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Abstract

The field of learning-augmented algorithms seeks to use ML techniques on past
instances of a problem to inform an algorithm designed for a future instance. In
this paper, we introduce a novel model for learning-augmented algorithms inspired
by online learning. In this model, we are given a sequence of instances of a
problem and the goal of the learning-augmented algorithm is to use prior instances
to propose a solution to a future instance of the problem. The performance of the
algorithm is measured by its average performance across all the instances, where
the performance on a single instance is the ratio between the cost of the algorithm’s
solution and that of an optimal solution for that instance. We apply this framework
to the classic k-median clustering problem, and give an efficient learning algorithm
that can approximately match the average performance of the best fixed k-median
solution in hindsight across all the instances. We also experimentally evaluate our
algorithm and show that its empirical performance is close to optimal, and also that
it automatically adapts the solution to a dynamically changing sequence.

1 Introduction

The field of learning-augmented algorithms has seen rapid growth in recent years, with the aim of har-
nessing the ever-improving capabilities of machine learning (ML) to solve problems in combinatorial
optimization. Qualitatively, the goal in this area can be stated in simple terms: apply ML techniques
on prior problem instances to inform algorithmic choices for a future instance. This broad objective
has been interpreted in a variety of ways – online algorithms with better competitive ratios using
ML predictions, faster (offline) algorithms based on ML advice, better approximation factors for
(offline) NP-hard problems using ML advice, etc. This breadth of interpretation has led to a wealth of
interesting research at the intersection of algorithm design and machine learning.

In this paper, we take inspiration from the field of online learning to propose a new model for
learning-augmented algorithms. The stated goal of learning-augmented algorithms of using prior
instances to inform the solution of a future instance bears striking similarity with online learning. In
its simplest form, online learning comprises a sequence of instances in which the learner has to select
from a set of actions to minimize unknown loss functions. The choice of the learner is based on the
performance of these actions on prior instances defined by their respective loss functions. The goal is
to optimize the performance of the learner in the long run – it aims to match the average performance
of the best fixed action in hindsight. Viewing learning-augmented algorithms through the lens of
online learning, we ask:

Can a learning-augmented algorithm compete in average performance over a
sequence of problem instances with the best fixed solution in hindsight?

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



To instantiate this question, we consider the classic k-median problem in clustering. In this problem,
we are given a set of n points in a metric space, and the goal is to find k centers such that the sum
of distances of the points to their closest centers is minimized. We note that k-median is among
the most well-studied problems in unsupervised learning. In the learning-augmented framework,
consider an online sequence of k-median instances V1, V2, . . . , Vt, . . . , VT on some metric space
M. Now, suppose at time t, the learning-augmented algorithm A has access to the prior instances
V1, V2, . . . , Vt−1 and has to devise a solution comprising k centers for the next instance Vt (that is
unknown to it). Once the algorithm A reveals its solution Yt, the instance Vt is revealed and the loss
of the algorithm is the quality of the solution Yt for Vt, namely the ratio of the cost of Yt and that of
an optimal solution for Vt.

We define the loss to be the ratio instead of the absolute cost because the instances that arrive can
have very different scales. In particular, if one instance is very large and the rest are small, it suffices
to perform well on just the large instance when looking at absolute cost. Thus, taking cost ratios
ensures that the algorithm is incentivized to do well on every instance, regardless of size. Secondly,
it is impossible to obtain regret bounds independent of the number of points n when considering
absolute costs. To see this, suppose we get a very large instance with essentially all n points that
is far away from all the previous (much smaller) instances which are cumulatively on o(n) points.
Any online learning algorithm would then incur a cost of n∆ for this single instance, where ∆ is the
aspect ratio of the metric space.1 On the other hand, the benchmark solution can simply optimize
for this large instance and incur small cost for this instance. It suffers a large cost on the previous
instances, but these instances being cumulatively small (only o(n) points), the overall cost of the
benchmark remains small in terms of absolute cost.

Similar to online learning, A cannot hope to match optimal performance for a single instance, but
across time, can it match the performance of the best fixed solution in hindsight? In other words, we
would like to learn a competitive solution from prior instances when such a solution exists. In this
paper, we show that this is indeed possible – for k-median clustering, we design an online learning
algorithm that approximately matches the performance of the best fixed solution across any sequence
of instances on a metric space.

A natural approach to the above goal would be to employ the tools of online learning directly by
encoding each solution as an “expert” and running an experts’ learning algorithm (see e.g., [Hazan,
2016]) on the problem instances. This does not work for two reasons, and these also reveal the
main conceptual challenges in this problem. The first challenge is computational. The space of
solutions to a discrete optimization problem such as k-median clustering is exponentially large and
non-convex. Therefore, we cannot run experts’ algorithms that maintain explicit weights over the
entire set of solutions, neither can we use a black-box online convex optimization (OCO) algorithm
(see e.g., [Hazan, 2016]). The second challenge is information-theoretic. Since the sequence of
instances is revealed online, the learning algorithm does not know future instances when it proposes a
solution. Therefore, the metric space itself, and the corresponding space of solutions, is dynamically
growing over time. Indeed, the best solution in hindsight may not even be an available option to the
algorithm at some intermediate time t. The main technical contribution of this paper is in overcoming
this set of fundamental challenges to obtain a learning-augmented algorithm for k-median that
matches the average performance of the best solution in hindsight.

Our algorithms have potential applications in clustering evolving data streams, which has been
identified as an important open challenge in data stream mining research [Krempl et al., 2014].
Some examples include aggregating similar news stories for recommendations downstream [Gong
et al., 2017] and maintaining accurate clustering of sensor data that fluctuates due to environmental
conditions [Wang et al., 2024]. Another application lies in clustering network traffic where patterns
of network user connections change slowly over time in normal circumstances, but can also undergo
sudden shifts if a malicious attack occurs [Gong et al., 2017, Wang et al., 2024, Feng, 2006].

1.1 Our Contributions

Problem Model and Definition. Our first contribution is the new learning-augmented model that
we propose in this paper. We define it in the context of the k-median problem, and call it LEARN-

1The aspect ratio of a metric space is the ratio of the maximum to minimum pairwise distance between
distinct points in the metric space.
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MEDIAN. The problem setting comprises an online sequence of instances of k-median defined on a
metric spaceM = (V, d) with a set of n points V and distance function d : V × V → R≥0. The
algorithm does not assume knowledge of the metric space (V, d), its size n, or the length of the
time horizon T upfront. The instance at time t comprises a set of points Vt ⊆ V . Using knowledge
of prior instances V0, V1, . . . , Vt−1, the learning-augmented algorithm has to produce a solution Yt

comprising k points in V<t := V0 ∪ V1 ∪ . . .∪ Vt−1.2 This solution is then applied to the instance Vt

and incurs cost

Costt(Yt) :=
∑
x∈Vt

D(Yt, x), where D(Yt, x) := min
y∈Yt

d(x, y).

Correspondingly, the (approximation) loss of the algorithm is given by

ρ(Yt, Vt) =
Costt(Yt)

OPTt
, where OPTt := min

Y⊆V,|Y |=k

∑
x∈Vt

D(Y, x).

Since the ratio defining ρ(Yt, It) is invariant under scaling, we may assume that
minx,y∈V ;x̸=y d(x, y) = 1, and denote the aspect ratio maxx,y∈V d(x, y) by ∆. Also, to avoid
degenerate cases where OPTt = 0, causing the ratio to be infinity, we assume each instance must
have at least k + 1 distinct points.

The goal is to match the average performance over time of the best fixed solution Y ∗ (in hindsight),
where Y ∗ := argminY⊆V,|Y |=k

∑T
t=1 ρ(Y, Vt).

Our Results. We say that a learning-augmented algorithm for LEARN-MEDIAN obtains an (α, β)-
approximation if

T∑
t=1

ρ(Yt, Vt) ≤ α ·
T∑

t=1

ρ(Y ∗, Vt) + β.

We call α the competitive ratio and β the regret of the algorithm. The goal is to obtain sublinear
regret, i.e., β = o(T ), while minimizing the competitive ratio α.

Our first result is a deterministic algorithm with α = O(k), β = o(T ). Precisely, we get

T∑
t=1

ρ(Yt, Vt) ≤ O(k) ·
T∑

t=1

ρ(Y ∗, Vt) +O
(
k4∆ ·

√
T log(T ) log(Tk)

)
. (1)

We also give a matching lower bound showing that the competitive ratio of O(k) is necessary, i.e.,
there is no deterministic algorithm with competitive ratio α = o(k) and sub-linear regret β = o(T ).

Next, we use randomization to improve the competitive ratio to O(1). We give a
randomized algorithm with α = O(1), β = o(T ):

T∑
t=1

E[ρ(Yt, Vt)] ≤ O(1) ·
T∑

t=1

ρ(Y ∗, Vt) +O
(
k3∆ ·

√
T log(T ) log(Tk)

)
. (2)

As in the deterministic case, we show that the O(1) factor in the competitive ratio is necessary, i.e.,
there is no algorithm (randomized or deterministic) with competitive ratio α = 1 + ε for arbitrarily
small ε > 0 and sub-linear regret β = o(T ).

Finally, note that the regret bounds in both results depend on k,∆. We show that this dependence is
necessary, i.e., there is no algorithm (randomized or deterministic) with competitive ratio α = O(1)

and regret β = o(k∆).

Our Techniques. We give a sketch of the main techniques in our algorithms. Both the deterministic
and randomized algorithm share all the steps, except the last one.

2The set V0 initializes the problem. The algorithm does not generate a solution for V0.
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- In the first step, we convert the LEARN-MEDIAN instance to a bounded version of this
problem where each instance comprises exactly k points in the metric space. We call this
latter problem LEARN-BOUNDED-MEDIAN. The conversion is done online at every time t.

- Next, we relax the k-median problem by allowing fractional solutions, i.e., the k centers
are allowed to be distributed fractionally across the points of the metric space. Our main
technical work is in producing a fractional solution to the k-median instances of LEARN-
BOUNDED-MEDIAN. Note that the feasible fractional solution define a (convex) simplex,
but the number of dimensions of the simplex grows over time as more points appear in
the k-median instances. The main algorithmic ideas that we develop for this problem are
outlined in the paragraph below.

- Our final step is in rounding the fractional solutions to integer k-median solutions. Here, we
give two different algorithms, one deterministic and the other randomized, both of which
adapt ideas from LP-based rounding of k-median.

We now outline the main ideas in obtaining a fractional solution to the k-median instances. The
main challenge is that the convex space of solutions available to the algorithm expands over time,
yet the algorithm must compete with a solution that is only guaranteed to lie in the final convex
set. This means that in applying standard online convex optimization (OCO) tools such as online
mirror descent (OMD), we only have partial knowledge of the gradient at any intermediate step
corresponding to the dimensions/points that have appeared previously. Unfortunately, this limitation
makes standard regularizers ineffective: the squared L2-norm regularizer fails to achieve sub-linear
regret since the dimension of the gradient depends on the time horizon, while the negative entropy
regularizer is unable to handle new dimensions since the gradient is undefined at zero. Instead, we
give a non-standard changing regularizer parametrized by the number of unique points seen so far.
Correspondingly, we depart from standard OCO analysis that compares against a fixed solution in
hindsight. Instead, we divide the timeline into phases and compare the performance of our algorithm
against a dynamic set of locally optimal solutions. The main advantage is that within a phase, we
only compare our algorithm against a solution that exists in the current convex set. The phases are
chosen carefully so that we can use metric properties to show that these locally optimal solutions have
total cost comparable to the hindsight optimum. Morally, we ensure that if the hindsight optimum
is far from the locally optimal solutions, then it performs poorly on the instances in these phases,
and therefore, cannot be the best solution in hindsight across all the instances. Putting all these
components together in an online learning algorithm is the main technical contribution of this paper.

Experimental Evaluation. We perform experiments to validate our theoretical results empirically.
We first run our algorithms on synthetic data generated from simple distributions such as a uniform
distribution on a square or on a set of distinct clusters. In these cases, we confirm that the algorithms
quickly converge to the optimal solution, and the average performance is nearly optimal in long run,
thereby significantly outperforming theoretical bounds. In our second set of experiments, we use a
sequence of dynamically changing distributions with the goal of understanding the responsiveness
of our algorithm to changing data. We observe that as the algorithm discovers new data sets
corresponding to new regions of the metric space, it reacts quickly to the changing environment and
changes the location of k centers, in some cases even outperforms the static best solution in hindsight.

1.2 Related Work

Our work fits in the burgeoning field of learning-augmented algorithms, where the goal is to leverage
ML predictions to improve the performance of algorithms for optimization problems. This paradigm
was initially proposed for the online caching problem by [Lykouris and Vassilvitskii, 2021], and
has since been applied to many problem domains (see [Mitzenmacher and Vassilvitskii, 2022] for a
survey). In particular, various clustering problems such as k-median and k-means clustering [Ergun
et al., 2022, Nguyen et al., 2023, Gamlath et al., 2022] and facility location [Jiang et al., 2022,
Fotakis et al., 2025] have been studied in this framework, both in the offline and online settings. Our
work sharply deviates from these existing lines of research in that we consider a model comprising a
sequence of problem instances inspired by online learning, while prior work focused on solving a
single instance using ML predictions. A notable exception is Khodak et al. [2022], where the authors
consider an online learning based model to learn predictions from a sequence of problem instances,
and apply it to a variety of matching, scheduling, and rent-or-buy problems. In some sense, our
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model is a more direct counterpart of this idea, in that we apply the online learning paradigm to the
performance of the algorithm directly instead of using a surrogate learned parameter.

