
3rd Symposium on Advances in Approximate Bayesian Inference, 2020 1–17

Expressive yet Tractable Bayesian Deep Learning via
Subnetwork Inference

Erik Daxberger ead54@cam.ac.uk
University of Cambridge & Max Planck Institute for Intelligent Systems, Tübingen

Eric Nalisnick∗ e.t.nalisnick@uva.nl
University of Amsterdam

James Urquhart Allingham∗ jua23@cam.ac.uk
University of Cambridge

Javier Antorán∗ ja666@cam.ac.uk
University of Cambridge

José Miguel Hernández-Lobato jmh233@cam.ac.uk

University of Cambridge & Microsoft Research & The Alan Turing Institute

Abstract

Scaling Bayesian inference to the large parameter spaces of deep neural networks requires
restrictive approximations. We propose performing inference over only a small subset of
the model parameters while keeping all others as point estimates. This enables us to use
expressive posterior approximations that are intractable in the full model. In particular,
we develop a practical and scalable Bayesian deep learning method that first trains a
point estimate, and then infers a full covariance Gaussian posterior approximation over a
subnetwork. We propose a subnetwork selection procedure which aims to optimally preserve
posterior uncertainty. Empirical studies demonstrate the effectiveness of our approach.

1. Subnetwork Posterior Approximation

Deep neural networks (DNNs) still suffer from critical shortcomings that make them unfit for
important applications. For instance, DNNs tend to be poorly calibrated and overconfident in
their predictions, especially when there is a shift in the train and test distributions (Nguyen
et al., 2015; Guo et al., 2017). To reliably inform decision making, DNNs must be able to
robustly quantify the uncertainty in their predictions, which is particularly important in
safety-critical areas such as healthcare or autonomous driving (Amodei et al., 2016).

Bayesian modeling (Ghahramani, 2015) presents a principled way to capture model
uncertainty, i.e., uncertainty about the choice of weights W which arises due to multiple
plausible explanations of the training data {y,X}. Here, y is the target (e.g. classification
label) and X are the features. A prior distribution p(W) is specified over the Bayesian neural
network (BNN) weights. We wish to infer their full posterior distribution p(W|y,X) ∝
p(y|X,W) p(W). To make predictions, we then estimate the posterior predictive distribution
that averages the network’s predictions across all possible settings of the weights, weighted
by their posterior probability, i.e. p(y∗|X∗,y,X) =

∫
W p(y∗|X∗,W)p(W|y,X)dW.

∗ equal contribution

© E. Daxberger, E. Nalisnick, J.U. Allingham, J. Antorán & J.M. Hernández-Lobato.

Subnetwork Inference for Bayesian Deep Learning

x1 x2

h2h1 h3

y

0.50.5

0.30.3 0.90.90.10.1 0.30.3

0.50.5

0.70.7
0.50.5

0.10.1

(a) Point Estimation

x1 x2

h2h1 h3

y

0.50.5

0.30.3 0.90.90.10.1 0.30.3

0.50.5

0.70.7
0.50.5

0.10.1

(b) Subnet Selection

x1 x2

h2h1 h3

y

0.50.5
0.10.1 0.30.3

0.70.7

(c) Bayes. Inference

x1 x2

h2h1 h3

y

0.50.5
0.10.1 0.30.3

0.70.7

(d) Prediction

Figure 1: Schematic illustration of our proposed approach. (a) We train a neural network
using standard techniques to obtain a point estimate of the weights. (b) We identify
a small subnetwork within the NN. (c) We estimate a posterior distribution over the
selected subnetwork using Bayesian inference techniques. (d) We make predictions
using the full network comprising of both Bayesian and deterministic weights.

Unfortunately, due to the size of modern deep neural networks, it is not only intractable to
infer the exact posterior distribution p(W|y,X), but it is even computationally challenging
to properly approximate it. As a consequence, crude posterior approximations such as
complete factorization are commonly employed (Blundell et al., 2015; Gal and Ghahramani,
2016; Hernández-Lobato and Adams, 2015; Kingma et al., 2015; Khan et al., 2018; Osawa
et al., 2019), i.e. p(W|y,X) ≈ ∏D

d=1 q(wd) where wd denotes the d-th weight in the D-
dimensional neural network weight vector W ∈ RD (the concatenation and flattening of all
layers’ weight matrices). In practice, this severely limits the expressiveness of the inferred
posterior and thus deteriorates the quality of the induced predictive uncertainty estimates
(Ovadia et al., 2019; Fort et al., 2019; Foong et al., 2019a,b; Ashukha et al., 2020).

In this work, we question the implicit assumption that a good posterior approximation
needs to include all model parameters. Instead, we aim to perform inference only over a
small subset of the model weights. This approach is well-motivated for two reasons:

1. Overparameterization: Maddox et al. (2020) have shown that, in the neighborhood of
local optima, there are many directions that leave the NN’s predictions unchanged. Moreover,
NNs can be heavily pruned without sacrificing test set accuracy (Frankle and Carbin, 2019).
This suggests that the majority of a NN’s predictive power is isolated to a small subnetwork.

2. Inference over submodels: Previous work1 has provided evidence that inference can be
effective even when not done over the full parameter space. Izmailov et al. (2019) performed
inference over a low-dimensional projection of the weights. Neural-linear models, which
give a Bayesian treatment to only the last layer of a DNN, have empirically been shown to
perform well (Riquelme et al., 2018; Ober and Rasmussen, 2019; Kristiadi et al., 2020).

We thus combine these ideas, making the following two-step approximation of the posterior:

p(W|y,X) ≈ p(WS |y,X)
∏
r

δ(wr − w∗r) ≈ q(WS)
∏
r

δ(wr − w∗r) . (1)

1. See Appendix A for a more thorough discussion of related work.

2

Subnetwork Inference for Bayesian Deep Learning

The first approximation in Eq. (1) decomposes the full neural network posterior p(W|y,X)
into a posterior p(WS |y,X) over the subnetwork WS and delta functions δ(wr − w∗r) over
all remaining weights {wr}r, keeping them deterministic at fixed values w∗r ∈ R. This can
be viewed as pruning the variances of the weights {wr}r to zero, which is in contrast to
ordinary weight pruning methods that set the weights {wr}r themselves to zero (Frankle and
Carbin, 2019). The second approximation in Eq. (1) introduces the approximate distribution
q(WS), because exact posterior inference over the subnetwork WS is still intractable. Yet,
as the subnetwork is much smaller than the full network, we can afford to make q(WS)
expressive and able to capture rich dependencies across the weights within the subnetwork.

