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Abstract: We introduce a simple but effective method for managing risk in zero-
order trajectory optimization that involves probabilistic safety constraints and
balancing of optimism in the face of epistemic uncertainty and pessimism in the
face of aleatoric uncertainty of an ensemble of stochastic neural networks. We
empirically validate that the separation of uncertainties is essential to performing
well with data-driven MPC approaches in uncertain and safety-critical control
environments.
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1 Introduction
Data-driven approaches to sequential decision-making are becoming increasingly popular [1, 2, 3, 4].
They hold the promise of reducing the number of prior assumptions about the system that are imposed
by traditional approaches that are based on nominal models.

Such approaches come in several different flavors [5]. Model-free approaches attempt to extract
closed-loop control policies directly from data, while model-based approaches rely on a learned model
of the dynamics to either generate novel data to extract a policy or to be used in a model-predictive
control fashion (MPC). This work belongs to the latter line of work.

Model-based methods have several advantages over pure model-free approaches. Firstly, humans
tend to have a better intuition on how to incorporate prior knowledge into a model rather than into a
policy or value function. Secondly, most model-free policies are bounded to a specific task, while
models are task-agnostic and can be applied for optimizing arbitrary cost functions, given sufficient
exploration.

Nevertheless, learning models for control comes with certain caveats. Traditional MPC methods
require the model and cost function to permit a closed-form solution which restricts the function class
prohibitively. Alternatively, gradient-based iterative optimization can be employed, which allows for
a larger class of functions but typically fails to yield satisfactory solutions for complicated function
approximators such as deep neural network models. In addition, calculating first-order or even
second-order information for trajectory optimization tends to be computationally costly, which makes
it hard to meet the time constraints of real-world settings. This motivates the usage of zero-order
methods, i.e gradient-free or sample-based, such as the Cross-entropy Method (CEM) that do not rely
on gradient information but are efficiently parallelizable.

Many methods relying on a learned model and zero-order trajectory optimizers have been proposed
[6, 7, 8], but all share the same problem: compounding of errors through auto-regressive model
prediction. This naturally brings us to the question of how can we effectively manage model errors
and uncertainty to be more data-efficient and safe. Arguably, this is one of the main obstacles to
applying data-driven model-based methods to the real world, e.g. to robotics settings.

In this work, we introduce a risk-averse zero-order trajectory optimization method (RAZER) for
managing errors and uncertainty in zero-order MPC and test it on challenging scenarios (Fig. 1). We
argue that it is essential to differentiate between the two types of uncertainty in the model-predictive
setting: the aleatoric uncertainty arising from inherent noise in the system and epistemic uncertainty
arising from the lack of knowledge [9, 10]. We measure these uncertainties by making use of
probabilistic ensembles with trajectory sampling similar to PETS [6]. Our contributions can be
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(a) Noisy-FetchPickAndPlace (b) Solo8-LeanOverObject (c) BridgeMaze

Figure 1: Environments considered for uncertainty-aware planning. Code and videos are available at
https://martius-lab.github.io/RAZER/

summarized as follows: (i) method for separation of uncertainties in probabilistic ensembles (termed
PETSUS); (ii) efficient use of aleatoric and epistemic uncertainty in model-based zero-order trajectory
optimizers; (iii) a simple but practical approach to probabilistic safety constraints in zero-order MPC.

2 Related Work
Uncertainty Estimation. In the typical model-based reinforcement learning (MBRL) setting, the
true transition dynamics function is modeled through an approximator. Impressive results have been
achieved by both parametric models [11, 12, 13, 14], such as neural networks, and nonparametric
models [15, 16, 17, 18], such as Gaussian Processes (GP). The latter inspired seminal work on the
incorporation of the dynamics model’s uncertainty for long-term planning [18, 19]. However, their
usability is limited to low-data, low-dimensional regimes with smooth dynamics [20, 21], which is
not ideal for robotics applications. Alternative parametric approaches include ensembling of deep
neural networks, used both in the MBRL community [6, 22], and outside [23, 24]. In particular,
ensembles of probabilistic neural networks established state-of-the-art results [6], but focus mainly on
estimating the expected cost and disregard the underlying uncertainties. In comparison, we propose a
treatment of the resulting uncertainties of the ensemble model.

