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ABSTRACT

Neural codec language models have demonstrated state-of-the-art performance
in text-to-speech (TTS) synthesis. Leveraging scalable architectures like
autoregressive transformers, they capitalize on the availability of large speech
datasets. When framing voice cloning as a prompt continuation task, these models
excel at cloning voices from short audio samples. However this approach can’t
be extended to multiple speech excerpts and is limited since the concatenation
of source and target speech must fall within the maximum context length which
is determined during training. In this work, we propose a model that replaces
transformers with emergent recurrent architecture such as Gated Linear Attention
(GLA). Our model, Lina-Speech, outperforms or matches the baseline models
that are up to 4x it’s size. We showcase intial-state tuning as a parameter-
efficient fine-tuning technique that optimizes the initial state of the recurrent
layers, resulting in compact and expressive speaker embedding with fine-grained
control over the speech style. Compared to prompt continuation, it allows voice
cloning from multiple speech excerpts and full usage of the context window
for synthesis. This approach is fast, deployable and does not rely on auxiliary
modules. It also demonstrates extensive adaptation to out-of-domain data. We
will release publicly our code and checkpoints. Audio samples are available at
https://anonymsubm.github.io.

1 INTRODUCTION

Scaling text-to-speech Betker (2023) (TTS) model and data has led to dramatic improvements with
regards to quality, diversity and cloning capabilities. Leveraging neural audio codec Zeghidour
et al. (2021); Défossez et al. (2023) and simple problem formulation such as next-token prediction
have shown state-of-the-art results in zero-shot voice cloning, extending in-context learning abilities
observed primarily on natural language to the codec language. Under this setting zero-shot voice
cloning is formulated as a prompt continuation task and provides state-of-the-art results starting
from 3s of prompt audio. In contrast with prior works, this approach put more pressure on the
pre-training stage, where large-scale speech dataset are needed in order to get sufficient in-context
learning abilities and less on domain knowledge. In this direction, the transformer has been the
leading architecture for scalable auto-regressive modeling of speech.

While transformer is still the dominant architecture for auto-regressive large-scale generative
modeling, the attention weights learned Lemerle et al. (2024); Jiang et al. (2024) during text-
to-speech synthesis suggest that self-attention might be a sub-optimal choice for this particular
task. Indeed, as observed in previous works, transformers tend either to focus on local information
Parcollet et al. (2024) with respect to a given time-step or learn tight cross-attention between text
and audio. This potential waste of computation reflect also the lack of inductive biases towards
monotonicity which result in instabilities compared to NAR TTS models Yang et al. (2024b).
Moreover the quadratic complexity of self-attention and the relatively high framerate of neural audio
codec prevent training on long context. Also they typically fail at extrapolating to longer lengths.
As a consequence during inference, zero-shot voice cloning by prompt continuation face a trade-off
between longer prompt containing more information about the target speaker and short prompt that
allow the model to synthesize over the remaining of the context window. Moreover cloning a voice
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from short excerpts makes challenging to capture elements of the voice such as accent, thus relying
primarily on pretraining or a subsequent fine-tuning.

In this work, we introduce Lina-Speech, a model that replaces transformers with Gated Linear
AttentionYang et al. (2024c). Gated Linear Attention is an emergent recurrent architecture for
language modeling that has shown promising result on natural language modeling while scaling
linearly with the sequence length. Our contributions include the following :

• When used in a zero-shot prompt continuation, it shows competitive performance against
baselines that have up to 4x times more parameters.

• We showcase a parameter-efficient fine-tuning approach (PFET) that is proper to stateful
model for voice cloning. This method is fast and deployable (less than 15 seconds in
average for 5-30min of speech on consumer grade GPU) and shows extensive aptitude on
both in-domain and out-of-domain speech corpus. It enables voice cloning with full usage
of the context length.

