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ABSTRACT

Real-world data in fields such as economics, finance and neuroscience often ex-
hibit a lower resolution compared to the underlying causal process, with tempo-
rally aggregated data being a common example. While the impact of temporally
aggregated time series on temporal causal discovery has received attention, the
effects of highly aggregated data, which yield independent and identically dis-
tributed (i.i.d.) observations, on instantaneous (non-temporal) causal discovery
have been largely overlooked by the research community. There is substantial ev-
idence suggesting that temporally aggregated i.i.d. data are prevalent in reality.
This prevalence arises because the time required for causal interactions is often
considerably shorter than the observational interval, leading to a large aggregation
factor and subsequently rendering the temporally aggregated data i.i.d. The crit-
ical question arises: are causal discovery results obtained from such data consis-
tent with the true causal process? In this paper, we provide theoretical conditions
necessary to ensure the consistency of causal discovery results when analyzing
temporally aggregated i.i.d. data. Through a combination of theoretical analysis
and experimental validation, we demonstrate that conducting causal discovery on
such data often leads to erroneous results. Our primary objective is to bring atten-
tion to the risks associated with performing causal discovery on highly aggregated
i.i.d. data and advocate for a cautious and meticulous approach when interpreting
causal discovery outcomes derived from such data.

1 INTRODUCTION

Causal discovery methods, which aim to uncover causal relationships from observational data, have
been extensively researched and utilized across multiple disciplines including computer science,
economics, and social sciences (Pearl, 2009; Spirtes et al., 2000). These methods can be broadly
categorized into two types. The first type is temporal causal discovery, which is specifically designed
for analyzing time series data. Examples of this type include the Granger causality test (Granger,
1969) and its variants. The second type is instantaneous (non-temporal) causal discovery, which
is applicable to independent and identically distributed (i.i.d.) data. This category encompasses
various approaches such as constraint-based, score-based, and functional causal model (FCM)-based
methods like PC (Spirtes et al., 2000), GES (Chickering, 2002), and LiNGAM (Shimizu et al.,
2006). All these methods, whether temporal or non-temporal, are premised on the assumption that
the causal frequency aligns with the observation frequency.

In real-world scenarios, the causal frequency is often unknown, which means that the available
observations may have a lower resolution than the underlying causal process. An instance of this
is annual income, which is an aggregate of monthly or quarterly incomes (Drost & Nijman, 1993).
Furthermore, it is widely believed that causal interactions occur at high frequencies in fields such
as economics (Ghysels et al., 2016) and neuroscience (Zhou et al., 2014). Extensive research has
been conducted to explore the effects of temporal aggregation on time series modeling (Ghysels
et al., 2016; Marcellino, 1999; Silvestrini & Veredas, 2008; Granger & Lee, 1999; Rajaguru &
Abeysinghe, 2008). These works typically consider small aggregation factor k1 and still treat the
temporal aggregation from causal processes as a time series.

1The ”aggregation factor k” refers to the number of data points from the underlying causal process that are
combined to form each observed data point. It is also called the aggregation level or aggregation period.
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However, in many real-world scenarios, the temporal aggregation factor can be quite large. In these
cases, what was originally a time-delayed causal relationship can appear as an instantaneous causal
relationship when observed. Data that was originally time-series can also become i.i.d. data. An
example commonly used in statistics and econometrics textbooks to illustrate correlation, causation,
and regression analysis is the influence of temperature on ice cream sales. Intuitively, one might
think that the average daily temperature has an instantaneous causal effect on the total daily ice
cream sales. However, in reality, the causal process involves a time lag: a high temperature at a
specific past moment influences people’s decision to purchase ice cream, which then leads to a sales
transaction at a subsequent moment. Unfortunately, we often lack access to these precise moment-
to-moment details. Instead, we typically work with temporally aggregated data, such as the average
daily temperature and the total daily ice cream sales, which represent the sum of all individual
sales transactions over the day. As a result of this aggregation, the original time-delayed causal
relationship becomes an instantaneous causal relationship when observed.

Interestingly, the causality community has long acknowledged the significance of temporal aggre-
gation as a common real-world explanation for instantaneous causal models like the structural equa-
tion model. Fisher (1970) argued that simultaneous equation models serve as approximations of
true time-delayed causal relationships driven by temporal aggregation in the limit. He emphasized
that while causation inherently involves a temporal aspect, as the reaction interval tends to zero, the
aggregation factor k tends to infinity. Granger (1988) shared a similar view and claimed that “tempo-
ral aggregation is a realistic, plausible, and well-known reason for observing apparent instantaneous
causation”. This explanation has been consistently used in recent causal discovery papers, especially
those discussing cyclic models (Rubenstein et al., 2017; Lacerda et al., 2012; Hyttinen et al., 2012).

