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ABSTRACT

Layer-wise (LW) training of deep neural networks has long been associated with
memory and parallelism advantages, yet it suffers from information degradation
and poor convergence in deep architectures. Recent work attributes these issues to
the loss of input information and the lack of layer-role differentiation, as measured
by the Hilbert-Schmidt Independence Criterion (HSIC).
In this paper, we present a novel algorithm that enables full end-to-end training of
Large Language Models (LLMs) using a LW approach, while minimizing perfor-
mance degradation. Through a comprehensive set of new experimental results,
we demonstrate that although prior work has shown LW training to be effec-
tive in shallow architectures such as ResNet, its direct application to GPT-style
LLMs leads to significant information loss and severely impaired convergence.
Our fundamental contribution lies in the discovery that strategically reintroducing
the final layers during LW training not only mitigates the convergence degrada-
tion typically observed in GPT-style LLMs but can in fact surpass the performance
of conventional end-to-end training. This breakthrough unlocks a new paradigm
for scalable optimization of deep transformer architectures, offering a powerful
framework for training large models with improved efficiency, stability, and re-
source utilization.
We introduce Segmented Propagation (SegProp), a novel training paradigm that
seamlessly integrates the computational efficiency of LW optimization with the
representational power of global supervision. SegProp also introduces early-exit
opportunities during training, enabling model compression. Quantitative results
demonstrate substantial improvements in convergence compared to standard LW
training. Finally, we position SegProp within the broader literature on information
bottleneck theory, LW training, and early-exit strategies, and discuss its implica-
tions for scalable, energy efficient AI training and inference.

1 INTRODUCTION

Training large language models (LLMs) has become synonymous with leveraging parallelism strate-
gies such as data, model, tensor, and pipeline parallelism to overcome the memory and computa-
tional constraints posed by billions of parameters. For today’s state of the art LLMs, parallelism is
not optional but essential: these models cannot fit into a single GPU’s memory, even with advanced
memory optimization techniques (HuggingFace, 2023). This requirement has led to the develop-
ment of sophisticated distributed training frameworks and best practices for balancing efficiency
and scalability (Wang et al., 2025).

End-to-end (E2E) training via back-propagation has driven the success of deep learning, but it faces
challenges related to memory consumption, limited parallelism, and biological plausibility (Baldi
et al., 2017). Layer-wise training, which optimizes local losses for each layer, offers hardware and
memory advantages, but it fails to match E2E performance especially in deep models (Sakamoto &
Sato, 2024).

The prevailing explanation for this performance gap is information loss: greedy local optimiza-
tion discards input information needed for classification, leading to poor convergence and limited
accuracy improvements as depth increases (Sakamoto & Sato, 2024). Recent studies have quan-
tified this degradation using the Hilbert–Schmidt Independence Criterion (HSIC), which serves as
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Figure 1: From left to right: Layer Wise (LW), End to End (E2E), Segmented Propagation (Seg-
Prop).

a proxy for mutual information, and have connected these dynamics to the information bottleneck
principle (Tishby et al., 2000; Tishby & Zaslavsky, 2015).

In this paper, we target to restore information flow and achieve competitive accuracy while retaining
the efficiency benefits of segmented training. We present Segmented Propagation (SegProp), a novel
training paradigm that combines the efficiency of LW optimization with the benefits of global super-
vision. SegProp also introduces early-exit opportunities during training, enabling model compres-
sion and dynamic depth selection. Building on the principles of the information bottleneck (Tishby
et al., 2000; Tishby & Zaslavsky, 2015), SegProp restores information flow and achieves competitive
accuracy while substantially reducing computational complexity.

2 RELATED WORK

2.1 LAYER-WISE TRAINING AND INFORMATION BOTTLENECK

Layer-wise training was originally proposed to address the credit assignment problem and provide
better initialization for deep networks (Bengio et al., 2006; Hinton et al., 2006). More recently,
studies have shown that layer-wise training suffers from information degradation, as quantified by
the Hilbert–Schmidt Independence Criterion (HSIC), which serves as a proxy for mutual informa-
tion. This degradation leads to poor generalization and limited accuracy gains as depth increases
(Sakamoto & Sato, 2024; Wang et al., 2021). The information bottleneck principle (Tishby et al.,
2000; Tishby & Zaslavsky, 2015) has been used to analyze these dynamics, showing that end-to-end
(E2E) training achieves compression in intermediate layers while preserving task-relevant informa-
tion in the final layer.

However, a fundamental challenge remains: standard layer-wise training discards input information
needed for classification, resulting in poor convergence and limited accuracy improvements as model
depth increases. The lack of global supervision means that intermediate representations may not be
sufficiently informative for the final prediction task.

In this work, we address these limitations by rethinking the role of final layers (see Figure 1) in
segmented optimization. Specifically, we propose Segmented Propagation (SegProp), which rein-
troduces the final layers during LW training, restoring information flow and achieving competitive
accuracy (see Figure 2) while retaining the efficiency benefits of segmented optimization.
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2.2 BIOLOGICALLY PLAUSIBLE AND MODULAR TRAINING

Alternatives to backpropagation, such as Hebbian learning (Hebb, 1949), reservoir computing
(Bianchi et al., 2020), and signal propagation (Kohan et al., 2022), aim to reduce memory usage and
computational cost by localizing learning. Modular and block-wise training strategies (Belilovsky
et al., 2018; Gomez et al., 2022) seek to balance parallelism and accuracy, but they often rely on
backpropagation within blocks. The Forward-Forward algorithm (Hinton, 2022) enforces distinct
roles for each layer, but it still suffers from information loss as depth increases.