Zero-order MPC. The learned model can be used for policy search like in PILCO [25, 18, 19, 26]
or for online model-predictive control (MPC) [27, 28, 6]. In this work, we do planning in an MPC
fashion and employ a zero-order method as a trajectory optimizer, since they have shown to be less
likely to get stuck in local minima and make an explicit treatment of the uncertainty in the cost
possible. Specifically, we consider a sample-efficient implementation of the Cross-Entropy method
[29, 30] introduced in [31].

Safe MPC. Separating the sources of uncertainty is of particular importance for applications directly
affecting humans’ safety, as self-driving cars, elderly care systems, or in general any application that
involves a physical interaction between agents and humans. Disentangling epistemic from aleatoric
uncertainty allows for separate optimization of the two, as they represent semantically different
objectives as per definition. Extensive research on uncertainty decomposition has been done in the
Bayesian setting and the context of safe policy search [32, 33, 34, 35], MPC planning [36, 37, 38],
and distributional RL [39, 40]. On the other hand, a state-of-the-art baseline for ensemble learning
like PETS [6], despite estimating uncertainty, only optimizes for the expected cost during action
evaluation. Our work aims at filling this gap by explicitly integrating the propagated uncertainty
information in the zero-order MPC planner.

3 Method
Our approach concerns itself with the efficient usage of uncertainties in zero-order trajectory opti-
mization and is therefore generally applicable to such optimizers. We are interested in modeling noisy
system dynamics xt+1 = f(xt, ut, w(xt, ut)) where f is a nonlinear function, xt the observation
vector, ut applied control input and w(xt, ut) a noise term sampled from an arbitrary distribution.

Consequently, in the absence of prior knowledge about the function f , the system needs to be
modeled by a complex function approximator such as a neural network. Furthermore, we are
interested in managing uncertainties based on our fitted model, which is erroneous. To this end, we
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use stochastic ensembles of size K, where the output of each model ϑk(xt, ut) are parameters of
a normal distribution depending on input observation xt and control ut. As a by-product, our auto-
regressive model prediction based on sequence of control inputs u becomes a predictive distribution
over trajectories τ = (x0, u0, x1, u1 . . . ); ψτ (xt,u) := p(τ |xt,u; θ) where θ denotes the parameters
of the ensemble. For convenience, from this point onward we will differentiate between multiple
usages of ψτ . We denote with ψx∆t the distribution p(xt+∆t|xt,ut:t+∆t−1; θ) over states at time step
t+ ∆t, ψϑ

∆t the distribution over the Gaussian parameter outputs p(ϑt+∆t|xt,ut:t+∆t−1; θ) at time
step t+ ∆t of the planner.

3.1 Planning and Control

To validate our hypothesis that accounting for uncertainty in the environment and model prediction is
essential to develop risk-averse policies, we use the Cross-Entropy Method (CEM) with improvements
suggested in Pinneri et al. [31]. Accordingly, at each time step t we sample a finite number of control
sequences u for a finite horizon H from an isotropic Gaussian prior distribution which we evaluate
from the state xt using an auto-regressive forward-model and the cost function. The sampling
distribution is refitted in multiple rounds based on the best performing trajectories. After this
optimization step, the first action of the mean of the fitted Gaussian distribution is executed. Since
this approach utilizes a predictive model for a finite horizon at each time step, it naturally falls into
the category of MPC methods.

Although we use CEM, our approach of managing uncertainty can generically be applied to other
zero-order trajectory optimizers such as MPPI [28] by a modification of the trajectory cost function.

3.2 The Problem of Uncertainty Estimation

Since we have a stochastic model of the dynamics, at the model prediction time step t we observe a
distribution over potential outcomes. Indeed, since our model outputs are parameters of a Gaussian
distribution, with auto-regressive predictions we end up with a distribution over possible Gaussians
for a certain time step t.

Given a sampled action sequence u and the initial state xt we observe a distribution over trajectories
ψτ . To efficiently sample from the trajectory distribution ψτ we use the technique introduced by Chua
et al. [6] (PETS) which involves prediction particles that are sampled from the probabilistic models
and randomly mixed between ensemble members at each prediction step. In this way, the sampled
trajectories are used to perform a Monte Carlo estimate of the expected trajectory cost Eτ∼ψτ [c(τ)].
However, this does not take the properties of ψτ into account, which might be a high-entropy
distribution and may lead to very risky and unsafe behavior. In this work, we alleviate this by looking
at the properties of ψτ , i.e. different kinds of uncertainties arising from the predictive distribution.