From a technical standpoint, our work is related to the field of combinatorial online learning, where
the goal is to develop low-regret algorithms for problems with exponentially large discrete action
spaces. Traditional online learning tools like multiplicative weights update (MWU) are typically
inapplicable due to computational barriers stemming from the sheer size of the solution space. To
address this, several works have adapted online convex optimization and gradient-based techniques for
combinatorial problems. Applications include online facility location [Christou et al., 2023, Pasteris
et al., 2021], online k-means clustering [Cohen-Addad et al., 2021], online routing [Awerbuch and
Kleinberg, 2008], online learning of disjunctions [Helmbold et al., 2002], coalition formation [Cohen
and Agmon, 2024], online submodular minimization [Hazan and Kale, 2012], online matrix prediction
[Hazan et al., 2012], and online ranking [Fotakis et al., 2020]. One distinction in our model is that we
consider the average approximation ratio across the instances, while these works consider average
cost. More importantly, the novelty in our work lies in designing a new online learning algorithm and
analysis for the fractional problem, while most papers focus on reducing the combinatorial problem
to an OCO formulation and apply standard OCO tools to the resulting problem.

Our work also bears some similarity with prior work on facility location problems in evolving metric
spaces [Eisenstat et al., 2014, An et al., 2017]. But, in technical terms, this line of research is quite
different in that it focuses on metric distances changing over time, while our focus is on new locations
being added. Another related line of work is that of universal algorithms for optimization problems.
These algorithms aim to compute a single solution that performs well across all possible realizations
of the input, thus providing robust approximation guarantees. Examples include universal algorithms
for Steiner tree and TSP [Jia et al., 2005, Bhalgat et al., 2011, Gupta et al., 2006], set cover [Grandoni
et al., 2008, Jia et al., 2005], clustering [Ganesh et al., 2023]. Unlike our work which is in the online
setting, universal algorithms are offline and thereby use a very different set of tools.

Finally, our work is also related to data-driven algorithms (see [Balcan, 2021] for a survey), where
the typical goal is to pick the best algorithm out of a palette of algorithms whose behavior is dictated
by a numerical parameter. In this line of work, the typical assumption is that the instances are drawn
from an unknown distribution, and the goal is to obtain sample complexity bounds for a given target
average performance in comparison to the best parameter choice. In contrast, in our setting, the
algorithm is allowed to output any valid solution in each round and the final results are about average
performance across an adversarial set of instances. [Balcan et al., 2018] considers the parameterized
framework but in an online learning setting, where they pick a parameter for each instance that arrives
online. The benchmark in this case is the algorithm corresponding to the best fixed parameter in
hindsight. Their techniques heavily utilize the parametrization of the algorithms, because of which
they are not applicable to our setting.

Outline of the paper. In Section 2, we give the reduction from LEARN-MEDIAN to LEARN-
BOUNDED-MEDIAN, for which we then give a fractional algorithm in Section 3, and integer algo-
rithms via online rounding in Section 4. Details of these technical sections appear in the appendix.
We present our experiments and empirical results in Section 5; again, details are in the appendix.
Finally, the lower bounds that complement our algorithmic results are also given in the appendix.

2 Reduction from LEARN-MEDIAN to LEARN-BOUNDED-MEDIAN

One difficulty in designing an algorithm for LEARN-MEDIAN is that the k-median instances Vt

can have arbitrary size, which would mean that the metric space on which we design the algorithm
expands in an arbitrary manner in each online step.

To alleviate this problem, in this section, we give a reduction from LEARN-MEDIAN to a simpler
problem we call LEARN-BOUNDED-MEDIAN, which has at most k weighted points per instance. In
particular, this reduction eliminates the dependence on the size of instances n in our regret bounds.
Otherwise, We will see in the next section that the subgradient that we compute at each step of the
fractional algorithm can have a large L∞ norm that depends on n, which would then affect the regret
term. On the other hand, if we apply our mirror descent algorithm (given in the next section) to only
k points in each round, then the total number of points under consideration is at most kT . Thus, the
regret term is independent of n. A second benefit of the reduction is that it reduces the running time of
the learning algorithm, and makes it independent of the size of the instances n. (The reduction uses a
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k-median algorithm that runs on instances of size n, but this is unavoidable in any case.) We typically
expect that n will be much larger than all other parameters in the problem. Using the reduction, we
only need to run our learning algorithm on at most kT points, which is independent of n.

It is important to choose exactly k points in the reduction because if we use fewer or more than k
points, then the weights for the reduced instance are inconsistent with the k-median optimum. For
example, if we use < k points and there are k closely knit clusters, then the resulting cost of the
solution (which determines weights) is arbitrarily large in comparison. Similarly, if we use > k points
and there are k + 1 closely knit clusters, then the resulting cost of the solution is arbitrarily small.

Bounded Instances of LEARN-MEDIAN. Similar to LEARN-MEDIAN, a LEARN-BOUNDED-
MEDIAN instance is specified by a metric spaceM = (V, d) and we are also given a sequence of
k-median instances. At time t, instance Rt is specified by a set of at most k weighted points. Each
point x ∈ Rt has an associated weight wt

x (for simplicity, we often omit the superscript t when it is
clear from context). The instances further satisfy

∑
x∈Rt

wx ≤ (k + 1). All other definitions are the
same as before, except that the cost is now defined with respect to the weights:

Costt(Y,Rt) =
∑
x∈Rt

wxD(Y, x).

We often just use Costt(Y ) when the instance is clear from context.

Reduction to LEARN-BOUNDED-MEDIAN. We show the following reduction:

Theorem 2.1. Given an instance for the LEARN-MEDIAN problem, there exists an algorithm A
that maps each sub-instance Vt to a sub-instance Rt = A(Vt), resulting in a LEARN-BOUNDED-
MEDIAN instance. If solutions Y1, ..., YT for the new instance of LEARN-BOUNDED-MEDIAN
satisfy

T∑
t=1

Costt(Yt, Rt) ≤ α · min
Ŷ⊆R,|Ŷ |=k

T∑
t=1

Costt(Ŷ , Rt) + γ,

where α ≥ 1 and R = R0 ∪R1 . . . ∪RT , then we have

T∑
t=1

ρ(Yt, Vt) ≤ O(α) · min
Y ∗⊆V,|Y ∗|=k

T∑
t=1

ρ(Y ∗, Vt) +O(γ).

We now describe the reduction – the detailed analysis is deferred to the appendix. The main idea is to
replace each set Vt by k centers approximating the optimal k-median cost of Vt – these weighted
centers act as proxies for the points in Vt. More formally, consider an offline instance of the k-median
problem comprising the points in Vt. We use a constant factor approximation algorithm A for
minC⊆Vt,|C|=k

∑
x∈Vt

D(C, x) to obtain a set of k centers Ct = {c1, . . . , ck}. Let V (i)
t denote the

points in Vt that are assigned to ci in the approximate solution. In the weighted instance Rt, we

choose Rt = Ct, and the weight of a point ci ∈ Rt is set to |V (i)
t |∑

x∈Vt
D(Ct,x)

. This completes the
reduction to an instance of LEARN-BOUNDED-MEDIAN.

3 Fractional Algorithm via Online Mirror Descent with Hyperbolic Entropy
Regularizer

To design an online algorithm for LEARN-BOUNDED-MEDIAN, perhaps the simplest idea is follow
the leader (FTL), where the algorithm outputs the best fixed solution for the prior instances. However,
finding the exact FTL solution is computationally intractable; moreover, we show (in the appendix)
that using an approximate FTL solution fails to give a competitive algorithm even for k = 1.

A common approach to address intractability is to use a convex relaxation. Indeed, [Fotakis et al.,
2021] introduced a method that could solve LEARN-BOUNDED-MEDIAN instances if the entire
metric space (V, d) were known upfront. Unfortunately, not knowing the metric space changes the
problem significantly. For example, if the metric space is known, then it is possible to achieve pure
(sub-linear) regret using a fractional solution, i.e., a competitive ratio of 1. In contrast, we give a
simple example in the appendix that rules this out even for k = 1 in our setting.
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Our algorithm maintains a fractional solution for points in R<t, updated by online mirror descent
(OMD) using a hyperbolic entropy regularizer (Definition 3.1). New points introduced have fractional
value initialized to 0. To analyze the performance of the algorithm, we construct a sequence of
solutions that only uses points in R<t and can only change k log T times. This allows us to show that
the fractional solution is constant competitive with sublinear regret. We give further details of these
steps in the rest of this section.

Fractional solutions for LEARN-BOUNDED-MEDIAN. At time t, only points in R<t are revealed.
Let dt−1 = |R<t| be the number of points available at time t, and ∆k

dt
denote {z ∈ Rdt

≥0 : ||z||1 = k}.
A fractional solution yt is in the set Kt−1 which is the intersection 3 of ∆k

dt−1
and [0, 1]dt−1 .

Given a vector yt ∈ Kt−1, for each point x the fractional assignment cost is defined by assigning the
point x fractionally to the centers in yt: D(yt, x) := min0≤αi≤(yt)i,

∑
i αi=1

∑
i∈[dt−1]

αid(vi, x).
The cost for the instance is still the weighted sum as before: Costt(yt) :=

∑
x∈Rt

wxD(yt, x).

Our algorithm. At each time t, a weighted subset of points Rt arrives. At time t = 0, we initialize y0
(which is a k-dimensional vector) to any k arbitrary points in R0. At step t, we maintain a fractional
solution yt on the points R<t. To go from yt to yt+1, we perform one step of mirror descent based
on the β-hyperbolic entropy regularizer defined below:
Definition 3.1 (β-hyperbolic entropy [Ghai et al., 2020]). For any x ∈ Rd and β > 0, define the
β-hyperbolic entropy of x, denoted ϕβ(x) as:

ϕβ(x) :=

d∑
i=1

xi arcsinh

(
xi

β

)
−
√
x2
i + β2.

The associated Bregman divergence is given by Bϕβ
(x||y) = ϕβ(x)− ϕβ(y)− ⟨∇ϕβ(y), x− y⟩ =

d∑
i=1

[
xi

(
arcsinh

(
xi

β

)
− arcsinh

(
yi
β

))
−
√
x2
i + β2 +

√
y2i + β2

]
.

Note that we considered other regularizers such as 1/2||x||22 (which recovers online gradient descent)
and

∑
i xi log xi (which recovers exponentiated gradient descent). The problem with the former is

that the regret term in our analysis is not sublinear in T , while the latter is ill-defined for our setting as
the gradient is not defined at 0, which we need for the new points. Before taking one mirror descent
step, for points in Rt but not in R<t, we set their fractional values to 0. This gives the fractional
solution yt+1 for the next iteration. The detailed algorithm is given in Algorithm 1.

Analysis. To prove Algorithm 1 is constant competitive, we compare its cost to a changing sequence
of optimal solutions. To construct such a sequence of optimal solutions, we first partition the sequence
of k-median instances into phases. Let y∗ ∈ KT be an integral solution defined by a set C of k
centers. Let the centers in C be c(1), . . . , c(k). The set C partitions V into k subsets – let V (i) be the
subset of V for which the closest center is c(i) (we break ties arbitrarily).

Considering each center in this optimal solution separately, we split the solution into different phases
at times ji, which are the smallest time t such that the total weight of the points in V (i) ∩ R≤t

(i.e., points in V (i) arriving by time t) exceeds k · 2j . Define the set P := {ji : i ∈ [k], j ∈
[log(w(V (i)))]} ⊆ [1, T ] be the set of times when a new phase starts. It’s easy to check that
|P | ≤ k log T as the total weight of arriving points is at most k + 1 in each step.

For each phase, we bound the cost of the algorithm using standard tools from the OCO literature:
Lemma 3.2. For any time interval I := [ta, tb] ⊆ [1, T ], let z be an integral vector in Kta . Then,∑

t∈I

(Costt(yt)− Costt(z)) ≤ 3(k + 1)k∆
√
T log(7Tk)

This lemma shows that up to additive factors, in each phase we can be competitive against any
solution. Therefore it remains to show that there exists a series of solutions that only use available
points whose cost is competitive against the offline optimal solution y∗.

3In fact, we take Kt−1 = ∆k
dt−1

in the experiments for simplicity as the analysis is the same.
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Algorithm 1: Algorithm for an instance of LEARN-BOUNDED-MEDIAN

1.1 Initialize y0 to any k points in R0, i.e., y0 ∈ Rk with (y0)i = 1 ∀i ∈ [k].
1.2 for t = 1, 2, . . . , T do
1.3 Let the points in R≤t−1 be v1, . . . , vdt−1

.
1.4 for each x ∈ Rt do
1.5 let αx

i be the fractional assignment of x to vi, i.e., D(yt, x) =
∑

i α
x
i d(vi, x).