2.3 ACTIVATION CHECKPOINTING AND MEMORY-EFFICIENT TRAINING

To address the high memory footprint of E2E backpropagation, checkpointing strategies (Chen
et al., 2016; He & Yu, 2023; Purandare et al., 2023; Korthikanti et al., 2022) have been widely
explored. These methods reduce memory usage by selectively storing intermediate activations and
recomputing others during the backward pass, trading additional computation for lower memory
requirements. The work by Sakamoto & Sato (2024) highlights checkpointing as a key technique
for enabling deeper models under constrained resources, particularly when comparing E2E and LW
training paradigms.

Activation checkpointing (AC) (Chen et al., 2016; He & Yu, 2023; Purandare et al., 2023) and
selective activation checkpointing (SAC) (Korthikanti et al., 2022) are standard techniques for re-
ducing peak GPU memory consumption. SAC further optimizes this process by applying check-
pointing only to critical layers, balancing computational overhead with memory efficiency. These
approaches remain essential even when multi-dimensional parallelism is employed. While check-
pointing strategies effectively address memory constraints, they introduce a trade-off: additional
computation and potential bandwidth bottlenecks, as recomputation can increase data movement
and slow down throughput, especially in distributed or multi-GPU settings.

We introduce a new mechanism, snapshot checkpointing (SnapCheck), described in detail later in
the paper, which further improves efficiency by caching intermediate representations for reuse across
training iterations.

2.4 EARLY EXIT AND COMPRESSION

Early-exit strategies introduce intermediate classifiers that allow models to terminate inference once
a confidence threshold is met, reducing computation and latency (Marquez et al., 2018). These
methods have also been explored for efficiency gains in model design and deployment, including
scenarios that enable pruned or compressed architectures (Blalock et al., 2020).

Most early-exit and compression techniques focus on inference, not training, and typically require
architectural modifications or additional parameters. They do not provide input-adaptive behavior
during training.

In contrast, SegProp incorporates early-exit mechanisms directly into the training process, enabling
static model compression and resource-aware optimization. By leveraging the original LM head and
optionally final decoder layers for all segments, SegProp allows training to terminate once conver-
gence criteria are met for a given segment effectively pruning deeper layers before they are trained
and unlocking new opportunities for efficient, adaptive model design.

3 SEGMENTED PROPAGATION (SEGPROP)

3.1 PROBLEM SETTING

As previously noted, E2E training of large models demands significant GPU memory, as it must
store all model components - weights, activations, optimizer states, gradients, and more - resulting
in high peak memory usage and extended runtimes.

To mitigate the computational burden, LW training updates one layer or sub-block at a time rather
than performing full E2E backpropagation, thereby significantly lowering memory and compute re-
quirements (Bengio et al., 2006; Hinton et al., 2006). However, this approach often suffers from
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information loss and suboptimal performance, as the absence of global supervision can lead to in-
termediate representations that are insufficiently informative for the final prediction task (Sakamoto
& Sato, 2024). While prior work on convolutional architectures such as ResNet18, ResNet50, and
VGG11 has shown that LW training can achieve acceptable accuracy with only minor degradation
(Sakamoto & Sato, 2024), our experiments on a Transformer-based architecture reveal a much more
severe performance drop under the MMLU and HumanEval+ (HE+) (Liu et al., 2023) benchmark.

We propose Segmented Propagation (SegProp) - a method grounded in LW training but enhanced by
reintroducing the final layers during each training segment. This integration helps recover informa-
tion loss and achieves competitive accuracy, while preserving the efficiency benefits of layer-wise
training.

Focusing on Transformer based architectures, SegProp leverages the inherent dimensional consis-
tency across decoder components, such as self-attention (SA), MLP layers, and the LM head input;
thereby eliminating the need for auxiliary networks typically introduced to resolve dimensional mis-
matches between internal layers and the objective function. For models that lack this property, an
auxiliary network may still be required; however, the core training principles of SegProp remain
unchanged.

SegProp employs a two-stage training strategy designed to balance computational efficiency with
strong supervision:

1. Joint Training of Base and Final Layers: A selected prefix of the model (the base layers)
is trained jointly with a set of final layers to establish strong end-task supervision early
in training. The non selected intermediate layers are skipped during this stage to reduce
compute.

2. Iterative Layer-Wise Training of Intermediate Layers: Each intermediate layer is
trained individually alongside the final layers, which provide consistent supervision. Previ-
ously trained layers are kept frozen, and only the current updated target layer is committed
for the next iteration.

We formalize the system setup and introduce the notation used throughout this paper before diving
into the finer details of each step. We consider a dataset {(xi, yi)}mi=1, where xi ∈ X and yi ∈ Y .
Specifically, X = Nv×s

+ and Y ⊂ Nv
+, where s denotes the sequence length and v the vocabulary

size.

Let
f(x) = fLM ◦ fn−1 ◦ fn−2 ◦ · · · ◦ f0 ◦ fembed(x) (3.1)

denote an LLM with Transformer architecture (see Eq. (3.1)) and n decoder layers, where fi(x) =
fMLP ◦ fSA(x). Define: fembed : Rv → Rh as the embedding layer, fSA : Rh → Rh as the SA layer,
fMLP : Rh → Rh as the Multi-Layer Perceptron (MLP) layer, fi : Rh → Rh as the i-th decoder
layer, fLM : Rh → Rv as the LM head, where h denotes the hidden size and i ∈ {0, . . . , n− 1}.

