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Abstract

Score-based generative models learn a family of noise-conditional score functions
corresponding to the data density perturbed with increasingly large amounts of
noise. These perturbed data densities are tied together by the Fokker-Planck equa-
tion (FPE), a PDE governing the spatial-temporal evolution of a density undergoing
a diffusion process. In this work, we derive a corresponding equation characterizing
the noise-conditional scores of the perturbed data densities (i.e., their gradients),
termed the score FPE. Surprisingly, despite impressive empirical performance, we
observe that scores learned via denoising score matching (DSM) do not satisfy the
underlying score FPE. We mathematically analyze two implications of satisfying
the score FPE and a potential explanation for why the score FPE is not satisfied in
practice. At last, we propose to regularize the DSM objective to enforce satisfaction
of the score FPE, and show its effectiveness on synthetic data and MNIST.

1 Score-based generative models

[16] unifies denoising score matching [14] and diffusion probabilistic models [13, 4] via a stochastic
process x(t) of continuous time t ∈ [0, T ] driven by the forward SDE

dx(t) = f(x(t), t)dt+ g(t)dwt, (1)
where f(·, t) : RD → RD, g(·) : R → R and wt is a standard Wiener process. Under some moderate
conditions [1], one can obtain a reverse time SDE from T to 0

dx(t) = [f(x(t), t)− g2(t)∇x log qt(x(t))]dt+ g(t)dw̄t, (2)

where w̄t is a standard Wiener process in reverse time. Let qt(x) denote the ground truth marginal
density of x(t) following Eq. 1. We can train a neural network sθ = sθ(x, t) to approximate
∇x log qt(x) by minimizing the denoising score matching (DSM) loss [18, 16]:

JDSM(θ;λ(·)) := 1

2

∫ T

0

λ(t)Ex(0)Eq0t(x(t)|x(0))
[ ∥∥sθ(x(t), t)−∇x(t) log q0t(x(t)|x(0))

∥∥2
2

]
dt,

(3)
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(a) VE SDE; MNIST (b) VP SDE; MNIST (c) VE SDE; CIFAR-10 (d) VP SDE; CIFAR-10

Figure 1: Comparison of the numerical scale of rDSM(t; sθ) and rFP(t; sθ) of pre-trained scores sθ
on MNIST and CIFAR-10. Pre-trained models do not numerically satisfy score FPE in contrast to
their denoising score matching-like errors. We attempt to explain this phenomena in Sec. 3.1 and 3.3.

where q0t(x(t)|x(0)) is the transition kernel from x(0) to x(t). After sθ(x, t) ≈ ∇x log qt(x) is
learned, we replace ∇x log qt(x) in Eq. 2 with sθ and get a parametrized reverse-time SDE for
stochastic process x̂θ(t)

dx̂θ(t) = [f(x̂θ(t), t)− g2(t)sθ(x̂θ(t), t)]dt+ g(t)w̄t, (4)

Let pSDE
t,θ denote the marginal distribution of x̂θ(t). We can design f and g in Eq. 2 so that qT (x)

approximates a simple prior π, and hence, can generate samples x̂θ(0) ∼ pSDE
0,θ by numerically

solving Eq. 4 backward with an initial sample from the prior x̂θ(T ) ∼ π. Intuitively, x̂θ(0) should
be close to a sample from the data distribution.

2 The Fokker-Planck equation for a score vector field

It is well known that the evolution of the ground truth density qt(x) associated to Eq. 1 is governed
by the Fokker-Planck equation (FPE) [10] (details in Appx. E). As there is a one-to-one mapping
between densities and their scores, we can derive an equivalent system of PDEs that the ground truth
scores ∇x log qt(x) must satisfy. We call it as a score Fokker-Planck equation, for short score FPE.
Corollary 1 (score FPE). Assume that the ground truth density qt(x) is sufficiently smooth for
(x, t) ∈ RD × [0, T ]. Then its score s(x, t) := ∇x log qt(x) satisfies the following system of PDEs

∂ts−∇x

[1
2
g2(t)divx(s) +

1

2
g2(t) ∥s∥22 − ⟨f , s⟩ − divx(f)

]
= 0, (x, t) ∈ RD × [0, T ]. (5)

This result shows that the time-conditional scores sθ(x, t) learned by score-based models (via Eq. 3)
are highly redundant. In principle, given a ground truth score at an initial time t0, we can theoretically
recover scores for all times t ≥ t0 by solving the score FPE. We explain its intuition by considering
a special case when f ≡ 0 and g ≡ 1. That is, x(t) is obtained by adding Gaussian noise. It is
well-known that the densities qt and qt0 are related in a convolutional way as qt = qt0 ∗ N (0, t),
and qt can be analytically obtained from qt0 [8] (e.g., by applying a Fourier transform and dividing).
Hence, all scores can in principle be obtained analytically from the score at a single time-step, without
any further learning. In Appx. B we empirically support this idea.

