Distilling Safe LLLM Systems via Soft Prompts

1 1

Motasem Alfarra’ Dana Kianfar

Abstract

Large Language Models (LLMs) have enabled
machine learning to be integrated in complex
tasks across various domains. This is cause for
concern since LL.Ms may respond to carefully
crafted prompt with unsafe content, necessitating
concrete safety mechanisms. Current solutions in-
volve dual-model systems combining LLMs with
guard models. However, the substantial mem-
ory and computational demands of guard mod-
els pose significant challenges for deployment.
This paper proposes an efficient method for ap-
proximating the functionality of dual-model sys-
tems using learned embeddings, also known as
soft prompts. We introduce a novel distillation
framework which optimizes the total variation
distance between the outputs of an LLM with a
guard and the same LLM enhanced with our soft
prompts. At test-time the learned soft prompts are
prepended to user prompts, providing safety at a
fraction of the costs incurred by a guard model.
Evaluations on various benchmarks demonstrate
improved safety, offering an efficient alternative
to guard models for hardware-constrained appli-
cations.

1. Introduction

Despite their remarkable adoption across research and indus-
try, large language models (LLMs) can generate unsafe and
toxic content in response to certain prompts. For example,
an LLM might produce harmful or offensive language if
manipulated by a malicious user (,).

Safety fine-tuning methods such as reinforcement learning
(RL), supervised fine-tuning, etc. (s), can of-
fer improvements in terms of safety alignment of the base
LLM but system-level enhancements and layered defenses
are necessary for minimizing risks (). To address this,

!Qualcomm AI Research, Amsterdam, Netherlands. Qualcomm
Al Research is an initiative of Qualcomm Technologies, Inc. Corre-
spondence to: Motasem Alfarra <malfarra@qti.qualcomm.com>.

Published at ICML 2025 Workshop on Reliable and Responsible
Foundation Models. Copyright 2025 by the author(s).

1 1

Cristina Pinneri' Christos Louizos

A 4 AN
1 \
\\ // \
Ideal Base Model +
° Guard Model
i Our Solution
S 1 high safety,
FS)/ higher FLOPs
o low safety, ,
‘S low FLOPs,’
(7] & /
o
Base Model
FLOPs

Figure 1. Safety - Computation Tradeoff. LLMs (Base Model)
can generate unsafe and toxic content to users. When combined
with a Guard Model; known altogether as a safe LLM system, their
safety improves but at an increased computational and memory
cost which potentially hinders their usability. In this work, we
distill safe LLM systems into a single model which is efficient in
terms of memory and computation.

guard models (,) have been introduced to
evaluate and maintain the safety of LLM responses to user
prompts. In this design the guard model assesses the safety
of the response before exposing it to the user. In a nutshell, a
guard model is a separate LLM that classifies the input pair
(z,y) as safe or unsafe with z being the user’s prompt and
y being the response of the LLM. When (z, y) is deemed
unsafe a pre-defined refusal answer, such as "Sorry, I can-
not help with this matter.", overrides the initial response y.
This approach is the last line of defense against toxic and
harmful responses, while preserving the capabilities of the
LLM when it’s response is deemed safe. While recent stud-
ies (,) have shown that guard models
are vulnerable to adversarial perturbations, they are used as
a de-facto method for building safe LLM systems.

The dual-model approach demands significant memory and
computational resources, making it especially unsuitable
for on-device deployment where memory and compute is
limited (,). This is illustrated in Figure 1.
In addition, the sequential nature of this approach (i.e. the
guard waits for the full output of the LLM before classify-
ing it) will degrade important metrics such as time-to-first-

token. Various strategies have been proposed to address this
issue, including model quantization to reduce memory con-
sumption, distilling large LLMs into smaller models, and
fine-tuning LLMs to mitigate toxic outputs (, ;

,). While these methods improve mem-
ory efficiency and enhance safety, they often compromise
the LLM’s generalization capabilities (,).