When applying causal discovery methods to uncover instantaneous causal relationships resulting
from temporal aggregation, a fundamental question arises: Are these instantaneous causal relation-
ships consistent with the true time-delayed causal relationships? This issue is crucial because our
primary concern lies in discerning the true causal relations. If the results obtained by the instanta-
neous causal discovery methods do not align with the true causal relationship, the results will hold
no meaningful value. Regrettably, few studies have examined the alignment of these “spurious”
instantaneous causal relationships stemming from temporal aggregation with the true time-delayed
causal relationships. The only theoretical analysis we could find related to this question is given
by Fisher (1970) and Gong et al. (2017). We will delve into a comprehensive discussion of their
contributions in section 2.

In this paper, we primarily investigate under what conditions and to what extent we can recover true
causal information from temporally aggregated data. The primary aim is to alert the community to
the potential impact of temporal aggregation on the results of non-temporal causal discovery when
analyzing real-world data. Since we aim to recover the causal structure of the true causal process
from temporally aggregated data, we hope that the aggregated data maintain some consistency with
the true causal process. We categorize this consistency into functional consistency and conditional
independence consistency, which respectively correspond to the recoverability of FCM-based and
constraint-based causal discovery methods. For functional consistency, we find it difficult to hold
in the nonlinear case. Even in the linear non-Gaussian case, functional-based causal discovery loses
its identifiability because temporal aggregation will change non-Gaussian noise to Gaussian noise.
As for conditional independence consistency, it cannot be guaranteed in the general case either.
However, it is less strict than functional consistency because partial linearity is sufficient for it.

2 RELATED WORK

Fisher (1970) established the corresponding relationship between the simultaneous equation model
and the true time-lagged model, providing the conditions to ensure such correspondence. His analy-
sis encompassed both linear and general cases. Roughly speaking, he conducted theoretical analysis
to show that this correspondence can be ensured when the function of the equation has a fixed point.
However, the assumptions he employed were quite restrictive, assuming that the value of noise is
fixed for all the causal reactions during the observed interval. Some subsequent studies have also
adopted this assumption (Rubenstein et al., 2017; Lacerda et al., 2012). This assumption is too
strong, as it implies that noise in the causal reaction is only related to our observation. Actually, the
noise defined in structural causal models or functional causal models also represents unobserved or
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unmeasured factors that contribute to the variation in a variable of interest, rather than being merely
observational noise.

Gong et al. (2017) adopted a more reasonable and flexible assumption in their work. They defined
the original causal process as a vector auto-regressive model (VAR) Xt = AXt−1 + et and allowed
for the randomness of the noise et in the observation interval. They gave a theoretical analysis
showing that, in the linear case and as the aggregation factor tends to infinity, the temporally aggre-
gated data X becomes i.i.d. and compatible with a structural causal model X = AX + e. In this
model, matrix A is consistent with the matrix A in the original VAR. This suggests that high levels
of temporal aggregation preserve functional consistency in the linear case. However, their study
only considers the linear case and lacks analysis for general cases.

To the best of our knowledge, our paper is the first to specifically discuss the risks and feasibility of
performing instantaneous causal discovery methods on temporally aggregated data in general cases.

3 FUNCTIONAL CONSISTENCY: RECOVERABILITY OF FCM-BASED
METHODS

FCM-based methods make stronger assumptions and utilize more information beyond just condi-
tional independence. Thus, they can distinguish cause from effect from observational data under the
functional assumptions. If we want to ensure the reliability of the results from FCM-based causal
discovery on temporally aggregated data, we need some functional consistency between the process
of temporally aggregated data and the true causal process.

3.1 DEFINITIONS AND PROBLEM FORMULATION

In this section, aligning with the settings in Gong et al. (2017), our research focuses on the general
VAR(1) model Xt = f(Xt−1, et), which serves as the underlying causal process. More specifically,
we assume the underlying causal process can be described by a VAR(1):

Xt = f(Xt−1, et), t ≥ 2,

where Xt = (X
(1)
t , X

(2)
t , . . . , X

(s)
t )T is the observed data vector at time t, s is the dimension of the

random vector. f is a vector-valued function R2s → Rs, and et = (e
(1)
t , . . . , e

(s)
t )T denotes a tem-

porally and contemporaneously independent noise process. When mentioning VAR in our paper, we
refer to the general VAR model defined above, which includes both linear and nonlinear functions.
The initial data vector X1 is assumed to follow a distribution with independent components.