In this paper, we show both theoretically and empirically that the full neural network
posterior can be well represented by a subnetwork’s posterior as defined in Eq. (1). As
a result, expressive posterior inference over a subnetwork results in better uncertainty
calibration and robustness to distribution shift than crude inference over the full network.

2. Subnetwork Inference via Laplace Approximation

As a concrete instantiation of the described subnetwork inference framework, we now describe
a practical and scalable Bayesian deep learning method. To this end, we use the (linearized)
Laplace approximation (MacKay, 1992) for post-hoc inference of a full-covariance Gaussian
posterior over a subnetwork within a pre-trained, point-estimated neural network.

Step #1: Point Estimation. The first step of the proposed procedure is to train a neural
network to obtain a point estimate of the weights, denoted WMAP . This point estimate
should respect our Bayesian model, and therefore we optimize the maximum a-posteriori
(MAP) objective, i.e. WMAP = arg maxW [log p(y|X,W) + log p(W)]. This can be done
using standard stochastic gradient-based optimization methods commonly-used in modern
deep learning (Goodfellow et al., 2016). This step is illustrated in Fig. 1 (a).

Step #2: Subnetwork Selection. The second step is to identify a small subnetwork
WS (illustrated in Fig. 1 (b)). Ideally, we would like to find the subnetwork whose posterior
is ‘closest’ to the full-network posterior. To this end, we first formally characterize the
discrepancy between the posterior distributions over a subnetwork and the full network in
terms of their 2-Wasserstein distance. We then derive a principled strategy that, under certain
conditions, minimizes this discrepancy: 1) Estimate a fully-factorized posterior distribution
over all weights in the full network (e.g. using a diagonal Laplace approximation) and 2)
define the subnetwork to comprise of the weights with the largest marginal variances. The
full details of this procedure are described in Appendix B. All other weights not belonging
to that subnetwork are then assigned fixed values: the MAP estimates obtained in Step #1.

Step #3: Bayesian Inference. Given the subnetwork point estimate W S
MAP , we use

the Laplace approximation to infer a full-covariance Gaussian posterior distribution over
the subnetwork WS , i.e. p(WS |y,X) ≈ q(WS) = N

(
WS ;W S

MAP , H
−1
)
. Here, the

posterior covariance matrix H−1 ∈ RD×D corresponds to the inverse of the average Hessian
of the negative log posterior, i.e. H = NE

[
−∂2 log p(y|X,W)/∂W 2

]
+ λI, where the

expectation is w.r.t. the data generating distribution, and λ is the precision of a zero-mean
factorized Gaussian prior p(W) = N (W; 0, λ−1I). In practice, we approximate the Hessian

3

Subnetwork Inference for Bayesian Deep Learning

H with the generalized Gauss-Newton (GGN) matrix H̃ (Schraudolph, 2002), i.e.

H̃ =

N∑
n=1

J>nHnJn + λI, with Jn =
∂f(xn,W)

∂W
and Hn =

∂2L(yn,f(xn,W))

∂2f(xn,W)
(2)

where Jn ∈ RO×D is the Jacobian of the neural network features f(xn,W) ∈ RO w.r.t.
the weights W , and Hn ∈ RO×O is the Hessian of the loss L(yn,f(xn,W)) w.r.t. the
features f(xn,W). The GGN H̃ has clear practical advantages over the Hessian H; see
Martens and Sutskever (2011) and Martens (2016). Using the Laplace approximation with
the GGN-approximation to the Hessian can be viewed as an implicit local linearization of
the underlying neural network f(x,W) at its MAP estimate WMAP , i.e.

fMAP
lin (x,W) = f(x,WMAP) + JWMAP

(x)(W −WMAP) (3)

where JWMAP
(x) = ∂f(x,WMAP)/∂WMAP ∈ RO×D (Immer et al., 2020). Note that the

model in Eq. (3) is linear in W , as only the term JWMAP
(x)W depends linearly on W ,

while the other terms are constant w.r.t. W and can thus be subsumed into an additive
bias term (Khan et al., 2019). The GGN approximation thus locally turns the underlying
probabilistic model from a Bayesian neural network into a (generalized) linear model, with
basis function expansion JWMAP

(x) of covariate x (Immer et al., 2020). Put differently,
linearized Laplace in the neural network f(x,W) is equivalent to ordinary Laplace in the
linear model fMAP

lin (x,W) in Eq. (3), as the GGN H̃ corresponding to f(x,W) in Eq. (2)
is equivalent to the Hessian H corresponding to fMAP

lin (x,W) in Eq. (3) (Khan et al., 2019).
This is a useful property that allows us to derive a principled subnetwork selection strategy
in Appendix B. This step is illustrated in Fig. 1 (c). We emphasize that this whole procedure
(i.e. Steps #1-#3) is a perfectly valid mixed inference strategy, performing full Laplace
inference over the selected subnetwork and MAP inference over all remaining weights.

Step #4: Prediction. Given the linearized Laplace approximation over the subnetwork
WS , i.e. q(WS) = N (WS ;W S

MAP , H̃
−1), we can then compute the posterior predictive

distribution to make predictions (illustrated in Fig. 1 (d)). While, traditionally, one would
compute the predictive distribution using the original Bayesian neural network likelihood,
i.e. p(y|X,W) = p(y|f(x,W)), Immer et al. (2020) recently suggested that, since inference
was (implicitly) done in the GGN-linearized model, it is more principled to instead predict
using the linearized likelihood Eq. (3), i.e. p(y|X,W) = p(y|fMAP

lin (x,W)). This provides
a formal justification for the empirical superiority of this approach observed previously
(Lawrence, 2001; Foong et al., 2019b). We thus obtain the linearized predictive distribution

p(y∗|X∗,y,X) ≈
∫
W
p(y∗|fMAP

lin (X∗,W))N (WS ;W S
MAP , H̃

−1)
∏
r

δ(wr−w∗r) dW . (4)

There are two ways to compute Eq. (4): Firstly, via a Monte Carlo approximation

p(y∗|X∗,y,X) ' 1
M

∑M
m=1 p(y

∗|fMAP
lin (X∗, W̃m)) by sampling W̃m from N (W S

MAP , H̃
−1)

and
∏

r δ(wr−w∗r), the latter of which is trivial. Secondly, due to linearity of p(y∗|fMAP
lin (X∗,W)),

there are closed-form expressions which are exact for Gaussian likelihoods (i.e. regression)
and approximate for categorical ones (i.e. classification) (Bishop, 2006; Gibbs, 1998).