In this work, we set to study a compute and memory effi-
cient LLM system that operates both usefully and safely.
In particular, we equip LLMs with learned embeddings,
known as soft prompts, to approximate the functionality of
the safe LLM system. To do so, we employ a novel dis-
tillation framework through optimizing the total variation
distance between the output of the safe LLM system and
our enhanced LLM. At test-time, we prepend the learned
soft prompts to the user’s prompt before feeding them to
the LLM. This approach seeks to maintain the safety and
efficacy of the safe LLM system while reducing the compu-
tational overhead, thereby making it more feasible to deploy
on a wide range of resource-constrained devices. We as-
sess the efficacy of our approach by testing the safety of
the LLM responses on a several benchmarks and models
providing consistently better results. Our contributions are
thus three-fold:

1. We propose an efficient alternative to safe LLM sys-
tems based on learned soft prompts for the base LLM.
In doing so, we obtain safer LLMs that are also more
applicable for resource-constrained applications.

2. We propose a novel total variation optimization frame-
work for distilling the behavior of the safe LLM system
into a set of soft prompts.

3. We provide a uniform evaluation framework spanning
four different LLMs and three different dataset for
comparing the various approaches.

2. Related Work

LLM Safety. Recent studies have highlighted the sus-
ceptibility of large language models (LLMs) to generat-
ing toxic or unsafe content either with carefully designed
prompts (s ; s ;

,) or when exposed to adversarial attacks (

, ; , ; s). This has
motivated researchers to explore various strategies for im-
proving the safety alignment of LLMs. Among the most
prominent approaches are Reinforcement Learning with
Human Feedback (RLHF) (. ; .

) and the use of auxiliary guard models (,

: ,). While these methods have shown
promise in enhancing the safety of LLM outputs, they often
come with significant drawbacks—RLHF requires costly

training pipelines, and guard models can introduce substan-
tial computational overhead during inference. In this work,
we propose a parameter-efficient fine-tuning approach that
distills the safety benefits of guard models into the base
LLM, aiming to retain safety improvements while reducing
inference costs.

Adapting LLMs Despite the impressive capabilities of
recent large language models (LLMs) across a wide range of
tasks, they often underperform when dealing with domain-
specific knowledge or when their weights are quantized for
on-device deployment. To address this performance gap,
several parameter-efficient adaptation techniques have been
proposed in the literature, including the widely adopted
Low-Rank Adapters (LoRA) (, ;
R), steering vectors (R ;

; s), and the more recent
soft prompt tuning approach (,). Among these,
soft prompt tuning has shown significant promise in preserv-
ing model performance both before and after quantization.
In this work, we investigate parameter-efficient fine-tuning
methods—focusing particularly on soft prompt tuning—as
a means to distill the safety capabilities of an LLM sys-
tem equipped with a guard model back into the base LLM.
This enables a more effective and computationally efficient
alternative to deploying guard models at inference time.

3. Methodology

Preliminaries. Let p(y|x) represent an LLM that gener-
ates y in response to a prompt x. Further, let p(s|z, y) repre-
sent a guard model that generates a safety score s € {0, 1}
given the prompt-response pair (x,y) where s = 1 repre-
sents the label “safe" for the LLM’s generation y. A safe
LLM system consists of both the LLM and guard model
p(y, s|z) = p(y|z)p(s|x, y). This system returns to the user
a response r whose contents depend on the safety score of
the pair p(s|x,y). We formulate the responses from the safe
LLM system as

p(rly,z) =
p(s = 1]z,y)d(r =

where the y,. is a pre-defined refusal response such as “Sorry,
I cannot help with this matter." and §(.) is the Dirac delta
function. The safe LLM system output distribution can thus
be formalized as

y) +p(s =0|z,y)o(r =y.) (1)

Zp (ylx)p

One major downside in deploying such a system is that
it requires two full forward-passes through the LLMs (i.e.
computing p(y|z) and p(s|z, y)), making it infeasible for
resource-constrained applications.

(rlz, y). @

3.1. TV-DiSP: Distillation via Soft Prompts

In this section, we propose our novel adaptation strategy
to distill the safe LLM system (described in Sec. 3) to an
instance of the LLM which is equipped with extra learnable
parameters. Let g(r|z, W) be an LLM that is equipped
with learnable parameters W, where W represents the soft
prompts (but can also be, e.g.,, LORA parameters).