The temporally aggregated time series of this process, denoted by Xt, is defined as:

Xt =

∑k
i=1 Xi+(t−1)k

g(k)
. (1)

In this paper, we only consider cases where k is large. In such cases, we treat the temporally
aggregated data as i.i.d. data and we will drop the subscript t in Eq. 1 from now on. g(k) generally
requires lim

k→∞
g(k) = +∞, like g(k)=k, but when discussing aggregation of instantaneous causal

model and k is finite, the choice of g(k) doesn’t matter, it can also be g(k)=1.

Definition 1 (Functional Consistency). Consider an underlying causal process generating tempo-
rally aggregated data. This process is said to exhibit functional consistency if there exists a function
f̂ such that for any realization of the states X1:k, and the independent noises encountered in the
process e2:k+1, the temporally aggregated data X satisfies the equation X = f̂(X, e). Here, e
denotes a noise vector comprising independent components only depend on e2:k+1.

This definition implies that if functional consistency holds, then the aggregated data can at least be
represented as a Structural Causal Model (SCM) in vector form, and the source of independent noise
aligns with the underlying process. Please note that we allow the generative mechanism f̂ to differ
from the underlying causal function f . However, even with this allowance, achieving functional
consistency in the nonlinear case remains challenging, as we will demonstrate in this section.
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Following this definition, we will provide answers to this question: Under what conditions can we
ensure functional consistency for temporal aggregation? According to the definition of temporal
aggregation:

X =
1

g(k)

k+1∑
i=2

Xi +
X1 −Xk+1

g(k)
=

1

g(k)

k∑
i=1

f(Xi, ei+1) +
X1 −Xk+1

g(k)
.

When k becomes larger(see Appendix F for what k value is large enough in practice), the second
term X1−Xk+1

g(k) will tend to 0. Thus, we will mainly consider under which conditions we can have:

1

g(k)

k∑
i=1

f(Xi, ei+1) = f̂(
1

g(k)

k∑
i=1

Xi, e) = f̂(X, e)

holds for some e with independent components. The linear case is straightforward, which is already
solved by Fisher (1970); Gong et al. (2017). This is because in linear case 1

g(k)

∑k
i=1 f(Xi, ei+1) =∑k

i=1(AXi+ei+1)√
k

= AX + e.

3.2 FINITE K

The choice of g(k) is linked to the random process’s asymptotic behavior. Since we do not make
any assumptions about distribution on Xt here, we cannot determine g(k) or establish the limit of
temporal aggregation, because several elements are not well-defined, making it difficult to ascertain
its convergence. Therefore, we have to conduct the analysis in the finite case first. If this equation
holds in the finite case, it will definitely hold in the infinite case.

We then arrive at the following theorem:

Theorem 1. Consider a function f(X, e) that is differentiable with respect to X . Define the follow-
ing:

Statement 1: The function f is of the form f(x, e) = Ax+ f2(e) for some function f2.

Statement 2: For any positive integer k, there exists a function f̂ such that the functional equation∑k
i=1 f(Xi,ei+1)

g(k) = f̂(X, e) holds for any Xi, ei, and any normalization factor g(k), where e is
related only to ei for i = 2, . . . , k + 1.

Statement 1 is a necessary condition for Statement 2.

See Appendix A for the proof. From this theorem, we realize that it is very difficult to relax the
linearity assumption to ensure functional consistency. It means that if the underlying process is
nonlinear, applying nonlinear FCM-based causal discovery methods on the aggregated data cannot
ensure correct discovery.

3.3 INFINITE K

We have demonstrated that when the model is linear, the time-delay function can be preserved
in simultaneous equations. And from the theorem 1, we know relaxing this linearity to ensure
consistency with finite k is highly challenging. Yet, we are going to present a more negative result:
even in the linear non-Gaussian case, which perfectly fits the requirements of many function-based
causal discovery methods (Shimizu et al., 2006), we still cannot guarantee identifiability when k is
large.

Consider the linear model that preserves the functional structure:X = AX + e. When ei is non-
Gaussian, we can identify the adjacency matrix A for finite values of k. This is due to the fact
that e =

∑k
i=1 ei√
k

remains non-Gaussian. However, as k increases, e will converge to a Gaussian
distribution as a consequence of the central limit theorem. Consequently, the model becomes linear
Gaussian, rendering it unidentifiable. Our simulation experiments in 5.1 demonstrate that the model
becomes unidentifiable rapidly as k increases.
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4 CONDITIONAL INDEPENDENCE CONSISTENCY: RECOVERABILITY OF
CONSTRAINT-BASED METHOD

Constraint-based causal discovery methods utilize conditional independence to identify the Markov
equivalence classes of causal structures. These methods heavily rely on the faithfulness assumption,
which posits that every conditional independence in the data corresponds to a d-separation in the
underlying causal graph.