4

Subnetwork Inference for Bayesian Deep Learning

−2

0

2

Full Cov (2600) Wass 50% (1300) Wass 3% (78) Wass 1% (26) MAP (0)

−2 0 2

−2

0

2

Diag (2600)

−2 0 2

Rand 50% (1300)

−2 0 2

Rand 3% (78)

−2 0 2

Rand 1% (26)

−2 0 2

Final layer (50)

Figure 2: Predictive distributions (mean ± std) for 1D regression. In brackets: number of
parameters (out of 2600) over which inference was done. Wasserstein subnetwork
inference maintains richer predictive uncertainties at smaller parameter counts.

3. Empirical Analysis

We now empirically assess the effectiveness of subnetwork inference compared to point-
estimated NNs and methods that do less expressive inference over the full network. We
consider two tasks: 1) small-scale synthetic regression and 2) large-scale image classification.
In Appendix C, we report additional empirical results on medium-scale tabular regression.

3.1. How does subnetwork inference retain posterior predictive uncertainty?

We first assess how the predictive distribution of a full-covariance Gaussian posterior over
a selected subnetwork qualitatively compares to that obtained from 1) a full-covariance
Gaussian over the full network (Full Cov), 2) a factorised Gaussian posterior over the full
network (Diag), 3) a full-covariance Gaussian over only the (Final layer) of the network
(Kristiadi et al., 2020), and 4) a point estimate (MAP). For subnetwork inference, we consider
both Wasserstein (Wass) (as described in Appendix B) and uniform random subnetwork
selection (Rand) to obtain subnetworks that comprise of only 50%, 3% and 1% of the
model parameters. Our NN consists of 2 ReLU hidden layers with 50 hidden units each.
We use a homoscedastic Gaussian likelihood with noise variance optimised via maximum
likelihood. Using the linearized predictive in Eq. (4), all approaches share their predictive
mean, allowing us to better compare their uncertainties. All methods share a prior precision
of λ = 3. We use a synthetic 1D regression task with two separated clusters of inputs
(Antorán et al., 2020), allowing us to probe for ‘in-between’ uncertainty (Foong et al., 2019b).
Results are shown in Fig. 2. Subnetwork inference preserves more of the uncertainty of full
network inference than diagonal Gaussian or final layer inference while doing inference over
fewer weights. By capturing weight correlations, subnetwork inference retains uncertainty
in between clusters of data. This is true for both random and Wasserstein subnetwork

5

Subnetwork Inference for Bayesian Deep Learning

0.00

0.25

0.50

0.75
er

ro
r

Rotated MNIST

Ours
Diag-Lap
Dropout

Ensemble
MAP
SWAG

0.2

0.4

Corrupted CIFAR10

0 30 60 90 120 150 180

rotation (◦)

−7.5

−5.0

−2.5

0.0

LL

0 1 2 3 4 5

corruption

−3

−2

−1

Figure 3: Results on rotated MNIST (left) and corrupted CIFAR (right), showing the error
(top) and log-likelihood (bottom) (mean ± std across three seeds). Subnetwork
inference retains better uncertainty calibration and robustness to distribution shift
than MAP-estimated networks and other Bayesian deep learning methods.

selection. However, the latter preserves more uncertainty with smaller subnetworks. This
suggests that expressive inference over a carefully selected subnetwork retains
more predictive uncertainty than crude approximations over the full network.

3.2. How robust is our approach to distribution shift in image classification?

We assess the robustness of large CNNs with subnetwork inference to distribution shift on
image classification tasks compared to the following baselines: MAP-estimated networks,
Bayesian deep learning methods that do less expressive inference over the full network: MC
Dropout (Gal and Ghahramani, 2016), diagonal Laplace (both of which assume factorisation
of the weight posterior), and SWAG (Maddox et al., 2019) (which assumes a diagonal plus
low-rank posterior). We also assess deep ensembles (Lakshminarayanan et al., 2017), which
is considered state-of-the-art for uncertainty quantification in deep learning (Ovadia et al.,
2019; Ashukha et al., 2020). For all approaches, we use a ResNet-18 (He et al., 2016) with
11,168,000 parameters. For our method, we retain a subnetwork with only 42,438 of them
(i.e. 0.38%). See Appendices D and E for more experimental details and results, respectively.

Following Ovadia et al. (2019); Antorán et al. (2020), we perform the following two
benchmark experiments: 1) We train all methods on MNIST and evaluate their predictive
distributions on increasingly rotated digits (rotated MNIST). 2) We train all methods
on CIFAR10 and evaluate on data subject to 16 different corruptions with 5 levels of
intensity each (Hendrycks and Dietterich, 2019) (corrupted CIFAR). Results are shown
in Fig. 3. While all methods perform well on the original test sets, their accuracy degrades
quickly for increasing levels of rotation/corruption. Our approach matches a MAP-estimated
network in terms of predictive error as local linearization makes their predictions the same.
Ensembles and SWAG are the most accurate, and, out of our baselines, perform best in
terms of log-likelihood. Even so, subnetwork inference differentiates itself by being the least

6

Subnetwork Inference for Bayesian Deep Learning

overconfident, outperforming all baselines in terms of log-likelihood at all rotation/corruption
levels. Subnetwork inference makes accurate predictions in-distribution while assigning higher
uncertainty than the baselines to out-of-distribution inputs. These results suggest that
subnetwork inference results in better uncertainty calibration and robustness
to distribution shift than other popular uncertainty quantification methods.