Total Variation Optimization The total variation dis-
tance is a suitable choice as the primary objective for our
distillation because it provides probabilistic guarantees on
how far the distilled model can deviate from the distilla-
tion target in terms of downstream task performance. More
specifically, we present the following theorem.

Theorem 3.1. Let p(r|z) be the safe system and q(r|z, W)
be the LLM equipped with soft prompts. We have that the
performance gap between them on any test function ¢(-)
with |¢(+)|eo < 1is

’EQ(T\UC,W) [¢(T>] -]Ep(rlzzz) [(b(r)” <
2Dpv (q(r|z, W), p(rl|z)), (©)

where Dy (-, -) is the total variation distance.

Proof. The statement is a direct consequence of the sup
representation of the total variation distance (

,)
1
Drvap) =5 sup_ [El¢] - Eyldl
{#,l¢loo<1}
1
> S[Ey[9] - B, Lol @)
for {¢, |ploc < 1}. D

Having guarantees is especially desirable for safety-
sensitive applications. Theorem 3.1 can apply by consider-
ing ¢(+) as the safety probability / binary decision given by
a model and/or human.

As previously mentioned, we focus on the case where the
learnable parameter W, i.e. the outcome of the distillation
process, represent soft prompts. Once we have distilled
the safe LLM system into these soft prompts W, they are
prepended to the sequence of token embeddings of the user
prompt and are fed into subsequent layers. When the dis-
tillation is successful, we expect the following behaviour
from g(r|x, W). For safe responses, (i.e. p(s|z,y) = 1),
q should return the output y of the base LLM to the user
without any alterations. This helps to preserve the fluency
of the underlying LLM. Otherwise for unsafe responses, (i.e.
p(s|z,y) = 0), ¢ should return the pre-defined refusal mes-
sage. By satisfying these two cases, our distilled ¢ recovers
the full functionality of the safe LLM system p(r|z). We

optimize the learnable parameters W to minimize the total
variation distance between the two distributions p(r|x) and
q(r|z, W) as follows:

W* =argminE, [Dry (q (rlz, W), p ()], (5)

where we have that the TV distance can be upper bounded
as

1

Drv(q,p) = B > lg(rlae, W) — p(r|z)] (©6)
1

= 5 2 [Boyio) lalrla, W) = p(rla,y)l] - ()

S Ep(y|:c) [DTV (q('f"|$, W),p(r\x, y))] (8)

=1-Epy) lz min(g(r|z, W), p(r|z, y))]

)
. ’W
=1 Epyja)p(rlz.y) [mm (‘m7 1>]
(10)

While optimizing Drvy is aligned with our objectives, the
loss defined in Equation 10 can be hard to optimize due
to operating on probabilities directly. It is thus easier to
optimize the following which relies on log-probabilities
instead

Q(r=y|x,W)}
max E ., [p(s = 1|z, [lo _
w ”(y')l() |18 = ey |
Q(szr|337”)]
+ p(s = 0|z, log ————— ,
P =0 y)[® (s =00z.y) |_

(In

where p(s = 1|z, y) and p(s = 0|z, y) =1 —p(s = 1|z, y)
are the probabilities that (x,y) is safe and unsafe respec-
tively, and [z]_ = min(z,0). The first term in Equation
11 preserves the LLM response when it’s deemed safe by
the guard model while the second term learns the refusal
message for unsafe responses. Training W* in this fash-
ion only requires a dataset of prompts without labels as the
guard model dictates whether each prompt is safe or unsafe.
We denote our method Total Variation-based Distillation via
Soft Prompts as TV-DiSP.

Inference. At inference time, given a user’s prompt x we
generate the response with a single forward-pass through the
distilled LLM with learned parameters ¢(y|x, W*). Note
that in this forward-pass, the added compute and memory
requirements for a moderately-sized W*, e.g. 300 soft
prompt vectors, pales in comparison to what is required for
two forward-passes when computing p(y|x) and p(s|x, y)

L > slo)

@ - —
“g‘

Safe LLM System

lembeds

—> - q(r|z, W)

cat

Proposed Equipped LLM

Figure 2. Pipeline for our proposed TV-DiSP. We distill safe
LLM System composed of LLM and a guard model into a set of
learnable parameters eqipped to the LLM.

in Equation 1. Through our experiments we will show
that even a small W*, e.g. 100 soft prompts consisting
of a few thousand parameters, is sufficient to reduce the
total variation distance to a sufficiently small value which
maintains the fluency of the LLM and the safety provided
by the guard model.