For compactness, define the half-open composition operator:

Fa:b(x) := fb−1 ◦ fb−2 ◦ · · · ◦ fa(x) (3.2)

with the convention Fa:a(x) = x (i.e., the identity map).

Let
f [0:p](x) := F0:p+1(fembed(x)), p ∈ {0, . . . , n− 2} (3.3)

represent the base model up to depth p (Eq. (3.3)).

Define the last-layers module as

LL(r)(x) := fLM ◦ Fn−r:n(x), r ∈ {0, . . . , n− p− 2} (3.4)

where r is the number of decoder layers included in LL(r) (not counting the LM head). This subset
always includes the LM head (fLM) and may optionally include one or more of the final decoder
layers (e.g., fn−2, fn−1). For r = 0, LL(0)(x) = fLM(x) (LM head only).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Intermediate layers are those not included in f [0:p] or LL(r). Finally, let StopGrad denote an
operator that prevents gradient propagation (e.g., Tensor.detach() in PyTorch), ensuring that
gradients do not flow through preceding layers (Sakamoto & Sato, 2024).

For clarity, we present the algorithm at the granularity of individual decoder layers. While SegProp
can operate on segments comprising multiple layers, in this work we assume a simplified setting
where each segment consists of a single layer trained sequentially.

3.2 STAGE 1: JOINT FINE-TUNING OF BASE AND LAST LAYERS

We begin by selecting a base model depth p (see Eq. (3.3)) from the network f (see Eq. (3.1)). In
Stage 1, we train the base jointly with LL, while skipping intermediate layers.

Given a minibatch B = {(x(b), y(b))}|B|
b=1, the forward pass is Eq. (3.5):

z(b) = f [0:p](x(b)), ŷ(b) = LL
(
z(b)

)
. (3.5)

and the stage loss is computed as:

L1 =
1

|B|

|B|∑
b=1

ℓ
(
ŷ(b), y(b)

)
, (3.6)

where ℓ is the task-specific objective (e.g., cross-entropy). Importantly, backpropagation is restricted
to {f [0:p],LL}, ensuring that early representations align with the final prediction objective without
constraining intermediate layers. Upon completing Stage 1, the base prefix is committed and remains
frozen for subsequent stages.

3.3 STAGE 2: ITERATIVE TRAINING OF MIDDLE LAYERS WITH LL

In Stage 2, we train the intermediate layers which were not part of the base model nor the LL
layers through segmented training. Each layer fp̂ is trained individually while reintroducing LL to
maintain global context. The committed base prefix {f [0:p]} and the trained layers from previous
iterations remain frozen. We denote that by setting p̂ = p+ 1 before each iteration.

For a given layer p̂ and minibatch B, the forward pass is (see Eq. (3.7)):

z(b) = f [0:p](x(b)), ŷ(b) = LL(fp̂(StopGrad
(
z(b))

))
. (3.7)

and the local loss is:

L2 =
1

|B|

|B|∑
b=1

ℓ
(
ŷ(b), y(b)

)
, p← p̂. (3.8)

Here, the forward pass flows through the frozen layers, followed by the current training layer fp̂ and
LL. Gradients are propagated only through {fp̂,LL} and updates to LL \ {fLM} are temporary,
where only fp̂, fLM are committed after convergence.

3.4 SNAPSHOT CHECKPOINTING (SNAPCHECK)

To mitigate redundant computation during Stage 2, SegProp introduces Snapshot Checkpointing
(SnapCheck), a mechanism that caches intermediate representations for reuse across iterations.
Specifically, after computing the committed prefix output (Eq. (3.9)):

z(b) = f [0:p](x(b)), ∀b ∈ {1, . . . , |B|}, (3.9)

SnapCheck stores z(b) activations (Eq. (3.9)) in a memory-efficient structure indexed by both the
prefix depth p and the minibatch identifier. When fine-tuning a subsequent layer fp̂, instead of
recomputing f [0:p](x(b)) for every forward pass, the algorithm retrieves the cached z(b) (Eq. (3.10)):

z(b) ← S[p, batch id], (3.10)

5
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where S denotes the snapshot buffer. If the snapshot is unavailable (e.g., first access), the forward
computation is performed and the result can be stored for future reuse.

This approach offers a key advantage: it eliminates repeated evaluation of the committed prefix,
significantly reducing computational overhead for deep architectures and improving overall training
efficiency. SnapCheck is particularly effective when the committed prefix is large (e.g., p ≫ 0),
as the cost of recomputation grows linearly with p. By leveraging SnapCheck, SegProp improves
training throughput and reduces energy consumption without compromising convergence.

3.5 COMPARISON WITH EXISTING EARLY EXIT AND PRUNING METHODS

Early-exit strategies aim to reduce inference costs by introducing auxiliary classifiers at interme-
diate layers and using confidence-based halting criteria, such as maximum softmax probability or
entropy, to terminate computation once a threshold is met (Xin et al., 2020; Tang et al., 2023). While
effective for adaptive inference, these methods add overhead from auxiliary heads and repeated soft-
max operations, prompting optimizations like dynamic vocabulary pruning (Vincenti et al., 2024)
and adaptive-depth models (e.g., Universal Transformers) that use halting probabilities (Dehghani
et al., 2019). However, these remain inference-centric and require architectural changes. In contrast,
pruning-based approaches focus on static compression by permanently reducing model size through
techniques such as structural pruning (LLM-Pruner) (Ma et al., 2023), one-shot weight pruning
(SparseGPT) (Frantar & Alistarh, 2023), embedding slicing (SliceGPT) (Ashkboos et al., 2024),
and block or GLU-aware pruning (Lagunas et al., 2021; Girija et al., 2025). Recent frameworks,
including DASH, LLM-BIP, LaCo, ShortGPT, and FinerCut (Liu et al., 2021; Wu, 2024; Liu et al.,
2025; Miao et al., 2024; Zhang et al., 2024), extend these ideas with advanced layer dropping and
fine-grained pruning, but they lack input-adaptive behavior.