Theoretically, with sufficient data and model capacity, (denoising) score matching ensures the optimal
solution to Eq. 3 should satisfy Eq. 5 as it approximates the ground truth score well. However, we
observe that pre-trained sθ learned via Eq. 3 do not numerically satisfy the score FPE. We hereby
introduce an error term ϵsθ = ϵsθ (x, t) in order to quantify how sθ deviates from the score FPE

ϵsθ (x, t) := ∂tsθ −∇x

[1
2
g2(t)divx(sθ) +

1

2
g2(t) ∥sθ∥22 − ⟨f , sθ⟩ − divx(f)

]
. (6)

We further define the following averaged residuals of DSM and the score FPE for t ∈ [0, 1]:

rDSM-like(t; sθ) :=
1

D
Ex(0)Ex(t)|x(0)

[ ∥∥sθ(x(t), t)−∇x(t) log q0t(x(t)|x(0))
∥∥
2

]
rFP(t; sθ) :=

1

D
Ex∼ν

[
∥ϵsθ (x, t)∥2

]
, ν ∼ Uniform

(
[0, 1]D

)
or ν ∼ qt(x(t)|x(0)).

Fig. 1 plots these residuals for score models pre-trained via DSM on MNIST and CIFAR-10. Despite
achieving low rDSM-like score-matching loss across all t (green curve), pre-trained score models fail to
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satisfy the score FPE equation especially for small t (blue, orange curves). In Sec. 3, we theoretically
analyze these findings and provide new insights into the score FPE. In Sec. 4, we propose a novel
score matching objective with score FPE as a regularizer (Eq. 8) and examine its effectiveness on
synthetic dataset and MNIST. We refer to Appx. C for implementation details and Appx. E for proofs.

3 Theoretical implications and interpretations of score FPE

In this section, we first study two implications of satisfying the score FPE. More precisely, we show
in Sec. 3.1 that controlling ϵsθ can implicitly enforce conservativity of sθ. Moreover, if the score
FPE is satisfied, we prove in Sec. 3.2 the equivalence of sθ, ground truth score s and ∇x log pSDE

t,θ

holds under some conditions, where pSDE
t,θ is defined in Sec. 1 as the marginal density of parametrized

diffusion process. In Sec. 3.3, we investigate the connection between higher-order score matching [9,
7] and score FPE.

3.1 Conservativity

The ground truth score s(x, t) = ∇x log qt(x) is a conservative vector field. That is, it can be
expressed as a gradient of some real-valued function. However, scores learned in practice do not
satisfy this property [12]. Below we prove that we can implicitly enforce conservativity by minimizing
the time-averaged residual of the score FPE.
Proposition 1. If there is a tθ ∈ [0, T ] so that sθ(x, tθ) = ∇x log qtθ (x) for all x ∈ RD,
then there is a real-valued function Ψθ : RD × [0, T ] → R given by Ψθ(x, t) = log qtθ (x) +∫ t

tθ

[
1
2g

2(τ)divx(sθ) + 1
2g

2(τ) ∥sθ∥22 − ⟨f , sθ⟩ − divx(f)
]
dτ so that for all (x, t) ∈ RD × [0, T ]

∥sθ(x, t)−∇xΨθ(x, t)∥2 ≤
∫ max{tθ,t}

min{tθ,t}
∥ϵsθ (x, τ)∥2 dτ. (7)

Consider a model sθ , and assume that for a large enough timestep tθ, it captures exactly the perturbed
density (sθ(x, tθ) = ∇x log qtθ (x)) which is close to the prior (normal distribution) because tθ ≈ T .
Intuitively, sθ is “nearly” conservative as the score of the prior is known to be conservative (because
its score has a closed form as the gradient of log-density). Indeed, Prop .1 supports the intuition by
saying that the the estimated score should nearly be conservative if it approximately satisfies the score
FPE. Actually, Fig. 1 shows that

∫ t

tθ

∥∥ϵsθ0
(x, τ)

∥∥
2
dτ is numerically small. Therefore, sθ(x, t) is

close to the gradient of a scalar function Ψθ(x, t); namely, it is conservative.

