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ABSTRACT

Vision-language models for the first time enable open-world classification of ob-
jects without the need for any retraining. While this zero-shot paradigm marks a
significant advance, even today’s best models exhibit skewed performance when
objects are dissimilar from their typical depiction. Real world objects such as
pears appear in a variety of forms — from diced to whole, on a table or in a bowl
— yet standard VLM classifiers map all instances of a class to a single vector
based on the class label. We argue that to represent this rich diversity within a
class, zero-shot classification should move beyond a single vector. We propose a
method to encode and account for diversity within a class using inferred attributes,
still in the zero-shot setting without retraining. We find our method consistently
outperforms standard zero-shot classification over a large suite of datasets encom-
passing hierarchies, diverse object states, and real-world geographic diversity. We
also find our method scales efficiently to a large number of attributes to account for
diversity—leading to more accurate predictions for atypical instances. Finally, we
highlight how our method offers fine-grained human-interpretable explanations of
model predictions. We hope this work spurs further research into the promise of
zero-shot classification beyond a single class vector for capturing diversity in the
world.

1 INTRODUCTION

A pivotal advance in machine learning is the advent of foundation models. A single foundation
model trained on large-scale data can supplant multiple task-specific models. Vision-Language
models (VLMs) are popular foundation models capable of encoding text and images in the same
representation space. Compared to standard classifiers which can only classify objects from a prede-
fined list of classes, VLMs are capable of open-world, zero-shot classification—meaning, VLMs can
classify any object using text descriptions without any additional training. This zero-shot paradigm
has spurred the development of many VLMs Radford et al. (2021); Li et al. (2023); Yu et al. (2022)
with impressive classification performance.

Despite their remarkable performance, even today’s best models exhibit skewed performance for
certain groups of images. For example, Richards et al. (2023) show models such as CLIP have
exacerbated the gap in performance between regions such as Africa and Europe (as well as the gap
across income-levels). We find similar biases arise when an object is visually dissimilar from its
typical depiction. For example, Figure 1 (left) shows CLIP’s 97.3% accuracy on typical pears drops
dramatically when a pear is peeled (45.2%) or puréed (30.3%). Addressing such biases is crucial to
the reliability of classifiers in the real world, where instances within a class can vary significantly.

Zero-shot classifiers like standard models use a single vector in deep embedding space to describe
an entire class. For standard zero-shot classification, a vision-language model (i) encodes the image
along with 80 hand-crafted prompts per class name (e.g., “a photo of a pear” or “a drawing of a
pear”), (ii) averages the 80 embeddings per class to obtain a single vector, (iii) predicts the class
whose vector maximizes cosine similarity to the image embedding (Radford et al., 2021). Prompt
averaging encourages all instances of a class to be mapped to the same vector in the model’s
embedding, inherently limiting the model’s ability to infer the innumerable diversity within a class.
A pear can be diced, sliced, whole, in one’s hand, or in a bowl. In each case, the image of the pear
would be markedly different, and its embedding may not always be well aligned with the single
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Figure 1: (Left) Instances of a class can appear in many diverse ways, like the pears above. Using
one vector (the classname embedding) to represent the whole class results in disparate performance,
particularly for atypical instances. (Middle) To address this issue, we infer attributes and embed
multiple vectors. (Right) Our method scales better than prior works as we include more attributes,
enabling us to account for the many ways in which diversity can arise. See Section 5.3 for more.

vector that is supposed to represent the entire class. Thus, there is a natural tension between the one
vector per class paradigm and performing consistently across a class with high diversity, which we
empirically validate.

While many strategies exist to mitigate performance disparities when labeled-data is available, these
methods do not transfer to the data-free setting of zero-shot classification. Fortunately, unlike stan-
dard classifiers, the open-world nature of VLMs enables them to represent any attribute using the
text encoder. VLMs can enrich the single per-class vector with attributes to more faithfully capture
the variety with which a class can appear, pinpointing whether a pear is peeled or puréed. Thus, we
argue that instead of learning one vector per class that is invariant to diversity, we should leverage the
open-world nature of VLMs to explicitly account for the diversity within a class. Modern zero-shot
classifiers warrant a modern paradigm: going beyond a single vector per class.

Recent work offer promising signs that zero-shot classification can be improved by incorporating
attributes beyond the class name, such as subclasses (Novack et al., 2023) or visual descriptors
(Menon & Vondrick, 2023; Pratt et al., 2023). However, the former is limited to datasets with
hierarchical label sets, and the latter reverts back to the one vector per class paradigm via simple
averaging, limiting the benefits of incorporating more attributes (Section 5.3). Importantly, diversity
comes in many forms that generic descriptors or subclasses alone may not adequately capture.

In this work, we propose a zero-shot method for enriching classes with open-ended attributes to
boost zero-shot classification. Our method consists of two steps: 1) an attribute inference step,
in which we use generative language modeling (an inherent, under-utilized capability of modern
VLMs) to enumerate relevant attributes along many various axes of diversity, and 2) a prediction
consolidation step, where we flexibly attend only to subpopulations (i.e., instances within a class
sharing an attribute) that are most relevant to the image. By enriching and carefully consolidating
attributes to describe diversity within a class, our method more faithfully encodes atypical instances.

By going beyond a single vector per class we find consistent gains in zero-shot classification over a
large suite of datasets encompassing hierarchies, diverse object states, and real-world geographic di-
versity. We find that our method consistently improves over standard zero-shot classification without
any additional training. Encouragingly, we find gains often stem from better coverage for the hard-
est classes and subpopulations, where atypical instances are usually found. Our method additionally
features enhanced interpretability, where each inference comes with the specific list of fine-grained
attributes used to predict the class. Compared to existing methods, we find that our approach can
effectively scale to a much larger number of attributes to cover broader axes of diversity as shown in
the right panel of Figure 1. Our method also offers a principled trade-off between accuracy overall
vs. on the worst classes, all without additional training. In summary, we (i) identify a limitation of
the one-vector-per-class paradigm in adequately representing classes with diverse subpopulations,
(ii) propose to go beyond one vector per class, leveraging under-utilized abilities of VLMs to explic-
itly account for intra-class diversity, and (iii) extensively validate the effectiveness of our method in
improving performance, specifically for diverse subpopulations.
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Figure 2: We test models on datasets that provide groundtruth attributes (shown in bold) annotating
hierarchies, diverse states, and real-world shifts (e.g., Rojas et al. (2022) labels the income level and
country of origin of each image, towards promoting AI models that reduce bias) within a class. We
find that standard zero-shot accuracy (‘Base Acc.’ above) drops significantly when certain attributes
are present, namely when the attribute manifests in visual differences from what the model considers
‘typical’ for the class. We design our method to improve performance on these ‘atypical’ instances.