4. Conclusion

We develop a practical and scalable method for expressive yet tractable Bayesian deep
learning. We approximate the posterior over a subnetwork within a NN while keeping all
other weights deterministic. Computational cost is decoupled from network size, allowing us
to scale expressive approximations, such as full-covariance Gaussians, to modern DNNs. Our
method can be applied post-hoc to any pre-trained model, making it particularly attractive
for practical use. Our experiments suggest that subnetwork inference 1) retains more
predictive uncertainty than crude approximations over the full model, and 2) is competitive
with state-of-the-art uncertainty quantification methods on real-world scale problems.

Acknowledgments

We thank Matthias Bauer and Andrew Y. K. Foong for helpful discussions and feedback.
ED acknowledges funding from the EPSRC and Qualcomm. JA acknowledges support
from Microsoft Research, through its PhD Scholarship Programme, and from the EPSRC.
JUA acknowledges funding from the EPSRC and the Michael E. Fisher Studentship in
Machine Learning. This work has been performed using resources provided by the Cam-
bridge Tier-2 system operated by the University of Cambridge Research Computing Service
(http://www.hpc.cam.ac.uk) funded by EPSRC Tier-2 capital grant EP/P020259/1.

References

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan
Mané. Concrete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

Javier Antorán, James Urquhart Allingham, and José Miguel Hernández-Lobato. Depth
uncertainty in neural networks, 2020.

Arsenii Ashukha, Alexander Lyzhov, Dmitry Molchanov, and Dmitry Vetrov. Pitfalls of
in-domain uncertainty estimation and ensembling in deep learning. In ICLR, 2020.

Michael Betancourt. The fundamental incompatibility of scalable hamiltonian monte carlo
and naive data subsampling. volume 37 of Proceedings of Machine Learning Research,
pages 533–540, Lille, France, 07–09 Jul 2015. PMLR. URL http://proceedings.mlr.

press/v37/betancourt15.html.

Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight
Uncertainty in Neural Networks. In Proceedings of The 32nd International Conference on
Machine Learning (ICML), pages 1613–1622, 2015.

7

http://proceedings.mlr.press/v37/betancourt15.html
http://proceedings.mlr.press/v37/betancourt15.html

Subnetwork Inference for Bayesian Deep Learning

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.

ics.uci.edu/ml.

Michael W Dusenberry, Ghassen Jerfel, Yeming Wen, Yi-an Ma, Jasper Snoek, Katherine
Heller, Balaji Lakshminarayanan, and Dustin Tran. Efficient and scalable bayesian neural
nets with rank-1 factors. arXiv preprint arXiv:2005.07186, 2020.

Angelos Filos, Sebastian Farquhar, Aidan N Gomez, Tim GJ Rudner, Zachary Kenton,
Lewis Smith, Milad Alizadeh, Arnoud de Kroon, and Yarin Gal. Benchmarking bayesian
deep learning with diabetic retinopathy diagnosis. Preprint, 2019.

Andrew YK Foong, David R Burt, Yingzhen Li, and Richard E Turner. On the expressiveness
of approximate inference in bayesian neural networks. arXiv, pages arXiv–1909, 2019a.

Andrew YK Foong, Yingzhen Li, José Miguel Hernández-Lobato, and Richard E Turner.
In-between uncertainty in bayesian neural networks. ICML Workshop on Uncertainty and
Robustness in Deep Learning, 2019b.

Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. Deep ensembles: A loss landscape
perspective. arXiv preprint arXiv:1912.02757, 2019.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse,
trainable neural networks. In International Conference on Learning Representations, 2019.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In international conference on machine learning,
pages 1050–1059, 2016.

Adrià Garriga-Alonso, Carl Edward Rasmussen, and Laurence Aitchison. Deep convolu-
tional networks as shallow gaussian processes. In International Conference on Learning
Representations, 2018.

Zoubin Ghahramani. Probabilistic machine learning and artificial intelligence. Nature, 521
(7553):452–459, 2015.

Mark N Gibbs. Bayesian Gaussian processes for regression and classification. PhD thesis,
Citeseer, 1998.

Clark R Givens, Rae Michael Shortt, et al. A class of wasserstein metrics for probability
distributions. The Michigan Mathematical Journal, 31(2):231–240, 1984.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning,
volume 1. MIT Press, 2016.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pages 1321–1330. JMLR. org, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

8

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Subnetwork Inference for Bayesian Deep Learning

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. arXiv preprint arXiv:1903.12261, 2019.

José Miguel Hernández-Lobato and Ryan Adams. Probabilistic backpropagation for scalable
learning of bayesian neural networks. In International Conference on Machine Learning,
pages 1861–1869, 2015.

Alexander Immer, Maciej Korzepa, and Matthias Bauer. Improving predictions of bayesian
neural networks via local linearization. ICML Workshop on Uncertainty and Robustness
in Deep Learning, 2020.

Pavel Izmailov, Wesley J Maddox, Polina Kirichenko, Timur Garipov, Dmitry Vetrov, and
Andrew Gordon Wilson. Subspace inference for bayesian deep learning. In 35th Conference
on Uncertainty in Artificial Intelligence, UAI 2019, 2019.

Mohammad Emtiyaz Khan, Didrik Nielsen, Voot Tangkaratt, Wu Lin, Yarin Gal, and Akash
Srivastava. Fast and scalable bayesian deep learning by weight-perturbation in adam.
arXiv preprint arXiv:1806.04854, 2018.

Mohammad Emtiyaz E Khan, Alexander Immer, Ehsan Abedi, and Maciej Korzepa. Ap-
proximate inference turns deep networks into gaussian processes. In Advances in neural
information processing systems, pages 3094–3104, 2019.

Durk P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local
reparameterization trick. In Advances in neural information processing systems, pages
2575–2583, 2015.

Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. Being bayesian, even just a bit,
fixes overconfidence in relu networks. arXiv preprint arXiv:2002.10118, 2020.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable
predictive uncertainty estimation using deep ensembles. In Advances in Neural Information
Processing Systems, pages 6402–6413, 2017.

Neil David Lawrence. Variational inference in probabilistic models. PhD thesis, University
of Cambridge, 2001.

Christos Louizos and Max Welling. Structured and efficient variational deep learning with
matrix gaussian posteriors. In International Conference on Machine Learning, pages
1708–1716, 2016.