3.2. Baselines

In this section, we explore alternative methods for distilling
the safe LLM system.

TV with Low-Rank Adapters. While this work primar-
ily focuses on using soft prompts as a vehicle for distilling
a safety guard model, one can easily apply the optimiza-
tion objective in Equation (11) to learn W* using LoRA
adapters (,) instead. In our experiments we
test this variation and set the rank of the adapters to match
the number of learnable parameters of 100 soft prompts.

Proximal Policy Optimization. As an alternative to
TV-distillation, we use Proximal Policy Optimiza-
tion (PPO) (s) to directly optimize
SGS. It is known as a prudent and conservative algorithm
which imposes several constraints on policy updates leading
to a stabilized optimization procedure. This is a desirable
characteristic for our work because in safety fine-tuning the
balance between safety and general performance is delicate,
and one should take care to avoid deviating far from the
base LLM. For these reasons, PPO has emerged as a go-to
method for safety fine-tuning (s). Thus,
we compare our proposed TV-distillation method against
PPO for training W

4. Experiments
4.1. Setup

Models. In our experimental setting, we focus on mim-
icking the on-device setting for when LLMs are deployed
on edge devices. To that regard, we run all our experiments
by quantizing the weights of all models to 4-bits using the
optimum-quanto library. We experiment with four different

models including Qwen2-1.5B (,), Gemma2-
2B (,), Llama3-instruct-1B, and Llama3-
instruct-3B parameters (s). Given the

resource constraints typical of edge Al platforms, we fo-
cused on smaller language models to ensure computational
efficiency while maintaining high performance. These mod-
els are optimized for instruction-following tasks and were
selected due to their balance between performance and com-
putational efficiency. Further, we use LlamaGuard3-1B as
the guard model that provides the safety (i.e. p(s|z,y))
score for distillation training and LlamaGuard3-8B to evalu-
ate the distilled models (,).

Evaluation Metrics. Since this work aims at studying
safety-based LLM systems, we first assess the safety of the
generation from the LLM before and after equipping it with
the learnt W. We leverage the state-of-the-art Llama3Guard-
8B (,) parameter model to be the evaluator
where we report the Safety Guard Score (SGS) defined as:

SGS =E,plp(s = 1|z, r)] (12)

Where D is the validation set of a given dataset, x and r
are the prompt and its corresponding generation from LLM,
respectively. Further, we compare the memory and compu-
tational requirements to run different approaches such as the
base LLM, the safe LLM system, and the LLM equipped
with W. In terms of computation, we report the FLOPs
needed to generate a single token under a fixed context
length of 512.

Datasets. Regarding the datasets, we leveraged the stan-
dard toxigen (,) dataset that includes
both toxic and non-toxic prompts for training W. In par-
ticular, we randomly subsample a fixed set of 5k prompts
from the dataset and use them for the training experiments.
Further, and to assess the generalizability of our approach,
we also experiment with training on the Beavertails (

,) dataset, where we subsample a fixed set of 10k
prompts. To assess the reliability of the learned W, we con-
duct our safety evaluation on an out-of-distribution setting.
In particular, we experiment with the standard benchmark
HarmBench (s), a collection of harm-
ful adversarial prompts. By leveraging these datasets, we
aimed to provide a comprehensive evaluation of the models’
performance.