1.6 Define M (x) := maxi:αx
i >0 d(vi, x).

1.7 Sub-gradient Step: Define ∇t ∈ Rdt as follows: for each i ∈ [dt],

(∇t)i := −
∑
x∈Rt

wx(M
(x) −min(M (x), d(x, vi)).

1.8 Learning Rate: Set

ηt :=
1

Gt

√
t

where Gt = maxt′≤t ||∇t′ ||∞.
1.9 Update Step: Define a vector xt+1 ∈ Rdt as follows: for each i ∈ [dt],

(xt+1)i :=
sinh(arcsinh(dt(yt)i − ηt(∇t)i)

dt
,

where we use (yt)i = 0 in the above equation for each i ∈ [dt] \ [dt−1].
1.10 Projection Step: Define

yt+1 := argminy∈Kt
Bϕ1/dt

(y||xt+1)

Lemma 3.3. For each p ∈ P , let the start and end time of phase p be denoted sp and ep respectively.
Then, there exist solutions z(p) such that

∑
p∈P

ep∑
t=sp

Costt(z
(p)) = O

(
k2∆+

T∑
t=1

Costt(y
∗)

)
,

where y∗ is an arbitrary integral vector in KT .

4 Integral Solutions via Online Rounding

In this section, we give online rounding algorithms for the LEARN-BOUNDED-MEDIAN problem.
Let yt be the fractional solution computed by Algorithm 1 before the arrival of the tth instance Rt.
Our rounding algorithms will take the fractional solution yt as input and return an integer solution Yt

with exactly k centers. The rounding loss is defined as the ratio of the (expected) cost of the integer
solution Yt to that of the fractional solution yt.

We give two rounding algorithms. The first algorithm is deterministic and has a rounding loss of
O(k). The second algorithm is randomized and has only O(1) rounding loss. These are adaptations
of existing rounding algorithms for k-median [Charikar et al., 1999, Charikar and Li, 2012]; the main
difference is that we need to bound the rounding loss for points we haven’t seen as well.

Deterministic Rounding Algorithm. The deterministic rounding algorithm is based on a natural
greedy strategy: at time t, maintain a set Yt that is initially empty. Consider the points in R<t =
R0 ∪ . . . Rt−1 in non-decreasing order of their connection costs D(yt, i). When considering a point
i, add it to Yt if its connection cost to Yt exceeds its fractional connection cost in yt by an Ω(k) factor.
This process ensures that |Yt| ≤ k – indeed, the intuition is that each time we add a point to Yt, we
can draw a ball around it which has almost 1 unit of fractional mass (according to yt). The criteria
for adding a point to Yt ensures that the total connection cost to Yt remains within O(k) factor of that
to yt. Thus, we get a rounding algorithm that rounds yt to an integral solution Yt and loses an O(k)
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factor in approximation – we give the details in the appendix. Combining this fact with Theorem 2.1
and Lemma 3.3, we get the desired result (1).

Randomized Rounding Algorithm. The randomized rounding algorithm proceeds in two phases:
the first phase is similar to the deterministic rounding algorithm described above. However, instead
of keeping a threshold of Ω(k) for adding a center to Yt, it uses a constant threshold. This results
in |Yt| being larger than k. Subsequently a randomized strategy is used to prune this set to size k.
We show in the appendix that this algorithm has constant approximation gap. Combining this fact
with Theorem 2.1 and Lemma 3.3, we get the desired result (2).

In conclusion, we obtain that the time complexity of our overall algorithm (besides the reduction
step) is O(k2T 3), as the bottleneck is computing the O(kT × kT ) distance matrix in each round.

5 Experimental Results

In this section, we empirically evaluate the performance of our algorithms. In all our experiments,
we use a heuristic to improve the performance of the rounding algorithms, where we do a binary
search over the best threshold on the distance of centers to open (this value was (2k + 2)D(yt, i) for
deterministic rounding and 4D(yt, i) for randomized rounding). We set this threshold to the smallest
possible that still gives the desired number of centers k. We report the main experimental findings in
this section, and give additional results and experiments in the appendix.

Our first two experiments are for simple i.i.d. instances. In Uniform Square, each round has a set of
points sampled uniformly from the unit square [0, 1]× [0, 1]. In Multiple Clusters, the underlying
metric space consists of a set of clusters, and the points are sampled uniformly from these clusters. In
both cases, the distances are given by the underlying Euclidean metric. As seen in Fig. 1, both the
deterministic and randomized algorithms converge to expected solutions – for Uniform Square, the
centers are distributed (roughly) uniformly over the square and for Multiple Clusters, the centers
spread themselves on the different clusters. In the adjoining plots, we show the approximation ratio
of the algorithms, which approaches 1 once the influence of additive regret declines.

Figure 1: For i.i.d. instances (Uniform Square and Multiple Clusters), the optimal (black plus),
deterministic (blue cross), and randomized (red diamond) solutions (top figure) and approximation
ratios - avg. and std. dev. over 10 random instances (bottom figure).

In the third experiment Oscillating Instances, we have two distinct clusters, and instances comprise
alternating batches of geometrically increasing length that draws points from one of the clusters. The
optimal solution alternates between the two clusters, switching every time the current batch becomes
long enough to dominate all previous instances. In Fig. 2a, we show two important properties of our
algorithm in this setup. First, for k = 1, we plot the ratio over time t between

∑t
τ=1 ρ(Yτ , Vτ ) and
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(a) Approximation ratio for Oscillating Instances

(b) Fractional mass of algorithm and OPT over
time in one of the clusters for Oscillating In-
stances

(c) Fractional mass of algorithm over time at the
center for Uniform Hypersphere (avg. and std.
dev. over 10 runs)

(d) Fractional mass of algorithm in each cluster in
Scale Changing

Figure 2: Experimental Results for Dynamic Instances

∑t
τ=1 ρ(OPTt, Vτ ), where OPTt is the best fixed solution for instances V1, ..., Vt. Interestingly, our

algorithm outperforms the optimal solution by virtue of being adaptive while the optimal solution is
fixed. Next, in Fig. 2b we trace the migration of fractional mass between the two clusters for k = 2.
We observe the algorithm quickly moves one unit of mass to the current cluster, and then slows down
since moving more fractional mass does not significantly reduce cost.

In the next set of experiments, we explore settings where the metric space changes significantly over
time. In Uniform Hypersphere, we choose k = 1 and every round consists of points chosen at
random from the surface of the unit sphere. Around the 100th iteration, we also include the origin in
the instance. This changes the space of solutions drastically because the origin is now a much better
solution than any of the surface points. As seen in Fig. 2c, the algorithm moves fractional mass to the
origin once it becomes available, eventually converging entirely to this location.

Our final experiment is called Scale Changing. Here, we have 5 clusters with 10 points each. The
clusters grow geometrically far apart in distance. The sequence of instances iterates over these
clusters in batches of geometrically increasing length. Fig. 2d shows the fractional mass of the
algorithm’s solution in the all clusters. We see that our algorithm adapts to the changing environment
by increasing the fractional mass in the cluster being currently presented, and as earlier, this process
slows after unit fractional mass has been moved to the new cluster.

6 Closing Remarks

In this paper, we studied the problem of solving a sequence of k-median clustering instances to match
the best fixed solution in hindsight. One limitation of our techniques is that they are tailored to metric
problems. While these techniques might extend to problems similar to k-median such as k-means
clustering and facility location, they do not apply to other problem domains such as covering for
which learning-augmented algorithms have been extensively studied. Nevertheless, our problem
formulation bridging online learning and discrete optimization applies to the entire range of problems
in combinatorial optimization. We leave the design of algorithms in our framework for other problem
domains as interesting future work.
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Technical Appendices and Supplementary Material

A Reduction from LEARN-MEDIAN to LEARN-BOUNDED-MEDIAN

Recall that in Section 2 we first reduce LEARN-MEDIAN to a simpler problem we call LEARN-
BOUNDED-MEDIAN, which has at most k weighted points per instance. We do this because the
original k-median instances Vt can have arbitrary size, which would mean that the metric space on
which we design the algorithm expands in an arbitrary manner in each online step.

We give the details of this reduction step in this section.

A.1 Bounded Instances of LEARN-MEDIAN

A LEARN-BOUNDED-MEDIAN instance is specified by a metric space M = (V, d) and we are
also given a sequence of subinstances. At time t, instance Rt is specified by a set of at most k
weighted points Rt. Each point x ∈ Rt has an associated weight wt

x (for simplicity, we often omit
the superscript t when it is clear from context). The instances further satisfy

∑
x∈Rt

wx ≤ (k + 1).
The cost for a round is now given by the weighted k-median cost:

Costt(Y,Rt) =
∑
x∈Rt

wxD(Y, x).

We often just use Costt(Y ) when the instance is clear from context.

A.2 Reduction

We now show that any instance of LEARN-MEDIAN can be reduced (in an online manner) to an
instance of LEARN-BOUNDED-MEDIAN while preserving the competitive ratio up to a constant
factor. More formally, we show
Theorem 2.1. Given an instance for the LEARN-MEDIAN problem, there exists an algorithm A
that maps each sub-instance Vt to a sub-instance Rt = A(Vt), resulting in a LEARN-BOUNDED-
MEDIAN instance. If solutions Y1, ..., YT for the new instance of LEARN-BOUNDED-MEDIAN
satisfy

T∑
t=1

Costt(Yt, Rt) ≤ α · min
Ŷ⊆R,|Ŷ |=k

T∑
t=1

Costt(Ŷ , Rt) + γ,

where α ≥ 1 and R = R0 ∪R1 . . . ∪RT , then we have
T∑

t=1

ρ(Yt, Vt) ≤ O(α) · min
Y ∗⊆V,|Y ∗|=k

T∑
t=1

ρ(Y ∗, Vt) +O(γ).

We will first describe the reduction. When the sub-instance Vt arrives at time t, we shall create a
corresponding sub-instance Rt as follows: consider an offline instance of the k-median problem
where the only points available are Vt. We use a constant factor approximation algorithm A for the
k-median problem to obtain a set of k centers. More formally, we find a constant factor approximation
to the following problem:

min
C⊆Vt,|C|=k

∑
x∈Vt

D(C, x).

Let Ct be the subset of k centers returned by the above approximation algorithm. Let the points in Ct

be {c1, . . . , ck} and V
(i)
t denote the points in Vt that are assigned to ci. Thus,∑

x∈Vt

D(Ct, x) =

k∑
i=1

∑
x∈V

(i)
t

d(ci, x).

In the sub-instance Rt, the set of points is just Rt = Ct, and the weight of a point ci ∈ Rt is equal to

|V (i)
t |∑

x∈Vt
D(Ct, x)

.
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Note that the sum of weights of the above points is

∑k
i=1 |V

(i)
t |∑

x∈Vt
D(Ct, x)

=
|Vt|∑

x∈Vt
D(Ct, x)

≤ |Vt|
|Vt| − k

≤ k + 1,

because |Vt| ≥ k+1, and the minimum distance between any two distinct points in the metric space is
1 due to our scaling. This completes the description of the instance of LEARN-BOUNDED-MEDIAN.
We now show that a competitive algorithm for the new instance implies the same for the original
LEARN-MEDIAN instance, while losing only a constant factor in the competitive ratio.

To prove this, we will need the following well-known fact about k-median.
Claim A.1. Consider a weighted instance of the k-median problem where the set of clients is given
by a subset I of points in the underlying metric space. Let C⋆ be an optimal solution (i.e., optimal set
of k centers) to the instance and Ĉ be an optimal solution where the set of centers is required to be a
subset of I . Then, ∑

x∈I

wxD(Ĉ, x) ≤ 2 ·
∑
x∈I

wxD(C⋆, x).

where wx is the weight of the client x.

Proof. Suppose y was the optimal k-median solution for I , with centres y(1), . . . , y(k), partitioning
I into the corresponding clusters S1, . . . Sk. Note that y(i) is the optimal 1-median of the cluster Si.
For any set of clients X , let w(X) =

∑
x∈X wx denote the total weight of the set.

2w(Si)
∑
x∈Si

wxd(y
(i), x) = 2

∑
x′∈Si

wx′

∑
x∈Si

wxd(y
(i), x) =

∑
x′∈Si

∑
x∈Si

wx′wxd(y
(i), x′) + wx′wxd(y

(i), x)

≥
∑
x′∈Si

∑
x∈Si

wx′wxd(x
′, x) (Triangle inequality)

We then divide both sides by w(Si) to obtain

2
∑
x∈Si

wxd(y
(i), x) ≥

∑
x′∈Si

wx′

w(Si)

∑
x∈Si

wxd(x
′, x).

Since the right hand side is a weighted combination of
∑

x∈Si
wxd(x

′, x) for different x′ ∈ Si, this
implies that y′(i) = argminx′∈Si

∑
x∈Si

wxd(x
′, x) satisfies∑

x∈Si

wxd(y
′(i), x) ≤ 2

∑
x∈Si

wxd(y
(i), x).