David JC MacKay. A practical bayesian framework for backpropagation networks. Neural
computation, 4(3):448–472, 1992.

Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P Vetrov, and Andrew Gordon
Wilson. A simple baseline for bayesian uncertainty in deep learning. In Advances in
Neural Information Processing Systems, pages 13132–13143, 2019.

Wesley J Maddox, Gregory Benton, and Andrew Gordon Wilson. Rethinking parameter count-
ing in deep models: Effective dimensionality revisited. arXiv preprint arXiv:2003.02139,
2020.

9

Subnetwork Inference for Bayesian Deep Learning

James Martens. Second-order optimization for neural networks. University of Toronto
(Canada), 2016.

James Martens and Ilya Sutskever. Learning recurrent neural networks with hessian-free
optimization. In Proceedings of the 28th international conference on machine learning
(ICML-11), pages 1033–1040. Citeseer, 2011.

Alexander Graeme de Garis Matthews. Scalable Gaussian process inference using variational
methods. PhD thesis, University of Cambridge, 2017.

Aaron Mishkin, Frederik Kunstner, Didrik Nielsen, Mark Schmidt, and Mohammad Emtiyaz
Khan. Slang: Fast structured covariance approximations for bayesian deep learning with
natural gradient. In Advances in Neural Information Processing Systems, pages 6245–6255,
2018.

Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and Balaji Lakshmi-
narayanan. Do Deep Generative Models Know What They Don’t Know? In International
Conference on Learning Representations (ICLR), 2019.

Radford M. Neal. Bayesian Learning for Neural Networks. PhD thesis, CAN, 1995.
AAINN02676.

John Ashworth Nelder and R Jacob Baker. Generalized Linear Models. Wiley Online Library,
1972.

Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 427–436, 2015.

Sebastian W Ober and Carl Edward Rasmussen. Benchmarking the neural linear model for
regression. arXiv preprint arXiv:1912.08416, 2019.

Kazuki Osawa, Siddharth Swaroop, Anirudh Jain, Runa Eschenhagen, Richard E Turner, Rio
Yokota, and Mohammad Emtiyaz Khan. Practical deep learning with Bayesian principles.
arXiv preprint arXiv:1906.02506, 2019.

Yaniv Ovadia, Emily Fertig, Balaji Lakshminarayanan, Sebastian Nowozin, D Sculley, Joshua
Dillon, Jie Ren, Zachary Nado, and Jasper Snoek. Can you trust your model’s uncertainty?
evaluating predictive uncertainty under dataset shift. In Advances in Neural Information
Processing Systems, pages 13969–13980, 2019.

Robert Pinsler, Jonathan Gordon, Eric Nalisnick, and José Miguel Hernández-Lobato.
Bayesian batch active learning as sparse subset approximation. In Advances in Neural
Information Processing Systems, pages 6359–6370, 2019.

Carlos Riquelme, George Tucker, and Jasper Snoek. Deep bayesian bandits showdown: An
empirical comparison of bayesian deep networks for thompson sampling. In International
Conference on Learning Representations, 2018.

10

Subnetwork Inference for Bayesian Deep Learning

Hippolyt Ritter, Aleksandar Botev, and David Barber. A scalable laplace approximation for
neural networks. In International Conference on Learning Representations, 2018.

Simone Rossi, Sebastien Marmin, and Maurizio Filippone. Walsh-hadamard variational
inference for bayesian deep learning. arXiv preprint arXiv:1905.11248, 2019.

Nicol N Schraudolph. Fast curvature matrix-vector products for second-order gradient
descent. Neural computation, 14(7):1723–1738, 2002.

Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sun-
daram, Mostofa Patwary, Mr Prabhat, and Ryan Adams. Scalable bayesian optimization
using deep neural networks. In International conference on machine learning, pages
2171–2180, 2015.

Jakub Swiatkowski, Kevin Roth, Bastiaan S Veeling, Linh Tran, Joshua V Dillon, Stephan
Mandt, Jasper Snoek, Tim Salimans, Rodolphe Jenatton, and Sebastian Nowozin. The
k-tied normal distribution: A compact parameterization of gaussian mean field posteriors
in bayesian neural networks. arXiv preprint arXiv:2002.02655, 2020.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training
by preserving gradient flow. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=SkgsACVKPH.

11

https://openreview.net/forum?id=SkgsACVKPH

Subnetwork Inference for Bayesian Deep Learning

Appendix A. Additional Related Work

Bayesian Deep Learning. There have significant efforts to characterise the posterior
distribution over NN weights p(W |D). Hamiltonian Monte Carlo (Neal, 1995) remains the
golden standard for approximate inference in BNNs to this day. Although asymptotically
unbiased, sampling based approaches are difficult to scale to the large datasets (Betancourt,
2015). As a result, approaches which find the best surrogate posterior among an approxi-
mating family (most often Gaussians) have gained popularity. The first of these was the
Laplace approximation, introduced by MacKay (1992), who also proposed approximating
the predictive posterior with that of the linearised model (Khan et al., 2019; Immer et al.,
2020). The popularisation of larger NN models has made surrogate distributions that capture
correlations between weights computationally intractable. Thus, most modern methods
make use of the mean field assumption (Blundell et al., 2015; Hernández-Lobato and Adams,
2015; Gal and Ghahramani, 2016; Mishkin et al., 2018; Osawa et al., 2019). This comes
at the cost of limited expressivity (Foong et al., 2019a) and empirical under-performance
(Ovadia et al., 2019; Antorán et al., 2020) of uncertainty estimates. Our proposed approach
recovers predictive posterior expressivity while maintaining tractability by lowering the
dimensionality of the weight space considered. This allows us to scale up approximations
that do consider weight correlations (MacKay, 1992; Louizos and Welling, 2016; Maddox
et al., 2019; Ritter et al., 2018).

