤ qR, where qR is defined in (58). Hence, Proposition 3 and
Lemma 31-(iii) imply that:

n∑
k=1

(E2/p[∥Rθk+1θ̃k+1∥p] ≤ 2q2R

n∑
k=1

{
{Cθ̃0}2

k∏
j=0

(
1− βj

a∆
8

)
+ p4{Cslow}2βk+1

}
≤ 2q2R{C

θ̃
0}2

kb0
c0,β

(1 +
8

a∆(1− b)
) + 2q2Rp

4{Cslow}2
c0,βn

1−b

1− b
.

Similarly, one can get using Lemma 8:
n∑
k=1

(E2/p[∥Rθk+1(wk+1 − w⋆)∥p] ≤ 2q2R

n∑
k=1

{
(Ĉ

w̃

0 )
2

k∏
j=0

(
1− βj

a∆
8

)
+ p6{Ĉfast}2γk+1

}
≤ 2q2R(Ĉ

w̃

0 )
2 k

b
0

c0,β
(1 +

8

a∆(1− b)
) + 2q2Rp

6{Ĉfast}2
c0,γn

1−a

1− a
.

The proof follows from gathering similar terms.



D CLT for the Last iteration estimator
The proof of Theorem 2 is conceptually similar to Theorem 1 but is complicated by two additional factors. First, the covariance
of the linear statistic formed by martingale differences now depends on n, which complicates the identification of the limiting
covariance matrix. Second, the analysis of the remaining terms becomes more involved.

Before proceeding to the main part of the proof, we state an auxiliary lemma that decomposes the approximation error at the
final iteration into linear and nonlinear components.
Lemma 13. The following decomposition holds:

θ̃n+1 =

n∑
j=0

βjG
(1)
j+1:n

(
A12A

−1
22 ε

j+1
W − εj+1

V

)
+Rlast

n ,

where the residual term Rlast
n is defined in (64).

Proof. Following (Konda and Tsitsiklis 2004) and using (13), the equations for θ̃n+1 and w̃n+1 can be rewritten as follows:

θ̃n+1 = (I− βn∆)θ̃n − βnA12w̃n − βnVn+1 + βnδ
(1)
n ,

w̃n+1 = (I− γnA22)w̃n − βnDnVn+1 − γnWn+1 + βnδ
(2)
n ,

where we have set

δ(1)n = A12Lnθ̃n , δ(2)n = −(Ln+1 +A−1
22 A21)A12w̃n .

Throughout the analysis we use the following convention:

G(1)
m:n :=

n∏
i=m

(I− βi∆), G(2)
m:n :=

n∏
i=m

(I− γiA22) .

Hence, θ̃n+1 and w̃n+1 can be rewritten as follows:

θ̃n+1 = G
(1)
0:nθ̃0 −

n∑
j=0

βjG
(1)
j+1:nA12w̃j −

n∑
j=0

βjG
(1)
j+1:nVj+1 +

n∑
j=0

βjG
(1)
j+1:nδ

(1)
j , (60)

w̃n+1 = G
(2)
0:nw̃0 −

n∑
j=0

βjG
(2)
j+1:nDjVj+1 −

n∑
j=0

γjG
(2)
j+1:nWj+1 +

k∑
j=0

βjG
(2)
j+1:nδ

(2)
j . (61)

We substitute the right-hand side of (61) into (60) and obtain:

θ̃n+1 = G
(1)
0:nθ̃0 −

n∑
j=0

βjG
(1)
j+1:nA12G

(2)
0:j−1w̃0 +

n∑
j=0

βjG
(1)
j+1:n δ

(1)
j + S(1)

n + S(2)
n + S(3)

n

+

n∑
j=0

βjG
(1)
j+1:n

(
A12A

−1
22 Wj+1 − Vj+1

)
,

where

S(1)
n = −

n∑
j=0

βjG
(1)
j+1:nA12

j−1∑
i=0

βiG
(2)
i+1:j−1δ

(2)
i , (62)

S(2)
n =

n∑
j=0

βjG
(1)
j+1:nA12

j−1∑
i=0

βiG
(2)
i+1:j−1DiVi+1 ,

S(3)
n =

n∑
j=0

βjG
(1)
j+1:nA12

j−1∑
i=0

γiG
(2)
i+1:j−1Wi+1 −

n∑
j=0

βjG
(1)
j+1:nA12A

−1
22 Wj+1 .

Recall that ψj+1 = εj+1
V −A12A

−1
22 ε

j+1
W . Substituting Vj+1,Wj+1 from (8) we get

θ̃n+1 = −
n∑
j=0

βjG
(1)
j+1:nψj+1 +Rlast

n , (63)



where we have set

Rlast
n = G

(1)
0:nθ̃0 −

n∑
j=0

βjG
(1)
j+1:nA12G

(2)
0:j−1w̃0 +

n∑
j=0

βjG
(1)
j+1:n δ

(1)
j + S(1)

n + S(2)
n + S(3)

n (64)

+

n∑
j=0

βjG
(1)
j+1:n

( Rθ
j+1︷ ︸︸ ︷{

Ãj+1
11 −A12A

−1
22 Ã

j+1
21

}
θ̃j +

Rw
j+1︷ ︸︸ ︷{

Ãj+1
12 −A12A

−1
22 Ã

j+1
21

}
(wj − w⋆)

)
︸ ︷︷ ︸

Hn

Now we proceed with Theorem 2 applying the decomposition that is proven above together with Lemmas 14-18 which imply
a moment bound for Rlast

n .
Lemma 14. Let p ≥ 2. Assume A1, A2(p), A3, A4, A5, A6, A7. Therefore, it holds that

E1/p
[
∥
n∑
j=0

βjG
(1)
j+1:nδ

(1)
j ∥p

]
≲ (2b− a− 1)−1P

(1)
0:n + p4(2b− a− 1)−1β

2b−a/2−1
b

n .

Lemma 15. Let p ≥ 2. Assume A1, A2(p), A3, A4, A5, A6. Therefore, it holds that

E1/p
[
∥Hn∥p

]
≲ p(2b− 1)−1/2

n∏
j=0

(1− a∆
8
βj) + p4β

b+a
2b
n .

Lemma 16. Let p ≥ 2. Assume A1, A2(p), A3, A4, A5, A6. Therefore, it holds that

E1/p
[
∥S(1)

n ∥p
]
≲ P

(1)
0:n + p4β(3b−2a)/2b

n ,

where S(1)
n is defined in (62).

Lemma 17. Let p ≥ 2. Assume A1, A2(p), A3, A4, A5, A6. Therefore, it holds that

E1/p
[
∥S(2)

n ∥p
]
≲ p4β

3b−2a
2b

n ,

where S(2)
n is defined in (62).

Lemma 18. Let p ≥ 2. Assume A1, A2(p), A3, A4, A5, A6. Therefore, it holds that

E1/p
[
∥S(3)

n ∥p
]
≲ p4β

2b−a
2b

n ,

where S(3)
n is defined in (62).

Proof of Theorem 2. Our proof starts from the error decomposition (63), which allows us to write

β−1/2
n θ̃n+1 = −β−1/2

n

k∑
j=0

βjG
(1)
j+1:nψj+1 + β−1/2

n Rlast
n ,

where the term Rlast
n is given in Lemma 9. Assumption A3 implies that

Σlast
n :=

n∑
j=0

β2
jG

(1)
j+1:nΣε

(
G

(1)
j+1:n

)⊤
.

As established in Proposition 9, the sequence Σlast
n converges to the matrix Σlast

∞ . Since the convex distance is invariant to
non-degenerate linear transformations, we get

ρConv
(
β−1/2
n θ̃n+1,N (0,Σlast

∞ )
)
= ρConv

(
β−1/2
n (Σlast

∞
)−1/2

θ̃n+1,N (0, I)
)
.

Hence, to control this term we apply Proposition 1 and triangle inequality for the convex distance and obtain

ρConv
(
β−1/2
n θ̃n+1 ,N (0,Σlast

∞ )
)
≤ 2c

p/p+1
d E1/(p+1)

[
∥
(
Σlast

∞
)−1/2

β−1/2
n Rlast

n ∥p
]

(65)

+ ρConv
(
−β−1/2

n

n∑
j=0

βjG
(1)
j+1:nψj+1

)
,N (0, β−1

n Σlast
n )

)
+ ρConv

(
N (0, β−1

n Σlast
n ) ,N (0,Σlast

∞ ))
)
,



To handle the second term in (65) we apply Lemma 2 and get

ρConv
(
−β−1/2

n

n∑
j=0

βjG
(1)
j+1:nψj+1

)
,N (0, β−1

n Σlast
n )

)
≲ [1 + (2 + log(dθ∥β−1

n Σlast
n ∥))+]1/2

√
dθ log n

n1/4
+
d
1/4
θ ∥ 1

nβ
−1
n Σlast

n ∥1/4

n1/4

(a)

≲ [1 + (2 + log(dθ∥Σlast
∞ ∥))+]1/2

√
dθ log n

n1/4
,

where in (a) we have used A7, i.e. 1
2∥Σ

last
∞ ∥ ≤ ∥β−1

n Σlast
n ∥ ≲ ∥Σlast

∞ ∥. The bound for the third term in (65) follows from
(Devroye, Mehrabian, and Reddad 2018, Theorem 1.1) and Proposition 9:

ρConv(N (0, β−1
n Σlast

n ),N (0,Σlast
∞ )) ≲ ∥{Σlast

∞ }−1/2(β−1
n Σlast

n ){Σlast
∞ }−1/2 − I∥Fr ≲

√
d

nbλmin(Σlast
∞ )

.

Now we proceed with the first term in (65). The moment bound for Rlast
n follows from Lemmas 14-18 that we have stated above.

Combining these lemmas together with the inequality β
2b−a/2−1

b
n > β

2b−a
2b

n > β
3b−2a

2b
n and β

2b−a
2b

n ≥ β
b+a
2b
n , we obtain

E1/p[∥Rlast
n ∥p] ≲ p

2b− 1

n∏
j=0

(1− a∆
8
βj) + p4

( 1

2b− a− 1
β

2b−a/2−1
b

n + β
b+a
2b
n + β

3b−2a
2b

n + β
2b−a
2b

n

)
≲

p

2b− 1

n∏
j=0

(1− a∆
8
βj) +

p4

2b− a− 1
β

2b−a/2−1
b

n .

Now we set p = logn . Next, the bound for the first term in (65) follows from (n−α)
log n

1+log n ≲ n−α and (
∑
ai)

q ≤
∑
aqi for

ai > 0 and q ∈ (0, 1):

E1/(p+1)
[
∥
(
Σlast

∞
)−1/2

β−1/2
n Rlast

n ∥p
]
≲ β−1/2

n

log n

2b− 1

n∏
j=0

(1− a∆
8
βj) + β

3b−a−2
2b

n
log4 n

2b− a− 1
.

Gathering previous bounds we obtain

ρConv
(
β−1/2
n θ̃n+1,N (0,Σlast

∞ )
)
≲ nb/2

log n

2b− 1

n∏
j=0

(1− a∆
8
βj) +

log4 n

(2b− a− 1)n
3b−a−2

2

.

Now we give proofs for Lemmas 14-18.

Proof of Lemma 14. Recall that

δ
(1)
j = A12Lj

{
Γ
(1)
0:j−1θ̃0 −

j−1∑
i=0

βiΓ
(1)
i+1:j−1A12w̃i −

j−1∑
i=0

βiΓ
(1)
i+1:j−1Vi+1

}
.

Therefore, easy to see that

n∑
j=0

βjG
(1)
j+1:nδ

(1)
j =

n∑
j=0

βjG
(1)
j+1:nA12LjΓ

(1)
0:j−1θ̃0︸ ︷︷ ︸

T1

−
n−1∑
i=0

n∑
j=i+1

βjG
(1)
j+1:nA12LjβiΓ

(1)
i+1:j−1A12w̃i︸ ︷︷ ︸

T2

−
n−1∑
i=0

n∑
j=i+1

βjG
(1)
j+1:nA12LjβiΓ

(1)
i+1:j−1Vi+1︸ ︷︷ ︸

T3

.

First, we derive a bound for T1 using Minkowski’s inequality

E1/p
[
∥T1∥p

]
≤ κ∆ℓ∞∥A12∥∥θ̃0∥(1−

a∆
2
β0)

−1P
(1)
0:n

n∑
j=0

β2
j

γj
≲ (2b− a− 1)−1P

(1)
0:n ,



where the last transition employs A7 and integral bound
n∑
j=0

β2
j

γj
=
c20,β
c0,γ

n∑
j=0

(j + k0)
a−2b ≤

c20,β
c0,γ

ka+1−2b
0

2b− a− 1
≤

c20,β
c0,γ(2b− a− 1)

.

We conclude that E1/p
[
∥T1∥p

]
≲ (2b− a− 1)−1P

(1)
0:n . Since Vi+1 is a martingale difference sequence, Burkholder’s inequality

(Osekowski 2012, Therorem 8.1) implies

E2/p[∥T3∥p] ≤ p2
k−1∑
i=0

β2
i

∥∥ n∑
j=i+1

βjG
(1)
j+1:nA12LjΓ

(1)
i+1:j−1

∥∥2E2/p[∥Vi+1∥p] .

On the other hand, bounding the term
∑n
j=i+1 β

2
j /γj via integral estimates gives

∥
n∑

j=i+1

βjG
(1)
j+1:nA12LjΓ

(1)
i+1:j−1∥ ≤ κ∆∥A12∥ℓ∞

1− a∆
2 β0

P
(1)
i+1:n

n∑
j=i+1

β2
j

γj
≤
κ∆∥A12∥ℓ∞c20,β(i+ k0)

a+1−2b

(1− a∆
2 β0)c0,γ(2b− a− 1)

P
(1)
i+1:n

≲ β
2b−a−1

b
i (2b− a− 1)−1P

(1)
i+1:n .