Generalization from Toxigen to HarmBench

Generalization from Beavertails to HarmBench

100 +LG-1B +1G-1B +LG-1B +1LG1B
95
90

85

80

% SGS (LlamaGuard3-8B)

75

/
Llama3-3B

704LUlama3-1B

% SGS (LlamaGuard3-8B)

+LG-1B +LG-1B

100 +LG-18 LGB
95
90

85
Ours

Llama3-1B

2000 4000 5000 6000

Test-time compute (FLOPS 1e6)

7000 8000 9000

2000 3000 4000 5000 6000

Test-time compute (FLOPS 1e6)

7000 8000 9000

Figure 3. Safety-Compute trade-offs when trained on Beavertails or Toxigen, and tested on HarmBench. We report on the y-axis
the Safety Guard Score (SGS) according to LlamaGuard3-8B for three variations: the base LLM (red), the safe LLM system with
LlamaGuard3-1B in-the-loop (purple), and our proposed distilled LLM with soft prompts (blue). The x-axis shows the test-time compute
measured in the number of floating-point operations (FLOPs) to generate a single token for a context length of 512 on a fixed batch of
data. The size of the circles represent the relative memory requirement for each variation.

Training Details. In all our experiments, we conduct a
single epoch of training (the model trains on each data point
only once) for efficiency purposes. We set the learning rate
to 1 x 1077 and use the Adam optimizer. Unless stated
otherwise, we assume that IV is a set of 100 soft prompts
that are prepended to the user’s prompt.

4.2. TV-DiSP: Recovering Safety with Distillation

We first assess the efficacy of our proposed TV-DiSP in
distilling the performance of a safe LLM system composed
of the base LLM and the guard model. Figure 3 reports the
results where the x-axis reports the computational require-
ments in FLOPs, the y-axis reports the safety score (SGS),
and the diameter of each reported circle represents the rela-
tive memory requirement to store the deployed model on-
device.

We observe (i) The safe LLM system can indeed identify un-
safe generations by the LLM and correct them to a refusal re-
sponse. For example, the SGS of Llama3-insruct-1B model
improves from 71% to 99%, measured by LlamaGuard-8B.
However, this safety gain comes at a big expense in both
memory and computation. For example, generating a single
token from the base model requires 2.1 x 10° flops whereas
the safe system requires 4.6 x 10° flops and doubles the
memory requirements. (ii) TV-DisP can successfully distill
the safe LLM system into a single model. For example,
when W* is trained on Beavertails, TV-DiSP improves the
safety of the base LLM by 20% with less than 10% ad-
ditional computational cost, and less than 1% additional
memory consumption. (iii) TV-DiSP is consistent across all
4 base models and 2 different training distributions; it pro-
vides consistent safety gains with marginal additional com-
putational overhead compared to employing the safe LLM
system. It is noteworthy to mention that our experiments

follow a challenging evaluation protocol by evaluating on
out-of-distribution (mismatch between training and testing
datasets), and basing the evaluation on a dataset containing
adversarial prompts. This further strengthens the reliability
and generalizability of the provided results.

Impact of Training Data In our evaluation, we experi-
mented with Toxigen (s) and Beaver-
tails (,) to learn the soft prompts W*. We
observe in Figure 3 that the performance gain from train-
ing on Beavertails is consistently better than using Toxigen.
We attribute this outcome to a higher degree of diversity in
prompts from Beavertails which enables a better exploration
and distillation of the guard model we aim to distill.

Impact of Using More Soft Prompts We study the im-
pact of increasing the number of learnable parameters
through enlarging the size of W* from 100 to 300 and
report the results in Figure 4. We observe that (i) across
all base models, distillations with more parameters achieve
higher SGS via our proposed TV-DiSP. For instance, both
LLama3-1B and Llama3-3B distilled on Toxigen perform
4% better with 300 rather than 100 prompts, and (ii) adding
more soft prompts increases the test-time compute by
non-negligible amounts while the increase in memory is
negligible. It should be noted that even with 300 learned
soft prompts, TV-DiSP is still significantly cheaper than the
safe LLM system as demonstrated in Figure 3.