3.3 Learned Dynamics Model

We learn a dynamics model fθ that approximates the true system dynamics xt+1 =
f(xt, ut, w(xt, ut)). As a model class, we use an ensemble of neural networks with stochastic
outputs as in Chua et al. [6]. Each model k, parameterizes a multivariate Gaussian distribution with
diagonal covariance, fkθ (xt, ut) = N (xt+1;xt + µkθ(xt, ut),Σ

k
θ(xt, ut)) where µkθ(·, ·) and Σkθ(·, ·)

are model functions outputting the respective parameters.

Iteratively, while interacting with the environment, we collect a dataset of transitions D and train
each model k in the ensemble by the following negative log-likelihood loss on the Gaussian outputs:

L(θ, k) = Ext,ut,xt+1∼D

[
− logN (xt+1;xt + µkθ(xt, ut),Σ

k
θ(xt, ut))

]
(1)

In addition, we use several regularization terms to make the model training more stable. We provide
more details on this in Suppl. A.

3.4 Separation of Uncertainties

In the realm of parametric estimators, two uncertainties are of particular interest. Aleatoric uncertainty
is the kind that is irreducible and results from inherent noise of the system, e.g. sensor noises in robots.
On the other hand, we have epistemic uncertainty resulting from lack of data or knowledge which is
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reducible. This begs the question, how can we separate these uncertainties given an auto-regressive
dynamics model fθ? The way that we efficiently sample from ψτ is by mixing sampled prediction
particles. This process is illustrated by the red lines in Fig. 2.

Simple model prediction disagreement is not a good measure for aleatoric uncertainty since it can be
entangled with epistemic uncertainty. Given our how we model the system dynamics, we measure
aleatoric uncertainty as entropy of the predicted normal distributions across ensemble members.
More concretely, given a sampled particle state x̃t, we define the estimated aleatoric uncertainty for
an ensemble member associated to particle b at time step t as:

Ab(x|x̃t, ut) = Hx∼ψx∆t,b(x) (2)

Where ψx∆t,b is the output distribution of ensemble model based on inputs x̃t, ut. Since in the end we
are interested in the aleatoric uncertainty incurred from applying the action sequence u from initial
state xt, the quantity of interest for us is the expected aleatoric uncertainty for time slice t:

A(x|ut) = Ex̃b∼ψx∆t
[
Ab(x|x̃b, ut)

]
(3)

Intuitively, because we only have access to the ensemble for sampling, we take a time-slice
in the sampled trajectories from ψτ and compute the output entropies. Moreover, since
we assume a Gaussian 1-step predictive distribution this is an expectation over differential
Gaussian entropy. An alternative way of computation which we also explore in this work
is calculating the expected particle variance for time slice t + 1 of the prediction horizon:

ut+h

xt+h

NN

xt
ut

H

h=1 h=H

mean

particle

Figure 2: Probabilistic Ensembles with Trajectory Sampling
and Uncertainty Separation (PETSUS)

VarAt+1 =
1

B

B∑
b=1

Σkθ(x̃t,b, ut) (4)

Note that Σkθ(x̃t,b, ut) outputs the co-
variance of the prediction at t+ 1. For
estimating the epistemic uncertainty,
one would be tempted to look at the dis-
agreement between ensemble models
in parameter space Var[θ], but this is
not completely satisfying, since neural
networks tend to be over-parametrized
and variance within the ensemble still
may exist albeit the optimum has been
reached by all ensemble models. An
alternative would be to calculate the
Fisher information metric I := Var[∇θ logL(xt+1|xt, ut)] where L denotes the likelihood function,
but this tends to be expensive to compute.

Given the assumption of local Gaussianity, the true epistemic uncertainty for this case is the predictive
entropy over the Gaussian parameters ϑ at time step t+ h.