Note that E1/p[∥Vi+1∥p] ≲ p3 due to Proposition 3. Thus, Lemma 31-(ii) implies the following bound

E2/p[∥T3∥p] ≲ p8(2b− a− 1)−2
n−1∑
i=0

β
2+

2(2b−a−1)
b

i P
(1)
i+1:n ≲ (2b− a− 1)−2p8β

1+
2(2b−a−1)

b
n .

Now we will get a bound for E1/p
[
∥T2∥p

]
. Minkowski’s inequality and Proposition 3 imply that

E1/p
[
∥T2∥p

]
≤ κ∆ℓ∞∥A12∥2

1− a∆
2 β0

n−1∑
i=0

βiP
(1)
i+1:n

n∑
j=i+1

β2
j

γj
(Cw̃0 P

(2)
0:i−1 + C̃fastp

3√γi−1)

≲ (2b− a− 1)−1
n−1∑
i=0

β
1+ 2b−a−1

b
i P

(1)
i+1:n(P

(2)
0:i−1 + p3

√
γi−1) .

Using A5 and Lemma 32-(ii) we get

n−1∑
i=0

β
1+ 2b−a−1

b
i P

(1)
i+1:nP

(2)
0:i−1 ≤

n−1∑
i=0

β0P
(1)
i+1:nP

(2)
0:i−1 ≲ P

(1)
0:k .

and
n−1∑
i=0

β
1+ 2b−a−1

b
i P

(1)
i+1:n

√
γi−1 ≲

k−1∑
i=0

β
1+

2b−a/2−1
b

i P
(1)
i+1:n ≲ β

2b−a/2−1
b

n .

Hence,

E1/p
[
∥T2∥p

]
≲ (2b− a− 1)−1

(
p3β

2b−a/2−1
b

n + P
(1)
0:n

)
.

We finish the proof applying Minkowski’s inequality

E1/p
[
∥
n∑
j=0

βjG
(1)
j+1:nδ

(1)
j ∥p

]
≤

3∑
i=1

E1/p
[
∥Ti∥p

]
≲ (2b− a− 1)−1

(
P

(1)
0:n + p4β

2b−a−1
b

n

)
.

Proof of Lemma 15. Note that since Vk+1,Wk+1 and εV , εW are martingale difference sequences,Rθk+1θ̃k+1+R
w
k+1(wk−w⋆)

is a martingale difference sequence. Recall that

Hn =

n∑
j=0

βjG
(1)
j+1:nR

θ
j+1θ̃ +

n∑
j=0

βjG
(1)
j+1:nR

w
j+1(wj − w⋆) .



Note that ∥Rθk+1∥ ≤ qR and ∥Rwk+1∥ ≤ qR, where qR is defined in (58). Burkholder’s inequality (Osekowski 2012, Theorem
8.1) implies that

E1/p[∥Hn∥p] ≤ p

( n∑
j=0

β2
jP

(1)
j+1:nE

2/p[∥Rθj+1θ̃j∥p]
)1/2

+ p

( n∑
j=0

β2
jP

(1)
j+1:nE

2/p[∥Rθj+1(wj − w⋆)∥p]
)1/2

.

Hence, we get applying Proposition 3 and Lemma 31-(ii):
n∑
j=0

β2
jP

(1)
j+1:nE

2/p[∥Rθj+1θ̃j∥p] ≲
(
qR Cθ̃0

)2 n∑
j=0

β2
jP

(1)
j+1:n

j−1∏
t=0

(1− a∆
4
βt) + p4

(
qRCslow

)2 n∑
j=0

β3
jP

(1)
j+1:n

≲ (2b− 1)−1
n∏
j=0

(1− a∆
4
βj) + p4β2

n .

Now we use Lemma 8 and obtain the similar bound
n∑
j=0

β2
jP

(1)
j+1:n(E

1/p
[
∥Rwj+1(wj − w⋆)∥p

]
)2 ≲

(
qRĈ

w̃

0

)2 n∑
j=0

β2
jP

(1)
j+1:n

j−1∏
t=0

(1− a∆
4
βt) + +p6

(
qRĈfast

)2 n∑
j=0

β
2+a/b
j P

(1)
j+1:n

≲ (2b− 1)−1
n∏
j=0

(1− a∆
4
βj) + p6β

a+b
b

n .

Square-root operation followed by dominant-term selection proves the claim.

Proof of Lemma 16. First, rewrite δ(2)i as follows:

δ
(2)
i = −(Li+1 +A−1

22 A21)A12

(
Γ
(2)
0:i−1w̃0 −

i−1∑
t=0

Γ
(2)
t+1:i−1ξt+1

)
.

Thus, we get

S(1)
n =−

n∑
j=0

j−1∑
i=0

βjG
(1)
j+1:nA12βiG

(2)
i+1:j−1(Li+1 +A−1

22 A21)A12Γ
(2)
0:i−1w̃0︸ ︷︷ ︸

T1

+

n∑
j=0

j−1∑
i=0

i−1∑
t=0

βjG
(1)
j+1:nA12βiG

(2)
i+1:j−1(Li+1 +A−1

22 A21)A12Γ
(2)
t+1:i−1ξt+1︸ ︷︷ ︸

T2

.

First, we derive a bound for T1

E1/p
[
∥T1∥p

]
= ∥T1∥ ≤ κ22

√
κ∆∥A12∥(ℓ∞ + ∥A−1

22 A21∥)∥A12∥∥w̃0∥
n−1∑
i=0

n−1∑
j=i+1

βiβjP
(1)
j+1:nP

(2)
i+1:j−1P

(2)
0:i−1 ,

and using Lemma 32-(ii) and βj ≤ βi when j < i we get
n−1∑
i=0

n−1∑
j=i+1

βiβjP
(1)
j+1:nP

(2)
i+1:j−1P

(2)
0:i−1 ≤

n−1∑
i=0

βiP
(2)
0:i−1

n−1∑
j=i+1

βiP
(1)
j+1:nP

(2)
i+1:j−1 ≤ CPβ

n−1∑
i=0

βiγ
(b−a)/a
i P

(1)
i+1:nP

(2)
0:i−1

≲ CPβ

n−1∑
i=1

β0P
(1)
i+1:nP

(2)
1:i−1 ≲ P

(1)
0:n .

Collecting these results yields the bound E1/p
[
∥T1∥p

]
≲ P

(1)
0:n . To write a bound for T2 we change the order of summation

T2 =

n−2∑
t=0

( n−1∑
i=t+1

n∑
j=i+1

βjG
(1)
j+1:nA12βiG

(2)
i+1:j−1(Li+1 +A−1

22 A21)A12Γ
(2)
t+1:i−1

)
︸ ︷︷ ︸

Ut

ξt+1 ,



and combine Burkholder’s inequality (Osekowski 2012, Theorem 8.1) with E1/p[∥ξt+1∥p] ≲ p3γt:

E1/p
[
∥T2∥p

]
≲ p4

(k−2∑
t=0

∥Ut∥2γ2t
)1/2

.

Now we use Lemma 32-(ii) and get

∥Ut∥ ≲
n−1∑
i=t+1

n∑
j=i+1

βjβiP
(1)
j+1:nP

(2)
i+1:j−1P

(2)
t+1:i−1 ≲

n−1∑
i=t+1

βiγ
(b−a)/a
i P

(1)
i+1:nP

(2)
t+1:i−1 ≲ P

(1)
t+1:nγ

2(b−a)/a
t .

Note that due to Lemma 31-(ii)
n−2∑
t=0

γ
2+4(b−a)/a
t P

(1)
t+1:n ≲

n−2∑
t=0

β
(4b−2a)/b
t P

(1)
t+1:n ≲ β(3b−2a)/b

n .

The latter inequality yields the required bound.

Proof of Lemma 17. First, recall that

S(2)
n =

n∑
j=0

βjG
(1)
j+1:nA12

j−1∑
i=0

βiG
(2)
i+1:j−1DiVi+1 .

We change the order of summation and get

S(2)
n =

n−1∑
i=0

βi
( n∑
j=i+1

βjG
(1)
j+1:nA12G

(2)
i+1:j−1

)
DiVi+1 .

Burkholder’s inequality (Osekowski 2012, Theorem 8.1) immediately implies that

E1/p
[
∥S(2)

n ∥p
]
≤ p

(n−1∑
i=0

β2
i c

2
∞
∥∥ n∑
j=i+1

βjG
(1)
j+1:nA12G

(2)
i+1:j−1

∥∥2E2/p[∥Vi+1∥p]
)1/2

.

Now we use Lemma 32-(ii) and get∥∥ n∑
j=i+1

βjG
(1)
j+1:nA12G

(2)
i+1:j−1

∥∥ ≲
n∑

j=i+1

βjP
(1)
j+1:nP

(2)
i+1:j−1 ≲ γ

(b−a)/a
i P

(1)
i+1:n ,

and the desirable result follows from Lemma 31-(ii):

E1/p
[
∥S(2)

n ∥p
]
≲ p

(
p6

n−1∑
i=0

β2
i γ

2(b−a)/a
i P

(1)
i+1:n

)1/2

≲ p4
(n−1∑
i=0

β
2+2(b−a)/b
i P

(1)
i+1:n

)1/2

≲ p4β
3b−2a

2b
n .

Proof of Lemma 18. Recall that

S(3)
n =

n∑
j=0

βjG
(1)
j+1:nA12

j−1∑
i=0

γiG
(2)
i+1:j−1Wi+1 −

n∑
j=0

βjG
(1)
j+1:nA12A

−1
22 Wj+1 .

Changing the order of summation, rewrite S(3)
n as follows

S(3)
n =

n∑
i=0

βiG
(1)
i+1:n

(γi
βi

n∑
j=i+1

βj
(
G

(1)
i+1:j

)−1
A12G

(2)
i+1:j−1 −A12A

−1
22

)
Wi+1 . (66)

We can rewrite the term inside the brackets in (66) as

S(3)
n =

n∑
i=0

βiG
(1)
i+1:n

{ n∑
j=i+1

γj
(γiβj
βiγj

(
G

(1)
i+1:j

)−1 − I
)
A12G

(2)
i+1:j−1︸ ︷︷ ︸

Z
(1)
i

+A12

( n∑
j=i+1

γjG
(2)
i+1:j−1 −

∫ ∑n
j=i+1 γj

0

exp(−A22t) dt
)

︸ ︷︷ ︸
Z

(2)
i

−A12A
−1
22 exp

(
−

n∑
j=i+1

γjA22

)
︸ ︷︷ ︸

Z
(3)
i

}
Wi+1 .



Consider the real valued positive sequence {ϵk} defined by the equations:

βk+1

γk+1
=
βk
γk

(
1− ϵkγk

)
.

As shown in (Konda and Tsitsiklis 2004), the following estimates hold:

∥Z(1)
i ∥ ≲ βi/γi + ϵi, ∥Z(2)

i ∥ ≲ γi .

(Godunov 1997) implies that:

∥Z(3)
i ∥ ≤

√
κ22 exp

(
− 1

2∥Q22∥

n∑
j=i+1

γj
)
.

Using A5, easy to see that:

ϵk = γ−1
k − βk+1β

−1
k γ−1

k+1 ≤ γ−1
k+1β

−1
k (βk − βk+1) ≲ β

−a/b
k β−1

k β2
k = β

1−a/b
k .

Thus, ∥Z(1)
i ∥ ≲ β

1−a/b
i . Now we use E1/p[∥Wi+1∥p] ≲ p3 together with Burkholder’s inequality (Osekowski 2012, Theorem

8.1) and get:

E2/p[∥S(3)
n ∥p] ≲ p8

n∑
i=0

β2
i P

(1)
i+1:n

(
∥Z(1)

i ∥2 + ∥Z(2)
i ∥2 + ∥Z(3)

i ∥2
)

≲ p8
( n∑
i=0

β4
i /γ

2
i P

(1)
i+1:n +

n∑
i=0

β2
i β

2− 2a
b

i P
(1)
i+1:n +

n∑
i=0

β2
i γ

2
i P

(1)
i+1:n +

n∑
i=0

β2
i exp

(
− 1

2
∥Q22∥−1

n∑
j=i+1

γj
)
P

(1)
i+1:n

)
.

Rewriting γi in terms of βi and applying Lemma 31-(ii) together with A5 we get:

E2/p[∥S(3)
n ∥p] ≲ p8

(
β

3b−2a
b

n + β
3b−2a

b
n + β

b+2a
b

n + β
2b−a

b
n

)
≲ p8β

2b−a
b

n .

E Markov noise
E.1 High-order moment bounds
We preface this section with a brief reminder of notation used in the Markov chains literature. For a Markov kernel P on (X,X ),
and a measurable function f : X → R, we set

Pf(x) =

∫
X

f(y)P(x, dy) .

Define also total variation distance dtv(µ, ν) for probability measures µ, ν:

dtv(µ, ν) = sup
∥f∥∞≤1

|µ(f)− ν(f)| .

B 1 ensures that P is uniformly geometrically ergodic and, moreover, for all k it holds that

∆(Pk) := sup
x,x′∈X

dtv(P
k(x, ·),Pk(x′, ·)) ≤ (1/4)⌈k/tmix⌉ , (67)

where tmix ∈ N is the mixing time that controls the rate of convergence to the stationary distribution.
We proceed with the proof based on the Poison decomposition, following (Kaledin et al. 2020). Note that under B 1 the

Poisson equation, associated with P, that

gf (x)− Pgf (x) = f(x)− π(f) , x ∈ X , (68)

has a unique solution for any bounded measurable f , which is given by the formula

gf (x) =

∞∑
k=0

{Pkf(x)− π(f)} .