Neural Network Linearization. In the limit of infinite width, NNs converge to
Gaussian process (GP) behaviour (Neal, 1995; Matthews, 2017; Garriga-Alonso et al., 2018).
Recently, these results have been extended to finite width BNNs when the surrogate posterior
is Gaussian (Khan et al., 2019). We draw upon these results to formulate a subnetwork
selection strategy for BNNs. Neural linear methods perform inference over only the last
layer of a NN, while keeping all other layers fixed (Snoek et al., 2015; Riquelme et al., 2018;
Ovadia et al., 2019; Ober and Rasmussen, 2019; Pinsler et al., 2019; Kristiadi et al., 2020).
These represent a different generalised linear model in which the basis functions are defined
by the l−1 first layers of a NN. They can also be viewed as a special case of subnetwork
inference, in which the subnetwork is simply defined to be the last NN layer.

Inference over Subspaces. The subfield of NN pruning aims to increase the compu-
tational efficiency of NNs by identifying the smallest subset of weights which are required
to make accurate predictions. Approaches trade-off computational cost with compression
efficiency, ranging from those that require multiple training runs (Frankle and Carbin,
2019) to those that prune before training (Wang et al., 2020). Our work differs in that it
retains all NN weights but aims to find a small subset over which to perform probabilistic
reasoning. More closely related work to ours is that of Izmailov et al. (2019), who propose
to perform inference over a low-dimensional subspace of weights; e.g. one constructed from
the principal components of the SGD trajectory. Moreover, several recent approaches use
low-rank parameterizations of approximate posteriors in the context of variational inference
(Rossi et al., 2019; Swiatkowski et al., 2020; Dusenberry et al., 2020). This could also be
viewed as doing inference over an implicit subspace of weight space. In contrast, we propose
a technique to find subsets of weights which are relevant to predictive uncertainty, i.e., we
identify axis aligned subspaces.

12

Subnetwork Inference for Bayesian Deep Learning

Appendix B. Principled Subnetwork Selection for Linear(ized) Models

We next analyze the subnetwork inference procedure described in Section 2 for the case of
a generalized linear model (GLM) (Nelder and Baker, 1972), which models the expected
response yn given the basis function expansion of the covariates φn = φ(xn) as

E[yn|φn] = g−1(wTφn). (5)

Here, w ∈ RD is the vector of model parameters (which subsumes a scalar bias β0 for
notational convenience) and g−1(·) denotes a link function such that g−1 : R 7→ µy|φ. In
particular, we consider a Bayesian GLM, by specifying a prior distribution p(w) over model
parameters and aiming to infer the posterior distribution p(w|y,Φ) ∝ p(y|Φ,w)p(w), where
Φ = [φ1, ...φN]T .

1. Point Estimation. Obtain the MAP estimate, wMAP = arg maxw log p(y|Φ,w) + log p(w).
For commonly-used link functions (e.g. the identity in case of a Gaussian likelihood
for regression, or the sigmoid/softmax function in case of a categorical likelihood
for classification) and commonly-used priors (e.g. a Gaussian), the log-posterior ∝
log p(y|Φ,w) + log p(w) is concave. This allows for simple gradient-based MAP opti-
misation. It also makes a full-covariance Gaussian, estimated via Laplace, a faithful
approximation to the true, uni-modal posterior, i.e.

p(w|y,Φ) ≈ p̃(w|y,Φ) = N (w; wMAP , H
−1) (6)

where H is the Hessian defined in Section 2. Note that for the GLM we consider, the
Hessian H is equivalent to the GGN H̃ defined in Eq. (2), meaning that an ordinary
Laplace approximation is equivalent to a linearized Laplace approximation (Martens,
2016). For the case of an identity link function (i.e. a Gaussian likelihood with noise
variance σ2

0) and a Gaussian prior w ∼ N (0,Λ−1
0), the MAP estimate even has a closed-

form expression, wMAP = (ΦTΦ + σ2
0Λ0)−1ΦTy. Here, the Laplace approximation in

Eq. (6) exactly corresponds to the true posterior, i.e. p̃(w|y,Φ) = p(w|y,Φ). We will
thus refer to the posterior p̃(w|y,Φ) in Eq. (6) as the full posterior.

2. Subnetwork Selection. Select a subset of S model weights via a method of choice,
yielding a binary vector m ∈ RD where md = 1 if the d-th weight is part of the
subset, and md = 0 otherwise. For convenience, we define the binary mask matrix
MS = mm> ∈ RD×D which contains 1s in the rows/columns corresponding to the S
subnetwork weights2, and 0s otherwise.

3. Bayesian Inference. Compute the posterior over the subnetwork via a Laplace approx-
imation:

pS(w|y,Φ) = N (w; wMAP ,MS �H−1) . (7)

Firstly, note that the mean of the subnetwork posterior in Eq. (7) is the MAP estimate
wMAP and thus equal to the mean of the full posterior p̃(w|y,Φ) in Eq. (6). Secondly,
note that the covariance matrix of the subnetwork posterior in Eq. (7) is the element-wise
product MS �H−1, which masks the (co-)variances of all weights not belonging to the

2. For consistency, we will keep referring to the S selected linear model weights as a ”subnetwork”.

13

Subnetwork Inference for Bayesian Deep Learning

subnetwork to zero, effectively making them deterministic. More precisely, the subnetwork
covariance matrix, MS � H−1, is a D × D matrix that is equal to the full posterior
covariance matrix H−1 in the rows/columns of the S weights in the subnetwork, and zero
in the rows/columns of all other D − S weights.

We consider what we term the posterior gap—the Wasserstein distance3 (in particular the
squared 2-Wasserstein distance) between the posterior distribution over the full network and
the posterior distribution over the subnetwork.