E(xt,ut:t+∆t−1) = Hψϑ
∆t

(ϑ | xt,ut:t+∆t−1) (5)

It is easy to verify that this quantity is 0 given perfect predictions of the model. Note that, because of
auto-regressive predictions of a nonlinear model, this is a very difficult object to handle. Nevertheless,
since our predictive distribution p(x|xt, ut;ϑ) is parametrized by model output, we may utilize
disagreement in ϑt to approximate E. To get correct estimations, we need to propagate mean
predictions x̄ in addition to the particles as illustrated as the yellow lines in Fig. 2. We quantify
epistemic uncertainty as ensemble disagreement at time step t:

VarE(xt+1) = Vare[µkθ(x̄t, ut)] + Vare[Σkθ(x̄t, ut)] (6)

where Vare is the empirical variance over the k = 1 . . .K ensembles.

3.5 Probabilistic Safety Constraints
When applying data-driven control algorithms to real systems, safety is of utmost importance. In the
realm of zero-order optimization, safety constraints can be easily introduced by putting an infinite
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cost on constraint-violating trajectories. Nevertheless, we are dealing with erroneous stochastic
nonlinear models which lead to nontrivial predictive distributions of future states, based on the control
sequence u. For this reason, we want to control the risk of violating the safety constraints that we,
as practitioners, are willing to tolerate. If we denote the observation space as X, given a violation
set C ⊂ X, we define the probability of the control sequence u to enter the violation set at time
t + ∆t as p(x ∈ C | xt,u) =

∫
x∈C ψ

x
∆t(x | xt,u). In practice, it is hard to compute this integral

efficiently, since our distribution ψx∆t is nontrivial as a result of nonlinear propagation of uncertainty.
Furthermore, the violation set C might not have the structure necessary to allow an efficient solution
to the integral, in which case one needs to resort to Monte Carlo estimation.

To simplify computation and gain speed, we consider box violation sets resulting in each dimension
of x being constrained to be outside of [a, b] ∈ {a, b | a, b ∈ R2, a < b}. By performing moment
matching by a Gaussian in each time-slice ψx∆t, the probability of ending up in state x at time step
t+ ∆t is given by integrating N (x;µt+∆t,Σt+∆t), where µ and Σ are estimated by Monte Carlo
sampling. If we further assume a diagonal covariance Σ, this integral can be deconstructed into d
univariate Gaussian integrals, which can be computed fast and in closed form. Hence, the probability
of a constraint violation happening at time step t is defined by:

p(x ∈ C | xt,u) =

d∏
i=0

∫
x∈C
N (xi;µit+∆t, σ

i
t+∆t) (7)

3.6 Implementing Risk-Averse ZERo-Order Trajectory Optimization (RAZER)
We assume the task definition is provided by the cost c(xt,u). For trajectory optimization, we start
from a state xt and predict with an action sequence u the future development of the trajectory τ .
Along this trajectory, we want to compute a single cost term which is conveniently defined as the
expected cost of all particles x̃ summed over the planning horizon H:

c(xt,u) =

H∑
∆t=1

1

B

B∑
b=1

c(x̃bt+∆t, ut+∆t). (8)

The optimizer, in our case CEM, will optimize the action sequence u to minimize the cost in a
probabilistic sense, i.e. p(u | x) ∝ exp(−β c(x,u)) where β reflects the strength of the optimizer
(the higher the more likely it finds the global optimum). To make the planner uncertainty-aware, we
need to make sure it avoids unpredictable parts of the state space by making them less likely. Using
the aleatoric uncertainty provided by PETSUS Eq. 4, we define the aleatoric penalty as

cA(xt,u) = wA ·
H∑

∆t=1

√
VarAt+∆t, (9)

where wA > 0 is a weighting constant. The larger the aleatoric uncertainty, the higher the cost.

To guide the exploration to states where the model has epistemic uncertainty Eq. 6 (due to lack of
data), we use an epistemic bonus:

cE(xt,u) = −wE ·
H∑

∆t=1

√
VarEt+∆t, (10)

where wE > 0 is a weighting constant. To be able to operate on a real system, the most important
part is to adhere to safety constraints. As formulated in Eq. 7, the predicted safety violations need to
be uncertainty aware, independent of the source of uncertainty. We integrate this into the planning
method by adding:

cS(xt,u) = wS ·
H∑

∆t=1

q
p(x̂t+∆t ∈ C) > δ

y
(11)

where J·K is Iverson bracket. and wS is either a large penalty cmax or 0 to disable safety. An
alternative for implementing safety constraints into CEM is by changing the ranking function [41].
The overall algorithm used in a model-predictive control fashion is outlined in Suppl. B.
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Figure 3: Active learning setting: The epistemic bonus allows RAZER to seek states for which no or
only little training data exists (a,c). Means and standard deviations for (a) were computed over 5 runs.
PETS overfits to a particular solution (b). In (b) and (c), the brightness of the dots is proportional to
the time when they were first encountered.