Moreover, using B 1 and the inequality (67), one can show that gf is also bounded with

∥gf∥∞ ≤
+∞∑
k=0

sup
x∈X

∥Pkf(x)− π(f)∥∞ ≤ 2∥f∥∞
+∞∑
k=0

(1/4)⌊k/tmix⌋ ≤ (8/3)tmix∥f∥∞ . (69)



Throughout this chapter, we use a shorthand notation

gfk := gf (Xk) . (70)

We use the above notations for the solution to Poisson equation with different vector- and matrix-valued functions in the equation
(68). To proceed with the proof, we follow the idea of (Kaledin et al. 2020), where the authors have obtained similar results
for the 2nd moment bounds. The main idea is to decompose the TTSA updates θk and wk into a sum of two coupled TTSA
recursions. Namely, θk = θ

(0)
k + θ

(1)
k and wk = w

(0)
k + w

(1)
k , where{

θ
(0)
k+1 = θ

(0)
k + βk(b1 −A11θ

(0)
k −A12w

(0)
k + V

(0)
k+1) , θ

(0)
0 = θ0 ,

w
(0)
k+1 = w

(0)
k + γk(b2 −A21θ

(0)
k −A22w

(0)
k +W

(0)
k+1) , w

(0)
0 = w0 ,

(71)

and {
θ
(1)
k+1 = θ

(1)
k − βk(A11θ

(1)
k +A12w

(1)
k − V

(1)
k+1) , θ

(1)
0 = 0 ,

w
(1)
k+1 = w

(1)
k − γk(A21θ

(1)
k +A22w

(1)
k −W

(1)
k+1) , w

(1)
0 = 0 .

In the above recursions the noise variables V (0)
k , V

(1)
k ,W

(0)
k ,W

(1)
k are defined as follows:

V
(0)
k+1 = {gεV

k+1 − PgεV

k } − {gA11

k+1 − PgA11

k }(θk − θ⋆)− {gA12

k+1 − PgA12

k }(wk − w⋆) ,

W
(0)
k+1 = {gεW

k+1 − PgεW

k } − {gA21

k+1 − PgA21

k }(θk − θ⋆)− {gA22

k+1 − PgA22

k }(wk − w⋆) ,

V
(1)
k+1 = {PgεV

k − PgεV

k+1}+ {PgA11

k+1 − PgA11

k }(θk − θ⋆) + {PgA12

k+1 − PgA12

k }(wk − w⋆) ,

W
(1)
k+1 = {PgεW

k − PgεW

k+1}+ {PgA21

k+1 − PgA21

k }(θk − θ⋆) + {PgA22

k+1 − PgA22

k }(wk − w⋆) .

It is easy to see that EFk

[
V

(0)
k+1

]
= 0 and EFk

[
W

(0)
k+1

]
= 0 P-a.s. Similar to (12), we do a change of variables and define{

θ̃
(0)
k = θ

(0)
k − θ⋆ ,

w̃
(0)
k = w

(0)
k − w⋆ +Dk−1θ̃

(0)
k ,

{
θ̃
(1)
k = θ

(1)
k ,

w̃
(1)
k = w

(1)
k +Dk−1θ̃

(1)
k .

(72)

It is easy to notice that θ̃k = θ̃
(0)
k + θ̃

(1)
k and w̃k = w̃

(0)
k + w̃

(1)
k . Introduce the following notation

ξ
(i)
k+1 = γkW

(i)
k+1 + βkDkV

(i)
k+1 , i ∈ {0, 1} .

Now we prove the lemma, which is a direct counterpart to A2, previously obtained under a martingale noise assumption.
Lemma 19. Let p ≥ 2. Assume A4, A6, B 1, B 2(p). Then, for i ∈ {0, 1} and any k ∈ N ∪ {0} it holds that

E1/p[∥V (i)
k+1∥

p] ≲ 1 +M θ̃
k,p +M w̃

k,p ,

E1/p[∥W (i)
k+1∥

p] ≲ 1 +M θ̃
k,p +M w̃

k,p ,

E1/p[∥ξ(0)k+1∥
p] ≲ γk(1 +M θ̃

k,p +M w̃
k,p) .

Proof. A6 implies that

∥εV ∥ ≤ Cb +CA ∥θ⋆∥ +CA ∥w⋆∥ and ∥εW ∥ ≤ Cb +CA ∥θ⋆∥ +CA ∥w⋆∥ .

It remains to note that, due to construction of w̃k in (12), it holds that E1/p[∥wk −w⋆∥p] ≤M w̃
k,p + c∞M

θ̃
k,p. Then it remains to

gather similar terms and apply (69).

To prove Proposition 4 we first state the counterparts to Proposition 5 and Proposition 6:
Proposition 7. Let p ≥ 2. Assume A4, A6, B 1, B 2(p). Then it holds that

(M w̃
k+1,p)

2 ≲ P
(2)
0:k + p2γk + p2

k∑
j=0

γ2jP
(2)
j+1:k(M

θ̃
j,p)

2 . (73)

Proposition 8. Let p ≥ 2. Assume A4, A6, B 1, B 2(p). Then it holds that

(M θ̃
k+1,p)

2 ≲ P
(1)
0:k + p4βk + p4

k∑
j=0

β2
jP

(1)
j+1:k(M

θ̃
j,p)

2 .



Proof of Proposition 4.. First, we proceed with the bound for M θ̃
k,p. Using Proposition 8 we get

(M θ̃
k+1,p)

2 ≲ P
(1)
0:k + p4βk + p4

k∑
j=0

β2
jP

(1)
j+1:k(M

θ̃
j,p)

2 .

Hence, there exists a constant Cθ̃ such that

(M θ̃
k+1,p)

2 ≤ Cθ̃P
(1)
0:k + p4Cθ̃βk + p4Cθ̃

k∑
j=0

β2
jP

(1)
j+1:k(M

θ̃
j,p)

2 .

Denote the right hand side of the latter inequality by Uk+1, U0 = Cθ̃. Thus, since (M θ̃
j,p)

2 ≤ Uj for all j ≥ 0, we get

Uk+1 ≤ (1− a∆βk
2

)Uk + p4Cθ̃βk − p4Cθ̃βk−1(1−
a∆βk
2

) + p4β2
kCθ̃Uk

(a)

≤ (1− a∆βk
4

)Uk + p4a∆Cθ̃β
2
k ,

where in (a) we used B 2. Hence, enrolling the latter recursion and applying Lemma 31, it is easy to get

(M θ̃
k+1,p)

2 ≤ Uk+1 ≲
k∏
j=0

(1− a∆βj
4

) + p4βk , (74)

and,

M θ̃
k+1,p ≲

k∏
j=0

(1− a∆βj
8

) + p2
√
βk ,

Now we substitute (74) to (73), apply Lemma 31 and get

(M w̃
k+1,p)

2 ≲ P
(2)
0:k + p2γk + p2

k∑
j=0

γ2jP
(2)
j+1:k

j−1∏
t=0

(1− a∆
4
βt) + p6

k∑
j=0

γ2j βj−1P
(1)
j+1:k ,

≲ P
(2)
0:k + p2γk + p2βk + p6βk ,

and the proof follows.

Thus, the following bound holds for the initial fast scale:

Lemma 20. Let p ≥ 2. Assume A4, A6, B 1, B 2(p). Then it holds for all k ∈ N that

E1/p[∥ŵk+1∥p] ≲
k∏
j=0

(1− a∆
8
βj) + p3γk , where ŵk+1 = wk+1 − w⋆ .

Proof. Note that B 2 guarantees that a∆8 βj ≤
a22
8 γj . Thus, the proof follows from Proposition 4.

For completeness we also provide the following technical lemma, which is proved in (Kaledin et al. 2020).

Lemma 21 (Lemma 11 in (Kaledin et al. 2020)). Let (aj)j≥0 be a sequence of dθ-dimensional vectors and (bj)j≥0 be a
sequence of dw-dimensional vectors. Then it holds that

k∑
j=0

βjΓ
(1)
j+1:k(aj − aj+1) = β0Γ

(1)
1:ka0 − βkak+1 +

k∑
j=1

(β2
jB

j
11Γ

(1)
j+1:k + (βj − βj−1)Γ

(1)
j:k)aj ,

k∑
j=0

γjΓ
(2)
j+1:k(bj − bj+1) = γ0Γ

(2)
1:kb0 − γkbk+1 +

k∑
j=1

(γ2jB
j
22Γ

(2)
j+1:k + (γj − γj−1)Γ

(2)
j:k)bj ,

Proof of Proposition 7. First, since w̃k+1 = w̃
(0)
k+1 + w̃

(1)
k+1, we get

E2/p[∥w̃k+1∥p] ≤ 2E2/p[∥w̃(0)
k+1∥

p] + 2E2/p[∥w̃(1)
k+1∥

p] .

From now on, we provide bounds for E2/p[∥w̃(0)
k+1∥p] and E2/p[∥w̃(1)

k+1∥p] separately.



(I) Bound on E2/p[∥w̃(0)
k+1∥p].

First, we derive a bound for E1/p[∥w̃(0)
k+1∥p]. Since V (0)

k+1 and W (0)
k+1 are martingale-difference sequences w.r.t. Fk, we obtain,

following the lines of Proposition 5, that

E2/p[∥w̃(0)
k+1∥

p] ≲
(
P

(2)
0:k

)2
+ p2

k∑
j=0

γ2j
(
P

(2)
j+1:k

)2(
1 +

(
M θ̃
j,p

)2
+

(
M w̃
j,p

)2)
. (75)

(II) Bound on E2/p[∥w̃(1)
k+1∥p].

Let us introduce the notation

Ej =
βj
γj
Dj .

Thus, a counterpart to (46) with initial condition w̃(1)
0 = 0, we get

w̃
(1)
k+1 = −

k∑
j=0

Γ
(2)
j+1:kγj(W

(1)
j+1 + EjV

(1)
j+1) . (76)

From now on for any vector or matrix sequence {Si}i≥0 we let Si = 0 if i < 0. From now on, using algebraic manipulations
and recursion (71), we get, following (Kaledin et al. 2020, Derivation of Eq. (63), p. 39), that for any j ≥ 0:

W
(1)
j+1 + EjV

(1)
j+1 = Ψj+1 −Ψj +Φ

(1)
j (θ̃j+1 − θ̃j) + Φ

(2)
j (θ̃j − θ̃j−1) (77)

+ Ξ
(1)
j (w̃j+1 − w̃j) + Ξ

(2)
j (w̃j − w̃j−1)

+ Υ
(1)
j+1θ̃j+1 −Υ

(1)
j θ̃j +Υ

(2)
j θ̃j −Υ

(2)
j−1θ̃j−1

+ Λ
(1)
j+1w̃j+1 − Λ

(1)
j w̃j + Λ

(2)
j w̃j − Λ

(2)
j−1w̃j−1

+Πθj θ̃j +Πwj w̃j + (Ej+1 − Ej)(Pg
εV
j+1) ,

where we have defined

Ψj = −PgεW
j − Ej(Pg

εV
j ) ,

Φ
(1)
j = −PgA21

j+1 , Φ
(2)
j = −Ej−1(Pg

A11
j ) + (PgA22

j )Dj−2 + Ej−1(Pg
A12
j )Dj−2 ,

Ξ
(1)
j = −PgA22

j+1 , Ξ
(2)
j = −Ej−1(Pg

A12
j ) ,

Υ
(1)
j = PgA21

j , Υ
(2)
j = Ej(Pg

A11
j+1)− (PgA22

j+1)Dj−1 − Ej(Pg
A12
j+1)Dj−1 ,

Λ
(1)
j = PgA22

j , Λ
(2)
j = EjPg

A12
j+1 ,

Πθj = −(Ej − Ej−1)(Pg
A11
j ) + (PgA22

j )(Dj−1 −Dj−2) + (Ej − Ej−1)(Pg
A12
j )Dj−2 + Ej(Pg

A12
j )(Dj−1 −Dj−2) ,

Πwj = −(Ej − Ej−1)(Pg
A12
j ) .

A6, B 1, and Lemma 4 imply that for all j ≥ 0 and i ∈ {0, 1}, it holds that

∥Ψj∥ ∨ ∥Φ(i)
j ∥ ∨ ∥Ξ(i)

j ∥ ∨ ∥Υ(i)
j ∥ ∨ ∥Λ(i)

j ∥ ≲ 1 .

Now we derive a bound for Πθj and Πwj . First, note that

∥Dt+1 −Dt∥ = ∥Lt+1 − Lt∥ ≲ γt+1 , (78)

Now, using Lemma 4 and assumption B 2,

∥Et+1 − Et∥ = ∥βt+1

γt+1
Dt+1 −

βt
γt
Dt∥ ≲

β0
γ0
γt+1 +

βt − βt+1

γt
∥Dt∥ ≲ γt+1 .

Finally, we get that
∥Πθj∥ ∨ ∥Πwj ∥ ≲ γj , (79)

Introduce

vj+1 = Ψj+1 +Υ
(1)
j+1θ̃j+1 +Υ

(2)
j θ̃j + Λ

(1)
j+1w̃j+1 + Λ

(2)
j w̃j .