4.3. Comparison Against Baselines

Table 1 provides a comparison of TV-DiSP with the base-
lines mentioned in Sec. 3.2. We report SGS on HarmBench,
where the safety scores are measured by LlamaGuard3-
8B model. The distilled models were trained to distill the
safe LLM system with LlamaGuard3-1B on prompts from

Generalization from Toxigen to HarmBench

95

©
=3
=

0
[

@
S

100 s§
1 ,’
/

% SGS (LlamaGuard3-8B)
£

~
a

/
i
i é

i

! Qwen

Llama3-1B

Llama3-3B

70

4000 5000 6000 7000 8000 9000

Test-time compute (FLOPS 1e6)

2000 3000

% SGS (LlamaGuard3-8B)

Generalization from Beavertails to HarmBench

100
100 SP 300 sp
P

A
95 / /
/

%© 300sp 300SP
7

#1005sP /
85 fox/
/ I / /
1w00sp [/ [
/ { !/
»/ I

/
/

/
80 i
i)

/
/
hr [/
i/ /
/ /

/ “
Llama3-3B

/
/
/
/
/
d

Qwen

75

Llama3-1B

4000 5000 6000 7000 8000 9000

Test-time compute (FLOPS 1e6)

2000 3000

Figure 4. Ablation on increasing the number of soft prompts. We report on the y-axis the Safety Guard Score (SGS) according to
LlamaGuard3-8B for three variations: the base LLM (red), TV-DiSP with 100 soft prompts (blue) and 300 soft prompts (purple). The
x-axis shows the test-time compute measured in the number of floating-point operations (FLOPs) to generate a single token for a context
length of 512 on a fixed batch of data. The size of the circles represent the relative memory requirement for each variation.

Table 1. SGS on prompts from HarmBench (our test dataset) ac-
cording LlamaGuard3-8B. Each LLM was evaluated under several
conditions: without a guard (Base), with LlamaGuard3-1B (LG3-
1B), with LoRA(n=2) and soft prompts with 100 and 300 vectors.
We explore two frameworks, namely proximal policy optimization
(PPO) of the safety score and total variation distillation (TV). Note
that all distillation methods aim to distill the safe LLM system with
LlamaGuard3-1B on prompts from Beavertails but are evaluated
here according to LlamaGuard3-8B on prompts from Harmbench.
For a fair comparison of the number of learned parameters for
distillation, only LoRA(n = 2) and SP(100) should be consid-
ered. Boldface indicates the highest score among distilled models.
Higher is better.

Bae LGaip LORA(m=2) SP(100) SP(300)
PPO TV v TV
Qwen2-1.5B 732 990 673 63.0 83.0 83.8
Llama32-1B 712 989 583 69.8 78.0 82.0
Llama32-3B 745 989 693 82.8 89.8 93.8

Beavertails. We note here that we set the rank for LoORA
layers to be 2 maching the number of learnable parameters
in 100 soft prompts. We observe that our proposed TV opti-
mization, when combined with LoRA layers, outperforms
the strong PPO baseline on two out of three models. For
example, when LoRA layers are learned for the Llama3-
3B model, the TV objective provides 12% performance
improvement on top of LoRA layers learned with PPO. Fur-
ther, we also observe that combining the base LLM with soft
prompts (learned with TV-DiSP) always provides a better al-
ternative to LoRA. For example, and on Llama3-3B model,
under the same TV distillation scheme, using soft prompts
enhances the safety by 11% over using LoRA layers. This
demonstrate the effectiveness of our proposed approach of
combining TV optimization with soft prompts as an efficient
alternative to using safe LLM systems.

4.4. Future Experiments

While in this work we primarily focused on establishing first
distillation schemes for safe LLM systems, we intend to ex-
tend the findings of this work to include: (1) experimenting
with other benchmarks than HarmBench (such as Jailbreak-
Bench (,)) and evaluation under adversarial
attacks (such as AutoDAN (R)). We further
plan to explore other parameter efficient finetuning methods
for further performance gain.

5. Conclusions

In this work, we introduced a lightweight and efficient
alternative to traditional safe LLM system by distilling
the behavior of a dual-model architecture (LLM + Guard)
into a single quantized LLM augmented with learned soft
prompts. Our method minimizes the total variation distance
between the outputs of the original safe system and the
enhanced LLM, enabling safety-aligned generation with-
out the computational burden of running a separate guard
model. This approach significantly reduces the memory
and latency overhead, making it suitable for deployment on
resource-constrained devices. We validated our framework
through experiments on four different LLM architectures
including Llama, Qwen, and Gemma models, two differ-
ent training distributions, and against two different base-
lines. We demonstrated consistent improvement in terms
of safety against the base LLM. When comparing our pro-
posed TV-DiSP against safe LLM systems, we provide a
more computationally efficient alternative with competitive
safety performance. These results highlight the potential
of soft prompt-based distillation as a practical and scalable
approach for building safe and deployable LLMs.