2 REVIEW OF LITERATURE

Despite impressive overall accuracy, modern classifiers still suffer from biases. That is, they under-
perform on some parts of the data, often due to spurious correlations or data imbalances in the train-
ing set. These biases can result in significant negative real-world impact. For example, Buolamwini
& Gebru (2018) exposed significant bias along demographic lines for facial recognition systems, and
more recently, Richards et al. (2023) demonstrated that despite steady progress on typical bench-
marks, today’s best models still generalize poorly to images from lower-income households and cer-
tain geographic regions. Namely, VLM-based zero-shot classifiers were shown to have even larger
performance disparities across geographic and economic shifts than their supervised counterparts.

However, the promise of open-world zero-shot classification rightfully draws much attention to
VLMs, which operate by mapping images and text to a shared latent space. CLIP (Radford et al.,
2021), a seminal VLM, achieves this via joint contrastive training of image and text encoders on 400
million image-caption pairs. Recent models such as BLIP-2 (Li et al., 2023) bootstrap the training
of more powerful VLMs by taking larger pretrained vision and language backbones and fusing their
outputs to a single space, which in turn can even be used to generate text; that is, some modern
VLMs contain a fully functional LLM with (often under-utilized) generative abilities. To perform
zero-shot classification with VLMs, one computes the class that has the highest cosine similarity
between a test image’s embedding and the embedding of a class name, often averaged over many
(80 for CLIP) handcrafted prompt templates. While many efforts have improved VLM-based classi-
fication via prompt-tuning Zhou et al. (2022b;a); Zhu et al. (2022); Derakhshani et al. (2023); Huang
et al. (2022); Mirza et al. (2023); Menghini et al. (2023), nearly all require some labeled data. Other
works focus more closely on the task of debiasing VLM-based classifiers Chuang et al. (2023); Seth
et al. (2023); Zhang et al. (2023); Kim et al. (2023), though they too utilize labeled data, placing
them out-of-scope of the true zero-shot setting.

Compared to previous classifiers, the key novelty of VLMs is their ability to encode any text. How-
ever, standard zero-shot classifiers only embed classnames, either alone or averaged over prompts.
We propose to leverage the open-vocabulary capabilities of VLMs to improve coverage of intra-class
diversity by embedding more than just the class name. One effort along these lines is Perception-
CLIP (An et al., 2023), a concurrent work that infers contextual attributes per image as generative
factors and does class inference conditioned on them. Other works utilize LLM-generated class
descriptors, towards creating a concept-bottleneck (Yang et al., 2023) or rationales for inference
(Feng et al., 2023), though these methods use data to train a linear layer atop descriptor similarities.
DCLIP (Menon & Vondrick, 2023) show including descriptors can also improve performance in
the zero-shot setting, and Pratt et al. (2023) extend the gains using additional handcrafted queries.
WaffleCLIP (Roth et al., 2023) shows that appending random characters or words can achieve simi-
lar performance to descriptor-based methods like DCLIP, without the need for an external language
model. Importantly, although these works obtain more than one vector per class, they all ultimately
average over them. Thus, decision boundaries remain linear and biases may linger, as atypical in-
stances are still suboptimally uncovered (see Sections 4.2 and 5.4). In contrast, like us, CHiLS (No-
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Figure 3: The average precision (AP) of a classname embedding is often much lower than the
average precision of a subpopulation (i.e. classname with attribute) embedding. Subpopulations
that see large increases in AP by including the attribute tend to be atypical. We design our method to
improve accuracy on these diverse subpopulations, by inferring and explicitly accounting for them.

vack et al., 2023) introduces a non-linearity in three steps: they (i) define subclasses with groundtruth
label hierarchies or by querying GPT-3, (ii) do zero-shot classification on this extended set of classes
(subclasses) and original classes, (iii) reweight the standard zero-shot score for each class with the
max score from step (ii) over subclasses within the class. However, CHiLS is designed specifically
for hierarchical label sets, which limits the types of diversity it can capture (see Section 5.3).

3 MOTIVATION

We hypothesize that the standard one-vector-per-class paradigm poses a tension for highly diverse
classes. We investigate this by measuring classification performance as a function of class diversity.
Indeed, we find classes with higher diversity suffer worse performance under the one-vector-per-
class classification paradigm. Then we illustrate how the newfound open-vocabulary capability of
VLMs can enrich the single class vector to encompass diverse instances without additional training.

3.1 A SINGLE VECTOR INADEQUATELY REPRESENTS DIVERSE CLASSES

A standard VLM classifier is most effective when it aligns all instances of a class to their class
vector (and away from vectors for other classes). Intuitively, aligning instances with high diversity
is challenging as their image embeddings are more dispersed—and particularly tough for fixed
open-vocabulary VLMs that do not benefit from knowing the specific classes of interest during their
pre-training (see Appendix F.1). We see in Figure 2 for example the less typical Arctic fox is far
harder to recognize than a typical fox (52.0% versus 84.5% accuracy). We observed similar drops
in accuracy for a deflated balloon versus a regular balloon and an unpaved street versus a
paved one. To systematically quantify this tension, both for VLMs and for the one vector per class
paradigm generally, we examine class accuracies on ImageNet (Deng et al., 2009) relative to the
diversity of each class across several models with varying levels of supervision. To proxy diversity,
we measure the variance of image embeddings within a class. In all cases, we observe a strong neg-
ative correlation between class-wise accuracy and diversity (see Table 3 and details in Appendix C).
That is, classes with higher diversity have lower accuracy in the one vector per class paradigm.