If we denote y′ as the collection of the k centres y′(i), by adding up the above inequality for each
i ∈ [k] we obtain the desired result.

∑
x∈I

wx(y
′, x) ≤

k∑
i=1

∑
x∈Si

wxd(y
′(i), x) ≤ 2

k∑
i=1

∑
x∈Si

wxd(y
(i), x) = 2

∑
x∈I

wxD(y, x).

We are now ready to prove the correctness of the reduction.

Proof of Theorem 2.1. For a time t, the subset Ct is a constant factor approximation to the k-median
instance specified by the set of points Vt. In fact, we have the additional restriction that Ct is a subset
of Vt. Now, Claim A.1 implies that if Y ∗

t is an optimal solution to this k-median instance, then∑
x∈Vt

D(Ct, x) = O(1) ·
∑
x∈Vt

D(Y ∗
t , x) (3)
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Let Yt = {y(1)t , . . . , y
(k)
t } and Ct = {c(1)t , . . . , c

(k)
t }. Let V (j)

t be the subset of Vt that is assigned
to c

(j)
t , i.e., the points in Vt for which the closest center in Ct is c

(j)
t . Now we upper bound the

competitive ratio of the solution Yt in the instance Vt:

ρ(Yt, Vt) =

∑
x∈Rt

D(Yt, x)∑
x∈Vt

D(Y ∗
t , x)

≤ O(1) ·
∑

x∈Vt
D(Yt, x)∑

x∈Vt
D(Ct, x)

(from (3))

= O(1) ·

∑k
j=1

∑
x∈V

(j)
t

d(Yt, x)∑
x∈Vt

D(Ct, x)

≤ O(1) ·

∑k
j=1

∑
x∈V

(j)
t

(d(Yt, c
(j)
t ) + d(c

(j)
t , x))∑

x∈Vt
D(Ct, x)

(triangle inequality)

= O(1) ·
∑k

j=1 |V
(j)
t |d(Yt, c

(j)
t ) +

∑
x∈Vt

D(Ct, x)∑
x∈Vt

D(Ct, x)

= O(1) · Costt(Yt, Rt) +O(1) (4)

Let Y ∗ be the optimal subset of k points that minimizes
∑T

t=1 ρ(Y
∗, Vt). We now lower bound∑

t ρ(Y
∗, Vt). We again use the partition of Vt into V

(j)
t , j ∈ [k] and triangle inequality to get:

ρ(Y ∗, Vt) =

∑
x∈Vt

D(Y ∗, x)∑
x∈Vt

D(Y ∗
t , x)

≥
∑

x∈Vt
D(Y ∗, x)∑

x∈Vt
D(Ct, x)

=

∑k
j=1

∑
x∈V

(j)
t

d(Y ∗, x)∑
x∈Vt

D(Ct, x)

≥

∑k
j=1

∑
x∈V

(j)
t

(d(Y ∗, c
(j)
t )− d(c

(j)
t , x))∑

x∈Vt
D(Ct, x)

(triangle inequality)

=

∑k
j=1 |V

(j)
t |d(Y ∗, c

(j)
t )−

∑
x∈Vt

D(Ct, x)∑
x∈Vt

D(Ct, x)

= Costt(Y
∗, Rt)− 1. (5)

Consequently, combining (4) and (5) we obtain

T∑
t=1

ρ(Yt, Vt) ≤ O(1) ·
T∑

t=1

Costt(Yt, Rt) +O(T ) ≤ O(α) ·
T∑

t=1

Costt(Ŷ , Rt) +O(T + γ)

≤ O(α) ·
T∑

t=1

Costt(Y
∗, Rt) +O(T + γ) (Claim A.1)

≤ O(α) ·
T∑

t=1

(ρ(Y ∗, Vt) + 1) +O(T + γ) = O(α) ·
T∑

t=1

ρ(Y ∗, Vt) +O(γ).

where in the last step we used that α ≥ 1 and ρ(Y ∗, Vt) ≥ 1. This proves the desired result.

B Detailed Proofs for Fractional Algorithm

In this section, we give a detailed description of the online algorithm described in Section 3 for
maintaining a fractional solution to an instance of the LEARN-BOUNDED-MEDIAN problem. We
also give the missing proofs in the analysis of this algorithm.

Problem Setup: Consider an instanceM = (V, d) of the LEARN-BOUNDED-MEDIAN problem.
There are T + 1 rounds in total, and in each round t, a weighted sub-instance Rt arrives. This sub-
instance is specified by a set of k points Rt in a metric spaceM. Note that the points in the metric
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spaceM are revealed over time, and hence, till time t, only the points in R≤t := ∪t′≤tRt in the
metric space have been revealed. Let dt denote |R≤t|, and ∆k

dt
denote {z ∈ Rdt

≥0 : ||z||1 = k} where
each coordinate i refers to a corresponding point in R≤t. By ensuring that a point in Rt corresponds
to the same coordinate in ∆d′

t
for all t′ ≥ t, we have ∆dt ⊆ ∆dt′ for all t, t′ where t′ ≥ t. Finally,

let Kt denote the intersection of ∆k
dt

and [0, 1]dt . In an integral solution, we would require that each
time t, the algorithm outputs a subset Yt of k points in R≤t−1; however, in a fractional solution we
relax this requirement as follows – the online algorithm outputs a vector yt ∈ Kt−1 for each time t.
Given a vector yt ∈ Kt−1, the fractional assignment cost at time t is given by:

Costt(yt) :=
∑
x∈Rt

wxD(yt, x),

where D(yt, x) is obtained by fractionally assigning x to an extent of 1 to the closest points in yt.
In other words, let vi denote the point corresponding to coordinate i in Kt−1. Then, D(yt, x) :=
minα∈[0,1]dt−1

∑
i∈[dt−1]

αid(vi, x), where
∑

i αi = 1 and 0 ≤ αi ≤ (yt)i.

B.1 Basic facts about the 1-median problem

In this section, we state some basic facts about the 1-median problem. Given a weighted set X of
points in a metric spaceM, let opt1(X) be the optimal weighted 1-median cost of X , i.e.,

opt1(X) := min
y∈M

∑
x∈X

wxd(y, x).

where wx is the weight of the point x. The minimizer y above shall be referred as the optimal 1-
median center of X . The following result shows that opt1(X) is closely approximated by a weighted
sum of the pair-wise distances between the points in X .
Fact B.1. Let X be a weighted set of points in a metric space. Then,

opt1(X) ≥ 1

2

∑
x∈X

wx

w(X)

∑
x′∈X

wx′d(x, x′).

Proof. Let y∗ be an optimal 1-median center of X . Then,

2w(X)
∑
x∈X

wxd(y
∗, x) = 2

∑
x′∈X

wx′

∑
x∈X

wxd(y
∗, x) =

∑
x′∈X

∑
x∈X

wx′wxd(y
∗, x) + wx′wxd(y

∗, x′)

≥
∑
x′∈X

∑
x∈X

wx′wxd(x, x
′) (Triangle inequality)

Dividing both sides by 2w(X) now gives the desired bound.

The following result states that the weighted distance of X from a point v can be well-approximated
by the weighted distance between v and an optimal 1-median of X .
Fact B.2. Let X be a weighted set of points in a metric space and y∗ be an optimal 1-median of X .
For any point v in the metric space,

d(v, y∗) ≤ 2
∑
x∈X

wx

w(X)
d(v, x).

Proof. We have:

w(X)d(v, y∗)

w(X)
=

∑
x∈X wxd(v, y

∗)

w(X)
≤
∑

x∈X wxd(v, x)

w(X)
+

∑
x∈X wxd(y

∗, x)

w(X)
(Triangle inequality)

≤ 2
∑
x∈X

wxd(v, x)

w(X)
(Optimality of y∗).

Computing the optimal 1-median center y∗ can be hard as we don’t know the entire metric space–
instead the following result shows that replacing y∗ by the optimal center amongst X retains the
property stated above.
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Corollary B.3. Let X be a set of points in a metric spaceM and v be an arbitrary point inM. Let
x⋆ ∈ X be a point that minimizes

∑
x∈X wxd(x

∗, x). Then,

d(v, x∗) ≤ 3
∑
x∈X

wx

w(X)
d(v, x)

Proof. Let y∗ be an optimal 1-center of X . Using Fact B.1, we have:∑
x∈X

wxd(y
∗, x) ≥ 1

2
min
x∈X

∑
x′∈X

wx′d(x, x′) =
1

2

∑
x∈X

wxd(x
∗, x)

Proceeding as in the proof of Fact B.2, we get

d(v, x∗) =

∑
x∈X wxd(v, x

∗)

w(X)
≤
∑

x∈X wxd(v, x)

w(X)
+

∑
x∈X wxd(x

∗, x)

w(X)
.

The result now follows from Claim A.1,∑
x∈X

wxd(x
∗, x) ≤ 2

∑
x∈X

wxd(y
∗, x) ≤ 2

∑
x∈X

wxd(v, x).

B.2 Regularizer and its properties

In this section, we define the regularizer that our online mirror descent algorithm shall use. We also
give useful properties of the regularizer.
Definition B.4 (β-hyperbolic entropy). [Ghai et al., 2020] For any x ∈ Rd and β > 0, define the
β-hyperbolic entropy of x, denoted ϕβ(x) as:

ϕβ(x) :=

d∑
i=1

xi arcsinh

(
xi

β

)
−
√
x2
i + β2.

Note that ϕβ(x) is convex and twice differentiable, and its gradient is given by

(∇ϕβ(x))i = arcsinh(xi/β) ∀i ∈ [d] (6)

Consequently its Hessian is the diagonal matrix,

∇2ϕβ(x) = Diag
(

1

x2
1 + β2

,
1

x2
2 + β2

, . . . ,
1

x2
d + β2

)
We now establish strong convexity properties of the function ϕβ .
Definition B.5 (Strongly convex function). A twice differentiable function f : K → R on a convex
set K ⊆ Rd is said to be α-strongly convex with respect to a norm || · || on K if for all x, y ∈ K

f(x)− f(y)− ⟨∇f(y), x− y⟩ ≥ α

2
||x− y||2,

or equivalently,
inf

x∈K,y∈Rd:||y||=1
yT∇2f(x)y ≥ α.

Lemma B.6. The function ϕβ is 1
k+βd -strongly convex over ∆k

d with respect to the ℓ1 norm.

Proof. We use the second characterization in Definition B.5. Consider vectors x ∈ ∆k
d and y ∈ Rd

such that ||y||1 = 1. Then

yT∇2ϕβ(x)y =

d∑
i=1

y2i√
β2 + x2

i

=
1∑d

i=1

√
β2 + x2

i

(
d∑

i=1

y2i√
β2 + x2

i

)(
d∑

i=1

√
β2 + x2

i

)

≥ 1∑d
i=1

√
β2 + x2

i

(
d∑

i=1

|yi|

)2

=
1∑d

i=1

√
β2 + x2

i

≥ 1∑d
i=1(β + xi)

=
1

k + βd
,

where the first inequality follows from Cauchy-Schwarz.
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Corollary B.7. The function ϕ 1
d

is 1
k+1 -strongly convex over ∆k

d with respect to the ℓ1 norm.

We now recall the notion of Bregman divergence and state some well-known properties [Hazan,
2016].

Definition B.8 (Bregman Divergence). Let g : K → R be a convex function defined on a convex set
K ⊆ Rd. Given two points x, y ∈ K, The Bregman divergence Bg(x||y) with respect the function g
is defined as

Bg(x||y) := g(x)− g(y)− ⟨∇g(y), x− y⟩

Note that convexity of g implies that Bg(x||y) ≥ 0.

Fact B.9 (Law of Cosines for Bregman Divergence). Let g : K → R be a convex differentiable
function. Then

⟨∇g(y)−∇g(z), y − x⟩ = Bg(x||y) +Bg(y||z)−Bg(x||z).

Fact B.10 (Generalized Pythagorean Theorem for Bregman Divergences). Let g : K → R be a
convex, differentiable function and K ′ ⊆ K be a convex subset. Given x ∈ K, z ∈ K ′, let y ∈ K ′ be
a minimizer of Bg(y||z). Then

Bg(x||y) +Bg(y||z) ≤ Bg(x||z).

A direct application of the definition of Bregman divergence and (6) yields:

Claim B.11. Given x, y ∈ Rd,

Bϕβ
(x||y) =

d∑
i=1

[
xi

(
arcsinh

(
xi

β

)
− arcsinh

(
yi
β

))
−
√
x2
i + β2 +

√
y2i + β2

]
.

We now give an upper bound on Bϕβ
(x||y).

Lemma B.12. Let x, y ∈ ∆k
d , assume β < 1 and ||x||∞ ≤ 1. Then

Bϕβ
(x||y) ≤ k log(7/β).