References

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong
Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, et al. Qwen
technical report. arXiv preprint arXiv:2309.16609, 2023.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna
Chen, Nova DasSarma, Dawn Drain, Stanislav Fort, Deep Gan-
guli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback.
arXiv preprint arXiv:2204.05862, 2022.

Miles Brundage, Shahar Avin, Jack Clark, Helen Toner, Peter
Eckersley, Ben Garfinkel, Allan Dafoe, Paul Scharre, Thomas
Zeitzoff, Bobby Filar, et al. The malicious use of artificial
intelligence: Forecasting. Prevention, and Mitigation, 20, 2018.

Patrick Chao, Edoardo Debenedetti, Alexander Robey, Maksym
Andriushchenko, Francesco Croce, Vikash Sehwag, Edgar
Dobriban, Nicolas Flammarion, George J Pappas, Florian
Tramer, et al. Jailbreakbench: An open robustness bench-
mark for jailbreaking large language models. arXiv preprint
arXiv:2404.01318, 2024.

Josef Dai, Xuehai Pan, Ruiyang Sun, Jiaming Ji, Xinbo Xu, Mickel
Liu, Yizhou Wang, and Yaodong Yang. Safe rlhf: Safe re-
inforcement learning from human feedback. arXiv preprint
arXiv:2310.12773, 2023.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettle-
moyer. Qlora: Efficient finetuning of quantized llms. Advances
in neural information processing systems, 36:10088-10115,
2023.

Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao,
Yingbo Zhou, Nan Jiang, Doyen Sahoo, Caiming Xiong, and
Tong Zhang. RIhf workflow: From reward modeling to online
rlhf. arXiv preprint arXiv:2405.07863, 2024.

Igor Fedorov, Kate Plawiak, Lemeng Wu, Tarek Elgamal, Naveen
Suda, Eric Smith, Hongyuan Zhan, Jianfeng Chi, Yuriy Hulo-
vatyy, Kimish Patel, et al. Llama guard 3-1b-int4: Compact and
efficient safeguard for human-ai conversations. arXiv preprint
arXiv:2411.17713,2024.

Yichen Gong, Delong Ran, Jinyuan Liu, Conglei Wang, Tianshuo
Cong, Anyu Wang, Sisi Duan, and Xiaoyun Wang. Figstep: Jail-
breaking large vision-language models via typographic visual
prompts. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 39, pages 23951-23959, 2025.

Thomas Hartvigsen, Saadia Gabriel, Hamid Palangi, Maarten Sap,
Dipankar Ray, and Ece Kamar. Toxigen: A large-scale machine-
generated dataset for adversarial and implicit hate speech detec-
tion. arXiv preprint arXiv:2203.09509, 2022.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, et al. Lora:
Low-rank adaptation of large language models. /CLR, 1(2):3,
2022.

Hakan Inan, Kartikeya Upasani, Jianfeng Chi, Rashi Rungta,
Krithika Iyer, Yuning Mao, Michael Tontchev, Qing Hu, Brian
Fuller, Davide Testuggine, et al. Llama guard: LIm-based input-
output safeguard for human-ai conversations. arXiv preprint
arXiv:2312.06674, 2023.

Jiaming Ji, Mickel Liu, Josef Dai, Xuehai Pan, Chi Zhang, Ce Bian,
Boyuan Chen, Ruiyang Sun, Yizhou Wang, and Yaodong Yang.
Beavertails: Towards improved safety alignment of 1lm via a
human-preference dataset. Advances in Neural Information
Processing Systems, 36:24678-24704, 2023.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen,
Wei-Chen Wang, Guangxuan Xiao, Xingyu Dang, Chuang Gan,
and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. Proceedings of
Machine Learning and Systems, 6:87-100, 2024.