3.2 A PATH FORWARD: VLMS CAN RECOGNIZE DIVERSITY WITH RELEVANT ATTRIBUTES

Although standard VLMs use solely classname in zero-shot classification, their shared embedding
space allows to encode relations to any other text. In turn we ask: can the open-vocabulary encoder
of VLMs better situate diverse classes given relevant attributes? Specifically, we assess whether
enriching classes with attributes can improve zero-shot classification on a suite of datasets with
ground-truth attributes per class (details in Appendix B). We form a subpopulation by taking in-
stances within a class that share an attribute. For each subpopulation, we compute the similarity
of image embeddings with the text embedding of (i) the classname and (ii) the classname with the
corresponding attribute, using CLIP ViT-B/16. We then measure the average precision of the two
similarity scores for distinguishing instances within the subpopulation from instances outside of the
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Figure 4: An Arctic fox can more closely resemble a typical wolf than a typical fox. Standard
zero-shot classification using one vector per class (the classname embedding) is ill suited for this
case. We address this issue by nonlinearly consolidating similarities to multiple vectors per class that
explicitly encode the diverse subpopulations within the class. See section 4.2 for full explanation.

class. We find, as shown in Figure 3, that for the vast majority of cases, incorporating attributes
leads to more precise recognition, and often by large margins: adding molten to cake improves
average precision by over 40 points. Upon inspection, the highest gains in average precision tend to
occur for atypical subpopulations (see Appendix B). Thus, VLMs can recognize instances in a class
even when they are atypical, but this ability is restricted under the one vector per class paradigm.

4 METHOD

We now propose a method to better utilize the ability of VLMs to recognize diverse subpopulations.
Our method consists of attribute inference and prediction consolidation. First, we query a large
language model (LLM) for diverse per-class attributes that span many (often overlapping) subpop-
ulations. Then, after computing the similarity of an image to each subpopulation, we non-linearly
consolidate these similarities to obtain one score per class. We elaborate on these two steps below.

4.1 ATTRIBUTE INFERENCE ALONG MANY AXES OF DIVERSITY

To better cover the diverse subpopulations that may exist within a class, we incorporate attribute
information. However, diversity can come in many forms. That is, the way in which two instances
of a class differ can itself vary. Consider the examples in Figure 2. The Arctic fox case shows how
a class can contain distinct finer-grained categories. In a related manner, the state or condition in
which the class instance is in can also substantially change its appearance: a balloon looks much
different when it is deflated. Further, there exist generic attributes that can lead to substantial visual
differences regardless of the class, such as the region or income level of the country where an image
is taken, exemplified by the two Street View images. Thus, to capture the many ways in which
diversity can arise, we employ multiple distinct queries, in contrast to prior work. Namely, we infer:

• Class specific attributes, such as the possible states of an object (e.g., diced or sliced for
pear). We also obtain descriptions for and different kinds of each class, as in DCLIP and
CHiLS respectively.

• Class adjacent attributes, like co-occurring objects or backgrounds, to get useful context.

• Class agnostic attributes that describe how objects vary in general. For example, towards
improving geographic fairness, we list potential choices for the income-level, region and
country of origin of the image. We also introduce a novel two-step LLM query, where we
first ask the LLM to list generic axes of diversity, and then have it populate those axes. We
name this auto-global as it automatically generates many global attributes.

Appendix D.2 contains the exact LLM prompts and example inferred attributes for each query above.
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4.2 NONLINEAR PREDICTION CONSOLIDATION

Enumerating attributes along various axes of variation results in descriptions of many diverse sub-
populations per class. Since VLMs have open-vocabulary text encoders, we can directly embed these
subpopulation descriptions, in addition to the class name. Given a test image, we compute similar-
ities to each of these embeddings. We then must consolidate them to obtain a single score per class.

Figure 4 illustrates the simple case of fox vs wolf classification, where solid/dotted lines cor-
respond to classname/subpopulation embeddings on the hypersphere (shown here in 2D). The left-
most panel shows examples from the two classes near where their image embeddings would lie. Text
embeddings for the subpopulations (dotted lines) are close to corresponding image embeddings, as
VLMs are capable of recognizing even diverse subpopulations (see Section 3.2). Standard zero-shot
inference maps a test-time image to the class of the nearest classname text embedding. Since there
is only one vector per class (the classname-based embedding), the decision boundary is linear, as
shown in the middle panel. The edge of the hypersphere is colored (orange for wolf, blue for fox)
to indicate the predicted class for an image embedding at that location. Notably, the Arctic fox is
misclassified as wolf, as its appearance more closely resembles a typical wolf than a typical fox
and thus they fall closer to the text embedding of “wolf” (and vice-versa for the red wolf). Methods
like DCLIP and WaffleCLIP embed more than just the classname, but they consolidate similarities
via averaging, again resulting in a linear decision boundary. Even if atypical subpopulations are
included at first, averaging can narrow the initial diverse coverage, as most embeddings for a class
may better describe a typical instance.

In contrast, we propose the following nonlinear consolidation: we compute the single score per class
for a given test image as the average of the similarities of the image embedding to only the k closest
subpopulations embeddings for the class, where k is typically small (we use k = 16). This way, an
image can have a high class score even if it is only similar to a small subset of subpopulations, as is
the case for atypical instances. Thus, the Arctic fox and red wolf can be correctly classified despite
being far from the classname and most subpopulation embeddings for their respective classes, as
shown on the right panel of Figure 4, where we use k = 1 for simplicity (i.e. images are mapped to
the class of the closest dotted or solid line, leading to a non-linear boundary). We shed insight on the
effect of varying the hyperparameter k in Section 5.4, revealing a tunable accuracy-fairness trade-off.

5 ANALYSIS

We now empirically show that our method improves accuracy compared to strong baselines consis-
tently across eight datasets, with larger gains for the hardest classes and subpopulations (which are
likely more diverse and atypical, respectively). We then highlight (i) the enhanced interpretability of
our method, (ii) the scalability of our method as more attributes are included, and (iii) an observed
trade-off between accuracy overall and on the hardest classes that, notably, can be controlled.

5.1 CONSISTENT GAINS ACROSS DIVERSE DATASETS

We curate a suite of eight attributed (so to have groundtruth subpopulations) datasets spanning dif-
ferent axes of diversity. We use the four Breeds datasets (Santurkar et al., 2020) for their hierarchical
label sets, as used in the CHiLS paper; indeed, these datasets were amongst those where CHiLS
worked best. Next, we devise two classification tasks (coarse and fine grained) from the MIT States
dataset (Isola et al., 2015) to track performance over labeled states (e.g., sliced or diced for pear).
Importantly, we also include the datasets Dollarstreet (Rojas et al., 2022) and GeoDE (Ramaswamy
et al., 2023), which contain images from varied geographic regions and income levels. As the diver-
sity in these datasets is naturally occurring diversity, they can encompass many axes of variation, as
opposed to our other datasets that only varying along known axes, like object state or kind.