SegProp differs fundamentally from these paradigms. Our early-exit mechanism operates dur-
ing training, not inference, and is integrated into the segmented optimization process. Rather than
relying on auxiliary classifiers, SegProp leverages the original LM head with optionally one or more
of the final decoder layers for all segments, enabled by the dimensional consistency of Transformer
blocks. This design allows SegProp to terminate training once convergence criteria are met for a
given segment, effectively pruning deeper layers before they are trained. Consequently, SegProp
achieves dynamic depth selection and computational savings without introducing additional param-
eters or inference-time complexity.

4 RESULTS AND ANALYSIS

4.1 RESTORING CONVERGENCE WITH FINAL LAYERS

Figure 2 illustrates the impact of reintroducing the last 2 decoder layers during SegProp training on
MMLU and HE+ performance. Conventional LW training demonstrates slow convergence and lim-
ited final accuracy, consistent with previously reported effects of information degradation (Sakamoto
& Sato, 2024). In contrast, integrating the final layers significantly accelerates convergence and
improves accuracy (See Figure 2d), enabling SegProp to surpass traditional end-to-end training ap-
proaches across language understanding (MMLU) and code generation (HE+) benchmarks.

4.2 EMPIRICAL EVALUATION AND PERFORMANCE METRICS

Appendix Table 1, 2 presents the final MMLU and HE+ scores obtained for each middle layer
following fine-tuning with SegProp at the end of its respective training step. The results indicate
that the choice of base model defined by the number of layers included in Stage 1 of the SegProp
algorithm has a significant impact on performance. Notably, when comparing the Base 1 and Base
18 configurations, it becomes evident that the model retains essential task-relevant knowledge for
the MMLU benchmark within the first 18 layers. At this depth, the model surpasses random chance
(25%) and exhibits clear signs of restored convergence.

6
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Algorithm 1 Segmented Propagation (Stochastic) Gradient Descent (SegProp-SGD)

Inputs: Network f(x) = fLM ◦ fn−1 ◦ fn−1 ◦ · · · ◦ f0 ◦ fembed(x) with n layers; base depth p; loss
ℓ; optimizer O; exit criterion for Stage 1; exit criterion for layer p̂; global exit criterion;

1: Notation: Fa:b(x) := fb−1 ◦ fb−2 ◦ · · · ◦ fa(x); f [0:p](x) := F0:p+1(fembed(x)), p ∈
{0, . . . , n− 2}; p̂ = p+ 1; LL(r) := fLM ◦ Fn−r:n(x), r ∈ {0, . . . , n− p− 2};

2: Partition: Decompose f into non-overlapping segments (SA/MLP/Decoder). Always include
LL during training to mitigate information loss.

Stage 1: Joint fine-tuning of base layers with LL
3: while exit criterion for Stage 1 not met do
4: for each minibatch (x, y) do
5: z ← f [0:p](x)

6: ŷ ← LL(r)(z)
7: L1 ← ℓ(ŷ, y)

8: Backward/Update: backprop through {f [0:p],LL(r)} and update.
9: Freeze f [0:p]; commit base prefix f [0:p], fLM

Stage 2: Iterative layer-by-layer training with LL (cumulative base)
10: for p̂← p+1 to n−2 do
11: while exit criterion for layer p̂ not met ∀fi ∈ LL\{fLM} do Reset to their baseline weights.
12: for each minibatch (x, y) do
13: if snapshot S[p,batch] exists then
14: z ← S[p, batch]
15: else
16: z ← StopGrad

(
f [0:p](x)

)
17: Optionally store S[p,batch]← z

18: ŷ ← LL(r)
(
fp̂(z)

)
19: L2 ← ℓ(ŷ, y)

20: Backward/Update: backprop through {fp̂,LL(r)}; update {fp̂,LL(r)}
21: Commit and freeze fp̂, fLM ; extend base p← p̂
22: if global exit criterion satisfied then break

5 DISCUSSION AND FURTHER WORK

Our results provide direct evidence that reintroducing the final (LL, see Eq. (3.4)) component i.e.,
training with the model’s last two layers present and participating in gradient flow mitigates the
information loss characteristic of purely LW training. In at least one of our simulations, this
approach outperforms the conventional LW baseline and matches or exceeds E2E training on
MMLU (see Fig. 2c, 2d and Appendix Table 1). This observation aligns with the view that global
targets (or “top-layer supervision”) help preserve task-relevant information across depth, a role his-
torically played by deep supervision and auxiliary heads (Belilovsky et al., 2018; Marquez et al.,
2018).

5.1 COMPARISON WITH PRIOR WORK

A large body of work has highlighted why standard LW or locally supervised training often un-
derperforms compared to E2E methods: local objectives can induce representations that are in-
sufficiently informative for the final prediction task. This deficit can be revealed by dependence
measures such as the Hilbert–Schmidt Independence Criterion (HSIC) along the depth of the net-
work (Sakamoto & Sato, 2024). Recent analyses show that E2E training both propagates input
information more effectively and induces differentiated roles across layers properties that degrade
when layers are optimized greedily and in isolation (Sakamoto & Sato, 2024).