The information utilized by constraint-based causal discovery methods is less than that used
by FCM-based methods. This implies that the consistency we require for the recoverability of
constraint-based methods on temporally aggregated data is less stringent than functional consis-
tency. In essence, we only need the temporally aggregated data to preserve the conditional indepen-
dence of the summary graph of the underlying causal process. If the temporal aggregation maintains
such conditional independence consistency, then the constraint-based causal discovery method can
recover the Markov equivalence class of the summary graph entailed by the underlying true causal
process.

4.1 DEFINITIONS AND PROBLEM FORMULATION

To examine whether the temporally aggregated data preserves the conditional independence consis-
tency with the summary graph of the underlying causal process, we will discuss the three fundamen-
tal causal structures of the summary graph: the chain, the fork, and the collider. We will provide
theoretical analysis for each of these three fundamental cases respectively.

In subsection 3.1, we assume the original causal process is VAR(1) and we work with the temporal
aggregation of it. But in this section, for analytical convenience we will assume the original model
is an aligned version of VAR(1), and work with the temporal aggregation of it. We will show this
alignment is reasonable because the temporal aggregation of these two original processes is the same
when k is large.

4.1.1 ALIGNED MODEL

In the true causal process, all the causal effects between different components are cross-lagged
effects from the previous state of components to the current state of other components.

Figure 1: Left: Directed acyclic graph for the VAR model with chain-like cross lag effects. Right:
The corresponding summary graph.

See Figure 1 as an example. The summary graph of this VAR is a chain structure involving triple
variables. But the chain structure actually occurs in a lagged form: Xt → Yt+1 → Zt+2

2. For
analytical convenience, we will perform an alignment X ′

t := Xt, Y
′
t = Yt+1, Z

′
t := Zt+2 to make

the causal effect instantaneous. We refer to this as the aligned model. In the example of chain-like
VAR, the aligned model is in the red box in the Figure 1.

While instantaneous causal relationships are considered unlikely in the real world, this alignment
is reasonable for theoretical analysis. This is because our focus is actually on the temporally ag-
gregated data. When k is large, the temporal aggregation from the original VAR and the aligned

2Here Xt represents a one-dimensional variable. Starting from this section, Xt and X represent a one-
dimensional variable, and we will use X, Y, Z,... to represent the different components of multivariate time
series, instead of using X(1),...,X(s) as defined in 3.1.
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model is exactly the same: as k approaches infinity, the temporally aggregated data (X ′, Y ′, Z ′)
tends towards (X,Y , Z). This can be demonstrated by the following equalities: Since g(k) → ∞,
we have

Y ′ − Y =

∑k+1
i=2 Yi

g(k)
−

∑k
i=1 Yi

g(k)
=

Yk+1 − Y1

g(k)
→ 0,

Z ′ − Z =

∑k+2
i=3 Zi

g(k)
−

∑k
i=1 Zi

g(k)
=

Zk+2 + Zk+1 − Z1 − Z2

g(k)
→ 0,

as k → ∞.
Definition 2 (Aligned Model with Instant Structures). The aligned model for VAR model with struc-
ture function fX , fY , fZ incorporating chain-like cross lag effect is given by:

X0, Y0, Z0 are independent and follow the initial distribution. when t ≥ 1,

Chain-like Model: Xt = fX(Xt−1, eX,t), Yt = fY (Xt, Yt−1, eY,t), Zt = fZ(Yt, Zt−1, eZ,t),

Fork-like Model: Xt = fX(Xt−1, Yt, eX,t), Yt = fY (Yt−1, eY,t), Zt = fZ(Yt, Zt−1, eZ,t),

Collider-like Model: Xt = fX(Xt−1, eX,t), Yt = fY (Xt, Yt−1, Zt, eY,t), Zt = fZ(Zt−1, eZ,t),

where fX , fY , fZ are general functions. eX,t, eY,t, eZ,t are independent random variables with
non-zero variance, which are independent of each other and they are identically distributed and
independent across time t.

The temporal summation and aggregation are denoted as SX :=
∑k

i=1 Xi, X := SX

g(k) , and sim-

ilarly for SY , Y , SZ , and Z. When k is finite, SX , SY , and SZ have the same conditionally
independent relationship with X , Y , and Z, respectively. Therefore, for simplicity, we analyze SX ,
SY , and SZ when k is finite.

The figures of the aligned models of three fundamental structure involving temporal aggregation
variables are presented in Figure 2.

Figure 2: Left: Chain-like aligned model. Center: Fork-like aligned model. Right: Collider-like
aligned model.