2 RELATED WORK

Large-Scale TTS Large-scale TTS state-of-the-art relies massively on transformers for both
autoregressive (AR) Wang et al. (2023); Betker (2023); Lyth & King (2024) and non-autoregressive
Chang et al. (2022); Shen et al. (2024); Le et al. (2023) (NAR) architectures . NAR transformers
for speech synthesis, such as those based on diffusion or flow-matching, traditionally require either
precomputed durations or an additional generative model. While fine-grained duration annotations
can be challenging to produce for noisy large-scale datasets, recent work has introduced coarse
durations at the word or sentence level instead. In contrast, AR models have demonstrated strong
performance when trained on in-the-wild data, without needing intermediate feature representations.
Although pure NAR models tend to excel in terms of inference speed and robustness, they tend to
suffer from over-smoothness Yang et al. (2024a); Ren et al. (2022), resulting in reduced diversity
and less fidel prosody. Recent research has begun to blend techniques traditionally associated to
NAR and AR approaches: Xin et al. (2024) explicitly models durations in an AR transformer
for greater robustness, while Yang et al. (2024b) explores AR generative models for prosody and
duration modeling on top of a NAR flow-matching acoustic model. While large-scale AR acoustic
modeling relies heavily on neural audio codecs, diffusion and flow-matching Le et al. (2023); Betker
(2023); Shen et al. (2024) methods have proven being effective at scale for both data space (e.g., mel
spectrograms) and latent space modeling.

Zero-shot TTS Zero-shot TTS is the task of synthesizing speech from unseen samples at test
time. Traditional approaches includes the use of speaker encoder that produces embedding. Multi-
samples approaches have been introduced such as Mega-TTS2 Jiang et al. (2024) in order to close
the gap with fine-tuning approach and capture aspect of the prosody that can’t be contain within
a single excerpt. In contrast Large-scale TTS models relies on the in-context learning abilities:
prompt-continuation Wang et al. (2023); Peng et al. (2024b) and infilling strategies Le et al. (2023)
have been shown succes with as few as 3 seconds of audio, including from noisy sources such as
spontaneous speech Peng et al. (2024b) or podcasts.

Parameter Efficient Fine-Tuning Parameter Efficient Fine-Tuning (PEFT) Xu et al. (2023)
focuses on identifying the optimal subset of parameters for fine-tuning a model, resulting in a
compact variation of the original model. PEFT has gained popularity across large language models
(LLMs) and other large-scale generative models, enabling adaptation on a single GPU in a fraction
of the pretraining time. These methods include LoRA Hu et al. (2022); Dettmers et al. (2023)
and its variants. Alternative techniques involve tuning embeddings that are not parameters during
training, such as prompt tuning Lester et al. (2021); Liu et al. (2022). PEFT can outperform full
fine-tuning in small data scenarios, where full fine-tuning may lead to catastrophic forgetting. Most
of these techniques were initially applied to natural language processing or image generation. Qi
et al. (2024) evaluates the use of LoRA for domain adaptation in emotional text-to-speech (TTS).
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3 PRELIMINARIES

Given an input X ∈ RN×d self-attention for auto-regressive modeling derives three linear
projections: the query matrix Q ∈ RN×dk , the key matrix K ∈ RN×dk , the value matrix
V ∈ RN×dv , and a causal mask Mi,j = 1i<j M ∈ RN×N . The parrallel form of attention is
defined as:

Attention(Q,K,V) = softmax
(
QKT

√
d

⊙M

)
V, (1)

where ⊙ denotes element-wise multiplication, and admits the recurrent form,

Attention(Q,K,V)t =

∑t
i=1 exp(qtk

T
i )vi∑t

i=1 exp(qtkT
i )

. (2)

during inference.

3.1 LINEAR ATTENTION

A variation of attention known as linear attention Katharopoulos et al. (2020), approximates the
softmax behavior with a general similarity function k and its associated feature map ϕ. The linear
attention then can be expressed as:

LinearAttention(Q,K,V)t =

∑t
i=1 ϕ(qt)ϕ(ki)

Tvi∑t
i=1 ϕ(qt)ϕ(ki)T

. (3)

Denoting,

St =

t∑
i=1

ϕ(ki)
Tvi, zt =

t∑
i=1

ϕ(ki)
T ,ot =

ϕ(qt)St

ϕ(qt)zt
(4)

it can be expressed following the updating rule:

St = St−1 + ϕ(kt)
Tvt, zt = zt−1 + ϕ(kt)

T ot =
ϕ(qt)St

ϕ(qt)zt
, (5)

sheding light that it boils down to a RNN with matrix-valued state.