Proposition 1 (Posterior Gap) For a subnetwork of size S < D, the Wasserstein gap
between the full posterior p̃(w|y,Φ) in Eq. (6) and the subnetwork posterior pS(w|y,Φ) in
Eq. (7) is:

W [p̃(w|y,Φ) || pS(w|y,Φ)] =
∑D

d=1 (1 +mdd)σ2
d − trace(2(H−1(MS �H−1))1/2) . (8)

Proof Note that the posterior distributions p̃(w|y,Φ) and pS(w|y,Φ) are both Gaussian.
We thus consider the squared 2-Wasserstein distance between two Gaussian distributions
N (µ1,Σ1) and N (µ2,Σ2), which has the following closed-form expression (Givens et al.,
1984)4:

W [N (µ1,Σ1) || N (µ2,Σ2)] = ‖µ1 − µ2‖22 + trace
(
Σ1 + Σ2 − 2 (Σ1Σ2)1/2

)
. (9)

Plugging in µ1 = µ2 = wMAP , Σ1 = H−1 and Σ2 = MS �H−1, we obtain

W [p̃(w|y,X) || pS(w|y,X)]

= W
[
N (wMAP , H

−1) || N (wMAP ,MS �H−1)
]

= ((((((((((
‖wMAP −wMAP ‖22 + trace

(
H−1 + (MS �H−1)− 2

(
H−1(MS �H−1)

)1/2
)

= trace
(
(1 +MS)�H−1

)
− trace

(
2
(
H−1

(
MS �H−1

))1/2
)

=
D∑

d=1

(1 +mdd)σ2
d − trace

(
2
(
H−1

(
MS �H−1

))1/2
)

The optimal subnetwork should then minimize the posterior gap in Eq. (8). However,
for full covariance matrices H−1 and a large number of weights D, this will generally be
infeasible as Eq. (8) depends on all entries of the D×D-matrix H−1, which is intractable to
compute/store. To derive a practical subnetwork selection strategy, we assume the covariance
matrix to be diagonal.

Corollary 2 (Optimality of Maximum Variance Subnetwork Selection under Decor-
relation) For a generalized linear model with posterior covariance matrix H−1 = diag(σ2

1, . . . , σ
2
D),

the optimal subnetwork under the Wasserstein gap is comprised of the S weights with the
largest variances σ2

d.

3. We use the Wasserstein distance instead of the more common Kullback–Leibler divergence because the
Wasserstein is well-defined for degenerate distributions and is an actual distance metric (i.e. symmetric).

4. This also holds for our case of a degenerate Gaussian with singular covariance matrix (Givens et al.,
1984).

14

Subnetwork Inference for Bayesian Deep Learning

Proof For H−1 = diag(σ2
1, . . . , σ

2
D), the Wasserstein posterior gap in Eq. (8) simplifies to

W [p̃(w|y,Φ) || pS(w|y,Φ)] =
D∑

d=1

(
(1 +mdd)σ2

d − 2mddσ
2
d

)
. (10)

The optimal subnetwork selection strategy amounts to choosing the binary vector m =
[mdd]Dd=1 with

∑D
d=1md = S (i.e., we select S out of D parameters) s.t. the posterior gap in

Eq. (10) is minimized. Observing that the contribution of the d-th parameter to the posterior
gap is (1 + 1)σ2

d − 1× 2σ2
d = 0 if it is selected (i.e. if mdd = 1), and (1 + 0)σ2

d − 0× 2σ2
d = σ2

d

if it is not selected (i.e. if mdd = 0), we see that the optimal subnetwork comprises of the S
weights with the largest variances σ2

d.

Finally, since a GGN-linearized neural network, as in Eq. (3), corresponds to a GLM with
basis expansion φn = JWMAP

(xn) = ∂f(xn,WMAP)/∂WMAP (see Step #3 in Section 2),
Theorem 2 implies that the optimal subnetwork comprises of the weights with the largest
variances (assuming decorrelation). In practice, even just computing the diagonal of the
covariance matrix is challenging, so we use a diagonal Laplace approximation which instead
computes the inverse of the diagonal of the GGN (see e.g. Ritter et al. (2018)). We will also
refer to the procedure described in Theorem 2 as Wasserstein pruning in the experiments
in Section 3, as it effectively prunes the variances of all weights that do not belong to the
subnetwork found via Wasserstein posterior gap minimization. Finally, note that we only
have to make the decorrelation assumption for the purposes of subnetwork selection – when
doing posterior inference over the selected subnetwork, we estimate a full covariance matrix
for maximal expressiveness, as described in Step #3 in Section 2.

Appendix C. Subnetwork inference in large models vs full inference over
small models

We study the following natural question: “Why should one use subnetwork inference in
a large model when one can just perform full network inference over a smaller model?”
We explore this by considering 4 fully connected models of increasing size. These have
numbers of hidden layers hd={1, 2} and hidden layer widths wd={50, 100}. For a dataset
with input dimension id, the number of weights is given by D=(id+1)wd+(hd−1)w2

d. Our 2
hidden layer, 100 hidden unit models have a weight count of the order 104. Full covariance
inference in these models borders the limit of computational tractability on commercial
hardware. We first obtain a MAP estimate of each model’s weights and our homoscedastic
likelihood function’s noise variance. We then perform full network GGN Laplace inference
for each model. We also use our proposed Wassertein rule to prune every network’s weight
variances such that the number of variances that remain matches the size of every smaller
network under consideration. In all cases, we employ the linearized predictive in Eq. (3).
Consequently, networks with the same number of weights make the same mean predictions.
Increasing the number of weight variances considered will thus only increase predictive
uncertainty.

We employ 3 UCI (Dua and Graff, 2017) datasets of increasing size (input dimensionality,
n. points): wine (11, 1439), kin8nm (8, 7373) and protein (9, 41157). We consider their

15

Subnetwork Inference for Bayesian Deep Learning

0 600 1200 3100 11200

posterior dim

−0.995

−0.990

−0.985

−0.980

−0.975

−0.970

−0.965

LL
wine

0 600 1200 3100 11200

posterior dim

−0.995

−0.990

−0.985

−0.980

−0.975

wine-gap

0 450 900 2950 10900

posterior dim

0.8

0.9

1.0

1.1

kin8nm

0 450 900 2950 10900

posterior dim

0.7

0.8

0.9

1.0

kin8nm-gap

0 500 1000 3000 11000

posterior dim

−2.950

−2.925

−2.900

−2.875

−2.850

−2.825

−2.800

protein

0 500 1000 3000 11000

posterior dim

−3.175

−3.150

−3.125

−3.100

−3.075

−3.050

protein-gap

wi :50, hi :1 wi :100, hi :1 wi :50, hi :2 wi :100, hi :2

Figure 4: Mean test log-likelihood values obtained on UCI datasets across all splits. Different
markers indicate models with different numbers of weights. The horizontal axis
indicates the number of weights over which full covariance inference is performed.
0 corresponds to MAP parameter estimation, and the rightmost setting for each
marker corresponds to full network inference.

standard train-test splits (Hernández-Lobato and Adams, 2015) and their gap variants
(Foong et al., 2019b), designed to test for out-of-distribution uncertainty. For each split,
we set aside 15% of the train data as a validation set. We use these for early stopping
when finding MAP estimates and for selecting the weights’ prior precision. We keep other
hyperparameters fixed across all models and datasets. Results are in Fig. 4.