SegProp’s design explicitly addresses this gap by reintroducing the LL (see Eq. (3.4)) component
during each segment’s optimization, thereby providing a global, task-aligned signal to otherwise

7
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Figure 2: SegProp convergence across different model prefixes.

locally optimized blocks. This mechanism is complementary to prior approaches that mitigate local-
learning limitations via deep supervision or synthetic gradients (Belilovsky et al., 2018; Marquez
et al., 2018). Unlike those methods, SegProp leverages the actual final layers as a universal target
pathway, avoiding auxiliary classifiers or gradient predictors while retaining the parallelism and
memory benefits of segmented training.

5.2 INFORMATION BOTTLENECK AND LAYER-ROLE DIFFERENTIATION

The Information Bottleneck (IB) principle frames supervised learning as finding minimal sufficient
representations: compress X while preserving information about Y (Tishby et al., 2000). In deep
networks, this translates to a trade-off across layers between capturing task-relevant information and
discarding nuisances. Classical IB work formalizes this as an optimization over mutual information,
while subsequent interpretations argue that deep networks traverse “information plane” trajectories
reflecting fitting and compression phases (Tishby & Zaslavsky, 2015).

Critiques have clarified that how one measures information in deterministic networks matters; ob-
served “compression phases” can depend on activation saturation and estimation details, cautioning
against universal claims. Nevertheless, even these critiques concede that when data contain distinct
task-relevant and irrelevant components, hidden representations tend to compress the latter while
refining the former (Saxe et al., 2018). Our findings are consistent with this view: by restoring
the LL (see Eq. (3.4)) component during segmented optimization, SegProp reinstates cooperative
interactions across layers, encouraging the emergence of layer-role differentiation and task-aligned
compression patterns without requiring full E2E backpropagation for all parameters at once.

From a dependence-measure perspective, HSIC has emerged as a practical, kernel-based proxy for
tracking information propagation and layer-role specialization. Prior analyses explicitly compared
E2E vs. layer-wise training using HSIC-normalized planes, showing the superiority of E2E at sus-
taining dependence on inputs while shaping later-layer dynamics consistent with IB (Sakamoto &
Sato, 2024). SegProp’s empirical behavior mirrors these dynamics: adding LL (see Eq. (3.4)) to
each segment supplies a global constraint that counteracts the independence drift of middle layers.

5.3 HARDWARE AND ENERGY EFFICIENCY

A key practical advantage of SegProp lies in its ability to translate the theoretical benefits of localized
training into system-level efficiency. This is achieved through three core design choices: (i) training
one segment at a time, (ii) reusing the LL (see Eq. (3.4)) component as a universal head across all
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segments, and (iii) leveraging the dimensional consistency among SA, MLP, and Decoder blocks
in transformer architectures. These features reduce peak activation memory and support flexible
scheduling on constrained accelerators.

SegProp integrates with activation checkpointing (AC) and selective activation recomputation
(SAC), minimizing stored/recomputed activations since only one segment backpropagates at a time.
AC/SAC manage residual hotspots with modest overhead (Chen et al., 2016; Korthikanti et al., 2022;
Purandare et al., 2023).

SnapCheck eliminates redundant computation, accelerates training, and reduces energy use.

SegProp’s training-time early exits complement inference-time halting. Intermediate layers cali-
brated against the LL (see Eq. (3.4)) component enable confidence-based exits without auxiliary
heads, aligning with deeply supervised and early-exit Transformer methods (Marquez et al., 2018;
Miao et al., 2024).

Segmentation enables structured compression: segments meeting targets early allow pruning or
skipping. Frameworks like SparseGPT, LLM-Pruner, LaCo, FinerCut, and SliceGPT consolidate
compute/memory savings while preserving accuracy (Frantar & Alistarh, 2023; Ma et al., 2023;
Ashkboos et al., 2024; Liu et al., 2025; Zhang et al., 2024).

5.4 FUTURE DIRECTIONS

While SegProp demonstrates strong performance when applied as a fine-tuning strategy, an im-
portant avenue for future research is training from scratch under the SegProp regime. This ap-
proach could enable more granular control over representational capacity across segments, allowing
practitioners to selectively allocate or compress knowledge within specific blocks. Such flexibil-
ity would not only facilitate structured model compression but also make task-specific compression
more practical, enabling the deployment of specialized sub-networks without retraining the entire
model. These capabilities would extend SegProp’s utility beyond efficiency gains, positioning it as
a framework for adaptive and domain-aware model design.

6 CONCLUSION

We presented Segmented Propagation (SegProp), a two-stage algorithm that restores global task
information during otherwise local, memory-efficient training. By reintroducing the final (LL, (see
Eq. (3.4))) layers in every segment’s optimization, SegProp overcomes the information loss en-
demic to purely LW training and matches or exceeds E2E performance on both MMLU and HE+
benchmarks while retaining the scalability advantages of segmentation. Our analysis connects these
effects to the Information Bottleneck perspective (Tishby et al., 2000; Tishby & Zaslavsky, 2015)
and to HSIC-based evidence that E2E success hinges on effective information propagation and layer-
role differentiation (Sakamoto & Sato, 2024); SegProp reproduces these beneficial dynamics without
requiring full-network backprop at all times.