Proof. Consider vectors x and y as in the statement of the Lemma. Using Claim B.11, we get

Bϕβ
(x||y) =

d∑
i=1

[
xi

(
arcsinh

(
xi

β

)
− arcsinh

(
yi
β

))
−
√

x2
i + β2 +

√
y2i + β2

]

≤
d∑

i=1

[
xi arcsinh

(
xi

β

)
− β + (yi + β)

]

= k +

d∑
i=1

xi log

(
xi +

√
x2
i + β2

β

)
≤ k +

d∑
i=1

xi log

(
1 +
√
2

β

)

≤ k + k log

(
1 +
√
2

β

)
≤ k log

(
7

β

)
,

where we have used the facts that xi ≤ 1 and β < 1.

B.3 Algorithm

Let us now recall the fractional online algorithm that we described in Section 3. At each time t, a
weighted subset of points Rt arrives. At time t = 0, we initialize y0 (which is a k-dimensional vector)
to any k arbitrary points in R0. At step t, we maintain a fractional solution yt on the points R<t.
To go from yt to yt+1, we perform one step of mirror descent based on the β-hyperbolic entropy
regularizer defined earlier. Before taking the mirror descent step, for points in Rt but not in R<t, we
set their fractional values to 0. This gives the fractional solution yt+1 for the next iteration.
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Algorithm 1: Algorithm for an instance of LEARN-BOUNDED-MEDIAN

1.1 Initialize y0 to any k points in R0, i.e., y0 ∈ Rk with (y0)i = 1 ∀i ∈ [k].
1.2 for t = 1, 2, . . . , T do
1.3 Let the points in R≤t−1 be v1, . . . , vdt−1

.
1.4 for each x ∈ Rt do
1.5 let αx

i be the fractional assignment of x to vi, i.e., D(yt, x) =
∑

i α
x
i d(vi, x).

1.6 Define M (x) := maxi:αx
i >0 d(vi, x).

1.7 Sub-gradient Step: Define ∇t ∈ Rdt as follows: for each i ∈ [dt],

(∇t)i := −
∑
x∈Rt

wx(M
(x) −min(M (x), d(x, vi)).

1.8 Learning Rate: Set

ηt :=
1

Gt

√
t

where Gt = maxt′≤t ||∇t′ ||∞.
1.9 Update Step: Define a vector xt+1 ∈ Rdt as follows: for each i ∈ [dt],

(xt+1)i :=
sinh(arcsinh(dt(yt)i − ηt(∇t)i)

dt
,

where we use (yt)i = 0 in the above equation for each i ∈ [dt] \ [dt−1].
1.10 Projection Step: Define

yt+1 := argminy∈Kt
Bϕ1/dt

(y||xt+1)

B.4 Analysis

In this section, we analyze the algorithm. Recall that the vector yt lies in Rdt−1 . But we shall often
consider it to lie in Rdt as well by setting (yt)i to 0 for all i ∈ [dt] \ [dt−1].

Claim B.13. For each t ∈ [T ],

∇t =
1

ηt

(
∇ϕ1/dt

(yt)−∇ϕ1/dt
(xt+1)

)
.

Proof. Using (6) and the definition of xt+1, we have that for any i ∈ [dt],

(∇ϕ1/dt
(yt))i − (∇ϕ1/dt

(xt+1))i = arcsinh(dt(yt)i)− arcsinh(dt(xt+1)i)

= arcsinh(dt(yt)i − (arcsinh(dt(yt)i − ηt(∇t)i) = ηt(∇t)i.

Using the above claim, we bound the difference between Bϕ1/dt
(yt||xt+1) and Bϕ1/dt

(yt+1||xt+1).

Claim B.14. For any time t,

Bϕ1/dt
(yt||xt+1)−Bϕ1/dt

(yt+1||xt+1) ≤ kη2t ||∇t||2∞.
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Proof. Using the using the definition of Bregman Divergence, we see that:

Bϕ1/dt
(yt||xt+1)−Bϕ1/dt

(yt+1||xt+1)

= ϕ1/dt
(yt)− ϕ1/dt

(xt+1)− ϕ1/dt
(yt+1) + ϕ1/dt

(xt+1)− ⟨∇ϕ1/dt
(xt+1), yt − xt+1 + xt+1 − yt+1⟩

= ϕ1/dt
(yt)− ϕ1/dt

(yt+1)− ⟨∇ϕ1/dt
(xt+1), yt − yt+1⟩

= ϕ1/dt
(yt)− ϕ1/dt

(yt+1)− ⟨∇ϕ1/dt
(yt), yt − yt+1⟩+ ⟨∇ϕ1/dt

(yt), yt − yt+1⟩ − ⟨∇ϕ1/dt
(xt+1), yt − yt+1⟩

Cor. B.7
≤ − 1

2(k + 1)
||yt − yt+1||21 + ⟨∇ϕ1/dt

(yt)−∇ϕ1/dt
(xt+1), yt − yt+1⟩

Cl. B.13
= − 1

2(k + 1)
||yt − yt+1||21 + ηt⟨∇t, yt − yt+1⟩

Holder’s ineq.
≤ − 1

2(k + 1)
||yt − yt+1||21 + ηt||∇t||∞||yt − yt+1||1.

The desired result now follows from the fact that the maximum value of the function f(z) :=
− 1

2(k+1)z
2 + ηt||∇t||∞z is at most kη2t ||∇t||2∞.

We now analyze the performance of our algorithm with respect to an arbitrary integral solution.

Claim B.15. Let y ∈ Kt be an integral vector. Then,

Costt(y) ≥ Costt(yt) + ⟨∇t, y − yt⟩.

Proof. Using the definition of ∇t, it suffices to show that for each x ∈ Rt:

D(x, y) ≥ D(x, yt)−
∑
i

(M (x) −min(M (x), d(x, vi))(yi − (yt)i), (7)

where M (x) and vi are as defined in Algorithm 1. For ease of notation, relabel the points in R≤t

arranged in increasing order of distance from x, i.e., d(x, v1) ≤ d(x, v2) ≤ . . . ≤ d(x, vdt
). Let i∗

be the smallest index such that
∑

i≤i∗(yt)i ≥ 1. Observe that M (x) = d(x, vi∗) and αx
i = (yt)i for

all i < i∗ and is 0 for all i > i∗. Since y is an integral vector D(y, x) = d(vi0 , x) for some i0 ∈ [dt].
Thus, (7) is equivalent to showing:

d(x, vi0) ≥
∑
i≤i∗

αx
i d(x, vi)−

∑
i<i∗

(d(x, vi∗)− d(x, vi))(yi − (yt)i)

=
∑
i<i∗

(yt)id(x, vi) + αx
i∗d(x, vi∗)−

∑
i<i∗

(d(x, vi∗)− d(x, vi))(yi − (yt)i)

= αx
i∗d(x, vi∗) + d(x, vi∗)

∑
i<i∗

(yt)i −
∑
i<i∗

(d(x, vi∗)− d(x, vi))yi

= d(x, vi∗)−
∑
i<i∗

(d(x, vi∗)− d(x, vi))yi (8)

Two cases arise: (i) i0 ≥ i∗, or (ii) i0 < i∗. In the first case, yi = 0 for all i < i∗ and hence, (8)
follows easily because d(x, vi0) ≥ d(x, vi∗). In the second case, the r.h.s. of (8) can be expressed as

d(x, vi∗)− (d(x, vi∗)− d(x, vi0))−
∑

i0<i<i∗

(d(x, vi∗)− d(x, vi))yi

= d(x, vi0)−
∑

i0<i<i∗

(d(x, vi∗)− d(x, vi))yi ≤ d(x, vi0).

This proves the desired result.

Phases. We shall divide the timeline into phases, and shall bound the cost incurred by the algorithm
in a phase with respect to an off-line solution that only uses points revealed till the beginning of the
phase. The following result bounds the cost incurred during a time interval:
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Lemma 3.2. Consider a time interval I := [ta, tb] ⊆ [1, T ], and let z be an integral vector in Kta .
Then, ∑

t∈I

(Costt(yt)− Costt(z)) ≤ 3(k + 1)k∆
√
T log(7Tk).

Proof. Consider a time t ∈ I . Using Claim B.15, we get:

Costt(yt)− Costt(z) ≤ ⟨∇t, yt − z⟩.
Summing this over all t ∈ I , and using Claim B.13, we see that

∑
t∈I(Costt(yt)− Costt(z)) is at

most∑
t∈I

1

ηt
⟨∇ϕ1/dt

(yt)−∇ϕ1/dt
(xt+1), yt − z⟩

Fact B.9
=

∑
t∈I

1

ηt

(
Bϕ1/dt

(z||yt) +Bϕ1/dt
(yt||xt+1)−Bϕ1/dt

(z||xt+1)
)

Fact B.10
=

∑
t∈I

1

ηt
(Bϕ1/dt

(z||yt) +Bϕ1/dt
(yt||xt+1)−Bϕ1/dt

(z||yt+1)−Bϕ1/dt
(yt+1||xt+1))

≤ 1

ηta
Bϕ1/dta

(z||yta) +
tb∑

t=ta+1

Bϕ1/dt
(z||yt)

(
1

ηt
− 1

ηt−1

)
+

+
∑
t∈I

1

ηt

(
Bϕ1/dt

(yt||xt+1)−Bϕ1/dt
(yt+1||xt+1)

)
.

Using Lemma B.12 and Claim B.14, the above expression is at most (note that dt is a non-decreasing
function of t)

k log(7dta)

ηta
+ k log(7dtb) ·

tb∑
t=ta+1

(
1

ηt
− 1

ηt−1

)
+
∑
t∈I

kηt||∇t||2∞

≤ k log(7dtb)

ηtb
+
∑
t∈I

kηt||∇t||2∞. (9)

Observe that ||∇t||∞ ≤ (k + 1)∆, and thus Gt ≤ (k + 1)∆. Indeed, by definition of∇t,

|(∇t)i| ≤
∑
x∈Rt

wx|M (x) − d(x, vi)| ≤
∑
x∈Rt

wx∆ ≤ (k + 1)∆, (10)

because the total weight of the points in Rt is at most (k + 1). Using this observation and the fact
that ηt = 1

Gt

√
t
, (9) is at most

(k + 1)k∆
√
T log(7dT ) +

∑
t∈I

(k + 1)k∆√
t

.

The desired result now follows from the fact that dT ≤ Tk.

We now define the phases. Let y∗ ∈ KT be an integral solution defined by a set C of k centers. Let
V := R1 ∪R2 . . . ∪RT denote the set of points that arrive over the last T timesteps. Let the centers
in C be c(1), . . . , c(k). The set C partitions V into k subsets – let V (i) be the subset of V for which
the closest center is c(i) (we break ties arbitrarily). For a non-negative integer j, let ji be the smallest
time t such that the total weight of the points in V (i) ∩ (R1 ∪ . . . Rt) (i.e., points in V (i) arriving
by time t) exceeds k · 2j . Let w(V (i)) denote the total weight of the points in V (i). Define the set
P := {ji : i ∈ [k], j ∈ [log(w(V (i)))]} ⊆ [1, T ]. Observe that

|P | =
∑
i∈[k]

log(w(V (i))/k) ≤ k log T, (11)
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because at each time t, the total weight of the arriving points is at most (k + 1). We shall treat the
indices in P as subset of [1, T ], and hence, these partition the timeline into |P |+ 1 phases. We shall
apply Lemma 3.2 for each of these phases.

In order to apply this lemma, we need to specify a candidate solution zp for each of these phases p.
We need some more definitions to describe this integral solution. For each i ∈ [k] and index j, define
V

(i)
j := V (i) ∩ (R≤ji \R≤ji−1), i.e., the points in V (i) whose corresponding arrival time lies in the

range (ji−1, ji]. We shall often refer to the subset V (i)
j as a bucket of V (i).

For each of the set of points V (i)
j , let x(i)

j denote the optimal 1-median solution where the center is

restricted to lie in V
(i)
j only, i.e.,

x
(i)
j := argmin

x∈V
(i)
j

wx

∑
v∈V

(i)
j

d(x, v).

For a phase p and index i ∈ [k], the time slots in p are contained in a single bucket V (i)
j of V (i). Let

ℓ
(i)
p denote the index corresponding to x

(i)
j−1 in KT , i.e., the optimal 1-median solution of the last

bucket in V (i) that does not intersect this phase. We are now ready to define the candidate integral
solution z(p) for a phase p.

Fix a phase p and let sp denote the start time of this phase. Define an integral vector z(p) ∈ Ksp as
follows: for each i ∈ [k], we set z(p)j = 1 where j = ℓ

(i)
p ; all other coordinates of z(p) are 0 – in case

there is no bucket in V (i) ending before time sp, we set z(p) to be an arbitrary point. In other words,
this solution selects k points, namely, the 1-median center of the last bucket in V (i) that ends before
sp. This completes the description of the vector z(p) corresponding to a phase p. Lemma 3.2 shows
that the total cost incurred by the algorithm during a phase p is close to that incurred by the fixed
solution z(p). Thus, it remains to show that the total cost incurred by z(p) during a phase is close to
that incurred by y∗.

Lemma B.16. Consider any i ∈ [k] and index j ≥ 1. Then,∑
x∈V

(i)
j

wxd(x
(i)
j−1, x) ≤ 42 · opt1(V

(i)
j−1 ∪ V

(i)
j ).