In practice, recent works get rid of the normalization term and set ϕ as the linear kernel (ϕ = Id).
This leads to the simplified recurrent form of linear attention:

St = St−1 + kt
Tvt, ot = qtSt, (6)

where St acts as the constant size kv cache in traditional transformer.

3.2 GATED LINEAR ATTENTION (GLA)

Despite its efficiency, basic linear attention under performs compared to standard self-attention.
Recent research in linear-complexity language models (e.g., RWKV-{4,5,6}Peng et al. (2023;
2024a), GLAYang et al. (2024c), Mamba-{1,2}Gu & Dao (2024); Dao & Gu (2024)) have found
that incorporating data-dependent updates into Equation 6 significantly narrows the performance
gap with transformers.

For this reason Gated Linear Attention Yang et al. (2024c) (GLA) comes with a data-dependent
structured decay applied to the previous state, resulting in the following update rule:

St = Gt ⊙ St−1 + kT
t vt, (7)

where Gt is a gating mechanism that modulates the contribution of past states.
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3.3 KEY ASPECTS OF GLA FOR SPEECH SYNTHESIS

• Performance: GLA achieved state-of-the-art results in linear-complexity language
modeling, even matching or surpassing transformer models for some tasks at large scale.

• Efficiency: GLA admits hardware efficient implementationYang et al. (2024c) by imposing
some structure to the gating term Gt and leveraging chunk wise form of ??. Its linear
scaling in sequence length makes it an attractive option for tasks like audio modeling,
streaming or on device application.

• Inductive bias of locality: While linear language model are known to under-perform
on recall-intensive tasks Arora et al. (2024), we hypothesize that they could mitigate
the inefficiency of self-attention in domain like speech modeling Parcollet et al. (2024);
Lemerle et al. (2024); Jiang et al. (2024), where it appears to be less critical or even
unnecessary.

4 METHOD

Lina-Speech is an autoregressive encoder-decoder architecture that learns neural codec tokens c and
is conditioned on text input x via a text encoder. When combined with a residual vector quantizer, we
employ the delaying strategy introduced by MusicGen Copet et al. (2023), and if only one codebook
is used, it simplifies to standard next-token prediction,

p(c|x) =
T∏

t=0

Q∏
q=1

p(cq,t|x, c<q,t, c:,<t). (8)

4.1 MODEL ARCHITECTURE AND INFERENCE

Model architecture The text encoder is a non-causal transformer encoder that uses RoPE
positional encoding. The acoustic model includes both an audio encoder and a decoder, featuring a
transformer-like architecture (without positional encoding), where self-attention is replaced by GLA
layers, and SwiGLU Shazeer (2020) is used as feed-forward network,

Y = X+ GLA(LayerNorm(X)),

Y′ = Y + Swish(LayerNorm(Y)).
(9)

The decoder takes input from the audio encoder and a cross-attention layer between the text and
audio encoder outputs. To improve robustness, we used specialized cross-attention from Lemerle
et al. (2024), replacing sinusoidal positional encoding with convolutional positional encoding for
enhanced training stability.

Inference We use top-k sampling with k = 100 for all models and ablations, and treats EOS
token as an additional token to the audio codebook. If we use a RVQ as audio codec, we use greedy
sampling for the residuals.

4.2 INITIAL STATE TUNING

We have seen that Gated Linear Attention achieves linear complexity by replacing the expanding
key-value cache of transformers with a constant-sized memory, represented by the matrix-valued
state St in 6. During training in each layer states are initialized to zeros, that is S0 = 0. Recent work
stemming from the RWKV community Peng et al. (2023; 2024a); Fish (2024) have demonstrated
that this type of memory can be subject to PEFT for domain adaptation or instruction tuning of large
language models. Since the state encodes past information without expanding on the time axis, it
offers a compact alternative to prompt tuning. To the best of our knowledge, neither initial state
tuning nor prompt tuning has been successfully applied to speech synthesis.