Expanding now the recurrence (76) together with representation (77), we obtain that

w̃
(1)
k+1 = −

k∑
j=0

γjΓ
(2)
j+1:k(vj+1 − vj)︸ ︷︷ ︸

T1

− γkΦ
(1)
k (θ̃k+1 − θ̃k)−

k∑
j=1

{γjΓ(2)
j+1:kΦ

(2)
j + γj−1Γ

(2)
j:kΦ

(1)
j−1}(θ̃j − θ̃j−1)︸ ︷︷ ︸

T2

− γkΞ
(1)
k (w̃k+1 − w̃k)−

k∑
j=1

{γjΓ(2)
j+1:kΞ

(2)
j + γj−1Γ

(2)
j:kΞ

(1)
j−1}(w̃j − w̃j−1)︸ ︷︷ ︸

T3

−
k∑
j=0

γjΓ
(2)
j+1:k{Π

θ
j θ̃j +Πwj w̃j + (Ej+1 − Ej)(Pg

εV
j+1)}︸ ︷︷ ︸

T4

.

Now we estimate the terms T1 to T4 separately. To proceed with T1, we use Lemma 21 and obtain

T1 = −γ0Γ(2)
1:kv0 + γkvk+1 −

k∑
j=1

(γ2jB
j
11Γ

(2)
j+1:k + (γj − γj−1)Γ

(2)
j:k)vj .

Hence,

E1/p[∥T1∥p] ≲ P
(2)
1:k + γk(1 +M θ̃

k+1,p +M w̃
k+1,p +M θ̃

k,p +M w̃
k,p) +

k∑
j=1

γ2jP
(2)
j+1:k(1 +M θ̃

j+1,p +M w̃
j+1,p +M θ̃

j,p +M w̃
j,p) .

(80)

Using Lemma 19 we get for any j ≥ 0

M θ̃
j+1,p ≲ 1 +M θ̃

j,p +M w̃
j,p , M

w̃
j+1,p ≲ 1 +M θ̃

j,p +M w̃
j,p . (81)

Thus, we get combining (81) with (80):

E1/p[∥T1∥p] ≲ P
(2)
0:k + γk(1 +M θ̃

k,p +M w̃
k,p) +

k∑
j=0

γ2jP
(2)
j+1:k(1 +M θ̃

j,p +M w̃
j,p) .

Then, using Lemma 31-(ii) we get

E2/p[∥T1∥p] ≲ (P
(2)
0:k )

2 + γ2k(1 + (M θ̃
k,p)

2 + (M w̃
k,p)

2) +
{ k∑
j=0

γ2jP
(2)
j+1:k(1 +M θ̃

j,p +M w̃
j,p)

}2
(82)

≲ (P
(2)
0:k )

2 + γ2k(1 + (M θ̃
k,p)

2 + (M w̃
k,p)

2) + γk

k∑
j=0

γ2jP
(2)
j+1:k(1 + (M θ̃

j,p)
2 + (M w̃

j,p)
2) .

To derive bounds for T2, T3 we use the definition of θ̃j , w̃j , Lemma 19, and Lemma 4 to obtain that

E1/p[∥θ̃j − θ̃j−1∥p] ≲ γj−1(1 +M θ̃
j−1,p +M w̃

j−1,p) , E1/p[∥w̃j − w̃j−1∥p] ≲ γj−1(1 +M θ̃
j−1,p +M w̃

j−1,p) , (83)

Thus, the moment bound for T2 + T3 writes as follows:

E2/p[∥T2 + T3∥p] ≲
{ k∑
j=0

γ2jPj+1:k(1 +M θ̃
j−1,p +M w̃

j−1,p)

}2

≲ γk

k∑
j=0

γ2jP
(2)
j+1:k(1 + (M θ̃

j−1,p)
2 + (M w̃

j−1,p)
2) . (84)

Finally, the term T4 can be bounded using (79):

E1/p[∥T4∥p] ≲
k∑
j=0

γ2jP
(2)
j+1:k(1 +M θ̃

j,p +M w̃
j,p) . (85)



Then Lemma 31-(ii) implies that

E2/p[∥T4∥p] ≲ γk

k∑
j=0

γ2jP
(2)
j+1:k(1 + (M θ̃

j,p)
2 + (M w̃

j,p)
2) .

Gathering the bounds (82), (84), (85) we obtain

E2/p[∥w̃(1)
k+1∥

p] ≲ (P
(2)
0:k )

2 + γ2k(1 + (M θ̃
k,p)

2 + (M w̃
k,p)

2) + γk

k∑
j=0

γ2jP
(2)
j+1:k(1 + (M θ̃

j,p)
2 + (M w̃

j,p)
2) . (86)

(III) Gathering (I) and (II).
Equations (75) and (86) from the previous paragraphs imply

(M w̃
k+1,p)

2 ≲ (P
(2)
0:k )

2 + p2
k∑
j=0

γ2jP
(2)
j+1:k(1 + (M θ̃

j,p)
2 + (M w̃

j,p)
2)) .

Thus, there exists a constant Cw̃ > 0 such that

(M w̃
k+1,p)

2 ≤ Cw̃(P
(2)
0:k )

2 + p2Cw̃

k∑
j=0

γ2jP
(2)
j+1:k(1 + (M θ̃

j,p)
2 + (M w̃

j,p)
2)) .

Denote the right hand side of the latter inequality by Uk+1 for k ≥ 0, U0 = Cw̃. Hence, for all s ≥ 0 it holds that (M w̃
s,p)

2 ≤ Us.
Thus, we get

Uk+1 ≤ (1− a22
2
γk)

2Uk + p2Cw̃γ
2
k(1 + Uk + (M θ̃

k,p)
2) .

The conditions on k0 in B 2 guarantee that

Uk+1 ≤ (1− a22
2
γk)Uk + p2Cw̃γ

2
k(1 + (M θ̃

k,p)
2) .

Enrolling the latter recursion and applying Lemma 31-(ii) we get

(M w̃
k+1,p)

2 ≲ P
(2)
0:k + p2γk + p2

k∑
j=0

γ2jP
(2)
j+1:k(M

θ̃
k+1,p)

2 .

Proof of Proposition 8. Expanding the recursion (71) yields, with Γ
(1)
j+1:k defined in (39), that

θ̃k+1 = Γ
(1)
0:kθ̃0 −

k∑
j=0

βjΓ
(1)
j+1:kA12w̃j −

k∑
j=0

βjΓ
(1)
j+1:kVj+1 (87)

= Γ
(1)
0:kθ̃0 −

k∑
j=0

βjΓ
(1)
j+1:kA12w̃

(0)
j −

k∑
j=0

βjΓ
(1)
j+1:kV

(0)
j+1 −

k∑
j=0

βjΓ
(1)
j+1:kA12w̃

(1)
j −

k∑
j=0

βjΓ
(1)
j+1:kV

(1)
j+1 .

Next, we recursively expand w̃(0)
j using the relation (46):

k∑
j=0

βjΓ
(1)
j+1:kA12w̃

(0)
j =

k∑
j=0

βjΓ
(1)
j+1:kA12

(
Γ
(2)
0:j−1w̃0 −

j−1∑
i=0

Γ
(2)
i+1:j−1ξ

(0)
i+1

)
=

k∑
j=0

βjΓ
(1)
j+1:kA12Γ

(2)
0:j−1w̃0 −

k−1∑
i=0

( k∑
j=i+1

βjΓ
(1)
j+1:kA12Γ

(2)
i+1:j−1

)
ξ
(0)
i+1 .

Define, for m ≤ n, the quantity

Tm:n =

n∑
ℓ=m

βℓΓ
(1)
ℓ+1:nA12Γ

(2)
m:ℓ−1 ,



and note that, with P (1)
k:j , P (2)

k:j defined in (39), it holds that

∥Tm:n∥ ≲
n∑

ℓ=m

βℓP
(1)
ℓ+1:nP

(2)
m:ℓ−1 . (88)

With the above notations, we can rewrite (87) as follows:

θ̃k+1 = Γ
(1)
0:kθ̃0 − T0:kw̃0 +

k−1∑
j=0

Tj+1:kξ
(0)
j+1 −

k∑
j=0

βjΓ
(1)
j+1:kV

(0)
j+1 −

k∑
j=0

βjΓ
(1)
j+1:kA12w̃

(1)
j −

k∑
j=0

βjΓ
(1)
j+1:kV

(1)
j+1 .

Thus,

(M θ̃
k+1,p)

2 ≲ E2/p[∥Γ(1)
0:kθ̃0∥

p]︸ ︷︷ ︸
R1

+E2/p[∥T0:kw̃0∥p]︸ ︷︷ ︸
R2

+ E2/p[∥
k−1∑
j=0

Tj+1:kξ
(0)
j+1∥

p]︸ ︷︷ ︸
R3

+E2/p[∥
k∑
j=0

βjΓ
(1)
j+1:kV

(0)
j+1∥

p]︸ ︷︷ ︸
R4

+ E2/p[∥
k∑
j=0

βjΓ
(1)
j+1:kA12w̃

(1)
j ∥p]︸ ︷︷ ︸

R5

+E2/p[∥
k∑
j=0

βjΓ
(1)
j+1:kV

(1)
j+1∥

p]︸ ︷︷ ︸
R6

(I) Bounds on {Ri}4i=1.
Easy to see that

R1 ≲ (P
(1)
0:k )

2 . (89)

To proceed with R2, we apply Lemma 32 with j + 1 = 0 and use βj ≤ rstepγj :

R2 ≲
( k∑
j=0

βjP
(1)
j+1:kP

(2)
0:j−1

)2
≲

( k∑
j=0

γjP
(1)
j+1:kP

(2)
0:j−1

)2
≲

(
P

(1)
0:k

)2
. (90)

Applying Lemma 5 and Burkholder’s inequality, we obtain that

R3 ≲ p2E2/p
[( k∑
j=0

β2
j ∥Γ

(1)
j+1:kV

(0)
j+1∥

2
)p/2]

≲ p2
k∑
j=0

β2
j ∥Γ

(1)
j+1:k∥

2E2/p
[
∥V (0)

j+1∥
p
]

(91)

≲ p2
k∑
j=0

β2
j

(
P

(1)
j+1:k

)2(
1 + (M θ̃

j,p)
2 + (M w̃

j,p)
2
)
.

Applying Lemma 5, (88) and Burkholder’s inequality to the R4, we obtain that

R4 ≲ p2E2/p
[( k−1∑

j=0

∥Tj+1:kξ
(0)
j+1∥

2
)p/2] ≤ p2

k−1∑
j=0

∥Tj+1:k∥2
(
E2/p[∥ξ(0)j+1∥

p]
)

(92)

≲ p2
k−1∑
j=0

γ2j
( k∑
i=j+1

βiP
(1)
i+1:kP

(2)
j+1:i−1

)2(
1 +

(
M θ̃
j,p

)2
+

(
M w̃
j,p

)2)
≲ p2

k−1∑
j=0

β2
j

( k∑
i=j+1

γjP
(1)
i+1:kP

(2)
j+1:i−1

)2(
1 +

(
M θ̃
j,p

)2
+

(
M w̃
j,p

)2)
(a)

≲ p2
k−1∑
j=0

β2
j

(
P

(1)
j+1:k

)2(
1 +

(
M θ̃
j,p

)2
+

(
M w̃
j,p

)2)
,

where the inequality (a) follows from Lemma 32.



(II) Bounds on R5 and R6.
To proceed with R5, we combine Minkowski’s inequality together with Lemma 31-(ii) and get

R5 ≲
k∑
j=0

βjP
(1)
j+1:kE

2/p[∥w̃(1)
j ∥p] .

Applying (86) we obtain
k∑
j=0

βjP
(1)
j+1:kE

2/p[∥w̃(1)
j ∥p] ≲

k∑
j=0

βjP
(1)
j+1:kP

(2)
0:j−1 +

k∑
j=0

βjP
(1)
j+1:kγ

2
j−1(1 + (M w̃

j,p)
2 + (M θ̃

j,p)
2)

+

k−1∑
t=0

k∑
j=t+1

βjγj−1γ
2
t P

(1)
j+1:kP

(2)
t+1:j−1(1 + (M w̃

t,p)
2 + (M θ̃

t,p)
2) .

Now we use Lemma 32 and βj ≤ rstepγj together with γ2j ≤ γ2
0

β0
βj :

k∑
j=0

βjP
(1)
j+1:kE

2/p[∥w̃(1)
j ∥p] ≲ P

(1)
0:k +

k∑
j=0

β2
jP

(1)
j+1:k(1 + (M w̃

j,p)
2 + (M θ̃

j,p)
2) .

Thus,

R5 ≲ P
(1)
0:k +

k∑
j=0

β2
jP

(1)
j+1:k(1 + (M w̃

j,p)
2 + (M θ̃

j,p)
2) . (93)

Set ŵk = wk − w⋆. Hence
ŵj − ŵj+1 = w̃j+1 − w̃j −Dj−1θ̃j +Dj θ̃j+1 ,

and
V

(1)
j+1 = (PgεV

j − (PgA11
j )θ̃j − (PgA12

j )ŵj)− (PgεV
j+1 − (PgA11

j+1)θ̃j+1 − (PgA12
j+1)ŵj+1)

+ (PgA11
j+1)(θ̃j − θ̃j+1) + (PgA12

j+1)(I +Dj)(w̃j+1 − w̃j) + (PgA12
j+1)(Dj −Dj−1)θ̃j .

Now we derive a couple of auxiliary bounds. First, from the definition of ŵj and w̃j we get

E1/p[∥ŵj∥p] ≲M w̃
j,p +M θ̃

j,p .

Set for simplicity
uj = PgεV

j − (PgA11
j )θ̃j − (PgA12

j )ŵj ,

and note that
∥uj∥ ≲ 1 +M θ̃

j,p +M w̃
j,p .