3.2 Equivalence between sθ, s and ∇x log pSDE
t,θ

We now investigate another implication of satisfying the score FPE which connects the score sθ with
the ground truth s and ∇x log pSDE

t,θ . The following proposition states that all aforementioned scores
are identical if we train to reach a zero residual of score FPE for all (x, t) (under some technical
assumptions ensuring the system of PDEs has a unique solution).
Proposition 2. Suppose we know that in some suitable function space, 0 is the unique strong solution
to the PDEs ∂tv −∇x

[
1
2g

2(t)divx(v) + 1
2g

2(t)
(
∥v∥22 + 2⟨v, s⟩

)
− ⟨f ,v⟩

]
= 0 with zero initial

condition v(x, 0) ≡ 0 and zero boundary condition. If there is some θ0 so that ϵsθ0
(x, t) = 0 for all

(x, t), then sθ0
≡ s. Moreover, suppose that the PDEs ∂tv +∇x

[
1
2g

2(t)divx(v) + 1
2g

2(t) ∥v∥22 +
⟨f ,v⟩

]
= 0 with zero initial and boundary condition has 0 as the unique strong solution, then

ϵsθ0
≡ 0 implies sθ0 ≡ ∇x log pSDE

t,θ0
.

We hypothesize that satisfying the score FPE has a smoothing effect when f(x, t) is linear in x.
Suppose the assumptions of Prop. 2 hold and hence, sθ0

≡ ∇x log pSDE
t,θ0

. As linearly transforming
normal distributions (by f ) remains normal, [7] proves that pSDE

t,θ0
turns out to be a Gaussian distribution

for any t. In practice, the assumptions are not likely to be met exactly, i.e. the residual will not be
exactly zero ϵsθ0

≡ 0. In this case, we hypothesize that learning θ to reduce ∥ϵsθ
∥ can reduce the

gap
∥∥∥sθ −∇x log pSDE

t,θ

∥∥∥, and may further modify the direction sθ toward high density region of
Gaussian (smoothing effect).
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(a) Data density (b) VE (c) VE + 0.001FP

Figure 2: Comparison of (a) data density, (b) estimated
density by probability flow ODE with sθ trained with
γ = 0.0, and (c) with γ = 0.001. Score FPE-regularizer
improves density estimation.

Table 1: NLL (in bpd) for different FP
weights γ’s and weighting functions λ(·)’s

SDE type λ(·) γ = 0.0 γ = 0.01 γ = 0.1 γ = 1.0 γ = 10.0

VE + γFP [16] 3.86 3.63 3.66 3.28 3.37
[15] 3.63 3.94 3.53 3.20 3.23

VP + γFP [16] 2.95 3.06 3.09 2.91 3.34
[15] 3.11 3.14 3.04 3.28 3.28

RVE + γFP [16] 3.45 3.68 3.77 3.57 3.13
[15] 3.62 3.78 3.49 3.16 3.36

3.3 Higher-order score matching

Higher-order derivatives of score can yield additional information about the data distribution. We
prove a property stating that error bounds of higher-order score matching can further control the
residual

∥∥∥∫ t

0
ϵsθ (x, τ)dτ

∥∥∥
2

for all t ∈ [0, T ]. This may explain why the scores learned via Eq. 3 are
not sufficient to satisfy the score FPE as their higher-order scores may deviate from the ground truth.

Proposition 3. Denote C(t) := 1
2

∫ t

0
g2(τ)dτ . Assume the following error estimates hold for

higher-order score matching that for all (x, t) ∈ RD × [0, T ]

∥s− sθ∥2 ≤ δ0, ∥∇x(s− sθ)∥F ≤ δ1, ∥∇xdivx(s− sθ)∥2 ≤ δ2.

Then we have that for all (x, t) ∈ RD × [0, T ]∥∥∥∥∫ t

0

ϵsθ (x, τ)dτ

∥∥∥∥
2

≤ 2δ0 + (δ2 + 2δ1δ0)C(t) + δ1

∫ t

0

(
g2(τ) ∥s(x, τ)∥2 + ∥f(x, τ)∥2

)
dτ

+ δ0

∫ t

0

(
g2(τ) ∥∇xs(x, τ)∥F + ∥∇xf(x, τ)∥F

)
dτ.

4 Experimental results

We have demonstrated that score models learned via JDSM (Eq. 3) do not satisfy the score FPE, a
property that ground truth scores should satisfy a priori. Therefore, we devise a novel loss function,
consisting of JDSM and a score FPE-regularizer RFP(θ) :=

1
DEt∼U [0,T ]Ex∼ν ∥ϵsθ (x, t)∥2 as

JFP(θ;λ(·), γ) := JDSM(θ;λ(·)) + γRFP(θ), (8)
where γ ≥ 0 is a hyper-parameter. Since ϵsθ in RFP is generally expensive to calculate, we propose
to exploit the finite difference method [3] for ∂tsθ and Hutchinson’s trace estimator [5] for divx(sθ)
to reduce the computational efforts (details in Appx. D). The effectiveness of JFP is examined on
synthetic dataset (Gaussian mixture models) and MNIST.