4.1.2 PROBLEM FORMULATION

Definition 3 (Summary Graph). Aligned with Peters et al. (2013); Gong et al. (2023), each time
series component is collapsed into a node to form the summary causal graph. The summary graph
represents causal relations between time series without referring to time lags. If there is an arrow
from Xi,t−k to Xj,t in the original process for some k ≥ 0, then it is represented in the summary
graph.
Definition 4 (Conditional Independence Consistency). Consider an underlying causal process gen-
erating temporally aggregated data. This process is said to exhibit conditional independence con-
sistency if the distribution of temporally aggregated data entails a conditional independence set that
is consistent with the d-separation set in the summary graph entailed by the original process.

We will address the problem of determining the conditions under which temporal aggregation pre-
serves conditional independence consistency in three fundamental causal structures: chain, fork, and
collider.
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4.2 NECESSARY AND SUFFICIENT CONDITIONS FOR CONSISTENCY

For the figure of a chain or fork structure, we expect the middle node can d-separate the nodes on
both sides. However, from the structure of Figure 2 Left and Center, we can find that all adjacent
nodes of Y point to Y . Therefore, when we condition on Y , we cannot block any path.

For the figure of a collider structure, we expect the nodes on both sides are unconditionally in-
dependent and when conditioned on the middle node, the nodes on both sides will be dependent.
Fortunately, from the structure of Figure 2 Right, we can find that all the Yt are collider for Xt and
Zt so X ⊥⊥ Z unconditionally. And because Y is a descendant of these colliders, when we condition
on Y , the path involving Xt and Zt will be open. As a result, X is dependent with Z conditional on
Y .
Remark 1 (Conditional Independence Consistency under Faithfulness Condition). Assume the
aligned models satisfy the causal Markov condition and causal faithfulness condition.

• The conditional independent sets of temporal aggregation of chain-like/fork-like aligned
model is ∅, which is not consistent with the chain/fork structure.

• The conditional independent sets of temporal aggregation of collider-like aligned model is
X ⊥⊥ Z, which is consistent with the collider structure.

This remark emphasizes that in general cases, the temporal aggregation of a model with chain-/fork-
like structure does not exhibit the same conditional independence as a genuine chain or fork structure
under the faithfulness assumption. As a result, we will explore the conditions required to ensure the
validity of the conditional independence X ⊥⊥ Z | Y in the context of temporal aggregation.
Theorem 2 (Necessary and Sufficient Condition for Conditional Independence Consistency of
Chain and Fork Structure). Consider the distribution of (SX , SY , SZ , Y1, ..., Yk) entailed from the
aligned model, the following statements are equivalent when 2 ≤ k < ∞:

(i) Conditional Independence: SX ⊥⊥ SZ | SY

(ii) Conditional Probability Relation: ∀sX , sY , sZ ∈ R∫∫
Rk

α(sZ , sY , y1:k) (β(y1:k, sY , sX)− γ(y1:k, sY )) dy1... dyk = 0 (2)

(iii) Alternative Conditional Probability Relation: ∀sX , sY , sZ ∈ R∫∫
Rk

α∗(sX , sY , y1:k) (β
∗(y1:k, sY , sZ)− γ(y1:k, sY )) dy1... dyk = 0 (3)

where

• α(sZ , sY , y1:k) := pSZ |SY ,Y1:k
(sZ |sY , y1:k)

• β(y1:k, sY , sX) := pY1:k|SY ,SX
(y1:k|sY , sX)

• α∗(sX , sY , y1:k) := pSX |SY ,Y1:k
(sX |sY , y1:k)

• β∗(y1:k, sY , sX) := pY1:k|SY ,SX
(y1:k|sY , sX)

• γ(y1:k, sY ) := pY1:k|SY
(y1:k|sY )

See Appendix B for the proof. From this sufficient and necessary condition, we find that the in-
tegrand can be divided into two parts. For example, the integrand in formula 2 can be divided
into two parts. The first part is pSZ |SY ,Y1:k

(sZ |sY , y1:k). Because Y1, ...Yk d-separate SZ from
X1, ..., Xk perfectly, this part is related to the causal mechanism between Y and Z. The second part(
pY1:k|SY ,SX

(y1:k|sY , sX)− pY1:k|SY
(y1:k|sY )

)
is related to the causal mechanism between Y and

Z. This inspires us to consider different parts of the model individually.
Corollary 1 (Sufficient Conditions for Conditional Independence). If {SX ⊥⊥ Y1:k | SY } or {SZ ⊥
⊥ Y1:k | SY } holds, then SX ⊥⊥ SZ | SY holds.

Proof can be found in Appendix B. This corollary has a very intuitive interpretation: when the
information needed to infer SX from Y1:k is completed included in SY , then conditioning on SY is
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equivalent to conditioning on Y1:k. In this case, Y1:k d-separate SX from SZ . The same principle
applies to SZ . When does the information to infer SX /SZ from Y1:k is completely included in SY ?
Corollary 2 (Partial Linear Conditions).