Thus, using Lemma 21 and Equation (78) we obtain

E1/p[∥
k∑
j=0

βjΓ
(1)
j+1:kV

(1)
j+1∥

p] ≲ P
(1)
0:k + βk(1 +M w̃

k,p +M θ̃
k,p) +

k∑
j=1

β2
jP

(1)
j+1:k(1 +M θ̃

j,p +M w̃
j,p)

+

k∑
j=1

βjP
(1)
j+1:kE

1/p[∥θ̃j+1 − θ̃j∥p] + CA
√
κ∆

k∑
j=1

βjP
(1)
j+1:kE

1/p[∥w̃j+1 − w̃j∥p]

+

k∑
j=1

βjγjP
(1)
j+1:kM

θ̃
j,p .

Next, applying (81), (83) we get

E1/p[∥
k∑
j=0

βjΓ
(1)
j+1:kV

(1)
j+1∥

p] ≲ P
(1)
0:k + βk(1 +M w̃

k,p +M θ̃
k,p) +

k∑
j=0

βjγjP
(1)
j+1:k(1 +M w̃

j,p +M θ̃
j,p) .

Hence, Lemma 31-(ii) implies that

R6 ≲ (P
(1)
0:k )

2 + β2
k(1 + (M w̃

k,p)
2 + (M θ̃

k,p)
2) +

k∑
j=0

βjP
(1)
j+1:kγ

2
j (1 + (M w̃

j,p)
2 + (M θ̃

j,p)
2) (94)

≲ (P
(1)
0:k )

2 + β2
k(1 + (M w̃

k,p)
2 + (M θ̃

k,p)
2) +

k∑
j=0

β2
jP

(1)
j+1:k(1 + (M w̃

j,p)
2 + (M θ̃

j,p)
2) .



(III) Gathering (I) and (II).
Gathering the similar terms in (89), (90), (91), (92), (93), (94) we obtain

(M θ̃
k+1,p)

2 ≲ P0:k + p2
k∑
j=0

β2
jP

(1)
j+1:k(1 + (M w̃

k,p)
2 + (M θ̃

k,p)
2) . (95)

Applying Proposition 5 and Lemma 31, we obtain

k∑
j=0

β2
j

(
P

(1)
j+1:k

)2(
M w̃
j,p

)2
≲

k∑
j=0

β2
j

(
P

(1)
j+1:k

)2(
P

(2)
0:j−1 + p2γj−1 + p2

j−1∑
i=0

γ2i P
(2)
i+1:j−1

(
M θ̃
i,p

)2)
≲ p2

k∑
j=0

β2
jP

(1)
j+1:k + p2

k∑
j=0

β2
j

(
P

(1)
j+1:k

)2 j−1∑
i=0

γ2i P
(2)
i+1:j−1

(
M θ̃
i,p

)2
≲ p2βk + p2

k−1∑
i=0

k∑
j=i+1

β2
j γ

2
i P

(2)
i+1:j−1P

(1)
j+1:k

(
M θ̃
i,p

)2
.

Using that β2
j ≤ β2

i for j ≥ i+ 1 and γ2i ≤ γ0γi, we get that

k∑
j=0

β2
j

(
P

(1)
j+1:k

)2(
M w̃
j,p

)2
≲ p2βk + p2

k−1∑
i=0

β2
i

( k∑
j=i+1

γiP
(2)
i+1:j−1P

(1)
j+1:k

)(
M θ̃
i,p

)2 (a)

≤ p2βk + p2
k−1∑
i=0

β2
i P

(1)
i+1:k

(
M θ̃
i,p

)2
,

where (a) follows from Lemma 32. The proof follows from substituting the latter ineqaulity into (95).

E.2 CLT for the Polyak-Ruppert averaged estimator

From equations (8) and (18), we derive the extended version of (19):

√
n∆(θ̄n − θ⋆) =

1√
n

n∑
k=1

(εk+1
V −A12A

−1
22 ε

k+1
W )

+
1√
n

n∑
k=1

{
(A12A

−1
22 Ã

k+1
21 − Ãk+1

11 )︸ ︷︷ ︸
Φk+1

θ̃k + (A12A
−1
22 Ã

k+1
22 − Ãk+1

12 )︸ ︷︷ ︸
Ψk+1

(wk − w⋆)

}

+
1√
n

n∑
k=1

β−1
k (θ̃k − θ̃k+1)−

1√
n

n∑
k=1

A12A
−1
22 γ

−1
k (wk − wk+1)

Setting

ψj+1 = εj+1
V −A12A

−1
22 ε

j+1
W ,



we derive a decomposition of
√
n∆(θ̄n − θ⋆) using the Poisson equation construction (70):

√
n∆(θ̄n − θ⋆) =

1√
n

n∑
k=1

{gψk+1 − Pgψk }︸ ︷︷ ︸
Tmark

(96)

+
1√
n
{Pgψ1 − Pgψn+1 + (PgΦ

1 )(I +D0)θ̃1 − (PgΦ
n+1)(I +Dn)θ̃n+1 + (PgΨ

1 )w̃1 − (PgΨ
n+1)w̃n+1}︸ ︷︷ ︸

R1

+
1√
n

n∑
k=1

{
(gΦ
k+1 − PgΦ

k )θ̃k + (gΨ
k+1 − PgΨ

k )(wk − w⋆)
}

︸ ︷︷ ︸
R2

+
1√
n

n∑
k=1

β−1
k {θ̃k − θ̃k+1} −

1√
n

n∑
k=1

(PgΦ
k+1){θ̃k − θ̃k+1}︸ ︷︷ ︸

R3

− 1√
n

n∑
k=1

γ−1
k A12A

−1
22 {wk − wk+1} −

1√
n

n∑
k=1

(PgΨ
k+1){wk − wk+1}︸ ︷︷ ︸

R4

.

Note that B 1 implies that
1√
n

n∑
k=1

ψk+1
d−→ N (0,Σmark

∞ )

for some covariance matrix Σmark
∞ ∈ Rdθ×dθ . Due to the properties of Poisson equation, we have using the notation of (96):

Var[Tmark] = Σmark
∞ .

Using the decomposition (96) we assume that Tmark is a leading term, while

Rpr,m
n =

4∑
i=1

Ri

corresponds to a residual one. The proof of Theorem 3 is given below and is based on Proposition 1 and Lemma 22.

Lemma 22. Let 2 ≤ p ≤ log n. Assume A4, A6, B 1, B 2(logn). Then it holds that

E1/p
[∥∥Rpr,m

n

∥∥p] ≲ nb−1/2
n−1∏
j=0

(
1− a∆

8
βj
)
+

log3(n)

n(1−b)/2
+ log3(n)

(1− a)−1 + (1− b)−1

na−1/2
+

log4(n)(1− a)−1

na/2
.

Proof of Theorem 3.. Note that for all k it holds that

∥gψk+1 − Pgψk ∥ ≤ 16

3
tmix sup

x∈X
∥ψ(x)∥ <∞.

Inroduce

h(Xk) = E[(gψk+1 − Pgψk )(g
ψ
k+1 − Pgψk )

⊤ | Xk]−Σmark
∞ .

One can check that π(h) = 0 using Poisson equation properties, where π is given in B 1. Thus, h satisfies the assumptions of
Lemma 29. Hence, we get applying Lemma 3 with p = 1:

ρConv
( 1√

n

n∑
k=1

{gψk+1 − Pgψk },N (0,Σmark
∞ )

)
≲

1 + log n

n1/4
.



Since for all q ∈ (0, 1) and a1, . . . , am > 0 it holds that (
∑m
i=1 ai)

q ≤
∑m
i=1 a

q
i , Proposition 1, Lemma 22 imply that

ρConv
(√
n∆(θ̄n − θ⋆),N (0,Σmark

∞ )
)
≲ ρConv

( 1√
n

n∑
k=1

{gψk+1 − Pgψk+1},N (0,Σmark
∞ )

)
+ c

p
p+1

dθ

(
E1/p[∥R1 +R2 +R3 +R4∥]

) p
p+1

≲
1 + log n

n1/4
+ c

p
p+1

dθ

{
nb−1/2

n−1∏
j=0

(
1− a∆

8
βj
)} p

p+1 + c
p

p+1

dθ

{ log3(n)

n(1−b)/2
}

p
p+1

+ c
p

p+1

dθ

{
log3(n)

(1− a)−1 + (1− b)−1

na−1/2

} p
p+1 + c

p
p+1

dθ

{ log4(n)(1− a)−1

na/2
} p

p+1 .

Note that (nα)
log n

1+log n ≤ nα exp(|α|) for all α ∈ R. Thus, substituting p := log n into the latter inequality we get

ρConv
(√
n∆(θ̄n − θ⋆),N (0,Σmark

∞ )
)
≲

1 + log n

n1/4
+ cdθn

b−1/2
n−1∏
j=0

(
1− a∆

16
βj
)
+ cdθ

log3(n)

n(1−b)/2

+ cdθ log
3(n)

(1− a)−1 + (1− b)−1

na−1/2
+ cdθ

log4(n)(1− a)−1

na/2
,

and the proof follows.

Proof of Lemma 22. First, we use Minkowski’s inequality

E1/p[∥
∑4
i=1Ri∥p] ≤

∑4
i=1 E1/p[∥Ri∥p] .

Proposition 4 and B 2 directly imply that E1/p[∥R1∥p] ≲ p6n−1/2 ≤ n−1/2 log6(n). To proceed with R2, we note that R2 is a
sum of martingale difference sequence due to the properties of Markov kernel P. Thus, Burkholder’s inequality (Osekowski
2012, Theorem 8.1) and Proposition 4 imply that

E2/p[∥R2∥p] ≤
p2

n

n∑
k=1

{E2/p[∥θ̃k∥] + E2/p[∥wk − w⋆∥p]} ≲
p2

n

n∑
k=1

{
k−1∏
j=0

(1− a22γj
4

) +

k−1∏
j=0

(1− a∆βj
8

) + p6γk}

(a)

≲
p2kb0
n

+
p8

na(1− a)

(b)

≲
log8(n)

na(1− a)
,

where in (a) we have additionally used Lemma 31-(iii) and (b) holds because B 2(log n) implies kb0 = O(log4 n). Now we
derive bounds for R3 and R4. Rewrite R3 as follows:

R3 =
1√
n
β−1
1 θ̃1 −

1√
n
β−1
n θ̃n+1 +

1√
n

n−1∑
k=1

(β−1
k+1 − β−1

k )θ̃k+1 −
1√
n

n∑
k=1

(PgΦ
k+1){θ̃k − θ̃k+1} .

Note that since (1 + x)b ≤ 1 + bx for b ∈ [0, 1], we get β−1
k+1 − β−1

k ≤ b(kβk)
−1. Therefore, Proposition 4 and Lemma 31-(iii)

imply that
n−1∑
k=1

(β−1
k+1 − β−1

k )M θ̃
k+1,p ≲

n−1∑
k=1

(kβk)
−1M θ̃

k+1,p ≲
n−1∑
k=1

k∏
j=0

(
1− βj

a∆
8

)
+ p2

n−1∑
k=1

(kβk)
−1β

1/2
k ≲ kb0 + p2nb/2 .

Now, using Proposition 4 and E1/p[∥θ̃k − θ̃k+1∥p] ≲ p3γj , we obtain

E1/p[∥R3∥p] ≲
kb0√
n
+

(n+ k0)
b

√
n

n−1∏
j=0

(1− a∆βj
8

) +
p2(n+ k0)

b/2

√
n

+
kb0 + p2nb/2√

n
+

p3

(1− b)nb−1/2

≲ nb−1/2
n−1∏
j=0

(1− a∆βj
8

) +
log2(n)

n(1−b)/2
+

log3(n)

(1− b)nb−1/2
+

log4(n)√
n

.

To bound R4 it is sufficient to apply E1/p[∥wk − w⋆∥p] ≲M θ̃
k,p +M w̃

k,p. Thus, using γ−1
k ≲ β−1

k and a∆βj ≤ a22γj to bound

the terms with M θ̃
k,p and M w̃

k,p separately, one can check that

E1/p[∥R4∥p] ≲ nb−1/2
n−1∏
j=0

(
1− a∆

8
βj
)
+

log2(n)

n(1−b)/2
+

log3(n)

(1− b)nb−1/2
+

1

n(1−a)/2
+

1

(1− a)na−1/2

≲ nb−1/2
n−1∏
j=0

(
1− a∆

8
βj
)
+

log3(n)

n(1−b)/2
+ log3(n)

(1− a)−1 + (1− b)−1

na−1/2
+

log4(n)√
n

.



The proof follows from gathering similar terms.

E.3 CLT for the Last iteration estimator
First, we start from the same decomposition as in the martingale noise setting (63):

θ̃n+1 = −
n∑
j=0

βjG
(1)
j+1:nψj+1 +G

(1)
0:nθ̃0 −

n∑
j=0

βjG
(1)
j+1:nA12G

(2)
0:j−1w̃0 (97)

+

n∑
j=0

βjG
(1)
j+1:n δ

(1)
j + S(1)

n + S(2)
n + S(3)

n

+

n∑
j=0

βjG
(1)
j+1:n

( Φj+1︷ ︸︸ ︷{
Ãj+1

11 −A12A
−1
22 Ã

j+1
21

}
θ̃j +

Ψj+1︷ ︸︸ ︷{
Ãj+1

12 −A12A
−1
22 Ã

j+1
21

}
(wj − w⋆)

)
,

where

ψj+1 = εj+1
V −A12A

−1
22 ε

j+1
W , δ

(1)
j = A12Lj θ̃j , δ

(2)
j = −(Lj+1 +A−1

22 A21)A12w̃j ,

S(1)
n = −

n∑
j=0

βjG
(1)
j+1:nA12

j−1∑
i=0

βiG
(2)
i+1:j−1δ

(2)
i ,

S(2)
n =

n∑
j=0

βjG
(1)
j+1:nA12

j−1∑
i=0

βiG
(2)
i+1:j−1DiVi+1 ,

S(3)
n =

n∑
j=0

βjG
(1)
j+1:nA12

j−1∑
i=0

γiG
(2)
i+1:j−1Wi+1 −

n∑
j=0

βjG
(1)
j+1:nA12A

−1
22 Wj+1 .