Xiaogeng Liu, Nan Xu, Muhao Chen, and Chaowei Xiao. Autodan:
Generating stealthy jailbreak prompts on aligned large language
models. arXiv preprint arXiv:2310.04451, 2023.

Neal Mangaokar, Ashish Hooda, Jihye Choi, Shreyas Chan-
drashekaran, Kassem Fawaz, Somesh Jha, and Atul Prakash.
Prp: Propagating universal perturbations to attack large lan-
guage model guard-rails. arXiv preprint arXiv:2402.15911,
2024.

Mantas Mazeika, Long Phan, Xuwang Yin, Andy Zou, Zifan Wang,
Norman Mu, Elham Sakhaee, Nathaniel Li, Steven Basart,
Bo Li, et al. Harmbench: A standardized evaluation framework
for automated red teaming and robust refusal. arXiv preprint
arXiv:2402.04249, 2024.

Meta. Llama 2 responsible use guide. URL
https://ai.meta.com/static-resource/

responsible-use-guide/.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll
Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal,
Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. Advances in neural
information processing systems, 35:27730-27744, 2022.

Inkit Padhi, Manish Nagireddy, Giandomenico Cornacchia, Subha-
jit Chaudhury, Tejaswini Pedapati, Pierre Dognin, Keerthiram
Murugesan, Erik Miehling, Martin Santillan Cooper, Kieran
Fraser, et al. Granite guardian. arXiv preprint arXiv:2412.07724,
2024.

Nina Panickssery, Nick Gabrieli, Julian Schulz, Meg Tong, Evan
Hubinger, and Alexander Matt Turner. Steering llama 2
via contrastive activation addition, 2024. URL https://arxiv.
org/abs/2312.06681.

Yury Polyanskiy and Yihong Wu. Lecture notes on information
theory. Lecture Notes for ECE563 (UIUC) and, 6(2012-2016):
7,2014.

Ruiyang Qin, Dancheng Liu, Chenhui Xu, Zheyu Yan, Zhaoxuan
Tan, Zhenge Jia, Amir Nassereldine, Jiajie Li, Meng Jiang,
Ahmed Abbasi, et al. Empirical guidelines for deploying llms
onto resource-constrained edge devices. ACM Transactions on
Design Automation of Electronic Systems, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford,
and Oleg Klimov. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe
Sessa, Cassidy Hardin, Surya Bhupatiraju, Léonard Hussenot,
Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
Gemma 2: Improving open language models at a practical size.
arXiv preprint arXiv:2408.00118, 2024.

https://ai.meta.com/static-resource/responsible-use-guide/
https://ai.meta.com/static-resource/responsible-use-guide/

Alexander Matt Turner, Lisa Thiergart, Gavin Leech, David Udell,
Juan J Vazquez, Ulisse Mini, and Monte MacDiarmid. Activa-
tion addition: Steering language models without optimization.
arXiv e-prints, pages arXiv—2308, 2023.

Haoran Wang and Kai Shu. Trojan activation attack: Red-teaming
large language models using activation steering for safety-
alignment. arXiv preprint arXiv:2311.09433, 2023.

Zhaozhuo Xu, Zirui Liu, Beidi Chen, Shaochen Zhong, Yuxin
Tang, Jue WANG, Kaixiong Zhou, Xia Hu, and Anshumali
Shrivastava. Soft prompt recovers compressed llms, transfer-
ably. In Forty-first International Conference on Machine Learn-
ing, 2024. URL https://openreview.net/forum?
id=muBJPCIgZT.

Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J Zico
Kolter, and Matt Fredrikson. Universal and transferable ad-
versarial attacks on aligned language models. arXiv preprint
arXiv:2307.15043, 2023.

https://openreview.net/forum?id=muBJPCIqZT
https://openreview.net/forum?id=muBJPCIqZT

	Introduction
	Related Work
	Methodology
	TV-DiSP: Distillation via Soft Prompts
	Baselines

	Experiments
	Setup
	TV-DiSP: Recovering Safety with Distillation
	Comparison Against Baselines
	Future Experiments

	Conclusions