Practically, SegProp’s training-time structure translates into hardware and energy benefits: lower
peak memory via segmented backprop that plays well with AC/SAC (Chen et al., 2016; Korthikanti
et al., 2022), readiness for early-exit policies at inference (Marquez et al., 2018; Miao et al., 2024),
and compatibility with modern LLM pruning pipelines for permanent compute reductions (Frantar
& Alistarh, 2023; Ma et al., 2023; Ashkboos et al., 2024; Liu et al., 2025; Zhang et al., 2024).
Together, these features make SegProp a scalable, resource-aware alternative to monolithic E2E
training well suited to future systems where training efficiency, adaptability, and deployment cost
are as critical as final accuracy.

REFERENCES

Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. arXiv
preprint arXiv:2401.15024, 2024. doi: 10.48550/arXiv.2401.15024. URL https://arxiv.
org/abs/2401.15024. Accepted at ICLR 2024.

9

https://arxiv.org/abs/2401.15024
https://arxiv.org/abs/2401.15024


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Pierre Baldi, Peter Sadowski, and Zhiqin Lu. Learning in the machine: the symmetries of the deep
learning channel. arXiv preprint arXiv:1712.08608, 2017. URL https://arxiv.org/abs/
1712.08608.

Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Greedy layerwise learning can scale
to imagenet. arXiv preprint arXiv:1812.11446, 2018. doi: 10.48550/arXiv.1812.11446. URL
https://arxiv.org/abs/1812.11446.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise training
of deep networks. 2006. URL https://proceedings.neurips.cc/paper_files/
paper/2006/file/5da713a690c067105aeb2fae32403405-Paper.pdf. Ad-
vances in Neural Information Processing Systems 19 (NeurIPS 2006).

Filippo Maria Bianchi, Simone Scardapane, Sigurd Løkse, and Robert Jenssen. Reservoir comput-
ing approaches for representation and classification of multivariate time series. arXiv preprint
arXiv:1803.07870, 2020. doi: 10.48550/arXiv.1803.07870. URL https://arxiv.org/
abs/1803.07870.

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the state
of neural network pruning? arXiv preprint arXiv:2003.03033, 2020. doi: 10.48550/arXiv.2003.
03033. URL https://arxiv.org/abs/2003.03033.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv preprint, 2016. URL https://arxiv.org/abs/1604.06174.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal
transformers. 2019. URL https://arxiv.org/abs/1807.03819.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned
in one-shot. arXiv preprint arXiv:2301.00774, 2023. doi: 10.48550/arXiv.2301.00774. URL
https://arxiv.org/abs/2301.00774.

Sanjay Surendranath Girija, Shashank Kapoor, Lakshit Arora, Dipen Pradhan, Aman Raj, and Ankit
Shetgaonkar. Optimizing llms for resource-constrained environments: A survey of model com-
pression techniques. arXiv preprint arXiv:2505.02309, 2025. doi: 10.48550/arXiv.2505.02309.
URL https://arxiv.org/abs/2505.02309.

Aidan N. Gomez, Oscar Key, Kuba Perlin, Stephen Gou, Nicholas Frosst, Jeff Dean, and Yarin
Gal. Interlocking backpropagation: Improving depthwise model-parallelism. Journal of Machine
Learning Research, 23(1):7714–7741, 2022.

Horace He and Shangdi Yu. Transcending runtime-memory tradeoffs in checkpointing
by being fusion aware. In Proceedings of the 6th MLSys Conference, 2023. URL
https://proceedings.mlsys.org/paper_files/paper/2023/file/
8a27bb69950c0b46cdb36d10e5514cc8-Paper-mlsys2023.pdf.

Donald O. Hebb. The Organization of Behavior. Wiley, 1949.

Geoffrey Hinton. The forward-forward algorithm: Some preliminary investigations. arXiv preprint
arXiv:2212.13345, 2022. doi: 10.48550/arXiv.2212.13345. URL https://arxiv.org/
abs/2212.13345.

Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep belief
nets. Neural Computation, 18(7):1527–1554, 2006. doi: 10.1162/neco.2006.18.7.1527. URL
https://www.cs.toronto.edu/˜hinton/absps/fastnc.pdf.

HuggingFace. The large language model training handbook. https://github.com/
huggingface/llm_training_handbook, 2023. Accessed: 2025-09-14.

Adam Kohan, Edward A. Rietman, and Hava T. Siegelmann. Signal propagation: A framework for
learning and inference in a forward pass. arXiv preprint arXiv:2204.01723, 2022. doi: 10.48550/
arXiv.2204.01723. URL https://arxiv.org/abs/2204.01723.

10

https://arxiv.org/abs/1712.08608
https://arxiv.org/abs/1712.08608
https://arxiv.org/abs/1812.11446
https://proceedings.neurips.cc/paper_files/paper/2006/file/5da713a690c067105aeb2fae32403405-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2006/file/5da713a690c067105aeb2fae32403405-Paper.pdf
https://arxiv.org/abs/1803.07870
https://arxiv.org/abs/1803.07870
https://arxiv.org/abs/2003.03033
https://arxiv.org/abs/1604.06174
https://arxiv.org/abs/1807.03819
https://arxiv.org/abs/2301.00774
https://arxiv.org/abs/2505.02309
https://proceedings.mlsys.org/paper_files/paper/2023/file/8a27bb69950c0b46cdb36d10e5514cc8-Paper-mlsys2023.pdf
https://proceedings.mlsys.org/paper_files/paper/2023/file/8a27bb69950c0b46cdb36d10e5514cc8-Paper-mlsys2023.pdf
https://arxiv.org/abs/2212.13345
https://arxiv.org/abs/2212.13345
https://www.cs.toronto.edu/~hinton/absps/fastnc.pdf
https://github.com/huggingface/llm_training_handbook
https://github.com/huggingface/llm_training_handbook
https://arxiv.org/abs/2204.01723


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Vijay Korthikanti, Jared Casper, Sangkug Lym, Lawrence McAfee, Michael Andersch, Mohammad
Shoeybi, and Bryan Catanzaro. Reducing activation recomputation in large transformer models.
arXiv preprint arXiv:2205.05198, 2022. doi: 10.48550/arXiv.2205.05198. URL https://
arxiv.org/abs/2205.05198.