Now we apply the Poisson equation technique and obtain from (97):

θ̃n+1 =−
n∑
j=0

βjG
(1)
j+1:n(g

ψ
j+1 − Pgψj )︸ ︷︷ ︸

Tmark
last

+

n∑
j=0

βjG
(1)
j+1:n(Pg

ψ
j+1 − Pgψj +Φj+1θ̃j +Ψj+1ŵj)︸ ︷︷ ︸

Hn

+G
(1)
0:nθ̃0

−
n∑
j=0

βjG
(1)
j+1:nA12G

(2)
0:j−1w̃0 +

n∑
j=0

βjG
(1)
j+1:n δ

(1)
j + S(1)

n + S(2)
n + S(3)

n ,

Also define

Rlast,m
n = G

(1)
0:nθ̃0 −−

n∑
j=0

βjG
(1)
j+1:nA12G

(2)
0:j−1w̃0 +

n∑
j=0

βjG
(1)
j+1:n δ

(1)
j + S(1)

n + S(2)
n + S(3)

n +Hn .

The proof of Theorem 4 is based on gaussian approximation of Tmark
last and the moment bound for Rlast,m

n which follows from
Lemmas 23-27 that we state below:
Lemma 23. Let p ≥ 2. Assume A4, A6, B 1, B 2(p), B 3. Then it holds that

E1/p[∥
n∑
j=0

βjG
(1)
j+1:nδ

(1)
j ∥p] ≲ p3

2b− a− 1
P

(1)
0:n +

p4

2b− a− 1
β

2b−a/2−1
b

n .

Lemma 24. Let p ≥ 2. Assume A4, A6, B 1, B 2(p). Then it holds that

E1/p[∥S(1)
n ∥p] ≲ P

(1)
0:n + p4β

3b−2a
2b

n .

Lemma 25. Let p ≥ 2. Assume A4, A6, B 1, B 2(p). Then it holds that

E1/p[∥S(2)
n ∥p] ≲ p3P

(1)
0:n + p4β

2b−a
2b

n .

Lemma 26. Let p ≥ 2. Assume A4, A6, B 1, B 2(p). Then it holds that

E1/p[∥S(3)
n ∥p] ≲ p3P

(1)
0:n + p3β

a
b
n + p4β

2b−a
2b

k .



Lemma 27. Let p ≥ 2. Assume A4, A6, B 1, B 2(p). Then it holds that

E1/p[∥Hn∥p] ≲
p3

2b− 1

n∏
j=1

(1− a∆
4
βj) + p4βa/bn .

Proof of Theorem 4. First, we introduce

ψj+1 = gψj+1 − Pgψj , R
last
n = G

(1)
0:kθ̃0 −

n∑
j=0

βjG
(1)
j+1:nA12G

(2)
0:j−1w̃0 +

n∑
j=0

βjG
(1)
j+1:nδ

(1)
j +Hn + S(1)

n + S(2)
n + S(3)

n .

Set p = logn. Thus, applying Lemma 32-(i) we get:

E1/p[∥Rlast
n ∥p] ≲ P

(1)
0:n + P

(1)
0:n + E1/p[∥

n∑
j=0

βjG
(1)
j+1:nδ

(1)
j ∥p] + E1/p[∥Hn∥p] + E1/p[∥S(1)

n ∥p] + E1/p[∥S(2)
n ∥p] + E1/p[∥S(3)

n ∥p] .

Now we use Lemmas 23-27 together with the inequality β
2b−a/2−1

b
n > β

2b−a
2b

n and get

E1/p[∥Rlast
n ∥p] ≲ p3

2b− a− 1

n∏
j=0

(1− a∆
4
βj) + p3βa/bn +

p4

2b− a− 1
β

2b−a/2−1
b

n

Therefore, Proposition 1 implies that:

ρConv(β−1/2
n θ̃n+1,N (0,Σlast,m

∞ )) ≲ ρConv(β−1/2
n Tmark

last ,N (0, β−1
n Σlast,m

n )) (98)

+ ρConv(N (0, β−1
n Σlast,m

n ),N (0,Σlast,m
∞ ))

+ c
p

p+1

dθ
(E1/p[∥β−1/2

n Rlast
n ∥p])

p
p+1 .

The bound for the second term follows from (Devroye, Mehrabian, and Reddad 2018, Theorem 1.1) and Proposition 9:

ρConv(N (0, β−1
n Σlast,m

n ),N (0,Σlast,m
∞ )) ≲ ∥{Σlast,m

∞ }−1/2(β−1
n Σlast,m

n ){Σlast,m
∞ }−1/2 − I∥Fr ≲

√
dθ

nbλmin(Σ
last,m
∞ )

.

Next, the bound for the third term in (98) follows from (n−α)
log n

1+log n ≲ n−α and (
∑
ai)

q ≤
∑
aqi for ai > 0 and q ∈ (0, 1):

c
p

p+1

dθ
(E1/p[∥β−1/2

n Rlast
n ∥p])

p
p+1 ≲ cdθ

β
−1/2
n log3(n)

2b− a− 1

n∏
j=0

(1− a∆
8
βj) + cdθβ

2a−b
2b

n log3(n) + cdθ
log4(n)

2b− a− 1
β

3b−a−2
2b

n . (99)

Now we derive a bound for ρConv(β
−1/2
n Tmark

last ,N (0, β−1
n Σlast,m

n )). Introduce

Mi = β−1/2
n βiG

(1)
i+1:nψi+1 .

Hence, we get

∥Mi∥ ≲ β−1/2
n βiP

(1)
i+1:n .

Note that B 2 implies that

βi+1P
(1)
i+2:n

βiP
(1)
i+1:n

=
1

(1− a∆
2 βi+1)

βi

βi+1

≥ 1

(1− a∆
2 βi+1)(1 +

a∆
16 βi+1)

≥ 1

(1− a∆
2 βi+1)(1 +

a∆
2 βi+1)

> 1 .

Thus, for all i it holds that βiP
(1)
i+1:n ≤ βn and ∥Mi∥ ≲ β

1/2
n . Now we introduce the function

h(Xi) = EFi [MiM
⊤
i ] , Fj = σ(Xs : s ≤ j) .

Note that ∥h(Xi)∥ ≤ βn. Thus, since

β−1
n Σlast,m

n =

n∑
i=0

E[h(Xi)] ,

Lemma 29 implies that

P
[
∥

n∑
i=0

h(Xi)− β−1
n Σlast,m

n ∥ ≥ nt

]
≤ 4 exp(− nt2

80dtmixβ2
n

) .



Hence, the assumptions of Lemma 3 hold with C1 = 4 and C2 = (80dtmixβ
2
n)

−1, which yiels with κ := β
1/2
n and p := log n:

ρConv(

n∑
i=0

Mi, β
−1
n Σlast,m

n ) = ρConv

(
1√
n+1

n∑
i=0

Mi,N (0, 1
n+1β

−1
n Σlast,m

n )

)
(a)

≲ (log(n))3/4
{
β1/2
n n1/4(log n)1/4 + β1/2

n +
1

nβ
1/2
n

+
βn

√
log n√
n

}
≲

log n

nb/2−1/4
,

where in (a) we have used an elementary inequality (n−α)
log n

1+log n ≲ n−α together with 1
2∥Σ

last,m
∞ ∥ ≤ ∥β−1

n Σlast,m
n ∥ ≲

∥Σlast,m
∞ ∥ which holds due to B 3 and Proposition 9. Now we combine (99) with the latter inequality and get:

ρConv(β−1/2
n θ̃n+1,N (0,Σlast,m

∞ )) ≲
nb/2 log3(n)

2b− a− 1

n∏
j=0

(1− a∆
8
βj) +

log3(n)

na−b/2
+

log4(n)

(2b− a− 1)n
3b−a−2

2

+
log n

nb/2−1/4
.

To prove Lemmas 23-27 we formulate an auxiliary result that controls the moments of θ̃(1)k , w̃(1)
k :

Lemma 28. Let p ≥ 2. Assume A4, A6, B 1, B 2(p). Then it holds for all k ∈ N that

E1/p[∥w̃(1)
k ∥p] ≲ P

(2)
0:k + p3γk , E1/p[∥θ̃(1)k ∥p] ≲ p3P

(1)
0:k + p3γk .

Proof. The bound for w̃(1)
k follows from Equation 86 applying Proposition 4 and Lemma 31-(ii). To proceed with θ̃(1)k , we use

the decomposition that follows from (72):

θ̃
(1)
k = −

k−1∑
i=0

βiΓ
(1)
i+1:k−1A12w̃

(1)
i︸ ︷︷ ︸

Z1

−
k−1∑
i=0

βiΓ
(1)
i+1:k−1V

(1)
i+1︸ ︷︷ ︸

Z2

.

The bound for Z1 follows from Minkowski’s inequality and the bound for w̃(1)
k :

E1/p[∥Z1∥p] ≲
k−1∑
i=0

βiP
(1)
i+1:k−1P

(2)
0:i−1 + p3

k−1∑
i=0

βiγiP
(1)
i+1:k−1

(a)

≲ P
(1)
0:k + p3γk ,

where in (a) we additionally used Lemma 31-(ii) and Lemma 32-(ii).

V
(1)
i+1 = (PgεV

i −(PgA11
i )θ̃i−(PgA12

i )ŵi)−(PgεV
i+1−(PgA11

i+1 )θ̃i+1−(PgA12
i )ŵi+1)+(PgA11

i+1 )(θ̃i−θ̃i+1)+(PgA12
i+1 )(ŵi−ŵi+1) .

Introduce the following notation:

vi = PgεV
i − (PgA11

i )θ̃i − (PgA12
i )ŵi .

Thus, we rewrite Z2 using Lemma 21:

Z2 = β0Γ
(1)
1:k−1v0 − βkvk +

k∑
i=1

(β2
iB

i
11Γ

(1)
i+1:k−1 + (βi − βi−1)Γ

(1)
i:k−1)vi

+

k−1∑
i=0

βiΓ
(1)
i+1:k−1{(Pg

A11
i+1 )(θ̃i − θ̃i+1) + (PgA12

i+1 )(ŵi − ŵi+1)} .

Therefore, we get applying Minkowski’s inequality together with Lemma 31-(ii) and γi ≲ β
a/b
i :

E1/p[∥Z2∥p] ≲ p3P
(1)
0:k + p3βk + p3β

a/b
k ≲ p3P

(1)
0:k + p3γk .

The proof follows from gathering bounds for Z1 and Z2.



Proof of Lemma 23. First, we introduce:

δ
(1,i)
j = A12Lj θ̃

(i)
j , i ∈ {0, 1} .

Thus, we rewrite the initial sum
n∑
j=0

βjG
(1)
j+1:nδ

(1)
j =

n∑
j=0

βjG
(1)
j+1:nδ

(1,0)
j︸ ︷︷ ︸

Z1

+

n∑
j=0

βjG
(1)
j+1:nδ

(1,1)
j︸ ︷︷ ︸

Z2

.

Z1 can be bounded repeating the lines of Lemma 14 due to the recurrence properties (72):

E1/p[∥Z1∥p] ≲ (2b− a− 1)−1P
(1)
0:n + p4(2b− a− 1)−1β

2b−a/2−1
b

n .

To estimate E1/p[∥Z2∥p] we first use Lemma 4, Lemma 28 and obtain

E1/p[∥δ(1,1)j ∥p] ≲ βj
γj

{p3P (1)
0:j + p3γj} .

Thus,

E1/p[∥Z2∥p] ≲ p3P
(1)
0:n

k∑
j=0

β2
j

γj
+ p3βn ≲

p3

2b− a− 1
P

(1)
0:n + p3βn .

The proof follows from gathering the bounds for Z1 and Z2 together with applying B 2.

Proof of Lemma 24. First, we introduce:

δ
(2,i)
j = −(Lj+1 +A−1

22 A21)A12w̃
(i)
j , i ∈ {0, 1} .

Thus, we rewrite the initial sum as follows:

S(1)
n = −

n∑
j=0

βjG
(1)
j+1:nA12

j−1∑
i=0

βiG
(2)
i+1:j−1δ

(2,0)
i︸ ︷︷ ︸

Z1

−
n∑
j=0

βjG
(1)
j+1:nA12

j−1∑
i=0

βiG
(2)
i+1:j−1δ

(2,1)
i︸ ︷︷ ︸

Z2

.

One can obtain the bound on Z1 following the lines of Lemma 16 due to the fact that w̃(0)
j is a martingale-difference sequence

w.r.t. Fj = σ(Xs : s ≤ j):

E1/p[∥Z1∥p] ≲ P
(1)
0:n + p4β

3b−2a
2b

n .