Synthetic dataset We consider a Gaussian mixture model as the training data distribution. Fig. 2
illustrates (a) ground truth density, and the density produced by probability flow ODE [16] of scores
trained with (b) λ = 0.0 (i.e, conventional score matching training) and (c) λ = 0.001. The score
trained with score FPE-regularizer can approximate the data density well, improving over vanilla
score-matching. We hypothesize score FPE-regularizer may improve density estimation with the
probability flow ODE, as it enforces a known self-consistency property of the ground truth score.

MNIST We evaluate the proposed JFP(θ;λ(·), γ) on MNIST with different γ’s. Table 1 reports
negative log-likelihood (NLL) in bits/dim (bpd) across three instantiations of the forward SDE (see
Appx. A) and two choices of weighting functions λ(·)’s ([16] and [15]). We observe a general
improvement in NLL with γ = 1.0 (see Appx. F for a demonstration of generated samples).

5 Conclusion

We introduce the score FPE and theoretically study its relation with score matching, conservativity
and density induced by parametric reverse diffusion. Moreover, we propose to penalize on residual of
score FPE and show its effectiveness on simple dataset. However, it is unclear how the dynamics of
score FPE affects, for instance, training of a larger scale dataset or variational lower bound.
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A Instantiation of SDE and score FPE

[16] categorizes the forward SDE into three types based on the behavior of the variance during
evolution. Here we focus on two of them, which are Variance Explosion (VE) SDE and Variance
Preserving (VP) SDE.

VE SDE It has a zero drift term f = 0 and diffusion term g(t) =
√

dσ2(t)
dt with some function

σ(t). Hence, the forward SDE (Eq. 1) becomes

dx(t) =

√
dσ2(t)

dt
dwt. (9)

A typical instance of VE SDE is Score Matching of Langevin dynamics (SMLD) [14], where

σ(t) := σmin

(
σmax
σmin

)t

for t ∈ (0, 1]. In our implementation, we follow the conventional setup of
(σmin, σmax) := (0.01, 50).

In [6], they proposed a variant of VE SDE attempting to resolve the unbounded score problem [2],
which is called Reciprocal VE (RVE). Let ϵ > 0 be a fixed constant. RVE SDE also has zero drift
term but with a different parametrization for diffusion

g(t) :=

σmax

(
σmin
σmax

) ϵ
t

√
2ϵ log(σmax

σmin
)

t , if t > 0

0, if t = 0

VP SDE Let β be a non-negative function of t. VP SDE has a linear drift term f(x, t) = − 1
2β(t)x

and diffusion term g(t) =
√
β(t). Thus, the forward SDE is

dx(t) = −1

2
β(t)x(t)dt+

√
β(t)dwt.

A classic example of VP SDE is Denoising Diffusion Probabilistic Modeling (DDPM) [13, 4], where
β(t) := βmin + t(βmax −βmin) for t ∈ [0, 1]. We adopt the common setup of (βmin, βmax) := (0.1, 20)
in our implementation.

We summarize the aforementioned instantiations of SDE and their associated score FPE in Table 2.

Table 2: Summary of the forward SDEs and their score FPEs
VE SDE RVE SDE VP SDE

f(x, t) 0 − 1
2
β(t)x

g(t) σmin

(
σmax
σmin

)t√
2 log

(
σmax
σmin

) σmax

(
σmin
σmax

) ϵ
t

√
2ϵ log(σmax

σmin
)

t
, t > 0

0, t = 0

√
β(t)

SDE dx(t) = g(t)dwt dx(t) = − 1
2
β(t)x(t)dt+

√
β(t)dwt

score FPE ∂ts = ∇x

[
1
2
g2(t)divx(s) +

1
2
g2(t) ∥s∥22

]
∂ts = 1

2
β(t)∇x

[
divx(s) + ∥s∥22 + ⟨x, s⟩

]

B How scores satisfy score FPE?

We experimentally demonstrate how score functions should satisfy the score FPE in two different
aspects. We consider the data distribution as a Gaussian mixture model (GMM) of the density
1
5N

(
(−5,−5), I

)
+ 4

5N
(
(5, 5), I

)
on R2 whose samples are illustrated in Fig. 3a. The diffusion

process is taken as VE SDE (Eq. 9). The ground truth score of GMM, denoted as sGMM, can be
expressed explicitly with a closed formula throughout the diffusion (as the diffusion process is linear
in x).