We found out that:
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Figure 1: An overview of Lina-Speech and the Init State Tuning. Red colour denotes the modules
or states considered for training. Blue colour denotes the modules that are kept frozen. Green
and yellow are respectively audio and text tokens. On the left: during training an encoder-decoder
architecture with cross-attention learns next-token prediction over a neural codec language. Initial
states of gated linear attention are set to zero. On the right: a pre-trained model can learns a new
voice or style within 20 steps by tuning a randomly initialized first state.
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• This approach is robust to the choice of hyper-parameters across datasets, making it suitable
for automated tasks of voice adaptation with simple tuning strategies. In practice we use
the same learning rate λ = 0.1 and two pass over the target dataset with a batch size of 8
utterances for all examples.

• When restricting to 5-30 minutes of speech, the state matrix can be parameterized as a
rank-1 matrix, reducing the parameters set to a pair of vectors per head and per layer, that
is S0 = kT

0 v0, without significant performance degradation.

• The tuning is fast, lasting less than 15 seconds in average on a RTX3080.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets We trained Lina-Speech on a publicly avaible english subset of MLS1 Lacombe et al.
(2024) which consists of 10k hours of librivox recordings. We do not use the provided transcription
and rather used the Automatic Speech Recognition (ASR) model Nemo 2. We also added both
LibriTTS Zen et al. (2019) and its restored version LibriTTS-R Koizumi et al. (2023) with their
normalized transcripts. We used WavTokenizer Ji et al. (2024)3 as a neural audio codec which
encodes speech at a rate of 75 token/s, with a codebook size of 4096 and compared it against
EnCodec Défossez et al. (2023) Koizumi et al. (2023). For text input, we learn a BPE model with
vocabulary size of 256 based on the lower-cased transcripts from LibriTTS. During init state tuning,
we used Expresso Nguyen et al. (2023) as an out-of-domain dataset for adaptation.

Model Configuration We provide detailed model configuration and hyper-parameters in
Appendix A.

Training and Inference The main model is trained for next-token prediction with cross-entropy
loss for 500k steps with a batch size of approximately 100k tokens (≈ 22min of speech). We use
AdamW optimizer with a learning rate of 2× 10−4 , a cosine learning rate schedule for the first 1k
steps, a weight decay of 0.1 and gradient clipping of 0.1. We group samples of similar lengths within
10 buckets in order to avoid padding. The training takes about 4 days on two RTX4090. Inference
of audio speech is made by feeding predicted tokens to WavTokenizer decoder and Vocos Siuzdak
(2023) for WavTokenizer and EnCodec token respectively. For long synthesis we continue training
for 100k steps on librilight-medium. We rely on the official hardware efficient implementation of
GLA Yang & Zhang (2024).

5.2 OBJECTIVE METRICS

We measure word error rate (WER) and character error rate (CER) using the same model from Nemo
as for speech transcription. We also measured speaker similarity as the cosine similarity of WavLM
Chen et al. (2022) embedding of target and synthesized speech using a pretrained checkpoint 4.

5.3 SUBJECTIVE METRICS

We conducted subjective experiment using Mean Opinion Score (MOS) to measure the naturalness
and similarity to the target speaker via the platform Prolific. The complete details of the subjective
are described in Appendix B.

5.4 BASELINES

The baselines includes:

1parler-tts/mls_eng_10k
2stt en fastconformer hybrid large pc
3WavTokenizer-medium-speech-75token
4wavlm-base-plus-sv
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• The TTS enhanced version of VoiceCraft Peng et al. (2024b), a decoder-only model trained
on GigaSpeech and librilight. They trained an EnCodec model on their dataset.

• StyleTTS2 Li et al. (2024) an end-to-end TTS model that leverages latent diffusion for style
modeling.