1. For a fork-like aligned model:

• If fZ(Yt, Zt−1, eZ,t) is of the form α ∗ Yt + et, where α can be any real number, then
SZ ⊥⊥ Y1:k | SY .

• If fX(Xt−1, Yt, eX,t) is of the form α ∗Yt+ et, where α can be any real number, then
SX ⊥⊥ Y1:k | SY .

2. For a chain-like aligned model:

• If fZ(Yt, Zt−1, eZ,t) is of the form α ∗ Yt + et, where α can be any real number, then
SZ ⊥⊥ Y1:k | SY .

• If the time series is stationary and Gaussian, and fY (Xt, Yt−1, eY,t) is of the form
α ∗Xt + et, where α can be any real number, then SX ⊥⊥ Y1:k | SY .

Proof can be found in Appendix B. Roughly speaking, this corollary suggests that if the causal
relationship between X/Z and Y is linear, then the information needed to infer SX /SZ from Y1:k is
completely included in SY . Further, based on the sufficient condition for conditional independence
(refer to Corollary 1), we can see that it is not necessary for the entire system to be linear.

5 SIMULATION EXPERIMENTS

We conducted five experiments to comprehensively address the various aspects of the aggrega-
tion problem. Firstly, we applied widely-used causal discovery methods(PC(Peters et al., 2013),
FCI(Peters et al., 2013), GES(Chickering, 2002)) to aggregation data with 4 variables, enabling read-
ers to grasp the motivation and core issue discussed in this paper. Secondly and thirdly, we conducted
experiments on functional consistency(apply Direct LiNGAM(Shimizu et al., 2011)/ANM(Hoyer
et al., 2008) to linear/nonlinear data with different aggregation levels) and conditional independence
consistency(perform Kernel Conditional Independence test(Zhang et al., 2012) on aggregated data)
to bolster the theorems presented in the main text. Fourthly, we carried out an experiment to inves-
tigate the impact of the k value and to justify the approximations made in this paper. Fifthly, we
performed the PC algorithm with a skeleton prior on aggregated data and consistently obtained cor-
rect results, offering a preliminary solution to the aggregation problem and laying the groundwork
for future research in this area. Due to the page limit, we present only a limited number of results in
the main text. Detailed settings and results of the five experiments can be found respectively in the
Appendices: C, D, E, F, and G.

5.1 FCM-BASED CAUSAL DISCOVERY IN LINEAR NON-GAUSSIAN CASE

Figure 3: Relationship be-
tween the aggregation factor
k and the performance of the
Direct LiNGAM method.

Here we examine the use of a FCM-based causal discovery method
on bivariate temporally aggregated data in the linear non-Gaussian
case to distinguish between cause and effect. Specifically, we em-
ploy the Direct LiNGAM method to represent FCM-based causal
discovery methods.

We perform a simulation experiment on the model Yi = 2Xi+eY,i,
where the noise follow uniform distribution. We then generating
the dataset X,Y with a sample size of 10,000. We apply the Direct
LiNGAM method on this dataset to determine the causal order.

To investigate the relationship between the aggregation factor k and
the performance of the Direct LiNGAM method, we vary the values
of k from 1 to 100 to see the correct rate in 100 repetitions.

Our results indicate that when k is small, the correct rate is near
100%, implying a good performance of the Direct LiNGAM method. However, as k increases from
3 to 30, the correct rate drops rapidly to 50% as random guess. This experiment demonstrates that
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even in the linear non-Gaussian case, temporal aggregation can significantly impair the identifiability
of functional-based methods relying on non-Gaussianity.

5.2 CONDITIONAL INDEPENDENCE TEST IN GAUSSIAN CASE

We perform experiments using three different structures: chain, fork, and collider to validate our
theoretical results.

In all structures, each noise term e follows an independent and identically distributed (i.i.d) stan-
dard Gaussian distribution. For the causal relationship between X and Y , we use the function
f(·, e). In the linear case, f(·) = (·). In the nonlinear case, we use the post-nonlinear model
f(·, e) = G(F (·) + e) (Zhang & Hyvarinen, 2012) and uniformly randomly pick F and G from
(·)2, (·)3, and tanh(·) for each repetition. This is to ensure that our experiment covers a wide range
of nonlinear cases. Similarly, the same approach is applied for the relationship between Y and Z
with the corresponding function g(·).
We set t=1,2, SX = X1 + X2, SY = Y1 + Y2, SZ = Z1 + Z2. And we generate 1000 i.i.d. data
points for (X1, X2, Y1, Y2, SX , SY ) and feed them into the approximate kernel-based conditional
independence test (Strobl et al., 2019). We test the null hypothesis(conditional independence) for
(I) SX ⊥⊥ SY , (II) SY ⊥⊥ SZ , (III) SX ⊥⊥ SZ , (IV) SX ⊥⊥ SY | SZ , (V) SY ⊥⊥ SZ | SX , (VI)
SX ⊥⊥ SZ | SY . We also test for the conditional independence in corollary 1: (A) SX ⊥⊥ Y1 | SY ,
and (B) SZ ⊥⊥ Y1 | SY . We report the rejection rate for fork structure at a 5% significance level in
100 repeated experiments in Table 2b. The results for chain structure and collider structure can be
found in Appendix 2a.