We measure performance of zero-shot classifiers using the popular CLIP ViT-B/16 and BLIP-2
VLMs (Radford et al., 2021; Li et al., 2023). To infer attributes, we utilize the open source Vicuna-
13b-v1.5 language model (Chiang et al., 2023), which notably is already contained in the BLIP-2
model we use. We report accuracy overall as well as averaged over the worst 20% of classes and
subpopulations. Note that we only use groundtruth attributes when computing metrics; our method
exclusively uses attributes inferred via the queries listed in Section 4.1. We also compute the lowest
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Accuracy Avg Worst Worst 20% of Worst 20% of
Dataset Type Subpop Classes Subpops

States Vanilla 66.71 40.66 35.46 21.73
DCLIP 63.65 39.41 34.26 20.98
Waffle 66.68 40.71 35.49 22.05
CHiLS 66.56 40.41 36.16 22.45
Ours 67.92 41.53 38.16 23.64

Hierarchical Vanilla 78.15 48.36 50.72 35.89
DCLIP 77.80 48.48 51.05 34.36
Waffle 78.52 49.42 49.78 35.22
CHiLS 79.44 52.65 51.80 38.44
Ours 79.50 51.23 52.59 38.57

Table 1: Zero-shot classification on datasets with known variation types for CLIP with a ViT-B/16
encoder. States averages results over the two categorizations of MIT States data, while Hierarchical
averages results over four Breeds datasets. We observe similar results for BLIP-2 (Table 7).

DollarStreet Accuracy Worst Worst Avg Worst Worst 20% of Worst 20% of
Method Region Income Subpop Classes Subpops

Vanilla 51.51 42.43 34.76 37.60 18.33 11.01
DCLIP 49.78 41.08 32.91 36.37 19.07 11.19
Waffle 51.37 42.71 34.97 37.69 18.12 10.74
CHiLS 51.68 42.20 33.90 37.60 20.51 12.72
Ours 52.70 44.04 37.21 40.31 20.88 15.05
GeoDE

Vanilla 90.15 86.63 - 82.57 72.24 69.95
DCLIP 91.31 88.14 - 84.21 74.44 71.90
Waffle 91.59 89.06 - 85.44 75.85 74.37
CHiLS 90.96 87.90 - 84.48 73.27 71.64
Ours 91.75 89.12 - 85.40 76.13 74.64

Table 2: Zero-shot classification performance on geographically diverse images from DollarStreet
and GeoDE using CLIP with a ViT-B/16 encoder. We observe similar results for BLIP-2 (Table 8).

subpopulation accuracy per class and average that, denoted as ‘Avg Worst Subpop’. For the real-
world shifts, we also report worst region and worst income group accuracy. Our baselines include:
standard zero-shot (classname only) which we call Vanilla, DCLIP (averages over class descriptors),
WaffleCLIP (averages over random descriptors sampled over ten trials), and CHiLS (reweights stan-
dard zero-shot class score with max probability of different kinds of the class). Notably, we average
all text embeddings over the 80 prompts crafted for CLIP, so to report best possible baseline results.

Table 1 shows results for datasets with diversity along hierarchical and states axes, and table 2 shows
results for geographic diversity. Our method consistently improves accuracy, even over CHiLS in
the hierarchical setting it was specifically designed for. Notably, CHiLS becomes less effective
for other datasets, while our method remains strong. We observe larger gains for worst class and
subpopulation metrics, especially over baselines that consolidate via averaging, supporting the claim
that our method improves coverage of the most atypical instances, and that moving beyond the one
vector per class paradigm helps in this regard. For Dollarstreet, we see a 9% average relative gain
over baselines for the accuracy over worst income group metric, commonly used as a real-world
fairness indicator, and an even larger gain for the worst 20% of subpopulations.

5.2 FAITHFUL FINE-GRAINED INTERPRETATIONS FOR FREE

In addition to improving accuracy, our method has enhanced interpretability, as each inference
comes with a list of the k subpopulations specifically relevant to the test image for free. Figure 5
shows a few examples (see Appendix A for more). These interpretations are faithful, as they are ex-
actly the subpopulations used to compute the class score. Also, since we include attributes along var-
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Figure 5: Atypical instances that our method can correctly recognize. The attributes used in infer-
ence also serve as fine-grained explanations, which can aide in model debugging.

Figure 6: Accuracy, overall and for the worst classes, as new types of attributes are added. Per-
formance for our consolidation scheme continuously improves, while it saturates or deteriorates for
others. Figure 11 shows similar trends for accuracy on the worst 20% of classes and subpopulations.

ious axes of diversity, our interpretations are finer-grained than prior work: DCLIP yields the same
set general descriptors for any image predicted to a given class; WaffleCLIP offers no interpretabil-
ity. This interpretability can enable model debugging and facilitate increased trust with an end user.

5.3 SCALING WITH THE MANY AXES OF DIVERSITY

One source of gains for our method is that we infer attributes of many types, while prior works only
include one. We argue that our flexible consolidation (of subpopulation similarities to a single class
score) also provides improvements over naive averaging or the nonlinear consolidation of CHiLS. To
test this, we sequentially add each type of attribute, and inspect performance using the three meth-
ods. Figure 6 shows our consolidation scales best as more attributes are added, with sizable gains for
accuracy over the worst classes. In contrast, performance saturates with averaging, and actually dete-
riorates with CHiLS. The latter occurs since CHiLS assumes that subpopulations are mutually exclu-
sive, as is the case in hierarchical label sets. When adding attributes along the many axes of diversity,
resultant subpopulations overlap, making a zero-shot classification over all subpopulations (as done
in CHiLS) unreliable. Averaging is also suboptimal, as the impact of each attribute diminishes as the
number of attributes added increases: we see this in the left plot, as accuracy barely increases for the
final three added attribute types. Also, samples that are close to only a few subpopulations but far
from most (i.e., atypical instances) ultimately receive a low score when all scores are averaged. Thus,
while averaging over subpopulations can improve accuracy (to an extent), it is less suited to improv-
ing performance on atypical instances than our method. We explore this further in the next section.
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Figure 7: Right: As k decreases, first, accuracy overall and on the worst classes both increase. Then,
overall accuracy begins to decrease while accuracy on the worst classes continues to improve. Thus,
we can control this trade-off via k. Left: λ, the continuous analog of k, allows for greater control.