• an unofficial reproduction of VALLE-X Zhang et al. (2023) that leverages an official
EnCodec model. Plachtaa

• Parler-TTS Lacombe et al. (2024), is a series of reproduction of Lyth & King (2024)
that allows synthesis controlled by textual description of the voice. Interestingly, this
reproduction differs from the original paper by separating text and audio sequence and
employing cross-attention between the two modalities instead of self-attention on the
concatenation of both, making the architecture closer to Lina-Speech. They leverage DAC
Kumar et al. (2024) as audio codec.

5.5 EXPERIMENTS

• Zero-shot voice cloning We evaluate zero-shot against the baselines with the exception of
Parler-TTS on the clean test split of LibriTTS.

• Initial State Tuning Since Parler-TTS voice adaptation is limited to a subset of speakers
from the training set, we evaluate our model using an initial state tuned against the same set
of speakers. For LibriTTS it consists of a list of names5 that we give to Parler as a textual
prompt. We evaluate syntheses by generating random sentences with the help of a large
language model and compare them to the training set. For the Expresso dataset we employ
the same strategy and tune initial states for each pair (speaker, style). We provide details
on the specific guidance in the appendix.

5.6 RESULTS AND DISCUSSION

5.6.1 EXPERIMENT #1: ZERO-SHOT VOICE CLONING

Table 5.6.1 presents the results of the objective and subjective evaluation conducted on the task of
zero-shot voice cloning. First, results for the ground truth is presented in order to provide the lower
(respectively higher) boundary which can be expected for the different measurements. Those scores
generally reflect the internal noise or the non-reducible error of the measurement, which can have
many causes: manual transcription errors of the ground truth, limitations of the algorithm used for
automatic transcription, or internal perception noise.

Table 1: {it Zero-shot evaluation on LibriTTS test clean split. The objective evaluation includes:
Word Error Rate (WER), Caracter Error Rate (CER), and cosine similarity to the reference speaker
(Sim.). The subjective evaluation includes: MOS for naturalness (N-MOS) and MOS for similarity
to the reference speaker (S-MOS). The number of parameters for each model is reported in #Params.

Model Objective eval. Subjective eval.
WER (↓) CER (↓) Sim. (↑) N-MOS (↑) S-MOS (↑) #Params.

Ground Truth 4.5% 1.5% - 4.26± 0.19 4.3± 0.22 -
StyleTTS2 3.2% 0.8% 0.89 3.93± 0.22 4.02± 0.24 148M
VALLE-X 14.1% 7.6% 0.92 3.21± 0.27 3.07± 0.29 300M
VoiceCraft 6.6% 3.4% 0.94 3.62± 0.24 3.55± 0.25 833M

Lina-Speech 7.5% 2.9% 0.93 4.18± 0.194.18± 0.194.18± 0.19 4.10± 0.204.10± 0.204.10± 0.20 169M

Objective evaluation Among all the TTS systems under comparison, StyleTTS2 presents by the
lowest WER and CER that turns to be lower than the ground truth which could indicate that the
duration prediction is biased and might be attributed to the oversmoothing Ren et al. (2022) of NAR
TTS models. Among the TTS models belonging to the auto-regressive language models (LM),
Lina-Speech presents WER of 7.5% and CER of 2.9% that are comparable to those of VoiceCraft

5speaker ids to names.json
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while VALLE-X presents about twice errors in proportion. Considering the cosine similarity to
the speaker, the LM TTS models present the higher similarity (above 0.9 for all), compared to
StyleTTS2 (below 0.9).

Subjective evaluation The right side of the Table presents the mean and standard deviation
obtained in terms of naturalness (N-MOS) and the similarity (S-MOS). Lina-Speech presents the
higher scores either in terms of naturalness (N-MOS=4.18) or of similarity to the reference speaker
(S-MOS=4.10). A comparison with the other TTS models reveals that Lina-Speech is the only TTS
models reaching MOS scores above 4.0 for both naturalness and similarity, while the others remain
generally below and sometimes even closer to 3.0 as for VALLE-X. A further statistical analysis
of those results was conducted between each pair of models using a Student’s t-test Fisher (1925)
in order to assess whether the observed differences are significant. Significant differences with p-
value = 0.05 was found between Lina-Speech and all other models, except for the ground truth and
StyleTTS2.