Proof. Consider a point x ∈ V
(i)
j . Using Corollary B.3, we obtain

d(x
(i)
j−1, x) ≤ 3

∑
x′∈V

(i)
j−1

wx′

w(V
(i)
j−1)

d(x, x′) ≤ 3
∑

x′∈V
(i)
j−1

wx′

k · 2j−1
d(x, x′),

where the last inequality follows from the fact that w(V (i)
j−1) ≥ k · 2j−1. Thus,∑

x∈V
(i)
j

wx d(x
(i)
j−1, x) ≤ 3

∑
x∈V

(i)
j

∑
x′∈V

(i)
j−1

wxwx′

k · 2j−1
d(x, x′).

Since the weight of the points arriving at any particular time is at most k + 1, we have the bound
w(V

(i)
j−1 ∪ V

(i)
j ) ≤ k · 2j−1 + k · 2j + 2k + 2 ≤ 7k · 2j−1. Consequently, the r.h.s. above is at most

21
∑

x∈V
(i)
j

∑
x′∈V

(i)
j−1

wxwx′

w(V
(i)
j−1 ∪ V

(i)
j )

d(x, x′) ≤ 21
∑

x,x′∈V
(i)
j−1∪V

(i)
j

∑
x′∈V

(i)
j−1

wxwx′

w(V
(i)
j−1 ∪ V

(i)
j )

d(x, x′),

which is at most 42 · opt1(V
(i)
j−1 ∪ V

(i)
j ) (using Fact B.1).

We are now ready to bound the total cost incurred by the solution z(p) during phase p.
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Lemma 3.3. For each p ∈ P , let the start and end time of phase p be denoted sp and ep respectively.
Then, there exist solutions z(p) such that∑

p∈P

ep∑
t=sp

Costt(z
(p)) = O

(
k2∆+

T∑
t=1

Costt(y
∗)

)
,

where y∗ is an arbitrary integral vector in KT .

Proof. For a point x ∈ V (i), let px be the phase containing the arrival time of x. Then,∑
p∈P

ep∑
t=sp

Costt(z
(p)) =

∑
i∈[k]

∑
x∈V (i)

D(z(p), x) ≤
∑
i∈[k]

∑
x∈V (i)

wxd(x, x
(i)

ℓ
(i)
p

). (12)

For x ∈ V
(i)
0 , d(x(i)

ℓ
(i)
p

, x) ≤ ∆. For j ≥ 1 and x ∈ V
(i)
j , d(x

(i)

ℓ
(i)
p

, x) = d(x
(i)
j−1, x). Thus, the r.h.s.

of (12) is upper bounded by

∑
i∈[k]

∆ · w(V (i)
0 ) +

∑
j≥1

∑
x∈V

(i)
j

wxd(x
(i)
j−1, x)

 Lemma B.16
≤ 2k2∆+ 42

∑
i∈[k]

∑
j≥1

opt1(V
(i)
j−1 ∪ V

(i)
j )

≤ 2k2∆+ 84
∑
i∈[k]

∑
x∈V (i)

wxd(ci, x)

= O

(
k2∆+

T∑
t=1

Costt(y
∗)

)
.

where we used opt1(V
(i)
j−1 ∪ V

(i)
j ) ≤

∑
x∈V

(i)
j−1∪V

(i)
j

wxd(ci, x). This proves the lemma.

Combining Lemma 3.2 and Lemma 3.3, since there are at most O(k log T ) phases, we get:
Theorem B.17. Let y∗ be an arbitrary integral vector in KT . Then,

T∑
t=1

Costt(yt) = O

(
T∑

t=1

Costt(y
∗)

)
+O

(
k3∆ ·

√
T log(T ) log(kT )

)
.

C Details about the Rounding Algorithms

In this section, we give a detailed description of the online rounding algorithms described in Sec-
tion 4 for the LEARN-BOUNDED-MEDIAN problem. Let yt be the fractional solution computed by
Algorithm 1 before the arrival of the tthinstance Rt. Our rounding algorithms will take the fractional
solution yt as input and return an integer solution Yt with exactly k centers. The rounding loss is
defined as the ratio of the (expected) cost of the integer solution Yt to that of the fractional solution
yt.

We give two rounding algorithms. The first algorithm is deterministic and has a rounding loss of
O(k). The second algorithm is randomized and has only O(1) rounding loss. These are adaptations
of existing rounding algorithms for k-median [Charikar et al., 1999, Charikar and Li, 2012]; the main
difference is that we need to bound the rounding loss for points we haven’t seen as well.

C.1 Deterministic Rounding Algorithm

Initially, there are no centers in Yt. The algorithm considers each point in R<t = R0 ∪ . . . Rt−1 in
non-decreasing order of their connection costs D(yt, i), and decides whether to open a center at the
current point. A new center is opened at the current point (call it i) if the connection cost of i to the
previously opened centers in Yt exceeds (2k + 2) times its connection cost in the fractional solution
yt. I.e., Yt ← Yt ∪ {i} if D(Yt, i) > (2k + 2) ·D(yt, i).

We show in the next lemma that the algorithm produces a feasible solution, i.e., at most k centers are
opened in Yt.
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Lemma C.1. The deterministic algorithm produces a feasible solution, i.e., opens at most k centers.

Proof. For j ∈ Yt, let Bj = {x ∈ R<t : d(j, x) ≤ (k + 2) ·D(yt, j)} be the ball around j of radius
k + 2 times the fractional cost of j. We will show that

(a) The fractional mass on points in Bj in yt is strictly greater than 1− 1
k+1 .

(b) The balls Bj are disjoint for different j.

Given these properties, if |Yt| ≥ k + 1, then the total fractional mass yt in the balls Bj for j ∈ Yt is
strictly greater than k, which is a contradiction.

We show the two properties. For property (a), if the fractional mass yt in Bj is at most 1 − 1
k+1 ,

then j must be served at ar least 1
k+1 fraction by centers that are outside Bj . It follows that

D(yt, j) ≥ 1
k+1 · (k + 2) · D(yt, j), which is a contradiction. For property (b), suppose Bj , Bj′

overlap where j′ > j, i.e., D(yt, j
′) ≥ D(yt, j). Then, d(j, j′) ≤ 2(k + 2) ·D(yt, j

′), which means
that the algorithm will not open a center at j′, a contradiction.

For the rounding loss, note that the algorithm explicitly ensures that for any i ∈ R<t, we have
D(Yt, i) ≤ (2k + 2) ·D(yt, i). The next claim bounds the rounding loss for points j ∈ Rt.
Lemma C.2. For any point j ∈ Rt, we have D(Yt, j) ≤ (4k + 3) ·D(yt, j).

Proof. Let i be the point in R<t that is closest to j. Clearly,

D(yt, j) ≥ d(i, j),

since the entire fractional mass of yt is on points in R<t. Moreover,

D(yt, i) ≤ D(yt, j) + d(i, j),

since the RHS is at most the cost of serving i using j’s fractional centers. Adding the two inequalities,
we get D(yt, j) ≥ D(yt,i)

2 . Note that there is a center in Yt that is within distance (2k + 2) ·D(yt, i)
of i since i ∈ R1 ∪R2 ∪ . . . ∪Rt−1. The distance from this center to j is at most

(2k + 2) ·D(yt, i) + d(i, j) ≤ (4k + 2) ·D(yt, j) +D(yt, j) = (4k + 3) ·D(yt, j).

This implies that the rounding loss of the deterministic rounding algorithm is 4k + 3.

C.2 A Randomized Rounding Algorithm

The rounding algorithm has two phases. The first phase selects a set of centers Ȳt that might be larger
than k. This phase is deterministic. The second phase subselects at most k centers from Ȳt to form
the final solution Yt. This phase is randomized. The guarantee that at most k centers are selected in
Yt holds deterministically, but the cost of the solution will be bounded in expectation. We desribe
these two phases below.

Phase 1: This phase is similar to the deterministic algorithm in the previous section but with different
parameters. Initially, there are no centers in Ȳt. The algorithm considers each point in R<t in
non-decreasing order of their connection costs D(yt, i), and decides whether to open a center at the
current point. A new center is opened at the current point (call it i) if the connection cost of i to the
previously opened centers in Ȳt exceeds 4 times its connection cost in the fractional solution yt. I.e.,
Ȳt ← Ȳt ∪ {i} if D(Yt, j) > 4 ·D(yt, i).

Phase 2: For any center i ∈ Ȳt, let ri be the distance to its closest center in Ȳt. We define the weight
of i, denoted wi, as the the total fractional mass in yt in the open ball of radius ri/2 centered at i. I.e.,

wi =
∑

j:d(i,j)<ri/2

yt(j).

We start by creating a matching on the centers in Ȳt. The first matched pair is the closest pair of
centers in Ȳt. The matching continues iteratively by pairing the two closest unmatched centers in Ȳt
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in each step. Eventually, either all centers in Ȳt are in matched pairs or there is a solitary center that
goes unmatched. For any center i ∈ Ȳt that is in a matched pair, we denote the center it got matched
to by i′.

Next, we order the matched pairs arbitrarily to create an induced ordering on the points that satisfies
the property that i, i′ are adjacent. If there is an unmatched point, it is added at the end of this order.
Let us call the ordering i1, i2, . . . , i|Ȳt|. We now associate an interval with each point as follows:
for point is, its associated interval is Is := [

∑s−1
j=1 wij ,

∑s
j=1 wij ), i.e., the points occupy adjacent

intervals on the real line in the given order. Next, we generate a value θ uniformly at random from
[0, 1), and add to Yt every point is ∈ Ȳt such that a+ θ ∈ Is for some non-negative integer a.

First, we establish that the algorithm is correct, i.e., |Yt| ≤ k.
Lemma C.3. The output Yt of the randomized rounding algorithm has at most k centers.

Proof. It is sufficient to show that the sum of weights of the centers in Ȳt is at most k. In turn, this
follows if we show that the open balls Bi := {j : d(i, j) < ri/2} are disjoint for different i ∈ Ȳt.
Suppose not; let d(i1, i2) <

ri1+ri2
2 for i1, i2 ∈ Ȳt. Then, ri1 ≤ d(i1, i2) and ri2 ≤ d(i1, i2) by

definition of ri. This is a contradiction.

Next, we bound the rounding loss of the algorithm. Note that for any point j ∈ R1 ∪R2 ∪ . . .∪Rt−1,
we have the following explicit property from the construction of Ȳt:

D(Ȳt, j) < 4 ·D(yt, j). (13)

Another important property sets a lower bound on the weight of any point:
Claim C.4. For any point i ∈ Ȳt, we have

wi ≥ 1− 2 ·D(yt, i)

ri
>

1

2
.

Therefore, for any matched pair i, i′ ∈ Ȳt, at least one of i, i′ is in Yt.

Proof. For the first inequality, note that D(yt, i) ≥ 0 · wi + (ri/2) · (1− wi) since at least 1− wi

fraction of the service for i in the fractional solution yt comes from outside the open ball of radius
ri/2 centered at i. Re-arranging this inequality gives the first inequality.

For the second inequality, let j be the closest center to i in Ȳt at the time that i was considered in phase
1 of the rounding algorithm. Since i was added to Ȳt, it must be that d(i, j) > 4 ·D(yt, i). Moreover,
any center ℓ added to Ȳt later in the algorithm must satisfy d(i, ℓ) > 4 · D(yt, ℓ) ≥ 4 · D(yt, i).
Therefore, ri > 4 ·D(yt, i), which implies the second inequality.

Therefore, for any matched pair i, i′, their cumulative weight wi + wi′ > 1. This implies that at least
one of i, i′ will be added to Yt in phase 2.

We use these property to bound the rounding loss for Yt:
Lemma C.5. The following properties hold:

1. For any point i ∈ Ȳt, we have E[D(Yt, i)] ≤ 4 ·D(yt, i).

2. For any point j ∈ R0 ∪ . . . ∪Rt−1, we have E[D(Yt, j)] ≤ 8 ·D(yt, j).

3. For any j ∈ Rt, we have E[D(Yt, j)] ≤ 17 ·D(yt, j).

Proof. We prove each of these properties separately. Note that Pr[i ∈ Yt] ≥ min(wi, 1) in phase 2
of the algorithm. Using Claim C.4, we have

Pr[i ∈ Yt] ≥ 1− 2 ·D(yt, i)

ri
.

Moreover, with probability 1, we have D(Yt, i) ≤ 2ri. This follows from two cases: (a) If i is
matched to its closest point in Ȳt, then by Claim C.4, at least one of i, i′ is in Yt. (b) Otherwise,
suppose i is unmatched or it is matched to i′ which is not its closest point in Ȳt. Let j be closest point
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to i in Ȳt. Then, the fact that j was matched to j′ and not to i implies that d(j, j′) ≤ d(i, j) = ri. By
triangle inequality, d(i, j′) ≤ 2ri, and at least one of j, j′ is in Yt by Claim C.4.