5.4 TUNABLE TRADE-OFF BETWEEN ACCURACY OVERALL AND ON WORST CLASSES

Recall that our method consists of computing the similarity of a given test image’s embedding to the
embedding of numerous (on the order of hundreds) subpopulations per class, before averaging over
only the top k similarities, where k is small. Note that when k = ∞, our consolidation reduces to
simple averaging over all vectors per class. To shed insight on how our consolidation differs from
averaging, we sweep k, while keeping our attribute inference fixed. Additionally, we explore linearly
interpolating class scores using our consolidation (top-k) and full averaging via a second hyperpa-
rameter λ, so that λ = 0 results in our method and λ = 1 is averaging. We jointly sweep λ from 0
to 1 and k from 1 to 128 to pinpoint the way in which our consolidation improves upon averaging.

Figure 7 shows overall accuracy vs. accuracy on the worst 5% of classes1 for both k and λ. The
trend is identical for the two parameters: first, both accuracy metrics increase as we move away
from full averaging, with much larger gains occurring for the worst classes. Then, accuracy begins
to drop, while accuracy on the worst classes continues to improve. To understand this trade-off,
consider an instance that has high similarity to one subpopulation embedding for a class, and low
similarity to all others. In the k = 1 case, this instance is given a high score for the class. This can
benefit atypical instances of the class, as they may be visually dissimilar from most other instances
(recall the Arctic fox). However, this can introduce errors, as the correct prediction for an instance
mostly close to embeddings from its true class can be flipped with the presence of just one highly
similar (perhaps unreliable) subpopulation embedding from a different class. Thus, lower choices
of k may benefit more atypical instances, leading to improved accuracy on worst classes (which
are most diverse; see 3.1), potentially at the cost of overall accuracy. With this insight, practitioners
can choose how to tune our method based on their end goals. Also, since λ is continuous, it offers
closer control of this tradeoff: indeed, accuracy on the worst classes can be improved by a larger
margin when varying λ, and varying k and λ together can lead to best numbers for both metrics.2

6 CONCLUSION

To represent classes with diverse instances, which can come in many forms, one vector per class may
not be enough. Further, VLMs have amazing abilities that are restricted when we only use one vector
per class. Thus, instead of ignoring intra-class diversity, we embrace it, by explicitly inferring and
encoding as much of it as we can. We propose a simple nonlinear consolidation scheme that flexibly
attends to subpopulations present in an image while ignoring those that are irrelevant. We find
that our method consistently improves over strong baselines, and careful ablations indicate that our
method’s gains come from improving performance on the hardest classes and subpopulations. We
hope our work spurs further curiosity around how existing paradigms may limit the capabilities of
our modern models, towards developing new paradigms to address problems with real world impact.

1We observe the same trade-off when inspecting the worst 10% and 20% of classes. See Appendix 11.
2To be true to the zero-shot setting, no tuning was done to obtain the results in 5.1. We tried two reasonably

small values for k (8 and 16), observed similar results, and went with k = 16, which was marginally better.
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Figure 8: Our method yields faithful, fine-grained interpretations, for free. Top 4 shown for brevity.

A EXAMPLE INTERPRETABLE INFERENCES

We show additional examples of interpretable inferences in figure 8.
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Figure 9: Example subpopulations where our method exhibits sizable accuracy gains compared to
standard zero-shot classification (i.e. classname embedding only).

B CASES WHERE ATTRIBUTES HELP MOST

Figure 9 show more qualitative examples where standard zero-shot classification leads to biased
performance. We highlight examples that our method leads to improvements. Notice that the sub-
populations tend to be atypical.

Figure 10 shows more examples of subpopulations where including the groundtruth attribute results
in significant gains in average precision. Again, these subpopulations generally appear differently
than a typical instance from their class. Thus, the classname embedding is imprecise. However,
evidently, VLMs are still capable of recognizing the subpopulation when given the attribute.
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Figure 10: Example subpopulations where the classname embedding is imprecise, but including the
attribute leads to large boosts in average precision. Notably, these subpopulations reflect instances
atypical to the class.

Classifier CLIP DINO Sup.
Encoder

CLIP -0.28 -0.51 -0.43
DINO -0.37 -0.54 -0.48
Sup. -0.47 -0.72 -0.65

Table 3: Correlation between diversity and accuracy by class on ImageNet. We study three models:
vision transformers trained with CLIP, DINO, or traditional label supervision. Diversity refers to
variance of image embeddings within a class, with embeddings obtained with the ‘encoder’ model.

C DETAILS ON CORRELATION BETWEEN DIVERSITY AND ACCURACY PER
CLASS

We compute ImageNet accuracy per class using three models: CLIP ViT-B/16 via standard zero-shot
classification, DINO ViT-S/16 with a linear classification head fit to ImageNet over fixed features
Caron et al. (2021), and a ViT-S/16 trained with traditional class-label supervision on ImageNet
Touvron et al. (2021). Notably, all these models utilize a linear classification head. That is, they
operate under a one vector one class paradigm. To proxy diversity, we measure the variance of
embeddings per class. That is, per class, we compute the average squared distance between the
mean embedding and the embedding of each class instance. Note that our measure of diversity
depends on the image encoder; we explore using each of the three aforementioned models. Table 3
shows the results. All correlations are strongly negative, indicating that across classifiers and using
various measures of diversity, classes with higher diversity are predicted at lower accuracies. This
supports the intuitive hypothesis that consistently representing an entire class with one vector is
made challenging when the class contains diverse instances.

D ADDITIONAL EXPERIMENTAL DETAILS

Note that we will provide all code, so that further details are easily accessible.