In conclusion, Lina-Speech presents comparable performance to the other LM TTS models in terms
of objective metrics and is considered as significantly better in terms of subjective metrics while
having much less parameters than the other models.

5.6.2 EXPERIMENT #2: INITIAL STATE TUNING

Table 5.6.2 presents the results of the objective and subjective evaluation specifically designed for
a comparison of the initial state tuning in Lina-Speech against Parler-TTS. The evaluation was
conducted for both in and out of domain tasks: LibriTTS was used for the in-domain evaluation,
and EXPRESSO was used for the out-of-domain evaluation.

Table 2: {it Evaluation of Lina-Speech vs. Parler-TTS mini models. In-domain evaluation is
reported on the LibriTTS dataset and out-of-domain evaluation is reported on the EXPRESSO
dataset. The objective evaluation includes: Word Error Rate (WER), Caracter Error Rate (CER),
and cosine similarity to the reference speaker (Sim.). The subjective evaluation includes: MOS for
naturalness (N-MOS) and MOS for similarity to the reference speaker (S-MOS). The number of
parameters for each model is reported in #Params.

Model Objective eval. Subjective eval.
WER ↓ CER ↓ Sim. ↑ N-MOS ↑ S-MOS ↑ #Params.

Ground Truth 5.1% 1.6% 4.68± 0.08 4.71± 0.08 -

EXPRESSO Parler Mini6 4.9% 4.4% 0.87 3.69± 0.183.69± 0.183.69± 0.18 3.39± 0.24 674M
Lina-Speech 3.6%3.6%3.6% 1.4%1.4%1.4% 0.930.930.93 3.68± 0.17 3.66± 0.153.66± 0.153.66± 0.15 169M
Ground Truth 4.3% 0.9% 4.22± 0.18 4.26± 0.20 -

LibriTTS Parler Mini 7 4.4% 2.6% 0.90 4.06± 0.26 3.45± 0.27 880M
Lina-Speech 2.9%2.9%2.9% 1.3%1.3%1.3% 0.940.940.94 4.10± 0.184.10± 0.184.10± 0.18 3.97± 0.243.97± 0.243.97± 0.24 169M

Objective evaluation Lina-Speech presents systematically the best performances in terms of
WER, CER, and similarity to the speaker, as compared to Parler-TTS, both for in and out of domain
tasks. For the in-domain task conducted on LibritTTS, Lina-Speech has a WER of 2.9%, a CER
of 1.3% and a cosine similarity to the speaker of 0.94. For the out-of-domain task conducted on
EXPRESSO, the performance of Lina-Speech degrades slightly compared to the one observed for
the in-domain task. Lina-Speech has a WER of 3.6%, a CER of 1.3%, and a cosine similarity to
the speaker of 0.93. This indicates the consistency of Lina-Speech, and in particular its efficiency to
adapt to out-of-domain speech.

Subjective evaluation For the in-domain task, Lina-Speech presents the highest score on Libri-
TTS both in terms of naturalness and similarity. For the out-of-domain task, this tendency
mostly remains observed: Firstly, Lina-Speech and Parler-TTS present comparable performance.
The observed difference is marginal and not significant. But secondly, Lina-Speech presents a
significantly higher similarity to the speaker as compared to Parler-TTS.
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In conclusion, the reported results demonstrate the efficiency of the proposed Init State Tuning to
condition on new speakers either in or out of domains. This strategy offers a particularly efficient
and stable alternative to other strategies as the one represented by Parler-TTS. Efficient: Lina-Speech
only needs 15 seconds of speech for the adaptation when Parler-TTS has been trained specifically
for this task. Stable: In Lina-Speech the conditioning is effective and can generalize to out-of-
domain speakers, conditions, or speaking styles), while Parler-TTS tends to not systematically or
fully respect the given prompt.