François Lagunas, Ella Charlaix, Victor Sanh, and Alexander M. Rush. Block pruning for faster
transformers. arXiv preprint arXiv:2109.04838, 2021. doi: 10.48550/arXiv.2109.04838. URL
https://arxiv.org/abs/2109.04838. Presented at EMNLP 2021.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is Your Code Generated by
ChatGPT Really Correct? Rigorous Evaluation of Large Language Models for Code Generation.
arXiv preprint arXiv:2305.01210, 2023. doi: https://doi.org/10.48550/arXiv.2305.01210. URL
https://arxiv.org/abs/2305.01210.

Juntao Liu, Liqiang Niu, Wenchao Chen, Jie Zhou, and Fandong Meng. Laco: Efficient layer-
wise compression of visual tokens for multimodal large language models. arXiv preprint
arXiv:2507.02279, 2025. doi: 10.48550/arXiv.2507.02279. URL https://arxiv.org/
abs/2507.02279.

Liu Liu, Zheng Qu, Zhaodong Chen, Yufei Ding, and Yuan Xie. Transformer acceleration with
dynamic sparse attention. arXiv preprint arXiv:2110.11299, 2021. doi: 10.48550/arXiv.2110.
11299. URL https://arxiv.org/abs/2110.11299.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. arXiv preprint arXiv:2305.11627, 2023. doi: 10.48550/arXiv.2305.11627.
URL https://arxiv.org/abs/2305.11627. Accepted at NeurIPS 2023.

Enrique S. Marquez, Jonathon S. Hare, and Mahesan Niranjan. Deep cascade learning. IEEE
Transactions on Neural Networks and Learning Systems, 29(11):5475–5485, 2018. doi: 10.1109/
TNNLS.2018.2791403. URL https://ieeexplore.ieee.org/document/8307262.

Ruijie Miao, Yihan Yan, Xinshuo Yao, and Tong Yang. An efficient inference framework for early-
exit large language models. arXiv preprint arXiv:2407.20272, 2024. doi: 10.48550/arXiv.2407.
20272. URL https://arxiv.org/abs/2407.20272.

Pradnya Purandare et al. Universal checkpointing: Efficient and flexible checkpointing for large
models. arXiv preprint, 2023. URL https://arxiv.org/abs/2406.18820.

Keitaro Sakamoto and Issei Sato. End-to-end training induces information bottleneck through
layer-role differentiation: A comparative analysis with layer-wise training. arXiv preprint
arXiv:2402.09050, 2024. doi: 10.48550/arXiv.2402.09050. URL https://arxiv.org/
abs/2402.09050.

Andrew Michael Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy Kolchinsky, Bren-
dan Daniel Tracey, and David Daniel Cox. On the information bottleneck theory of deep learning.
2018. URL https://openreview.net/forum?id=ry_WPG-A-.

Shengkun Tang, Yaqing Wang, Zhenglun Kong, Tianchi Zhang, Yao Li, Caiwen Ding, Yanzhi Wang,
Yi Liang, and Dongkuan Xu. You need multiple exiting: Dynamic early exiting for accelerating
unified vision language model. 2023. URL https://arxiv.org/abs/2211.11152.

Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. arXiv
preprint arXiv:1503.02406, 2015. doi: 10.48550/arXiv.1503.02406. URL https://arxiv.
org/abs/1503.02406. Invited paper to IEEE Information Theory Workshop (ITW) 2015.

Naftali Tishby, Fernando C. Pereira, and William Bialek. The information bottleneck method.
arXiv preprint arXiv:physics/0004057, 2000. URL https://arxiv.org/abs/physics/
0004057.

Jort Vincenti, Karim Abdel Sadek, Joan Velja, Matteo Nulli, and Metod Jazbec. Dynamic vocabulary
pruning in early-exit llms. 2024. URL https://arxiv.org/abs/2410.18952.

11

https://arxiv.org/abs/2205.05198
https://arxiv.org/abs/2205.05198
https://arxiv.org/abs/2109.04838
https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/2507.02279
https://arxiv.org/abs/2507.02279
https://arxiv.org/abs/2110.11299
https://arxiv.org/abs/2305.11627
https://ieeexplore.ieee.org/document/8307262
https://arxiv.org/abs/2407.20272
https://arxiv.org/abs/2406.18820
https://arxiv.org/abs/2402.09050
https://arxiv.org/abs/2402.09050
https://openreview.net/forum?id=ry_WPG-A-
https://arxiv.org/abs/2211.11152
https://arxiv.org/abs/1503.02406
https://arxiv.org/abs/1503.02406
https://arxiv.org/abs/physics/0004057
https://arxiv.org/abs/physics/0004057
https://arxiv.org/abs/2410.18952


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yulin Wang, Zanlin Ni, Shiji Song, Le Yang, and Gao Huang. Revisiting locally supervised learn-
ing: An alternative to end-to-end training. 2021. URL https://arxiv.org/abs/2101.
10832. International Conference on Learning Representations (ICLR).