To derive a bound for Z2 we use Minkowski’s inequality and Lemma 28:

E1/p[∥Z2∥p] ≲
n∑
j=0

j−1∑
i=0

βjβiP
(1)
j+1:nP

(2)
i+1:j−1{P

(2)
0:i + p3γi} =

n−1∑
i=0

βi{P (2)
0:i + p3γi}

n∑
j=i+1

βjP
(1)
j+1:nP

(2)
i+1:j−1

(a)

≲
n−1∑
i=0

βiγ
b−a
a

i {P (2)
0:i + p3γi}P (1)

i+1:n

(b)

≲ P
(1)
0:n + p3βn ,

where in (a) and (b) we have used Lemma 32-(ii) together with Lemma 31-(ii). The proof follows from gathering similar terms
in the bounds for Z1 and Z2.

Proof of Lemma 25. First, we decompose S(2)
n as follows:

S(2)
n =

n∑
j=0

βjG
(1)
j+1:nA12

j−1∑
i=0

βiG
(2)
i+1:j−1DiV

(0)
i+1︸ ︷︷ ︸

Z1

+

n∑
j=0

βjG
(1)
j+1:nA12

j−1∑
i=0

βiG
(2)
i+1:j−1DiV

(1)
i+1︸ ︷︷ ︸

Z2

.

Since V (0)
i+1 is a martingale difference sequence w.r.t. Fi, repeating the lines of Lemma 17 one can obtain that

E1/p[∥Z1∥p] ≲ p4β
2b−a
2b

n .



To proceed with Z2, recall the decomposition

V
(1)
i+1 = (PgεV

i −(PgA11
i )θ̃i−(PgA12

i )ŵi)−(PgεV
i+1−(PgA11

i+1 )θ̃i+1−(PgA12
i )ŵi+1)+(PgA11

i+1 )(θ̃i−θ̃i+1)+(PgA12
i+1 )(ŵi−ŵi+1) .

Introduce the following notation:

vi = PgεV
i − (PgA11

i )θ̃i − (PgA12
i )ŵi , Qi =

n∑
j=i+1

βjG
(1)
j+1:kA12G

(2)
i+1:j−1Di .

Lemma 32-(ii) implies that ∥Qi∥ ≲ γ
(b−a)/a
i P

(1)
i+1:k. Then we estimate ∥Qi −Qi+1∥ using Lemma 32-(i), (ii):

∥Qi −Qi+1∥ ≲
n∑

j=i+1

βjP
(1)
j+1:nP

(2)
i+1:j−1∥Di −Di+1∥ + βi+1P

(1)
i+2:n + γi

n∑
j=i+2

βjP
(1)
j+1:nP

(2)
i+2:j−1

≲ γiγ
(b−a)/a
i P

(1)
i+1:n + βiP

(1)
i+1:n + γiγ

(b−a)/a
i P

(1)
i+1:n ≲ βiP

(1)
i+1:n .

Now we swap the order of summation and rewrite Z2 as follows:

Z2 =

n−1∑
i=0

Qiβi(vi − vi+1)︸ ︷︷ ︸
Z21

+

n−1∑
i=0

Qiβi{(PgA11
i+1 )(θ̃i − θ̃i+1) + (PgA12

i+1 )(ŵi − ŵi+1)}︸ ︷︷ ︸
Z22

.

Then we further decompose Z21:

Z21 =

n−1∑
i=0

{(Qiβivi −Qi+1βi+1vi+1) + (Qi+1 −Qi)βivi+1 +Qi(βi+1 − βi)vi+1} .

Now note that for all i it holds that E1/p[∥vi∥p] ≲ p3 due to Proposition 4. Thus, we get using Lemma 31-(ii):

E1/p[∥Z21∥p] ≲ E1/p[∥Q0β0v0∥p] + E1/p[∥Qnβnvn∥p] +
n−1∑
i=0

p3{β2
i + β3

i }P
(1)
i+1:n +

n−1∑
i=0

p3βiγiγ
(b−a)/a
i P

(1)
i+1:n

(a)

≲ p3P
(1)
1:n + p3βn ,

where in (a) we have additionally used γi ≲ β
a/b
i and Lemma 31-(ii). Since E1/p[∥θ̃i − θ̃i+1∥p] ≲ p3γi and E1/p[∥ŵi −

ŵi+1∥p] ≲ p3γi, we obtain applying Lemma 31-(ii):

E1/p[∥Z22∥p] ≲ p3
n−1∑
i=0

βiγ
(b−a)/a
i γiP

(1)
i+1:n ≲ p3βn .

Finally,

E1/p[∥S(2)
n ∥p] ≲ E1/p[∥Z1∥p] + E1/p[∥Z21∥p] + E1/p[∥Z22∥p] ≲ p3P

(1)
0:n + p4β

2b−a
2b

n .

Proof of Lemma 26. First, we decompose S(3)
k into two parts:

S
(3)
k =

n∑
j=0

βjG
(1)
j+1:nA12

j−1∑
i=0

γiG
(2)
i+1:j−1W

(0)
i+1 −

n∑
j=0

βjG
(1)
j+1:nA12A

−1
22 W

(0)
j+1︸ ︷︷ ︸

Z1

+

n∑
j=0

βjG
(1)
j+1:nA12

j−1∑
i=0

γiG
(2)
i+1:j−1W

(1)
i+1 −

n∑
j=0

βjG
(1)
j+1:nA12A

−1
22 W

(1)
j+1︸ ︷︷ ︸

Z2

.

Note that Z1 can be bounded following the lines of Lemma 18. Precisely,

E1/p[∥Z1∥p] ≲ p4β
2b−a
2b

n . (100)



To proceed with Z2, we derive a decomposition for W (1)
i+1:

W
(1)
i+1 = (PgεW

i −(PgA21
i )θ̃i−(PgA22

i )ŵi)−(PgεW
i+1−(PgA21

i+1 )θ̃i+1−(PgA22
i )ŵi+1)+(PgA21

i+1 )(θ̃i−θ̃i+1)+(PgA22
i+1 )(ŵi−ŵi+1) .

(101)
Introduce the following notation:

vi = PgεW
i − (PgA11

i )θ̃i − (PgA12
i )ŵi , Qi =

k∑
j=i+1

βjG
(1)
j+1:kA12G

(2)
i+1:j−1 ,

Z21 =

n∑
j=0

βjG
(1)
j+1:nA12

j−1∑
i=0

γiG
(2)
i+1:j−1W

(1)
i+1 , Z22 =

n∑
j=0

βjG
(1)
j+1:nA12A

−1
22 W

(1)
j+1 .

Lemma 32-(ii) implies that ∥Qi∥ ≤ γ
(b−a)/a
i P

(1)
i+1:k and

∥Qi −Qi+1∥ ≲ βiP
(1)
i+1:n + γiγ

b−a
a

i P
(1)
i+1:n ≲ βiP

(1)
i+1:n .

Now we swap the order of summation and rewrite Z21 as follows:

Z21 =

n−1∑
i=0

γiQi(vi − vi+1)︸ ︷︷ ︸
Z211

+

n−1∑
i=0

Qiβi{(PgA21
i+1 )(θ̃i − θ̃i+1) + (PgA22

i+1 )(ŵi − ŵi+1)}︸ ︷︷ ︸
Z212

.

Then we further decompose Z211:

Z211 =

n−1∑
i=0

{(Qiγivi −Qi+1γi+1vi+1) + (Qi+1 −Qi)γivi+1 +Qi(γi+1 − γi)vi+1} .

Therefore, using Lemma 31-(ii) and γi ≲ β
a/b
i , easy to see that:

E1/p[∥Z211∥p] ≲ p3P
(1)
0:n + p3γn + p3β

a+b
b −1

n ≲ p3P
(1)
0:n + p3βa/bn . (102)

To derive a bound for Z212 we use Minkowski’s inequality and get

E1/p[∥Z212∥p] ≲
n−1∑
i=0

βiγ
b−a
a

i p3γiP
(1)
i+1:n = p3

n−1∑
i=0

β
1+ b−a

b + a
b

i P
(1)
i+1:n ≲ p3βn . (103)

Thus, E1/p[∥Z21∥p] ≲ p3P
(1)
0:n + p3β

a/b
n . Substituting the decomposition (101) into the expression for Z22 one can check

applying Lemma 21 that

E1/p[∥Z22∥p] ≲ p3P
(1)
0:n + p3βn + p3γn ≲ p3P

(1)
0:n + p3βa/bn . (104)

The proof follows from gathering the bounds (100), (102), (103), (104).

Proof of Lemma 27. First, we rewrite Hn using the solutions gΦ
i , gΨ

i of the corresponding Poisson equations:

Φj+1θ̃j = (gΦ
j+1 − PgΦ

j )θ̃j + {(PgΦ
j )θ̃j − (PgΦ

j+1θ̃j+1)}+ (PgΦ
j+1)(θ̃j+1 − θ̃j) ,

Ψj+1ŵj = (PgΨ
j+1 − PgΨ

j )ŵj + {(PgΨ
j )ŵj − (PgΨ

j+1ŵj+1)}+ (PgΨ
j+1)(ŵj+1 − ŵj) ,

Now we rewrite Hk as follows

Hn =

n∑
j=0

βjG
(1)
j+1:n{vj − vj+1}︸ ︷︷ ︸

H1

+

n∑
j=0

βjG
(1)
j+1:n{(g

Φ
j+1 − PgΦ

j )θ̃j + (gΨ
j+1 − PgΨ

j )ŵj}︸ ︷︷ ︸
H2

+

n∑
j=0

βjG
(1)
j+1:n{(Pg

Φ
j+1)(θ̃j+1 − θ̃j) + (PgΨ

j+1)(ŵj+1 − ŵj)}︸ ︷︷ ︸
H3

,



where we have set
vi = −Pgεθ

j + (PgΦ
j )θ̃j + (PgΨ

j )ŵj .

The bound for H1 follows from Lemma 21 and Lemma 31-(ii):

E1/p[∥H1∥p] ≲ p3P
(1)
0:n + p3βn +

n∑
j=0

β2
jP

(1)
j+1:np

3 ≲ p3P
(1)
0:n + p3βn . (105)

Next, we note that H2 is a sum of martingale difference sequence w.r.t. the filtration Fk = σ(Xs : s ≤ k). Thus, we get applying
Burkholders inequality (Osekowski 2012, Theorem 8.1), Proposition 4 and Lemma 31-(ii):

E2/p[∥H2∥p] ≲ p2
n∑
j=0

β2
jP

(1)
j+1:n{P

(1)
0:j + p6γj} ≲

p2

2b− 1
P

(1)
0:n + p6β

b+a
b

n . (106)

Finally, we derive a bound for H3 using Minkowski’s inequality

E1/p[∥H3∥p] ≲
n∑
j=0

p3βjγjP
(1)
j+1:n ≲ p3βa/bn . (107)

The proof follows from gathering the bounds (105), (106), (107).

E.4 Matrix concentration inequality
In this section we state the lemma that derives a McDiarmid-type concentration inequality for matrix-valued functions of an
UGE Markov chain.
Lemma 29. Assume B 1. Let {gi}ni=1 be a family of measurable functions from Z to Rd×d such that M = supZ∈Z ∥g(Z)∥ <∞
and π(gi) = 0 for any i ∈ {1, . . . , n}. Then, for any initial probability ξ on (Z,Z), n ∈ N, t ≥ 0, it holds

Pξ
(
∥
∑n

i=1
gi(Zi)∥ ≥ t

)
≤ 4 exp

{
− t2

80ndtmixM2

}
. (108)

Proof. The function φ(z1, . . . , zn) := ∥
∑n
i=1 gi(zi)∥ on Zn satisfies the bounded differences property:

|φ(z1, . . . , zn)− φ(z′1, . . . , z
′
n)| ≤

n∑
i=1

2M1{zi ̸= z′i} .

Hence, since (1/2) supz,z′∈Z ∥Ptmix(z, ·) − Ptmix(z′, ·)∥TV ≤ 1/4 by definition of tmix under B 1, applying (Paulin 2015,
Corollary 2.10), we get for t ≥ Eξ[∥

∑n
i=1 gi(Zi)∥],

Pξ
(
∥
∑n

i=1
gi(Zi)∥ ≥ t

)
≤ 2 exp

{
−
2(t− Eξ[∥

∑n
i=1 gi(Zi)∥])2

9(n · 4M2)tmix

}
= 2 exp

{
−
(t− Eξ[∥

∑n
i=1 gi(Zi)∥])2

18nM2tmix

}
.

It remains to upper bound Eξ[∥
∑n
i=1 gi(Zi)∥]. Note that

Eξ[∥
∑n

i=1
gi(Zi)∥2] ≤ Eξ[∥

∑n

i=1
gi(Zi)∥2Fr] =

∑n

i=1
Eξ[∥gi(Zi)∥2Fr] + 2

∑n−1

k=1

∑n−k

ℓ=1
Tr

(
Eξ[gk(Zk)⊤gk+ℓ(Zk+ℓ)]

)
,

and, using B 1 and π(gk+ℓ) = 0, we obtain

Tr

(
Eξ[gk(Zk)⊤gk+ℓ(Zk+ℓ)]

)
=

∫
Z

Tr

{
gk(z)

⊤ (
Pℓgk+ℓ(z)− π(gk+ℓ)

)}
ξPk(dz)

≤ 2dM2∆(Pℓ) .

Together with the definition of tmix, this implies∑n−1
k=1

∑n−k
ℓ=1 Tr

(
Eξ[gk(Zk)⊤gk+ℓ(Zk+ℓ)]

)
≤ 2ndM2

n−1∑
ℓ=1

∆(Pℓ) ≤ (8/3)dM2tmixn .

Combining the bounds above, we upper bound Eξ[∥
∑n
i=1 gi(Zi)∥] as

Eξ[∥
∑n

i=1
gi(Zi)∥] ≤

{
Eξ[∥

∑n

i=1
gi(Zi)∥2]

}1/2 ≤ 2
√
dnM

√
tmix =: vn .