D.1 DATASETS

The four hierarchical datasets we utilize are subsets of ImageNet Deng et al. (2009) curated by San-
turkar et al. (2020). We also utilize the attributed dataset of MIT States Isola et al. (2015), deriving
two classification tasks from their annotations. Finally, we utilize the geographic fairness bench-
marks of Dollarstreet Rojas et al. (2022) and GeoDE Ramaswamy et al. (2023). When reporting
subpopulation accuracies, we use income level as the ground truth attribute for Dollarstreet. Note
that for MIT States and Dollarstreet, we conduct a filtering of classnames. Namely, we compute co-
sine similarity of CLIP embeddings for each pair of classnames. For any pair exceeding a threshold,
we remove one classname from consideration. We do this because MIT States was not originally
intended to be a classification dataset, and we observed highly similar classnames in Dollarstreet
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Query Prompt Examples

Kinds List 16 different kinds of pear Bartlett, Bosc, D’Anjou
States List 10 different ways in which a pear may appear in an image Whole pear, Pear slices, Pear chunks
Descriptors List useful features for distinguishing a pear in an image Round shape, Glossy skin, Green or brown color
Co-occurring Objects In an image of a pear, list 10 other objects that may also appear Leaves, Stem, Branches
Backgrounds List ten different locations in which a pear may appear in an image Fruit basket, Still life painting, Candy dish

Table 4: Example LLM prompts and outputs for class-specific and class-adjacent queries.

(e.g. ‘toilet’ and ‘bathroom/toilet’). We use a threshold of 0.8 and 0.9 to generate the coarse and
fine-grained MIT States datasets respectively, and use a threshold of 0.9 for Dollarstreet.

D.2 INFERRING ATTRIBUTES

We now provide details on our exact LLM queries. First, for class-specific and class-adjacent
queries, table 4 shows the precise prompt shown to the LLM along with example outputs, both for
the class pear. For all queries, we append Only use up to three words per list
item so that the LLM does not drone on. We sample from the LLM (Vicuna-13b-v1.5) with a
temperature of 0.7, repetition penalty of 1, and a max number of new tokens of 512.

We now provide more information on class-agnostic queries. We use continents as regions, and the
five most populous countries per continent as our list of countries. These can both be obtained via
prompting an LLM or searching the internet.

D.3 AUTO GLOBAL

We now show more details for the auto-global query, which we found quite impressive. It consis-
tently was amongst the attribute type that provided the most accuracy gains across datasets. The first
prompt to the LLM was:

List 16 common general ways in which two instances of the
same object may look different. For example, size, age, or
cleanliness. Only use one word per list item.

The next prompt was:

For each of those items, list up to four different general
adjectives related to the time. Please use common words..

Then, finally, out of laziness, we included a third prompt of:

Thanks. Please organize your output as a python dictionary.

The resultant axes of variation and attributes per axis can be found in Table 5.

E ADDITIONAL RESULTS

In the main text, we presented results using CLIP. Results for BLIP-2 can be found in Tables 7 and
8. Trends are consistent with results CLIP. For a global picture, we present results averaged over
both VLMs and all datasets in table 6. Our method performs best over all metrics, again with largest
gains occurring over the worst classes and subpopulations.

We also show results for each dataset individually in table 9. We find it encouraging that our results
are consistent across both VLMs and for each of our eight datasets.

Further, for the analysis in Section 5.3, we show performance using the similar metrics of accuracy
over the worst 20% of classes and subpopulations, as shown in most tables. See figure 11. Trends
are the same as in the main text, though slightly less pronounced. To be clear, our consolidation
yields best performance, while others either saturate or deteriorate.

Lastly, we also show additional plots for the analysis in Section 5.4. In the main text, we plotted
accuracy overall vs. over the worst 5% of classes. We choose to show accuracy over the worst 5%
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Axis Attributes

size small medium large tiny
age young mature ancient old
cleanliness dirty clean spotless grimy
color white black red blue
texture rough smooth soft hard
material plastic metal wood fabric
shape round square rectangular triangular
position upright horizontal vertical diagonal
reflection bright dull shiny matte
transparency clear opaque translucent transparent
shine glossy matte shiny dull
pattern striped polka-dotted plaid solid
markings spotted striped checked speckled
surface rough smooth bumpy even
appearance appealing unappealing attractive unattractive

Table 5: Attributes and axes of diversity inferred via the auto-global query. See D.3 for more
information.

Accuracy Avg Worst Worst 20% of Worst 20% of Worst 10% of Worst 10% of
Method Subpop Classes Subpops Classes Subpops

Vanilla 73.22 50.17 44.90 33.10 36.66 22.05
DCLIP 72.65 49.72 45.35 32.72 37.16 21.92
Waffle 73.36 50.23 44.97 33.34 36.66 22.43
CHiLS 74.13 51.84 46.00 34.80 37.07 23.24
Ours 74.75 52.04 47.52 35.77 39.21 24.40

Table 6: Average performance over eight datasets and two VLMs.

Accuracy Avg Worst Worst 20% of Worst 20% of
Dataset Type Subpop Classes Subpops

States Vanilla 70.60 42.65 43.44 26.28
DCLIP 69.80 41.42 41.54 24.25
Waffle 70.10 42.18 41.99 25.76
CHiLS 70.83 42.51 44.31 26.75
Ours 71.30 42.84 43.92 27.21

Hierarchical Vanilla 75.29 50.33 44.30 32.18
DCLIP 75.60 49.41 46.35 32.25
Waffle 75.25 48.84 44.48 31.67
CHiLS 77.17 52.00 45.86 34.59
Ours 77.95 52.47 48.66 35.46

Table 7: Zero-shot classification on datasets with known variation types for BLIP-2. Hierarchical
datasets from Novack et al. (2023) and States are the average of coarse and fine-grained categoriza-
tions of MIT States. See table 1 for results using CLIP ViT-B/16.
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DollarStreet Worst Worst Avg Worst Worst 20% of Worst 20% of
Method Accuracy Region Income Subpop Classes Subpops

Vanilla 50.91 39.76 31.89 36.76 18.87 11.33
DCLIP 49.81 39.05 32.03 37.01 18.22 12.14
Waffle 51.07 41.00 33.05 36.67 19.43 12.53
CHiLS 51.56 40.26 32.37 38.35 19.56 12.45
Ours 51.96 40.63 32.78 37.91 21.04 13.61
GeoDE

Vanilla 90.48 87.95 - 84.41 71.01 69.06
DCLIP 90.98 88.19 - 84.78 72.71 71.32
Waffle 91.10 88.85 - 84.97 74.11 72.56
CHiLS 90.75 87.99 - 84.63 71.11 69.46
Ours 91.40 89.07 - 85.44 73.08 71.22

Table 8: Zero-shot classification performance on geographically diverse household object from Dol-
larStreet and GeoDE using BLIP-2. See table 2 for results with CLIP ViT-B/16.