Combining the two observations above, we get

E[D(Yt, i)] ≤
2 ·D(yt, i)

ri
· 2ri = 4 ·D(yt, i).

Next, we show the second property. Consider a point j ∈ R<t \ Ȳt. since j was not added to Ȳt,
there exists i ∈ Ȳt such that D(Ȳt, i) ≤ D(Ȳt, j) and d(i, j) ≤ 4 ·D(yt, j). Therefore,

E[D(Yt, j)] ≤ d(i, j) + E[D(Yt, i)] ≤ 4 ·D(yt, j) + 4 ·D(yt, i) ≤ 8 ·D(yt, j),

where we used the first property in the second to last inequality.

Finally, we show the third property. Consider a point j ∈ Rt. Let i be the point in R<t that is closest
to j. Clearly,

D(yt, j) ≥ d(i, j),

since the entire fractional mass of yt is on points in R<t. Moreover,

D(yt, i) ≤ D(yt, j) + d(i, j),

since the RHS is at most the cost of serving i using j’s fractional centers. Adding the two inequalities,
we get D(yt, i) ≤ 2 ·D(yt, j). Therefore,

E[D(Yt, j)] ≤ E[D(Yt, i)] + d(i, j) ≤ 8 ·D(yt, i) +D(yt, j) ≤ 17 ·D(yt, j),

where we used the second property in the second to last inequality.

This implies that the rounding loss of the randomized rounding algorithm is 17.

D Final Bounds

We now put together our reduction, fractional algorithm, and rounding procedure to obtain determin-
istic and randomized algorithms for LEARN-MEDIAN. By combining Theorem 2.1, Theorem B.17
and Lemma C.2, we have the following theorem.
Theorem D.1. We give a deterministic algorithm for LEARN-MEDIAN with the following perfor-
mance bound:

T∑
t=1

ρ(Yt, Vt) ≤ O(k) ·
T∑

t=1

ρ(Y ∗, Vt) +O
(
k4∆ ·

√
T log(T ) log(Tk)

)
where Y ∗ is the best fixed solution in hindsight.

Similarly, by combining Theorem 2.1, Theorem B.17 and Lemma C.5, we have the following theorem.
Theorem D.2. We give a randomized algorithm for LEARN-MEDIAN with the following expected
performance bound:

T∑
t=1

E[ρ(Yt, Vt)] ≤ O(1) ·
T∑

t=1

ρ(Y ∗, Vt) +O
(
k3∆ ·

√
T log(T ) log(Tk)

)
where Y ∗ is the best fixed solution in hindsight.

E Detailed Experiments

In this section, we give a detailed description of the experiments in Section 5. We use a heuristic to
improve the performance of the rounding algorithms in all our experiments, where we do a binary
search over the best threshold on the distance to the already opened centers. For the deterministic
rounding algorithm for LEARN-BOUNDED-MEDIAN, we open a new center at i if its distance to the
already opened centers exceeds (2k + 2)D(yt, i). We can always slacken this factor of (2k + 2) to
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something lower as long as the total number of centers opened does not exceed k, without worsening
the theoretical approximation ratio. Similarly in the randomized rounding algorithm for LEARN-
BOUNDED-MEDIAN, we can slacken the threshold of 4D(yt, i) in the initial filtration step, as long
as the fractional mass in the balls we later consider are at least 1/2.

We compute optimal-in-hindsight solutions for the instances using Gurobi’s ILP solver, accessed
under an academic license. Unless mentioned otherwise, experiments were conducted using Google
Colab (code available at https://github.com/neurips2025-colab/neurips2025), using four
Intel® Xeon® CPUs (2.20 GHz) with 13 GB of RAM each, running in parallel over about 24 compute
hours. In all our experiments, the underlying metric is the Euclidean metric. Unless mentioned
otherwise, we plot the ratio between

∑t
τ=1 ρ(Yτ , Vτ ) and

∑t
τ=1 ρ(Y

∗, Vτ ) in our approximation
ratio plots, where Y ∗ is the optimal-in-hindsight solution for the entire input sequence.

Uniform Square: In this example, the underlying metric space consists of 400 uniformly random
points in the unit square [0, 1]× [0, 1]. 10 points arrive each round, chosen uniformly at random, and
we run the experiment with a time horizon of T = 1000. We compare the cost of the optimal solution
with the deterministic and randomized algorithms, as well as the intermediate fractional solution that
we maintain. We generate 10 random instances in total, and report the standard deviation and mean of
the approximation ratio over time. For the randomized algorithm, we first average the approximation
ratio for each instance over 5 random runs of the rounding algorithm. We run this experiment with
k = 2, 3, 6.

As we see in Fig. 3, both the randomized and deterministic algorithms converge to natural solutions,
distributed roughly uniformly over the unit square. The approximation ratio also approaches 1,
especially after the influence of the initial additive regret declines.

Figure 3: (Uniform Square): The optimal (black plus), deterministic (blue cross), and randomized
(red diamond) solutions for one of the random instances (left) and approximation ratios – avg. and
std. dev. over 10 random instances (right) for k = 2, 3, 6.
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Uniform Rectangle: In this example, the underlying metric space consists of 400 uniformly random
points in the rectangle [0, 1]× [0, 10]. 10 points arrive each round, chosen uniformly at random, and
we run the experiment with a time horizon of T = 1000. We compare the cost of the optimal solution
with the deterministic and randomized algorithms, as well as the intermediate fractional solution that
we maintain. We generate 10 random instances in total, and report the standard deviation and mean of
the approximation ratio over time. For the randomized algorithm, we first average the approximation
ratio for each instance over 5 random runs of the rounding algorithm. We run this experiment with
k = 2, 3, 6.

As we see in Fig. 4, both the randomized and deterministic algorithms converge to natural solutions,
distributed roughly uniformly over the rectangle. The approximation ratio also approaches 1, espe-
cially after the influence of the initial additive regret declines.

Figure 4: (Uniform Rectangle): The optimal (black plus), deterministic (blue cross), and randomized
(red diamond) solutions for one of the random instances (left) and approximation ratios – avg. and
std. dev. over 10 random instances (right) for k = 2, 3, 6.

Multiple Clusters: In this example, the underlying metric space consists of k clusters with center
in the unit square [0, 1]× [0, 1]. The cluster centers are chosen uniformly at random from the unit
square, and we then generate points in a radius of 0.05 around each cluster center, for a total of about
400 points. 20 points arrive each round, chosen uniformly at random, and we run the experiment with
a time horizon of T = 1000. We compare the cost of the optimal solution with the deterministic and
randomized algorithms, as well as the intermediate fractional solution that we maintain. We generate
10 random instances in total, and report the standard deviation and mean of the approximation ratio
over time. For the randomized algorithm, we first average the approximation ratio for each instance
over 5 random runs of the rounding algorithm. We run this experiment with k = 4, 8, 12, 16.
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Figure 5: (Multiple Clusters): the optimal (black plus), deterministic (blue cross), and randomized
(red diamond) solutions for one of the random instances (left) and approximation ratios - avg. and
std. dev. over 10 random instances (right) for k = 4, 8, 12, 16.

Once again, as we see in Fig. 5, both the randomized and deterministic algorithms converge to natural
solutions, with centers distributed over the different clusters. The approximation ratio also approaches
1, especially after the influence of the initial additive regret declines.

Uniform Hypersphere: In this example, k = 1 and the underlying metric space consists of 400
points: one point is the origin and the rest are chosen uniformly at random from the unit hypersphere.
We run the experiment with a time horizon of T = 2000. For the first 100 rounds, each instance
consists of 10 points chosen at random from the boundary of the hypersphere. However, in the next
round we also include the origin in the instance, thus revealing the origin to our algorithm. We then
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Figure 6: (Uniform Hypersphere): Fractional mass of algorithm over time at the center (avg. and
std. dev. over 10 runs), d = 2, 8

continue generating instances as before. We do this for for 2 different dimensions of the hypersphere
(d = 2, 8). We generate 10 random instances in total, and report the standard deviation and mean of
the total mass that the fractional algorithm places on the origin.

As we see in Fig. 6, the fractional mass is initially fully on the boundary, but once we introduce
the origin the mass slowly shifts to being just on the origin. This happens because the origin is a
better solution for the instance sequence compared to any solution solely on the boundary. Moreover,
this transition is more rapid for higher dimensions, as typical distance between 2 random points on
the hypersphere increases with dimension. On the other hand, the distance from the origin to the
hypersphere boundary is always 1.

Oscillating Instances: In this example, the underlying metric space consists of 2 clusters with 10
points each. The 2 clusters are generated by picking points uniformly at random from squares of side
length 0.4 centered at (0, 0) and (1, 0) respectively, and we run the experiment with a time horizon of
T = 35. The instance sequence alternates between the first and second cluster, where we give the first
cluster for the first 3 rounds, then the second cluster up to the 9th round, then the first cluster up to the
27th round, and so on. One difference in this example is that we compare our performance against the
dynamically optimal fractional solution as opposed to a fixed optimal-in-hindsight integer solution:
that is, for each time step we compare against the best fixed solution for the instances so far. That
is, we plot the ratio between

∑t
τ=1 ρ(yτ , Vτ ) and

∑t
τ=1 ρ(OPTt, Vτ ), where OPTt is the best fixed

fractional solution for instances V1, ..., Vt and yτ is the intermediate fractional solution we maintain.
We also study how the fractional mass of the (dynamic) optimal solution and the algorithm in the first
cluster changes over time in order to obtain a qualitative understanding of how the algorithm shifts its
centers towards new points that arrive. We run this experiment with k = 1, 2, 3, 4.

As we see in Fig. 7, k = 1, the algorithm starts shifting fractional mass before the optimal solution.
Consequently, our algorithm ends up outperforming the optimal solution in the time horizon that we
consider, as seen from the approximation ratio plots. For k = 2, 3, 4, we observe that the algorithm
quickly moves a unit of mass to the cluster that is currently arriving, and then slows down as the gain
in increasing the fractional mass on the cluster is minimal.

Scale Changes: In this example, the underlying metric space consists of 5 clusters with 10 points
each. The clusters are generated by picking points uniformly at random from squares of side length
0.4 centered at (⌊10i−1⌋, 0) for i = 0, 1, 2, 3, 4, and we run the experiment with a time horizon of
T = 35. In this example, we have 5 clusters with 10 points each, with a time horizon of T = 35. The
instance sequence iterates through the clusters, where we give the first cluster for the first 3 rounds,
then the second cluster up to the 9th round, and so on. We study how the fractional mass of the
algorithm in the cluster that is currently arriving changes over time in order to obtain a qualitative
understanding of how the algorithm shifts its centers toward new far away points that arrive. The
approximation ratios plotted are between

∑t
τ=1 ρ(yτ , Vτ ) and

∑t
τ=1 ρ(OPTt, Vτ ), where OPTt is

the best fixed fractional solution for instances V1, ..., Vt and yτ is the intermediate fractional solution
we maintain. We run this experiment with k = 1, 2, 3.

As we see in Fig. 8, we once again see that for k = 1, the fractional algorithm ends up outperforming
the optimal solution. For k = 2, 3, we observe that the algorithm quickly moves a unit of mass to the
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Figure 7: (Oscillating Instances): Fractional mass of algorithm and OPT over time in one of the
clusters (left) and corresponding dynamic approximation ratios (right), for k = 1, 2, 3, 4.

cluster that is currently arriving, and then slows down rapidly as the gain in increasing the fractional
mass on the cluster is very minimal. The change is even more rapid in this case compared to the
previous experiment due to the large scale changes which lead to a larger gradient norm, and hence a
more conservative learning rate.

One question that arises from the approximation ratio plots for k = 2, 3 is the large approximation
factor, but this can be explained by the additive term that is quite large in this case. For k > 1, the
dynamic optimal solution immediately shifts a center from the previous clusters to the new one as it
is a much better solution for the sequence so far, while the algorithm accrues a large cost until it shifts
a mass of one into the new cluster. To illustrate this, we run the experiment again for k = 2, 3 with
4 clusters and a time horizon of T = 50000 (we only use 4 clusters this time due to computational
reasons, the time required for the additive term to be insignificant grows with ∆), where we continue
giving the 4th cluster even after the first 81 rounds. We see that the approximation ratio eventually
approaches 1, see Fig. 9.
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Figure 8: (Scale Changes): Fractional mass of algorithm over time in one of the clusters (left) and
corresponding dynamic approximation ratios (right), for k = 1, 2, 3.

Figure 9: (Scale Changes): Dynamic approximation ratio plots with T = 50000, for k = 2, 3.

Small Drifts: In this example, the metric space consists of 2500 points, and we run the experiment
with a time horizon of T = 250. The underlying instances are created by randomly drawing 10 points
(out of which 5 random points arrive in a round) in a disc centered around the origin, but then shifting
the center of the disc to the right by 0.02 for each instance. We compare the cost of the optimal
solution with the deterministic and randomized algorithms, as well as the intermediate fractional
solution that we maintain. We generate 10 random instances in total, and report the standard deviation
and mean of the approximation ratio over time. For the randomized algorithm, we first average the
approximation ratio for each instance over 5 random runs of the rounding algorithm. We run this
experiment with k = 1, 2, 3.