First of all, we examine if sGMM satisfies the score FPE by computing rFP(t; s
GMM) and plot it in

Fig. 5a (blue curve). We can see that the score FPE residual of the ground truth is almost zero, which
empirically supports Corollary 1.
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Second, as we explain in Sec. 2, we can solve score FPE for the score at any time if we are merely
given a score at a single time moment. Namely, once we find a solution s̃ to the following initial
value problem of system of PDEs, we know a score at all time. ∂ts̃ = ∇x

[
1
2g

2(t)divx(s̃) + 1
2g

2(t) ∥s̃∥22
]
, (x, t) ∈ RD × (0, T ]

s̃(x, 0) = sGMM(x, 0), x ∈ RD

(10)

Solutions of Eq. 10 can be parametrized as neural network s̃GMM
θ [11]. We then can solve the PDEs by

learning parameters θ to reduce both the residuals of the initial condition s̃GMM
θ (x, 0)− sGMM(x, 0)

and evolution ϵs̃GMM
θ

:= ∂ts̃θ −∇x

[
1
2g

2(t)divx(s̃θ)+ 1
2g

2(t) ∥s̃θ∥22
]
. That is, s̃GMM

θ is learned with
the score FPE-guided objective function:

min
θ

{
Et∼U [0,T ]Ex(0)Eq0t(x(t)|x(0))

∥∥∥ϵs̃GMM
θ

(x, t)
∥∥∥
2
+ Ex(0)

∥∥s̃GMM
θ (x, 0)− sGMM(x, 0)

∥∥
2

}
.

(11)
We demonstrate generated samples by the learnt s̃GMM

θ in Fig. 3b and plot its score FPE residual
rFP(t; s̃

GMM
θ ) in Fig. 5a (orange curve). Interestingly, it also generates quite satisfactory samples and

Fig. 4b show it estimates the ground truth score (Fig. 4a) well. This supports our argument.

On the other hand, we compare with a score sGMM
θ learned from the denoising score matching (Eq. 3).

We observe that from Fig. 5b that sGMM
θ does not satisfy score FPE even though it works decently on

generation (Fig. 3c) and score estimation (Fig. 4c).

(a) Ground truth data (b) Samples generated by s̃GMM
θ (c) Samples generated by sGMM

θ

Figure 3: Comparison of instances generated using the score functions learned by our score FPE-
guided objective fucntion (Eq. 11) and the conventional denoising score matching (Eq. 3), which are
denoted as s̃GMM

θ and sGMM
θ , respectively. Both scores can synthesize reasonable quality samples.

(a) Ground truth score at t = 0 (b) Estimated Score s̃GMM
θ (·, 0) (c) Estimated Score sGMM

θ (·, 0)

Figure 4: The fluid flow graph of ground truth score and estimated scores at t = 0 by s̃GMM
θ and

sGMM
θ . The score s̃GMM

θ , which is learned from the score FPE-guided objective, can also approximate
the ground truth well.
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(a) FP residuals of ground truth score and the score
learned from Eq. 11

(b) FP residuals of the score learned from Eq. 3

Figure 5: Comparison of the score FPE residuals of sGMM, s̃GMM
θ and sGMM

θ . A further evidence of
the claim in Sec. 2 that sGMM

θ , which is learned from denoising score matching, does not satisfy score
FPE.

C Explanation of Implementation

In Fig. 1, we train a score on MNIST for 200 epochs with a learning rate 1e− 3 and batch size 32 by
using an identical neural network structure to the repository 1 but modify the forward SDE as VE
SDE or VP SDE (see Appx. A). The network structure of synthetic dataset in Appx. B is similar to
the aforementioned one but we simply replace all convolutional layers with fully connected layers.
We train for 2, 000 epochs with a learning rate 1e− 3 and batch size 500.

For the case of CIFAR10, we use the pre-trained score models provided by [16] 2 instead of training
them from scratch. The VE SDE and VP SDE are taken as NCSN++ cont. and DDPM++ cont.,
respectively.

The neural network setup in Fig. 2 is the same as toy model structures provided in the repository of
[7] 3. We found out setting the weight of score FPE to λ = 0.001 can generally work well for the toy
dataset.

D Techniques to reduce computation costs for score FPE

The computation of ϵsθ (x, t) in RFP(θ) is expensive and hard to scale-up to higher dimensional data.
We thus propose two techniques which can help reduce the computation costs.