Figure 11: Accuracy for the worst 20% of classes and subpops, averaged over our dataset suite as
we sequentially add new types of attributes using different consolidation schemes. See figure 6 in
the main text for accuracy overall and over the worst 10% of classes, along with more discussion.
As shown in the main text, our method scales the best as attributes are added sequentially.
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Geographic (MIT) States Hierarchical
Method Dollarstreet Geode Coarse Fine Entity13 Entity30 Nonliving26 Living17

Accuracy

Vanilla 51.21 90.34 78.24 59.07 68.22 68.43 77.27 92.96
DCLIP 49.80 91.14 77.80 55.65 68.64 68.49 76.32 93.35
Waffle 51.22 91.34 78.31 58.47 68.95 68.66 77.13 92.80
CHiLS 51.62 90.85 78.83 58.55 69.33 70.69 79.55 93.65
Ours 52.33 91.58 79.33 59.90 71.47 70.59 79.25 93.59

Average Worst Subpopulation Accuracy

Vanilla 37.18 83.49 53.83 29.49 21.77 36.27 57.12 82.24
DCLIP 36.69 84.50 53.01 27.81 22.54 36.87 54.54 81.82
Waffle 37.18 85.20 53.94 28.96 21.88 36.87 56.37 81.41
CHiLS 37.98 84.56 53.69 29.22 23.77 42.50 59.50 83.53
Ours 39.11 85.42 54.26 30.10 25.31 39.03 59.54 83.53

Accuracy for Worst 20% of Classes

Vanilla 18.60 71.63 52.12 26.79 34.38 32.50 49.15 74.00
DCLIP 18.64 73.57 51.35 24.46 36.48 33.21 46.60 78.50
Waffle 18.78 74.98 52.31 25.17 31.41 33.46 48.40 75.24
CHiLS 20.04 72.19 53.65 26.82 36.07 31.71 52.05 75.50
Ours 20.96 74.61 54.03 28.05 37.55 34.94 53.10 76.92

Accuracy for Worst 10% of Classes

Vanilla 11.92 59.30 41.63 18.09 29.75 21.75 40.58 70.25
DCLIP 11.82 64.22 41.16 15.90 26.80 22.71 38.08 76.62
Waffle 10.69 64.74 42.00 16.68 23.03 23.79 39.78 72.59
CHiLS 13.64 58.82 44.74 18.41 25.60 21.04 42.92 71.38
Ours 14.35 62.61 44.24 19.29 31.10 25.33 43.50 73.25

Accuracy for Worst 20% of Subpopulations

Vanilla 11.17 69.50 36.23 11.78 14.54 15.62 33.90 72.07
DCLIP 11.67 71.61 35.08 10.16 14.54 14.92 30.19 73.57
Waffle 11.64 73.47 36.89 10.93 13.24 16.27 32.77 71.49
CHiLS 12.58 70.55 37.44 11.76 15.23 16.88 39.67 74.29
Ours 14.33 72.93 38.21 12.64 17.33 16.94 38.86 74.93

Accuracy for Worst 10% of Subpopulations

Vanilla 6.10 57.47 23.27 4.95 5.35 5.67 18.90 54.71
DCLIP 6.08 61.38 21.71 3.74 5.77 5.04 15.20 56.43
Waffle 5.82 63.27 23.27 4.26 4.96 6.56 17.00 54.30
CHiLS 7.40 57.62 24.93 4.88 5.96 6.21 21.50 57.43
Ours 8.62 61.26 24.72 5.53 6.88 6.88 22.00 59.29

Table 9: Metrics for each dataset. Results are averaged over CLIP and BLIP-2. Our method’s gains
are consistent over the eight dataset suite.
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Figure 12: We replicate figure 7 using metrics that look at a larger portion of the worst classes. A
similar tradeoff emerges, though in a slightly less pronounced way. We note that this is expected, as
increasing the number of classes considered likely also increases the number of less diverse classes
included.

because it most clearly conveys the tradeoff we observe. Figure 12 shows this tradeoff still exists
when looking at other percentiles, though it is less pronounced, which is expected.

F WHEN CAN WE CRAM AN ENTIRE CLASS IN ONE VECTOR, AND WHEN CAN
WE NOT?

Arguably, diversity within classes is unavoidable, as two instances can vary in numerous ways (dis-
cussed further in Section 4.1). How then, have classifiers enjoyed success under the one-vector-
per-class paradigm, despite its tension with intra-class diversity? First, we note these performance
disparities are often obfuscated in metrics like overall accuracy; indeed, the supervised classifiers
studied above each achieve impressive overall accuracies. Nonetheless, the tension can be some-
what resolved if (i) one learns embeddings that reduce the diversity that is present in input space,
and/or (ii) the single vector learned per class contains features that are unique to the class and present
across class instances, despite intra-class variance that persists in the embedding space. We expand
on these below.

F.1 IDEAL CONDITIONS FOR THE ONE-VECTOR-ONE-CLASS PARADIGM

Most modern vision classifiers consist of a deep feature encoder, mapping images to a rich embed-
ding space, followed by a linear classification head, mapping embeddings to class logits. The linear
classification head consists of a single vector (and a scalar bias) per class. A linear classification head
is accurate if, for any instance from the ith class, the activation on the ith class vector must be higher
than the activation for any other class vector. We express this mathematically below, with x denoting
the embedding of an image from class i, and ci, cj denoting vectors in the classification head.
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∀x ∈ Ci,∀j ̸= i, we require that x · ci − x · cj > 0 (1)
Note that x · ci − x = x · (ci − cj) = ∥x∥∥ci − cj∥ cos(x, ci − cj) (2)
Thus, ∀x ∈ Ci,∀j ̸= i, we require that cos(x, ci − cj) > 0 (3)

The last step arises because norm is always non-negative. Now, let us focus on different components
of this required condition (by definition) for an accurate one-vector-per-class classification head.
First, the single vector ci must contain contain a set of features that are unique to that class. That
is, these features remain when considering the residual ci − cj for any i ̸= j. Secondly, the unique
features that discriminate the class from all others must also be aligned with every instance of the
class. In other terms, these unique features must be invariant to any diversity within the class. Also,
note that the quantity we expand upon above is simply the margin for classification. In the ideal
case, this margin would be maximized.