Table 1: Rejection rates for CIT tests with different combinations of linear and nonlinear relation-
ships. The index in the box represents the conditional independence that the structure should ideally
have. Simply speaking, for the column VI, the closer the rejection rate is to 5%, the better. For all
other columns from I to V, a higher rate is better.

Xt → Yt Yt → Zt I II III IV V VI A B

Linear Linear 100% 100% 100% 100% 100% 5% 6% 5%
Nonlinear Linear 92% 100% 84% 92% 100% 5% 76% 5%
Linear Nonlinear 100% 93% 85% 100% 93% 5% 5% 71%

Nonlinear Nonlinear 92% 93% 72% 86% 87% 58% 72% 74%

The experiment shows that as long as there is some linearity, we can find a consistent conditional
independence set, which aligns with Corollary 2. However, in completely non-linear situations, we
still cannot find a consistent conditional independence set, which aligns with Remark 1.

6 CONCLUSION AND LIMITATION

This paper points out that although many people use the occurrence of instantaneous causal rela-
tionships due to temporal aggregation as a real-world explanation for instantaneous models, few
people pay attention to whether these instantaneous causal relationships are consistent with the un-
derlying time-delayed causal relationships when this situation occurs. This paper mainly discusses
whether the causal models generated by temporal aggregation maintain functional consistency and
conditional independence consistency in general (nonlinear) situations. Through theoretical analy-
sis in the case of finite k, we show that functional consistency is difficult to achieve in non-linear
situations. Furthermore, through theoretical analysis and experimental verification in the case of
infinite k, we show that even in linear non-Gaussian situations, the instantaneous model generated
by temporal aggregation is still unidentifiable. For conditional independence consistency, we show
through sufficient and necessary conditions and experiments that it can be satisfied as long as the
causal process has some linearity. However, it is still difficult to achieve in completely non-linear
situations.

Limitations: Although the negative impact of temporal aggregation on instantaneous causal discov-
ery has been pointed out, a solution has not been provided.
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A PROOF FOR NECESSARY CONDITION OF FUNCTIONAL CONSISTENCY

Theorem. Consider a function f(X, e) that is differentiable with respect to X . Define the following:

Statement 1: The function f is of the form f(x, e) = Ax+ f2(e) for some function f2.

Statement 2: For any positive integer k, there exists a function f̂ such that the functional equation∑k
i=1 f(Xi,ei+1)

g(k) = f̂(X, e) holds for any Xi, ei, and any normalization factor g(k), where e is
related only to ei for i = 2, . . . , k + 1.

Statement 1 is a necessary condition for Statement 2.

Proof. Suppose the functional equation∑k
i=1 f(Xi, ei+1)

g(k)
= f̂(X, e) (4)

holds, where e is dependent only on {ei}n+1
i=2 . Setting k = 2, we have f(X, e1)+f(0, e2) = f̂(X, e)

and f(0, e1)+f(X, e2) = f̂(X, e) and please note e is the same in both equations because e is only
related to e1, e2. Then we obtain:

f(X, e1) + f(0, e2) = f(0, e1) + f(X, e2) (5)

for all X , e1, and e2.

Given that f(X, e) is differentiable with respect to X , we can differentiate both sides of the equation
to yield:

∂f(X, e1)

∂X
=

∂f(X, e2)

∂X
. (6)

Due to the arbitrariness of e1 and e2, this implies that ∂f(X,e)
∂X is independent of e. Hence, it follows

that f must have the form: f(X, e) = f1(X) + f2(e) for some functions f1 and f2. Let’s assume
f1(0) = 0(this is always achievable because the constant term f1(0) can be incorporated into f2).