We present mean test log-likelihood (LL) values, as these take into account both accuracy
and uncertainty. Larger models tend to perform better when doing MAP inference, with
wine-gap and protein-gap being exceptions. We also find larger models improve over their
respective MAP LLs more than small ones when performing approximate inference over
the same numbers of weights. We conjecture this is due to an abundance of degenerate
directions (weights) in the weight posterior of all models (Maddox et al., 2020). Full network
inference in small models captures information about both useful and non-useful weights. In
larger models, our pruning strategy allows us to dedicate a larger proportion of our resources
to modelling informative weight variances and covariances. In 3 out of 6 datasets, we find
abrupt increases in LL as we increase the number of weights over which we perform inference,
followed by a plateau. Such plateaus might be explained by all of the most informative
weight variances having already been accounted for. These results suggest that subnetwork
inference in a large model is superior to full network inference in a small one.

Appendix D. Details on Image Classification Experiments

We use deep ensembles of 5 DNNs, as suggested by (Ovadia et al., 2019), and 16 samples
for MC Dropout, diagonal Laplace and SWAG. We use a Dropout probability of 0.1 and a
prior precision of λ = 40, 000 for diagonal Laplace, found via grid search. For subnetwork
inference, we compute the linearized predictive distribution in Eq. (4) via the closed-form
approximation for integrals between Gaussians and multi-class cross-entropy likelihoods
described in (Gibbs, 1998). We use Wasserstein pruning to retain only 0.38% of the weights,
yielding a subnetwork with only 42,438 weights. This is the largest subnetwork for which we

16

Subnetwork Inference for Bayesian Deep Learning

0 25 50 75 100

% rejected

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

CIFAR10 vs SVHN

0 25 50 75 100

% rejected

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

MNIST vs Fashion

Ours Diag-Lap Dropout Ensemble MAP SWAG

Figure 5: Rejection-classification plots. We simulate a realistic OOD rejection scenario
(Filos et al., 2019) by jointly evaluating our models on an in-distribution and
an OOD test set. We allow our methods to reject increasing proportions of the
data based on predictive entropy before classifying the rest. All predictions on
OOD samples are treated as incorrect. Following (Nalisnick et al., 2019), we use
CIFAR10 vs SVHN and MNIST vs FashionMNIST as in- and out-of-distribution
datasets, respectively. Note that the SVHN test set is randomly sub-sampled
down to a size of 10,000.

can tractably compute a full covariance matrix. Its size is 42, 4382 × 4 Bytes ≈ 7.2 GB. We
use a prior precision of λ = 500, found via grid search.

Appendix E. Additional Image Classification Results

Source Target Diag-Lap Dropout Ensemble Ours MAP SWAG

CIFAR10 SVHN 0.86±0.02 0.86±0.01 0.91±0.00 0.85±0.03 0.86±0.02 0.83±0.00

MNIST Fashion 0.75±0.01 0.76±0.09 0.88±0.08 0.92±0.05 0.72±0.03 0.97±0.01

Table 1: AUC-ROC scores for out-of-distribution detection, using CIFAR10 vs SVHN and
MNIST vs FashionMNIST as in- (source) and out-of-distribution (target) datasets,
respectively (Nalisnick et al., 2019).

17

Subnetwork Inference for Bayesian Deep Learning

0.0

0.2

0.4

0.6

0.8
er

ro
r

Rotated MNIST

Ours
Diag-Lap
Dropout

Ensemble
MAP
SWAG

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Corrupted CIFAR10

−8

−6

−4

−2

0

LL

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

LL

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

EC
E

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

EC
E

0 30 60 90 120 150 180

rotation (◦)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

br
ie

r
sc

or
e

0 1 2 3 4 5

corruption

0.1

0.2

0.3

0.4

0.5

0.6

0.7

br
ie

r
sc

or
e

Figure 6: Full MNIST rotation and CIFAR10 corruption results, reporting predictive error,
log-likelihood (LL), expected calibration error (ECE) and brier score, respectively
(from top to bottom).

18

Subnetwork Inference for Bayesian Deep Learning

Method LL error ECE Brier score dataset

Diag-Laplace −0.50±0.02 0.09±0.00 0.06±0.00 0.15±0.00 CIFAR10
Dropout −0.40±0.04 0.08±0.00 0.05±0.01 0.14±0.01 CIFAR10
Ensemble −0.29±0.09 0.07±0.01 0.03±0.02 0.11±0.02 CIFAR10
Ours −0.27±0.00 0.09±0.00 0.01±0.00 0.13±0.00 CIFAR10
MAP −0.46±0.02 0.08±0.00 0.06±0.00 0.14±0.00 CIFAR10
SWAG −0.48±0.01 0.11±0.00 0.07±0.00 0.17±0.00 CIFAR10

Diag-Laplace −0.04±0.03 0.01±0.01 0.00±0.00 0.02±0.01 MNIST
Dropout −0.01±0.00 0.00±0.00 0.00±0.00 0.01±0.00 MNIST
Ensemble −0.01±0.00 0.00±0.00 0.00±0.00 0.01±0.00 MNIST
Ours −0.07±0.01 0.01±0.00 0.05±0.01 0.02±0.00 MNIST
MAP −0.01±0.00 0.00±0.00 0.00±0.00 0.01±0.00 MNIST
SWAG −0.01±0.00 0.00±0.00 0.00±0.00 0.01±0.00 MNIST

Table 2: Results for CIFAR10 and MNIST without corruptions or rotations.

19

	Subnetwork Posterior Approximation
	Subnetwork Inference via Laplace Approximation
	Empirical Analysis
	How does subnetwork inference retain posterior predictive uncertainty?
	How robust is our approach to distribution shift in image classification?

	Conclusion
	Additional Related Work
	Principled Subnetwork Selection for Linear(ized) Models
	Subnetwork inference in large models vs full inference over small models
	Details on Image Classification Experiments
	Additional Image Classification Results