We recall that ϵsθ (x, t) is defined as ∂tsθ−∇x

[
1
2g

2(t)divx(sθ)+ 1
2g

2(t) ∥sθ∥22−⟨f , sθ⟩−divx(f)
]
.

We explain the details of how the computation of ∂tsθ and divx(sθ) can be respectively relieved by
the finite difference method and Hutchinson’s trace estimator.

D.1 ∂tsθ term

Lemma 1. [3] Let α : [0, 1] → RD be a vector-valued function which is continuously differentiable
up to third order derivatives. Denote hs and hd as hyper-parameters of step sizes. Then we have the
following estimate of α′(t):

h2
sα(t+ hd) + (h2

d − h2
s)α(t)− h2

dα(t− hs)

hshd(hs + hd)
+O

(hdh
2
s + hsh

2
d

hs + hd

)
.

In particular, if hs = hd =: h, then the estimate becomes

α(t+ h)− α(t− h)

2h
+O(h2).

1https://colab.research.google.com/drive/120kYYBOVa1i0TD85RjlEkFjaWDxSFUx3?usp=sh
aring

2https://github.com/yang-song/score_sde_pytorch
3https://github.com/LuChengTHU/mle_score_ode
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In our implementation for MNIST, we consider α(·) := sθ(·,x) and set (hs, hd) = (0.001, 0.0005)
for the approximation of ∂tsθ.

D.2 divx(sθ) term

Hutchinson’s trace estimator [5] stochastically estimates the trace tr(A) of any square matrix A.
Its idea is choose a distribution pv so that Ev∼pv [v] = 0 and Ev∼pv [vv

T ] = I . Hence, tr(A) =
tr(AEv∼pv [vv

T ]) = Ev∼pv [tr(AvvT )] = Ev∼pv [tr(vAvT )] = Ev∼pv [vAvT ]. By i.i.d. sampling
{vj}Mj=1 from pv , we can use the following unbiased estimator

1

M

M∑
j=1

vjAvT
j

to estimate tr(A). We notice that divx(sθ(x, t)) = tr
(
∇xsθ

)
. Thus, we can apply Hutchinson’s

trick and replace divx(sθ) term with the estimation

1

M

M∑
j=1

vj∇xsθ(x, t)v
T
j .

In the implementation, pv is usually taken as a standard normal distribution or a Rademacher
distribution whose random vector has components equal to +1 or −1 with equal probability. We
follow the convention in [17] which sets M = 1 and shows its effectiveness.

D.3 Projection of ϵsθ (x, t)

We further propose another potential trick to reduce the computation cost of differentiation.

ϵsθ (x, t) = ∂tsθ︸︷︷︸
(I)

−∇x

[1
2
g2(t)divx(sθ) +

1

2
g2(t) ∥sθ∥22 − ⟨f , sθ⟩ − divx(f)

]
︸ ︷︷ ︸

(II)

(12)

Using automatic differentiation to compute the gradient in ϵsθ (x, t) (the (II) part in Eq. 12) is
generally cumbersome for high dimensional data. We propose to use random projection to relieve the
computation of gradient (multi-dimension) to directional derivative (one-dimensional). Thus, we can
further apply the finite difference trick introduced in Appx. D.1 to reduce the computation efforts.
We first recall a fundamental property before rigorously formulating the technique.
Lemma 2. Let M := M(x, t) : RD × [0, T ] → R be a continuously differentiable function of x.
For any v ∈ RD,

DvM(x, t) = ⟨∇xM(x, t),v⟩,
where DvM(x, t) means the directional derivative of M in x along the direction v which is defined
as:

DvM(x, t) := lim
h→0

M(x+ hv, t)−M(x, t)

h
=

d

dh
M(x+ hv, t)

∣∣∣
h=0

. (13)

For simplicity, let us denote M(x, t) := 1
2g

2(t)divx(sθ) + 1
2g

2(t) ∥sθ∥22 − ⟨f , sθ⟩ − divx(f) and
let v ∈ RD be arbitrary vector. We project ϵsθ (x, t) along direction v and apply the Lemma 2,

⟨ϵsθ (x, t),v⟩ = ⟨∂tsθ −∇xM(x, t),v⟩ = ⟨∂tsθ,v⟩ − ⟨ d

dh
M(x+ hv, t)

∣∣∣
h=0

,v⟩.