6 CONCLUSION

In this paper, we introduced Lina-Speech a parameter-efficient model during both pretraining and
fine-tuning for text-to-speech synthesis. The proposed architecture leverages on Gated Linear
Attention and init state tuning for which we discussed the key properties in the context of text-
to-speech synthesis: fast and compact. Lina-Speech has been compared to other existing text-to-
speech models, objectively and subjectively, and both on in-domain and out-domain tasks. These
evaluations revealed experimentally that Lina-Speech is 1) a particularly efficient zero-shot learner
for voice cloning with respect to its size; 2) init state tuning is an effective PEFT method to condition
effectively on in and out of domain speakers from small amounts of data. The comparison with other
existing TTS models demonstrates that Lina-Speech is particularly competitive versus much larger
models, possibly specifically pre-trained or fine-tuned on a given dataset while being extremely fast
and compact.
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A MODEL ARCHITECTURE

Lina-Speech is a 169M parameters encoder-decoder architecture with text-conditioning through
cross-attention.

Text Encoder Our text encoder consists of a stack 6 non-causal transformer block with SwiGLU
feed-forward network Shazeer (2020), base dimension 1024. We use dropout with rate 0.1 on the
outputs of each block and RoPE positional encoding.

Audio Encoder and Decoder It consists for each of a stack of 6 causal GLA transformer with
base dimension 1024. The expansion factor of key projection is set to 0.5. We do not use dropout.

Cross-Attention We use PACA cross-attention Lemerle et al. (2024) with convolutional
embedding. We do not use RoPE on queries and keys.
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B SUBJECTIVE EVALUATION

Subjective evaluation was also conducted in order to compare the benchmark of algorithms by using
human perception. In those evaluations, the human subjects were asked to rate the naturalness of
speech samples (N-MOS) and their similarity to a reference speaker (S-MOS) using Mean Opinion
Score (MOS) ITU-T P.800.2 (2013) as commonly used in the literature for evaluation text-to-speech
synthesis systems. In the following, we provide all details of the experimental protocol following
observations reported in Kirkland et al. (2023) and recommendations presented in Cheng-Han et al.
(2023). This is achieved in order to improve the transparency and reproducibility of the proposed
protocol.

B.1 METHODOLOGY

Each listener was assigned a single experiment across the 3 we introduced. It consists of 12
evaluation and measured for a median time of experiment of 7 min.

B.1.1 CREATION AND PRESENTATION OF THE SPEECH STIMULI

LibriTTS clean - Zero shot We group pair of sentences from a same speaker in the test split. We
first draw a prompt candidate randomly between 2 and 5 seconds, then we draw a sample so that the
concatenation of both samples remains within 16s in order to account of the context window of the
baselines, we discard speakers that do not contains at least 2 samples that satisfy this condition. We
draw 40 pairs in this manner.

Init State Tuning In order to adapt our evaluation to Parler that does not provide test set, we
synthesized random sentences with Llama3.1 8B with the following prompt.

” Please generate a diverse set of 40 random sentences designed for evaluating text-to-speech
synthesis quality. Ensure that:

• Variety in sentence length: Sentences should be between 12 and 20 words long.
• Phonetic coverage: Include a wide range of phonemes, syllable structures, and sounds.
• Incorporate both simple and complex sentence structures.
• Diverse syntax and styles: Use varied syntactic forms, rhythms, and styles to capture

different speech patterns and intonations.
• Natural and conversational tone: The sentences should sound natural, like everyday speech,

while still offering variability.
• Descriptive and vivid: Include a mix of action-oriented, descriptive, and emotional content

to test prosody and emotional intonation.
• Non-repetitive: Ensure that all sentences are distinct from each other, with no repetition in

structure or wording.

”

The sentences should be suitable for use in evaluating prosody, naturalness, and phonetic diversity in
a text-to-speech system. In the Expresso dataset, we omitted all excerpts where transcripts contained
non-verbal instruction such as ”laugh ”, ”breathe ”.