Zheng Wang, Anna Cai, Xinfeng Xie, Zaifeng Pan, Yue Guan, Weiwei Chu, Jie Wang, Shikai
Li, Jianyu Huang, Chris Cai, Yuchen Hao, and Yufei Ding. Wlb-llm: Workload-balanced 4d
parallelism for large language model training. arXiv preprint arXiv:2503.17924, 2025. URL
https://arxiv.org/abs/2503.17924.

Haihang Wu. Llm-bip: Structured pruning for large language models with block-wise forward
importance propagation. arXiv preprint arXiv:2412.06419, 2024. doi: 10.48550/arXiv.2412.
06419. URL https://arxiv.org/abs/2412.06419.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin. Deebert: Dynamic early exiting for
accelerating bert inference. 2020. URL https://arxiv.org/abs/2004.12993.

Yang Zhang, Yawei Li, Xinpeng Wang, Qianli Shen, Barbara Plank, Bernd Bischl, Mina Rezaei, and
Kenji Kawaguchi. Finercut: Finer-grained interpretable layer pruning for large language models.
arXiv preprint arXiv:2405.18218, 2024. doi: 10.48550/arXiv.2405.18218. URL https://
arxiv.org/abs/2405.18218.

12

https://arxiv.org/abs/2101.10832
https://arxiv.org/abs/2101.10832
https://arxiv.org/abs/2503.17924
https://arxiv.org/abs/2412.06419
https://arxiv.org/abs/2004.12993
https://arxiv.org/abs/2405.18218
https://arxiv.org/abs/2405.18218


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 1: Mistral-Nemo: MMLU Scores for different base models with & without LL (see Eq. (3.4))

Layers Base 1 w/ LL Base 1 w/o LL Base 18 w/ LL Base 18 w/o LL Base 25 w/ LL Base 25 w/o LL Original Finetuned

0 0.2329 0.2465 – – – –
1 0.2324 0.2689 – – – –
2 0.2355 0.2648 – – – –
3 0.2389 0.2478 – – – –
4 0.2363 0.2465 – – – –
5 0.2342 0.2408 – – – –
6 0.2369 0.2329 – – – –
7 0.2363 0.2305 – – – –
8 0.2327 0.2464 – – – –
9 0.2361 0.2314 – – – –
10 0.2377 0.2408 – – – –
11 0.2314 0.2289 – – – –
12 0.2419 0.2366 – – – –
13 0.2419 0.2381 – – – –
14 0.2451 0.2725 – – – –
15 0.2308 0.2829 – – – –
16 0.2424 0.2465 – – – –
17 0.2502 0.2567 0.2661 0.2922 – –
18 0.2697 0.2783 0.3358 0.2947 – –
19 0.3809 0.2752 0.5542 0.3385 – –
20 0.3673 0.3295 0.5395 0.3561 – – 0.6770 0.6931
21 0.3821 0.2918 0.5158 0.2894 – –
22 0.5214 0.4502 0.6456 0.3908 – –
23 0.5050 0.4149 0.6409 0.3939 – –
24 0.4824 0.4054 0.6390 0.3871 0.6614 0.4957
25 0.4605 0.4283 0.6337 0.4065 0.6680 0.5179
26 0.5069 0.4757 0.6255 0.4457 0.6755 0.5955
27 0.4836 0.4874 0.5981 0.4687 0.6739 0.5913
28 0.5127 0.4804 0.5940 0.4498 0.6637 0.5457
29 0.4945 0.4634 0.5935 0.432 0.6701 0.5169
30 0.537 0.4899 0.6089 0.4643 0.6708 0.6127
31 0.5998 0.4216 0.6334 0.3692 0.6761 0.6008
32 0.5862 0.5162 0.5751 0.4825 0.6597 0.6214
33 0.6336 0.6191 0.6425 0.6271 0.6827 0.6517
34 0.6585 0.6146 0.6644 0.6085 0.6938 0.6357
35 0.6525 0.6338 0.6569 0.6456 0.6846 0.6594
36 0.6702 0.6305 0.6771 0.6458 0.6894 0.6531
37 0.6709 0.6368 0.6670 0.6525 0.6924 0.6474
38 0.6472 0.6665 0.6851
39 0.6394 0.6596 0.6846
lm

A QUANTITATIVE RESULTS FOR MISTRAL-NEMO ON MMLU BENCHMARK
W/O LL
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Table 2: Mistral-7B-Instruct-v0.3: HE+ Scores for different training paradigma

Layers Base 24 w/ LL Base 24 w/o LL Original Finetuned

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 0.6770 0.6931
21
22
23
24 0.305 0.1
25 0.299 0.1
26 0.360 0.1
27 0.372 0.1
28 0.354 0.1
29 0.360 0.1
30 0.354 0.1
31 0.354 0.1
lm 0.354
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Table 3: General Training Parameters for SegProp Experiments

Parameter Value
num train epochs 1
per device train batch size 8
gradient accumulation steps 6
max grad norm 1.0
learning rate 1e-6
lr scheduler type linear
warmup ratio 0.03
weight decay 0.0
bf16 True
fsdp full shard auto wrap offload
group by length True
load best model at end True
prediction loss only True
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