Notice that both ∂tsθ and d
dhM(x+ hv, t)

∣∣∣
h=0

are one-dimensional differentiation, which can be
estimated via Lemma 1 and hence, we can avoid automatic differentiation. We hereafter propose an
estimated score FPE-regularizer which may replace RFP with

R̂FP(θ) :=
1

D
Et∼U [0,T ]Ex∼νEv∼pv |⟨ϵsθ (x, t),v⟩| , (14)

where pv is a distribution of random vector v ∈ RD. We observe that the performance may degrade
by using R̂FP, which may due to the inaccurate approximation to the exact score FPE. Therefore, a
further study is required to have lower computation costs while preventing the deterioration in the
performance.
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E Proofs and discussion

E.1 Proof of Corollary 1

We prove the result with a more general forward SDE

dx = F (x, t)dt+G(x, t)dwt, (15)

where F (·, t) : RD → RD and G(·, t) : RD → RD×D.

We know that the density qt(x) satisfies the Fokker-Planck equation [10]

∂tqt(x) = −
D∑

j=1

∂xj

(
F̃j(x, t)qt(x)

)
, (16)

where F̃ (x, t) := F (x, t)− 1
2∇ · [G(x, t)G(x, t)T ]− 1

2G(x, t)G(x, t)T∇x log qt(x). We further
denote A(x, t) := F (x, t)− 1

2∇ · [G(x, t)G(x, t)T ] and B(x, t) := − 1
2G(x, t)G(x, t)T .

Now F̃ (x, t) = A(x, t) +B(x, t)s(x, t), and we have

∂t log qt(x) =
1

qt(x)
∂tqt(x) (17)

= − 1

qt(x)

D∑
j=1

∂xj

(
F̃j(x, t)qt(x)

)
(18)

= − 1

qt(x)

D∑
j=1

(
∂xj F̃j(x, t)qt(x) + F̃j(x, t)∂xjqt(x)

)
(19)

= −
D∑

j=1

(
∂xj F̃j(x, t) + F̃j(x, t)∂xj log qt(x)

)
(20)

= −
(
divx(F̃ ) + ⟨F̃ , s⟩

)
(21)

= −
[
divx

(
Bs

)
+ ⟨Bs, s⟩+ ⟨A, s⟩+ divx(A)

]
(22)

=
1

2
divx

(
GGTs

)
+

1

2

∥∥GTs
∥∥2
2
− ⟨A, s⟩ − divx(A). (23)

Since log qt(x) is sufficiently smooth, we can swap the order of differentiations and get ∂ts =
∂t∇x log qt(x) = ∇x∂t log qt(x). Hence, the statement is proved.

■
Remark 1. In Eq. 1 where G does not depend on x, namely G(x, t) ≡ g(t)I , then F̃ (x, t) =
f(x, t)− 1

2g
2(t)∇x log qt(x) and

∂t log qt(x) =
1

2
g2(t)divx(s) +

1

2
g2(t) ∥s∥22 − ⟨f , s⟩ − divx(f) (24)

∂ts = ∇x

[1
2
g2(t)divx(s) +

1

2
g2(t) ∥s∥22 − ⟨f , s⟩ − divx(f)

]
. (25)

E.2 Proof of Proposition 1

Integrating the following equation w.r.t. time from τ = tθ to τ = t with t ∈ [0, T ] fixed,

∂tsθ = ∇x

[1
2
g2(t)divx(sθ) +

1

2
g2(t) ∥sθ∥22 − ⟨f , sθ⟩ − divx(f)

]
+ ϵsθ (x, t),

leads to

sθ(x, t)− sθ(x, tθ) = ∇x

{∫ t

tθ

[1
2
g2(t)divx(sθ) +

1

2
g2(t) ∥sθ∥22 − ⟨f , sθ⟩−divx(f)

]
dτ

}
+

∫ t

tθ

ϵsθ (x, t)dτ,
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where the swap of integration and differentiation is valid if the integrand is sufficiently smooth.

With the assumption, we obtain that for all t ∈ [0, T ]

sθ(x, t)−∇x

{
log qtθ (x) +

∫ t

tθ

[1
2
g2(t)divx(sθ) +

1

2
g2(t) ∥sθ∥22 − ⟨f , sθ⟩−divx(f)

]
dτ

}
=

∫ t

tθ

ϵsθ (x, τ)dτ.

By taking the norm of the above equation, one can obtain

∥sθ(x, t)−∇xΨθ(x, t)∥2 =

∥∥∥∥∫ t

tθ

ϵsθ (x, τ)dτ

∥∥∥∥
2

.

From which we obtain

∥sθ(x, t)−∇xΨθ(x, t)∥2 =

∥∥∥∥∫ t

tθ

ϵsθ (x, τ)dτ

∥∥∥∥
2

≤
∣∣∣∣∫ t

tθ

∥ϵsθ (x, τ)∥2 dτ
∣∣∣∣ .