As we see in Fig. 10, the final average approximation ratios were less than 2 in all cases. (In contrast,
if the algorithm were to use the initial solutions throughout, i.e., does not automatically adapt to the
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drift, then the cost ratios in each round are around 5-15.) The approximation ratio is small initially as
we compare against the optimal-in-hindsight solution for the entire input sequence.

Figure 10: (Small Drifts): The optimal (black plus), deterministic (blue cross), and randomized (red
diamond) solutions for one of the random instances (left) and approximation ratios – avg. and std.
dev. over 10 random instances (right) for k = 1, 2, 3.

Finally, note that the time complexity of our learning algorithm (besides the reduction step) is
O(k2T 3), independent of the number of points n. To empirically confirm scalability, we ran
experiments with n = 1000, 2000, . . . , 6000 while keeping k, T fixed (k = 5, T = 100) and
observed that the running time of the learning algorithm (besides the reduction step) was always 2-3
seconds on Google Colab (2.20 GHz Intel® Xeon® CPU, 51 GB RAM).
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F Lower Bounds

In Theorem D.1 we gave an efficient deterministic algorithm for LEARN-MEDIAN with a multiplica-
tive O(k) approximation factor and sublinear regret. We now give an information theoretic lower
bound that states that any algorithm for LEARN-MEDIAN with sublinear regret must incur an Ω(k)
multiplicative factor loss.
Theorem F.1. Any deterministic algorithm for the LEARN-MEDIAN problem cannot achieve a
multiplicative o(k) approximation guarantee with an additive regret term that is sublinear in T . That
is, any bound as below is impossible

T∑
t=1

E[ρ(Yt, Vt)] ≤ o(k) ·
T∑

t=1

ρ(Y, Vt) + o(T )f(k, n,∆) (14)

where Y is any fixed solution for LEARN-MEDIAN. Moreover, this holds even when the metric space
is known upfront.

Proof. The lower bound result is inspired by the competitive ratio lower bound for deterministic
online paging. Suppose for the sake of contradiction that there is an online algorithm A that outputs a
solution Yt at time t and satisfies the condition (14). We now describe our hard instanceM = (V, d).
The underlying metric spaceM consists of n = 2(k + 1) points. It contains k + 1 different clusters
of 2 points each, such that the distance between any 2 points belonging to different clusters is ∆≫ 1.
The distance between any 2 points in the same cluster is 1.

We construct our sequence of sub-instances V0, . . . , VT in an adversarial fashion: consider a round
t, and let Yt be the set of k centers outputted by A in round t. Since there are k + 1 clusters in the
metric space, it follows that there is always at least 1 cluster which does not overlap with Yt. Thus,
given Yt, define Vt to consist of this cluster and any other k − 1 clusters. For the round zero, we just
take V0 to be the entire metric space.

Clearly, A must suffer a cost of at least 2∆
k for each round after round zero. This is because the

optimal solution for Vt places exactly 1 point in each of the k clusters with a total connection cost of
k, while Yt must have a connection cost of at least 2∆ as it doesn’t place any center in one of the
clusters present in Vt.

Let us now examine the optimal fixed solution in hindsight for this adversarial input sequence. The
optimal solution places 1 center each in the k clusters that appear the most frequently. Thus, it suffers
a total cost at most 2∆T

(k+1)k . Putting it together and using (14), we have

2∆T

k
≤ o(k) · 2∆T

(k + 1)k
+ o(T )f(k, n,∆)

or equivalently,

2∆(k + 1) ≤ o(k) · 2∆ +
o(T )

T
k(k + 1)f(k, n,∆)

which gives a contradiction as T →∞ as k, n,∆ are fixed parameters of the underlying metric space.

We now extend the above result to the setting where the online algorithm is randomized: again, we
show that the result in Theorem D.2 is essentially tight, i.e., any randomized algorithm with sublinear
additive regret must incur a constant factor multiplicative loss.
Theorem F.2. Any (randomized) algorithm for the LEARN-MEDIAN problem cannot achieve a
multiplicative (1 + ε) approximation guarantee with an additive regret term that is sublinear in T .
That is, any bound as below is impossible

T∑
t=1

E[ρ(Yt, Vt)] ≤ (1 + ε) ·
T∑

t=1

ρ(Y, Vt) + o(T )f(k, n,∆) (15)

where 0 ≤ ε < 1 is an arbitrary constant and Y is any fixed solution for LEARN-MEDIAN.
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Proof. Suppose for the sake of contradiction that there is an algorithm A that satisfies (15) for some
constant 0 ≤ ε < 1. We first describe our hard instanceM = (V, d). Our metric spaceM consists
of n = mk points, m≫ k. It contains k different clusters of m points each, such that the distance
between any 2 points belonging to 2 different clusters is ∆ ≫ k. The clusters themselves are star
graphs with m − 1 leaves and a center point, the distance between any 2 leaves being 2 and the
center-leaf distance being 1.

We construct our sequence of sub-instances V0, . . . , VT in an adversarial fashion. In round zero, we
just take V0 to be all the leaves. For t = 1, . . . , T − 1, Vt consists of 2 randomly chosen leaves from
each cluster. For the last round, we take VT to be all the cluster centers and one other leaf.

We claim that the algorithmA must suffer an expected loss of at least 4(1− 3/m) in each round from
1 to T − 1. Let Yt be the subset of size k selected byA in round t. If Yt does not contain a point from
each of the clusters it has a connection cost of at least ∆ for round t; otherwise Yt contains exactly one
point from each cluster. For a given cluster, the probability that the point in Yt doesn’t belong to the
two points of this cluster in Vt is at least (1−1/m)(1−2/m) ≥ 1−3/m. Thus linearity of expectation
implies that the expected connection cost of Yt is at least min{∆, 4k(1− 3/m)} ≥ 4k(1− 3/m).
On the other hand, the optimal connection cost for Vt, 1 ≤ t ≤ T − 1 is k, corresponding to picking
1 of the chosen leaves from each of the clusters.

Let us now examine the optimal fixed solution in hindsight for this adversarial input sequence. We
claim that it suffers a total loss of at most 2T . Indeed, consider the fixed solution Y that picks each of
the cluster centers, it suffers a loss of 1

1 = 1 in the last round as it is the optimal solution for VT , and
suffers a loss of at most 2k

k = 2 for each round from 1 to T − 1. This is because its connection cost
is at most 2k, and the optimal connection cost for Vt, 1 ≤ t ≤ T − 1 is k, corresponding to picking 1
of the chosen leaves from each of the clusters. Putting it together, we obtain

4(T − 1)(1− 3/m) ≤ (1 + ϵ) · 2T + o(T )f(k, n,∆)

or equivalently,

2− 6/m ≤ (1 + ϵ) · T

T − 1
+

o(T )

2(T − 1)
f(k, n,∆)

which gives a contradiction by taking m large enough that 2− 6/m > 1+ ϵ and then taking T →∞.

Finally, we show that an additive loss of Ω(k∆) is unavoidable if the multiplicative loss is a constant.
Theorem F.3. Any (randomized) algorithm for the LEARN-MEDIAN problem must suffer Ω(k∆)
additive loss even when allowing for O(1) multiplicative error. That is, any bound as below is
impossible

T∑
t=1

E[ρ(Yt, Vt)] ≤ O(1) ·
T∑

t=1

ρ(Y, Vt) + o(k∆) (16)

where Y is any other fixed solution for LEARN-MEDIAN.

Proof. Suppose for the sake of contradiction that there is an algorithm A satisfying (16). We first
describe our hard instanceM = (V, d). The metric spaceM consists of n = mk points, m≫ k. It
contains k different clusters of m points each, such that the distance between any 2 points belonging
to different clusters is ∆≫ 1. The distance between any 2 points in the same cluster is 1.

Take T = k − 1 and Vt to be the (t+ 1)th cluster for 0 ≤ t ≤ k − 1. The algorithm A must suffer
a loss of at least m∆

m−k ≥ ∆/2 for each round t after round zero. This is because it has not seen the
(t+ 1)th cluster at time t and hence cannot place any center there, thus suffering a connection cost of
at least m∆, and the optimal solution for Vt consists of k points from the same cluster, with a total
connection cost of m− k. Thus, the total loss suffered by the algorithm is at least (k−1)∆

2 .

On the other hand, the optimal fixed solution in hindsight places 1 center in each of the k clusters,
suffering a loss of m−1

m−k ≤ 2 each round after round zero. Thus, the total loss suffered by the optimal
solution is at most 2(k − 1). Putting it together, we obtain
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(k − 1)∆

2
≤ O(1) · 2(k − 1) + o(k∆)

which gives a contradiction as ∆→∞, as desired.

Approximate Follow-the-Leader So far we have given information theoretic lower bounds on
the multiplicative loss and the additive regret term for any online algorithm. Follow The Leader
(FTL) is another commonly used algorithm – at each time t, output Yt that minimizes the total
cost

∑
t′<t costt′(Yt). In our setting, computing the optimal cost (i.e., cost of an optimal k-median

instance) is NP-hard. Thus, a natural extension of this approach would be Approximate FTL: at each
time t, output Yt that is a constant factor approximation to the objective function

∑t
t′=1 ρ(Y, Vt′).

We show strong lower bounds for this algorithm even when k = 1:

Theorem F.4. Approximate FTL cannot achieve a o(log∆/ log log∆) multiplicative approximation
guarantee with sublinear regret even when k = 1, i.e., any bound as below is impossible:

T∑
t=1

ρ(Yt, Vt) ≤ o(log∆/ log log∆) ·
T∑

t=1

ρ(Y, Vt) + o(T )f(k, n,∆), (17)

where Yt is the set of centers outputted by Approximate FTL at time t and Y is an arbitrary set of k
centers.

Proof. For ease of notation, assume that Approximate FTL uses a 4-approximation algorithm for
the (off-line) k-median problem – the argument remains similar for any constant approximation
algorithm. We shall also fix k = 1.

We now describe the metric space M. M consists of a star graph with 2λ leaves, where λ is a
parameter that we shall fix later. At each of the leaves, we have two vertices that are at distance 2
from each other (thus,M is given by the shortest path metric on a two level tree, where the root
has 2λ children and every node at the first level has two children). Let the children of the root r
be labeled v1, . . . , v2λ. The two children of vi are labeled v1i and v2i . The edge (r, vi) has length
∆i =

∆
λi , where ∆ = λ2λ+1 (assume λ≫ 1).

At time t = 0, we give the entire metric space as the instance. The subsequent input sequence is
divided into 2λ phases. For each time t in phase h ∈ [2λ], the input Vt consists of the two points
v1h and v2h. Phase h lasts for Th := λhT0 timesteps, where T0 ≫ 1. Note that Th∆h = T0∆ for all
h ∈ [2λ].

The off-line solution Y places a center at the root of the star. Thus, for any time t in phase h,
ρ(Y, Vt) =

2(∆h+1)
2 = ∆h + 1. Thus, we see that

T∑
t=1

ρ(Y, Vt) =
∑
h

Th(∆h + 1) = 2λT0∆+ T ≤ 3λT0∆, (18)

because T =
∑

h λ
hT0 ≤ 2λ2λT0 ≤ ∆T0 and the number of phases is 2λ.

Now, we estimate the corresponding quantity for Approximate FTL. Consider a phase h. The 1-
median instance at a time t in this phase consists of Th′ points at each of v1h′ and v2h′ for h′ < h
and a certain number of points at the children of vh. Since Th∆h = T0∆ for all h, we claim
that this 1-median instance has optimal cost at least (h − 2)T0∆. Indeed, consider a 1-median
solution that places a center at the root or at vj or its children. Then all points at v1h′ and v2h′ , where
h′ ≤ h − 1, h′ ̸= h, incur a cost at least 2Th′∆h′

2 = T0∆. Now, consider the solution that places
a center at vh−1 (at any time during phase h). Again it is easy to see that its total cost is at most
4(h−2)T0∆+2(Th−1)+4λTh∆h

2 ≤ T0∆(2h−3+2λ), which is at most 4((h−2)T0∆) when h ≥ λ+3,
and hence is a 4-approximation for h ∈ [λ+ 3, 2λ]

Thus, we can assume that for any phase h ≥ λ+ 3, A outputs vh−1 as the 2-approximate 1-median
center. Now consider such a phase h: at each time t during this phase, optimal cost for Vt is 2, but
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the algorithm incurs at least 2∆h−1 = 2λ∆h. Thus, ρ(Yt, Vt) ≥ λ∆h. Summing over all times t in
this phase, we see that ∑

t in phase h

ρ(Yt, Vt) ≥ λTh∆h = λT0∆.

Summing over all the phases h ≥ λ+ 3 (note that there are λ− 2 such phases), we get∑
t in phases h ≥ λ+ 3

ρ(Yt, Vt) ≥
λ2

2
T0∆.

The result now follows from the above and inequality (18) (note that λ = θ(log∆/ log log∆) and
T0 is a parameter independent of n, k,∆).
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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scientific rigorousness, or originality of the research, declaration is not required.
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