4 Experiments
We study our uncertainty-aware planner in 4 continuous state and action space environments and
compare to naively optimizing the particle-based estimate of the expected cost similarly to Chua et al.
[6]. We start by giving a description of the environments.

BridgeMaze This toy environment (see Fig. 1c) was specifically designed to study the different
aspects of uncertainty independently. The agent (blue cube) starts on the left platform and has to
reach the goal platform on the right. To reach the goal platform, the agent has to move over one of
three bridges without falling into the lava. The upper bridge is safeguarded by walls; hence, it is
the safest path to the goal but also the longest. The lower bridge has no walls and therefore is more
dangerous for an unskilled agent to cross but the path is shorter. The middle bridge is the shortest
path to the goal. However, randomly appearing strong winds perpendicular to the bridge might cause
the agent to fall off the bridge with some probability, making this bridge dangerous.

Noisy-HalfCheetah This environment is based on HalfCheetah-v3 from the OpenAI Gym toolkit.
We introduce aleatoric uncertainty to the system by adding Gaussian noise ξ ∼ N (µ, σ2) to the
actions when the forward velocity is above 6. The action noise translates into a non-Gaussian and
potentially very complicated state space noise distribution that makes the control problem very
challenging.

Noisy-FetchPickAndPlace Based on the FetchPickAndPlace-v1 gym environment. Additive action
noise is applied to the gripper so that its grip on the box might become tighter or looser. The noise is
applied for x-positions < 0.8 which is illustrated in Fig. 1a by a blue line causing the agent to drop
the box with high probability if it tries to lift the box too early.

Solo8-LeanOverObject In this robotic environment, the task of a quadrupedal robot [42] is to stand
up and lean forward to reach a target position (purple markers need to reach green dots in Fig. 1b)
without hitting an object visualized by the red cube representing the unsafe zone. The robot starts in a
laying position as shown in the inset of Fig. 1b. As in the Noisy-HalfCheetah environment, Gaussian
action noise is applied to mimic real-world perturbances.

4.1 Algorithmic Choices and Training Details

For model-predictive planning we use the CEM implementation from Pinneri et al. [31]. Further
details about hyperparameters can be found in Suppl. A.2. For planning, we use the same architecture
for the ensemble of probabilistic models, both in RAZER and in PETS. The only difference is that
in RAZER we also forward propagate the mean state predictions in addition to the sampled state
predictions. Further details can be found in Suppl. A.1.

4.2 Active Learning for Model Improvement

If model uncertainties are used for risk-averse planning, they are only meaningful if the model has
the right training data. Only from good data can the parameters of the approximate noise model be
learned correctly. In case of too little data, the agent might avoid parts of the state space due to an
overestimation of the model uncertainties. On the other hand, the agent might enter unsafe regions
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Figure 4: Risk-averse planning in the face of aleatoric uncertainty yields higher success rates in noisy
environments. For (b) we use ground truth models and a fixed aleatoric penalty weight wA.

for which the uncertainties are underestimated. By adding the epistemic bonus to our domain-specific
cost, the planner can actively seek states with high epistemic uncertainty, i.e. for which no or only
little training data exists.

Figure 4a shows this active data gathering process for the BridgeMaze environment. PETS finds one
particular solution to the problem of reaching the goal platform. It chooses the path over the safer,
lower bridge rather than the dangerous middle path and the longer path via the upper bridge (Fig. 3b).
Once, one solution is found, the model overfits to it without exploring any other parts of the state
space. This is also reflected in the plateauing of the red curve in Fig. 3a.

In comparison, RAZER actively explores larger and larger parts of the state space with an increasing
weight of the epistemic bonus (Fig. 3a). RAZER not only finds the easy solution found by PETS
but also extensively explores other parts of the state space (Fig. 3c). To not get stuck at the middle
bridge during exploration due to the inherent noise, it is important to separate between epistemic
and aleatoric uncertainties. Only the former should be used for exploration. With enough data, our
model can correctly capture the uncertainties of these states resulting in the epistemic uncertainty
approaching zero.