F.2 CLASS-SUPERVISED TRAINING IS WELL SUITED FOR THE ONE VECTOR PER CLASS
PARADIGM, BUT VLM PRETRAINING IS NOT

In traditional class-label supervised training, the feature encoder is jointly optimized with the clas-
sification head to minimize a classification loss. Let us consider how this effects the linear classi-
fication head and the feature encoder individually. First, fixing the classification head, we see the
supervised objective encourages all embeddings from one class to be drawn close to their respective
single vector, and consequently, close to one another. In other words, invariance of embeddings
within a class is promoted. Next, with the feature encoder fixed, classification head vectors align
with embeddings within their class and de-align with embeddings from outside their class. Thus, the
classification head vectors are optimized to solely contain the features unique to their class embed-
dings. Therefore, training with traditional class-label supervision directly promotes the invariance
and uniqueness properties required for the success of the one-vector-per-class paradigm.

On the other hand, VLMs are optimized with markedly different objectives. Many VLMs employ
contrastive image-text matching, in which negative examples are far weaker and classes are no
longer defined; in some ways, the training is analogous to optimizing a classification task with an
infinite number of classes. Indeed, two instances that belong to the same class in a downstream task
may have embeddings pushed apart during VLM pretraining, directly going against the aforemen-
tioned notion of class-wise invariance. Other common VLM objectives like captioning or question
answering promote the descriptiveness of the embedding. Thus, instead of honing in on unique
features, embeddings are likely to describe as much as possible. We note that having maximally de-
scriptive embeddings is typically a good thing, as it allows for re-use of the same feature encoder for
many downstream tasks, as is done in linear probing with self-supervised encoders. The key caveat
is that in those cases, the linear classification head is still exposed to instances from all classes, and
thus, each classification head vector can learn to align only with the unique features for its class.
In contrast, in the zero-shot setting, the classification head vectors are obtained independently of
one another via embedding the names of classes via the text encoder, and thus, it is unreasonable to
expect that these vectors satisfy the uniqueness condition.

F.3 ARCTIC FOX CASE STUDY: BIAS CAN BE AMPLIFIED WHEN USING ONE VECTOR PER
CLASS PARADIGM FOR ZERO-SHOT CLASSIFICATION

Staying in the one-vector-per-class setting, we now compare class vectors obtained directly in a
zero-shot manner to those obtained with supervision. Specifically, we focus on the Arctic Fox
bias, shown in Figure 2. We train a linear classification head over fixed CLIP embeddings used a
skewed training set that under-represents Arctic foxes in the training set. We find that the bias
of the zero-shot vector is on par with having only 3% of the training images in the fox class be
Arctic foxes in the supervised setting, suggesting that limitations of the one vector per class
paradigm may be exacerbated in the zero-shot setting.
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Figure 13: Arctic Fox bias is amplified in zero-shot classifier vs. to supervised linear probes.

G ONE FINAL TRADE-OFF

In section 5.4, we should two hyperparameters that could trade overall accuracy for accuracy over
the worst classes. We now present one more, along with a theoretical explanation. Throughout
the paper, we consider ‘averaging’ to mean computing similarities to multiple vectors and then
averaging those similarities; this is how DCLIP and WaffleCLIP average, and will refer to this as
Average Sims. However, averaging over prompts as done in originally in CLIP consists of averaging
vectors first and then computing similarity to one average vector; we call this Average Vecs. The
difference is subtle: in the latter case, an additional normalization occurs when cosine similarity is
taken.

We now show theoretically that when all embeddings are normalized (i.e. for CLIP), Average Vecs
simply rescales the class score yielded by Average Sims by a factor that measures how diffuse
the vectors for the class are. Let x be an image embedding and {v1, v2, . . . , vk} be subpopulation
vectors for a given class. We assume all vectors are normalized to the hypersphere, as is the case for
CLIP. That is, ∥vi∥ = 1 for all i and ∥x∥ = 1. Let v := 1

k

∑k
i=1 vi denote the average vector. We

compute the class score for Average Vecs below.

Average Vecs = cos (x, v) =
x · v

∥x∥∥v∥
=

x · 1
k

∑k
i=1 vi

∥v∥
=

1
k

∑k
i=1 x · vi
∥v∥

=
1
k

∑k
i=1 cos(x, vi)

∥v∥
=

Average Sims
∥v∥

To get from line 1 to 2, we utilize the fact that cosine similarity is equivalent to the dot product when
both arguments are unit norm. Let us now consider what this result entails. The denominator is the
norm of the average vector. This quantity is always between 0 and 1. It is lowest when the vectors
are most diffuse. Thus, the class score obtained by Average Sims is scaled up to obtain the score
for Average Vecs by more when the vectors are diffuse. In other words, averaging the vectors first
implicitly upweights vectors corresponding to diverse subpopulations.

Based on this simple theory, we would expect the most classes with high diversity to have higher
accuracy under Average Vecs compared to Average Sims, as their class scores are inflated more
than the less diverse classes. The effect on overall accuracy, however, is not perfectly clear. To
inspect this, we perform the same sweep over k and λ as in section 5.4, except now we additionally
try replacing all similarity averaging with vector averaging. Figure 14 shows the results. We average
away k for clarity. Indeed, averaging over vectors improves accuracy on the worst classes. For high
values of λ = 1, we see averaging vectors also slightly improves overall accuracy. However, in the
vast majority of values for λ, overall accuracy is hurt by averaging vectors instead of similarities.
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Figure 14: Averaging subpopulation vectors before computing similarity to an image embedding
proves to be another way to trade overall accuracy for accuracy on the worst classes. That is,
when we first compute similarity to each subpopulation and then average, we obtain higher overall
accuracy but lower accuracy on the worst classes, compared to when we first average subpopulation
vectors and then compute the similarity to the average vector.

We hope this analysis provides insight as to the precise effect of averaging similarities or vectors,
which may be relevant to others who wish to explore going beyond one vector per class.
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