The upper and lower bound of integral can be respectively written as max{t, tθ} and min{t, tθ}, and
whence, the proposition is proved. ■

E.3 Proof of Proposition 2

Lemma 3. Let sθ be a score obtained from denoising score matching (Eq. 3) and write ŝθ :=
∇x log pSDE

t,θ . Then

1. [7] Eq. 4 associates with the following forward SDE whose marginal density is ŝθ:

dxθ(t) =
[
f(xθ(t), t) + g2(t)

(
ŝθ(xθ(t), t)− sθ(xθ(t), t)

)]
dt+ g(t)wt (26)

2. ŝθ satisfies the following score FPE:

∂tŝθ−∇x

[1
2
g2(t)divx

(
2sθ−ŝθ

)
+
1

2
g2(t)

(
2⟨sθ, ŝθ⟩−∥ŝθ∥22

)
−⟨f , ŝθ⟩−divx(f)

]
= 0.

(27)

Proof of Lemma 3. Consider

F (x, t) := f(x, t) + g2(t)(ŝθ − sθ) and G(x, t) := g(t)I

in Eq. 15, and apply Corollary 1, the lemma is then established. ■

Proof of Proposition 2. We recall Eq. 6, which indicates

∂tsθ −∇x

[1
2
g2(t)divx(sθ) +

1

2
g2(t) ∥sθ∥22 − ⟨f , sθ⟩ − divx(f)

]
− ϵsθ = 0. (28)

First, we subtract Eq. 27 by the above equation and get

∂t(ŝθ − sθ)−∇x

[1
2
g2(t)divx(sθ − ŝθ)−

1

2
g2(t) ∥sθ − ŝθ∥22 − ⟨f , sθ − ŝθ⟩

]
+ ϵsθ = 0. (29)

Consider when θ = θ0 and let uθ0
:= ŝθ0

− sθ0
. Then the PDEs become

∂tuθ0
+∇x

[1
2
g2(t)divx(uθ0

) +
1

2
g2(t) ∥uθ0

∥22 + ⟨f ,uθ0
⟩
]
= 0.

Here, uθ0 is a solution to the PDEs. It is noticed that this system of PDEs has a zero initial condition
and zero boundary condition as both sθ0

and ŝθ0
share the same initial/boundary condition. Thus,

from the assumption of the uniqueness of solution, we know that uθ0
≡ 0, and hence, ŝθ0

≡ sθ0
.

We repeat the same trick to subtract Eq. 5 by Eq. 28 from which we can obtain sθ0
≡ s. ■
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E.4 Proof of Proposition 3

By subtracting the following two equations

∂tsθ = ∇x

[1
2
g2(t)divx(sθ) +

1

2
g2(t) ∥sθ∥22 − ⟨f , sθ⟩ − divx(f)

]
+ ϵsθ (30)

∂ts = ∇x

[1
2
g2(t)divx(s) +

1

2
g2(t) ∥s∥22 − ⟨f , s⟩ − divx(f)

]
, (31)

we obtain

∂t(sθ − s) = ∇x

[1
2
g2(t)divx(sθ − s) +

1

2
g2(t)

(
∥sθ∥22 − ∥s∥22

)
− ⟨f , sθ − s⟩

]
+ ϵsθ (32)

Notice that ∥sθ∥22 − ∥s∥22 = ∥sθ − s∥22 + 2⟨sθ − s, s⟩. Integrating over time from τ = 0 to τ = t,
we obtain

∫ t

0

ϵsθ (x, τ)dτ =
(
sθ(x, t)− s(x, t)

)
−
(
sθ(x, 0)− s(x, 0)

)
(33)

−
∫ t

0

1

2
g2(τ)∇xdivx(sθ − s)dτ (34)

−
∫ t

0

g2(τ)
[
⟨∇x(sθ − s), sθ − s⟩+ ⟨∇x(sθ − s), s⟩+ ⟨sθ − s,∇xs⟩

]
dτ

(35)

+

∫ t

0

[
⟨∇xf , sθ − s⟩+ ⟨f ,∇x(sθ − s)⟩

]
dτ (36)

By applying the ℓ2-norm and Cauchy-Schwartz inequality while noting the relation ∥A∥2 ≤ ∥A∥F
for a general square matrix A, the statement is proved.

■

F Demonstration of generated MNIST examples

In Fig. 6, we show examples generated with different choices of the SDE and the weight of score
FPE-regularizer, γ, on MNIST.

(a) VE (γ = 0.0) (b) VE (γ = 1.0) (c) VP (γ = 0.0) (d) VP (γ = 1.0)

Figure 6: Illustration of generated samples.
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