Plugging this result in (108), we obtain that

Pξ
(
∥
∑n

i=1
gi(Zi)∥ ≥ t

)
≤

{
1, t < vn,

2 exp
{
− (t−vn)2

18v2n

}
, t ≥ vn .

(109)

Now it is easy to see that right-hand side of (109) is upper bounded by 4 exp{−t2/(20v2n)} for any t ≥ 0, and the statement
follows.



F Limit of matrix sums
Fix A,Σ ∈ Rd×d. Introduce the following notation:

Σn =

n∑
k=1

β2
kGk+1:nΣ(Gk+1:n)

⊤ ,

where βj = c0,β/(n+ k0)
b and Gm:k =

∏k
j=m(I− βjA).

Proposition 9. There exists a matrix Σ∞ such that

lim
n→∞

{β−1
n Σn} = Σ∞ .

Moreover, there exists a constant CΣ that depends on the problem parameters such that

∥β−1
n Σn −Σ∞∥ ≤ CΣ n

−b .

Proof. First, we define Σ(0), Σ(1) as a solution of the system of Ricatti equations

Σ(0) = β0{∆Σ(0) +Σ(0)∆⊤} − β2
0Σ , (110)

Σ(0) − 2Σ(1) = β0{∆Σ(0) +Σ(0)∆⊤ − (∆Σ(1) +Σ(1)∆⊤)}+ β2
0{∆Σ(0)∆⊤ − 2Σ}.

Our goal is to compute Σn. To derive a closed form solution, we observe that Σn can be iteratively computed as

Σn+1 = (I− βn+1∆)Σn(I− βn+1∆)⊤ + β2
n+1Σ (111)

Now we consider the diminishing step size rule with βn = β0n
−b for b ∈ ( 12 , 1] and β0 > 0. Note we have ignored k0 in the

step size selection as we focus on the asymptotic expression with n≫ 1. Arranging terms in (111) yields

Σn+1 −Σn = −β0(n+ 1)−b
{
∆Σn +Σn∆

⊤}+ β2
0(n+ 1)−2b

{
∆Σn∆

⊤ +Σ
}
. (112)

Set
Σn ≡ n−bΣ(0) + n−2bΣ(1) +Dn , (113)

where Dn is a residual term whose order will be determined later. Note that for any b > 0, it holds

(n+ 1)−b = n−b − bn−1−b +
b(b+ 1)

2
n−2−b +O(n−3−b) ,

We focus on the case b = 1. Applying the above with b = 1, we observe that

Σn+1 −Σn = {(n+ 1)−1 − n−1}Σ(0) + {(n+ 1)−2 − n−2}Σ(1) +Dn+1 −Dn

= {−n−2 + n−3}Σ(0) − 2n−3Σ(1) +Dn+1 −Dn +O(n−4) .
(114)

On the other hand, observe that the right hand side of (112) can be written as follows

− β0(n+ 1)−1{∆Σn +Σn∆
⊤} = −β0(n−1 − n−2 +O(n−3)){∆Σn +Σn∆

⊤}
= −β0(n−1 − n−2)(n−1{∆Σ(0) +Σ(0)∆⊤}+ n−2{∆Σ(1) +Σ(1)∆⊤}) +O(n−4 + n−1∥Dn∥)

We also have

β2
0(n+ 1)−2{∆Σn∆

⊤ +Σ} = β2
0(n

−2 − 2n−3){∆Σn∆
⊤ +Σ}+O(n−4)

= β2
0(n

−2 − 2n−3){n−1∆Σ(0)∆⊤ + n−2∆Σ(1)∆⊤ +Σ}+O(n−4 + n−2∥Dn∥)

Matching terms of the same order with (114) shows that

(n−2) Σ(0)= β0{∆Σ(0) +Σ(0)∆⊤} − β2
0Σ

(n−3) Σ(0) − 2Σ(1)= β0{∆Σ(0) +Σ(0)∆⊤ − (∆Σ(1) +Σ(1)∆⊤)}+ β2
0{∆Σ(0)∆⊤ − 2Σ}.

We observe that the remaining terms are all in the order of at most O(n−4). As such, we also conclude that the residual term in
(113) is of the order at most Dn = O(n−3). In particular, solving the system of Riccati equations (110) yield Σ(0),Σ(1), i.e. the
asymptotic expression for Σn is

n∑
k=1

β2
kGk+1:nΣ(Gk+1:n)

⊤ = n−1Σ(0) + n−2Σ(1) +O(n−3)



Note that as the above analysis assumes the asymptotic case when n≫ 1, it actually covers the case when βn = β0(n+ n0)
−1.

The similar computations with b ∈ (1/2, 1) imply that

Σn = n−bΣ(0) + n−2bΣ(1) +O(n−1−2b) .

Therefore, setting Σ∞ = Σ(0)/β0 we get

∥β−1
n Σn −Σ∞∥ ≤ ∥Σ(0)∥ + ∥Σ(1)∥

β0
Cb n

−b = CΣ n
−b ,

where Cb depends only on b.

The next lemma controls the minimal eigenvalue of Σn:
Lemma 30. Under the assumptions of Proposition 9 it holds for all nb ≥ 2CΣ

λmin(Σ∞) that

λmin(β
−1
n Σn) ≥

λmin(Σ∞)

2
.

Proof. First, we use Proposition 9 and obtain

∥β−1
n Σn −Σlast

∞ ∥ ≤ CΣ

nb
.

Hence, Lidskiy’s inequality implies that

λmin(β
−1
n Σn) = λmin(β

−1
n Σn −Σ∞ +Σ∞) ≥ λmin(Σ∞)− ∥β−1

n Σn −Σ∞∥ ≥ λmin(Σ∞)

2
.

G Applications
In this section, we verify that the GTD and TDC algorithms satisfy A4. Verification of the remaining assumptions is straightfor-
ward and thus omitted. We concentrate on the Markovian setting, as it is more prevalent in practical applications. Recall that the
behavior policy π generates a trajectory {(sk, ak, rk)}∞k=0 , where ak ∼ π̄(· | sk), sk+1 ∼ P(·|sk, ak) for all k ≥ 0 and the
corresponding Markov kernel Pπ satisfies TD 3.

Generalized Temporal Difference learning. The GTD algorithm was first introduced in (Sutton, Maei, and Szepesvári 2008).
Recall its update rule: {

θk+1 = θk + βk(φk − λφk+1)(φk)
⊤wk , θ0 ∈ Rd ,

wk+1 = wk + γk(δkφk − wk) , w0 = 0 .

The above recursion is a special case of our linear two-timescale SA in (6), (7) with the notations:

b1 = 0 , A11 = 0 , A12 = −E[(φk − λφk+1)φ
⊤
k ] ,

b2 = E[φkrk] , A21 = −E[φk(λφk+1 − φk)
⊤] , A22 = Id ,

Vk+1 =
(
(φk − λφk+1)φ

⊤
k − E[(φk − λφk+1)φ

⊤
k ]
)
wk,

Wk+1 = φkrk − E[φkrk] +
(
(φk − λφk+1)φ

⊤
k − E[(φk − λφk+1)φ

⊤
k ]
)
θk ,

where the above expectations are taken with respect to the randomness of the policy π̄. The noise boundedness follows from TD
2, while A4 holds since A22 = I and ∆ = E[(φk − λφk+1)φ

⊤
k ]E[φk(φk − λφk+1)

⊤] is positive definite.

Temporal-difference learning with gradient correction. The TDC algorithm was first introduced in (Sutton et al. 2009). Its
update rule is: {

θk+1 = θk + βkδkφk − βkγφk+1(φ
⊤
k wk) ,

wk+1 = wk + γk(δk − φ⊤
k wk)φk .

Reformulating these updates as an instance of (6)–(7) yields:

b1 = E[φkrk], A11 = E[φk(φk − λφk+1)
⊤)], A12 = E[λφk+1φ

⊤
k ],

b2 = E[φkrk], A21 = E[φk(φk − λφk+1)
⊤)], A22 = E[φkφ⊤

k ],

Vk+1 = {E[φk(φk − λφk+1)
⊤)]− φk(φk − λφk+1)

⊤}θk + {E[λφk+1φ
⊤
k ]− λφk+1φ

⊤
k }wk,

Wk+1 = {E[φk(φk − λφk+1)
⊤)]− φk(φk − λφk+1)

⊤}θk + {E[φkφ⊤
k ]− φkφ

⊤
k }wk .

The relations A11 = A21 and A12 = A22 −A⊤
11 imply that ∆ is positive definite:

∆ = A11 −A12A
−1
22 A21 = A11 − (A22 −A⊤

11)A
−1
22 A11 = A⊤

11A
−1
22 A11 .



H Technical lemmas
We begin this section with technical lemmas that allows to upper bound the sums of the form

k∑
j=1

αqj

k∏
ℓ=j+1

(1− αℓb) .

Lemma 31. The following statement holds:

(i) Let b > 0 and (αk)k≥0 be a non-increasing sequence such that α0 ≤ 1/b. Then

k∑
j=1

αj

k∏
l=j+1

(1− αlb) =
1

b

{
1−

k∏
l=1

(1− αlb)

}
.

(ii) Let b > 0 and αk = c0
(k+k0)γ

, γ ∈ (0, 1), such that c0 ≤ 1/b and k1−γ0 ≥ 8γ
bc0

. Then for any q ∈ (1, 4] it holds that

k∑
j=1

αqj

k∏
ℓ=j+1

(1− αℓb) ≤
6

b
αq−1
k .

Moreover, for any real-valued sequence (bj)j≥0 it holds that{ k∑
j=1

bjα
q
j

k∏
ℓ=j+1

(1− αℓb)

}2

≤ 6

b
αq−1
k

k∑
j=1

b2jα
q
j

k∏
ℓ=j+1

(1− αℓb) . (113)

(iii) Let b, c0, k0 > 0 and αℓ = c0(ℓ+ k0)
−γ for γ ∈ (1/2, 1) and ℓ ∈ N. Assume that bc0 < 1 and k1−γ0 ≥ 1

bc0
. Then, for any

ℓ, n ∈ N, ℓ ≤ n, it holds that
n∑
k=ℓ

αℓ

k∏
j=ℓ+1

(1− bαj) ≤ c0 +
1

b(1− γ)
.

Proof. Lemma 31-(i) follows from Lemma 24 in (Durmus et al. 2021b). The first part of Lemma 31-(ii) follows from Lemma 33
in (Samsonov et al. 2025) and the second one (113) is a consequence of Jensen’s inequality applied to f(x) = x2. Lemma 31-(iii)
is elementary.

Lemma 32. Assume A5 or B 2. Then it holds for all j, k ∈ N that

(i)
k∑

i=j+1

γjP
(1)
i+1:kP

(2)
j+1:i−1 ≤ CPγ P

(1)
j+1:k , where CPγ =

24

a22(1− c0,βa∆
2 )

.

(ii)

k∑
i=j+1

βjP
(1)
i+1:kP

(2)
j+1:i−1 ≤ CPβ γ

(b−a)/a
j P

(1)
j+1:k , where CPβ =

24c0,β

a22c
b/a
0,γ (1−

c0,βa∆
2 )

.

Proof. First, we prove (i). Since the step size was chosen such that βk/γk ≤ rstep ≤ a22/(2a∆) we have(
1− a22

2 γℓ
)(

1− a∆
2 βℓ

) ≤
(
1− a22

4
γℓ

)
and

P
(2)
j+1:i−1

P
(1)
j+1:i−1

≤
i−1∏
ℓ=j+1

(1− a22
4
γℓ) .

Now proposition follows from Lemma 31-(iii):

k∑
i=j+1

γjP
(1)
i+1:kP

(2)
j+1:i−1 = (1− βja∆

2
)−1P

(1)
j+1:k

k∑
i=j+1

γj
P

(2)
j+1:i−1

P
(1)
j+1:i−1

≤ (1− β0a∆
2

)−1P
(1)
j+1:k

k∑
i=j+1

γj

i−1∏
ℓ=j+1

(1− a22
4
γℓ)

≤ 24

a22(1− c0,βa∆
2 )

P
(1)
j+1:k = CPγ P

(1)
j+1:k .



To proceed with (ii), we note that βj =
c0,β

c
b/a
0,γ

γ
1+(b−a)/a
j . Hence, we get using the technique similar to Lemma 32 combined with

Lemma 31-(iii):

k∑
i=j+1

βjP
(1)
i+1:kP

(2)
j+1:i−1 = (1− βja∆

2
)−1P

(1)
j+1:k

k∑
i=j+1

βj
P

(2)
j+1:i−1

P
(1)
j+1:i−1

≤ c0,β

c
b/a
0,γ (1−

β0a∆
2 )

P
(1)
j+1:k

k∑
i=j+1

γ
b/a
j

i−1∏
ℓ=j+1

(1− a22
4
γℓ)

≤ 24c0,β

a22c
b/a
0,γ (1−

c0,βa∆
2 )

γ
(b−a)/a
j .

Lemma 33 (Lemma 36 in (Samsonov et al. 2025)). For any A > 0, any 1 ≤ i ≤ n− 1, and γ ∈ (1/2, 1) it holds

n−1∑
j=i

exp

{
−A(j1−γ − i1−γ)

}
≤

{
1 + exp

{
1

1−γ
}

1
A1/(1−γ)(1−γ)Γ(

1
1−γ ) , if Ai1−γ ≤ 1

1−γ ;

1 + 1
A(1−γ)2 i

γ , if Ai1−γ > 1
1−γ .
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