B.1.2 INTERFACE FOR THE EXPERIMENT

The experiment was conducted online and implemented in Python. The experiment was preceded
by general recommendation to the subject before starting the evaluation:

• Please use headphones or earphones in a quiet environment.
• Adjust the sound level so you can hear subtle sound differences.

Each experimental run consisted in the evaluation by the subject of 15 speech samples. The order
of presentation of the speech stimuli was randomised before each experiment in order to avoid any
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presentation biases. Each speech sample was presented and evaluated individually and separately
on a dedicated page.

On top of the page, a reminder of the instructions was presented. In the the center of the page, the
speech sample to be evaluated was presented in the left side and a speech sample of the reference
speaker was presented in the upper right corner. The criteria to be rated were presented right next to
the speech sample to be evaluated and below the speech sample of the reference speaker The subject
had to provide one and only one rating for all criteria before being allowed to proceed to the next
speech sample. Subjects were not allowed to revise their rating of previous speech samples.

B.1.3 INSTRUCTIONS GIVEN TO THE SUBJECTS

In each experimental run, the subjects were asked to evaluate the naturalness of the speech sample
and its similarity to a speech sample of a reference speaker. The speech sample of the reference
speaker consists of a real speech sample of the reference speaker which was selected systematically
different from the speech sample under evaluation. By doing so, we were intending to prevent the
subject from confusing the general perception of a speaker identity with one single realisation on
a particular utterance and thus trying to mitigate the linguistic biased in the perception of speaker
similarity.

The following instructions were given to the subjects:

• In this experiment, you have to judge a speech sample with respect to a reference speech
sample.

• The reference and the sample to judge does not pronounce the same utterance.

For each speech sample, please rate :

• The speech NATURALNESS: to which extent you judge the speech sample as natural as
real human speech?

• The SIMILARITY to the reference speaker: to which extent the speech sample is judged
close to the reference speaker?

Complementary recommendations were provided either to precise the definition or the task to be
achieved:

1. The aspects of speech naturalness include: fluency and appropriateness of pronunciation
and prosody, and diversity in the expression of styles and emotions.

2. The samples may have different recording conditions or background noise. As the scope
of this experiment is only focused on speech naturalness, please try to ignore them during
your evaluation.

B.1.4 PSYCHOMETRIC MEASUREMENTS AND ASSESSMENT METHODOLOGY

The Mean Opinion Score (MOS) ITU-T P.800.2 (2013) was used to measure naturalness and
similarity, using a Likert scale ranging from 1 to 5. For both criteria, we used the original scale,
as suggested in Kirkland et al. (2023):

1(Bad), 2(Poor), 3(Fair), 2(Good), 5(Excellent)

Following the MUSHRA methodology ITU-R BS.1534-3 (2015), we additionally incorporated
hidden references of real speech samples for each evaluation run.

B.2 SUBJECTS RECRUITMENT

B.2.1 RECRUITMENT PLATFORM

Prolific crowd-sourcing platform was used for the experiment: https://www.prolific.
com/.
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B.2.2 LANGUAGE BACKGROUND AND GEOGRAPHIC LOCATION OF THE EVALUATORS

For this evaluation, we used the following filters available in this plateform to recruit subjects:

• Location: USA or UK
• Language: First language and Primary language and Fluent languages = English

The combination of these filters ended up into 91k subjects potentially skilled for the evaluation.

B.2.3 SUBJECTS QUALIFICATION

We applied several filters to assess the qualification of the subjects, in order to reject those who do
not fulfill the necessary conditions to be considered qualified for the evaluation.

The list of conditions is listed as follows:

• non-native English speaker
• rate below 3 any real speech sample on the N-MOS
• time spent to complete the experiment is below 3m 30s
• the mean MOS of the subject deviates from the overall mean of all subjects by more than

two standard deviations, as proposed by Kim et al. (2024)

The subject was considered not qualified if at least one of the conditions was not fulfilled.

165 subjects participated in the experiment. Applying these filters, the qualification rate of the
subjects was about 76%. We rejected 39 subjects from a total of 165, so the total of qualified
subjects was 126 whose ratings were further used for analysis.
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