4.3 Risk-Averse Planning

Once a good model is learned, it can be used for safe planning. What differentiates RAZER from
PETS is that it makes explicit use of uncertainty estimates while in the latter uncertainties only enter
planning by taking the mean over the particle costs and not differentiating between different sources
of uncertainty.

BridgeMaze. Figure 4a shows the success rate of PETS and RAZER in the BridgeMaze. In
both cases, we use the same model that was trained from data collected during a training run with
wE = 0.05. Hence, the model saw enough training data from all parts of the state space. The noise
in the environment is tuned such that there is a chance to cross the bridge without falling. While
in Fig. 3b PETS avoided this path because of an overestimation of the state’s value due to a lack
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Figure 5: Noisy-HalfCheetah environment (task lengths 300 steps) with learned models.At 150
iterations we have seen only 45k points. (a) Performance under noisy actions. By applying the
aleatoric penalty, RAZER can navigate the uncertainties better – leading to higher returns faster. (b)
Safety violations above a certain body height (simulating a low ceiling) for different values of δ. In
(c) the number of violations is averaged over the last 50 iterations (summed over 10 rollouts).
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Figure 6: Safe planning vs. task-oriented planning in the Solo8-LeanOverObject environment with
noisy actions. Left: number of safety violations for different values of δ (Eq. 11). Right: enforcing
safety constraints causes slight reduction in tracking accuracy due to the fixed planning budget and
the competing objectives of task and safety costs.

of training data and sometimes sees a chance to cross the bridge. However, these attempts are very
likely to fail because of stronger winds that occur randomly, resulting in a success rate of only 58%.
RAZER does not rely on sampling for the aleatoric part and can thus avoid risk. With a higher penalty
constant the success rate increases up to 96% but only as long as the agent is willing to take a risk at
all. For large values of wA the agent becomes so conservative that it only moves slowly (decreasing
reward in Fig. 4a).

Noisy-HalfCheetah. How does RAZER perform on the Noisy-HalfCheetah environment when
models are learned from scratch? Without aleatoric penalty, the planner is optimistic. Risky situations
are only detected if a failing particle is sampled. Thus, the noise is mostly neglected and the robot
increases its velocity, gets destabilized, and ends up slower than with the aleatoric penalty (Fig. 5a).

FetchPickAndPlace. In this environment, a 7-DoF robot arm should bring the box to a target
position – starting and target positions are at the opposite sides of the table. The shortest path is to lift
the box and move in a straight line to the target. However, with noise applied to the gripper action,
there is a certain probability to drop the box along the way. When penalizing aleatoric uncertainty,
this is avoided and also fewer trajectory samples are “wasted” in high-entropic regions, as presented
in Fig. 1a. Figure 4b shows the number of times the box is dropped on the table depending on the
aleatoric penalty. RAZER adopts a cautious behavior, preferring to slide the box on the table and
lifting it only in the area without action noise, maintaining a dropping rate lower than 20%, even
when considerable noise is applied.

4.4 Planning with External Safety Constraints

Noisy-HalfCheetah:. We consider a safety constraint on the height of the body above ground
simulating a narrow passage. Figure 5b shows the number of safety violations. Note that PETS has
the same penalty cost for hard violations.

Solo8-LeanOverObject:. In this experiment, the robot has to move to two target points with its
front and rear of the trunk while avoiding entering a specified rectangular area (fragile object). The
front feet are fixed. To track the points, the robot has to lean forward, such that it can lose balance due
to noisy actions. In contrast to PETS, RAZER successfully manages to satisfy the safety constraints
almost always as shown in Fig. 6. However, satisfying the safety constraint comes with the cost of
reduced tracking accuracy.

5 Conclusion
In this work, we have provided a methodology to separate uncertainties in stochastic ensemble
models (PETSUS) which can be used as a tool to build risk-averse model-based planners that are
also data-efficient and enforce safety through probabilistic safety constraints (RAZER). This type of
risk-averseness can be achieved by a simple modification of the cost function in form of uncertainty
penalties in zero-order trajectory optimizers.

Furthermore, the separation of uncertainties allows us to do proper exploration via epistemic bonus
which benefits generalization of the model.As future work, it would be of interest to see this approach
applied to a proper transfer learning setting from simulations to real systems, where risk-averseness
combined with exploratory behavior is crucial for efficient learning and safe operation.
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