Let k = 2, and g(2) = 1. Then, for any X1, e1, X2, e2, we have:
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f(X1, e1) + f(X2, e2) = f1(X1) + f1(X2) + f2(e1) + f2(e2) (7)

And due to equation 4, we have:

f(X1, e1) + f(X2, e2) = f1(X1) + f1(X2) + f2(e1) + f2(e2) = f̂(X1 +X2, e) (8)

Because f̂(X1 +X2, e)− f1(e1)− f2(e2) = f1(X1) + f1(X2) is independent with e1, e2, we can
denote:

h(X1 +X2) := f̂(X1 +X2, e)− f1(e1)− f2(e2) = f1(X1) + f1(X2) (9)

Set X1 = X,X2 = 0, we have:

h(X) = f1(X) + f1(0) = f1(X)

Now we obtain h ≡ f1. Thus, equation 9 imply:

f1(X1) + f1(X2) = f1(X1 +X2)

for all X1 and X2.

Given that f1 is differentiable, and by Cauchy’s functional equation Kuczma (2009), it follows that
f1(X) = AX for some matrix A. Thus, the function f takes the form f(X, e) = AX + f2(e),
concluding the proof.

B PROOFS FOR CONDITIONS OF CONDITIONAL INDEPENDENCE
CONSISTENCY

Theorem 3 (Necessary and Sufficient Condition for Conditional Independence Consistency). Con-
sider the distribution of (SX , SY , SZ , Y1, ..., Yk) entailed from the aligned model, the following
statements are equivalent when 2 ≤ k < ∞:

(i) Conditional Independence: SX ⊥⊥ SZ | SY

(ii) Conditional Probability Relation: ∀sX , sY , sZ ∈ R∫∫
Rk

α(sZ , sY , y1:k) (β(y1:k, sY , sX)− γ(y1:k, sY )) dy1... dyk = 0 (10)

(iii) Alternative Conditional Probability Relation: ∀sX , sY , sZ ∈ R∫∫
Rk

α∗(sX , sY , y1:k) (β
∗(y1:k, sY , sZ)− γ(y1:k, sY )) dy1... dyk = 0 (11)

where

• α(sZ , sY , y1:k) := pSZ |SY ,Y1:k
(sZ |sY , y1:k)

• β(y1:k, sY , sX) := pY1:k|SY ,SX
(y1:k|sY , sX)

• α∗(sX , sY , y1:k) := pSX |SY ,Y1:k
(sX |sY , y1:k)

• β∗(y1:k, sY , sX) := pY1:k|SY ,SX
(y1:k|sY , sX)

• γ(y1:k, sY ) := pY1:k|SY
(y1:k|sY )

Proof. The proof will proceed by showing that statements (i), (ii), and (iii) are mutually equivalent.

Proof that (i) is equivalent to (ii): Suppose that SX ⊥⊥ SZ | SY holds. By the definition of
conditional independence, this is equivalent to the statement that for all sX , sY , and sZ in R, we
have pSZ |SY ,SX

(sZ |sY , sX) = pSZ |SY
(sZ |sY ).
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We can now derive both sides of this equation as follows.

On the left hand side(LHS):

pSZ |SY ,SX
(sZ |sY , sX)

=
pSZ ,SY ,SX

(sZ , sY , sX)

pSY ,SX
(sY , sX)

=

∫∫
Rk pSZ |SY ,SX ,Y1:k

(sZ |sY , sX , y1:k)pSY ,SX ,Y1:k
(sY , sX , y1:k)dy1...dyk

pSY ,SX
(sY , sX)

=

∫∫
Rk

pSZ |SY ,Y1:k
(sZ |sY , y1:k)pY1:k|SY ,SX

(y1:k|sY , sX)dy1...dyk

=

∫∫
Rk

α(sZ , sY , y1:k)β(y1:k, sY , sX)dy1...dyk

The first steps is based on the definition of conditional probability and the second step uses the law
of total probability. The third step is using the d-separation: {Y1, . . . , Yk} d-separates SZ from SX .

Meanwhile, RHS:

pSZ |SY
(sZ |sY )

=
pSZ ,SY

(sZ , sY )

pSY
(sY )

=

∫∫
Rk pSZ |SY ,Y1:k

(sZ |sY , y1:k)pSY ,Y1:k
(sY , y1:k)dy1...dyk

pSY
(sY )

=

∫∫
Rk

α(sZ |sY , y1:k)γ(y1:k, sY )dy1...dyk

Finally, substitute both to the original equality:

pSZ |SY ,SX
(sZ |sY , sX)− pSZ |SY

(sZ |sY )

=

∫∫
Rk

α(sX , sY , y1:k) (β(y1:k, sY , sZ)− γ(y1:k, sY )) dy1... dyk

= 0

Hence, we arrive at the condition specified in (ii).

Proof that (i) is equivalent to (iii): The proof that (i) and (iii) are equivalent is analogous to the above
arguments. We therefore omit the details for brevity.

Corollary (Sufficient Conditions for Conditional Independence). If {SX ⊥⊥ Y1:k | SY } or {SZ ⊥⊥
Y1:k | SY } hold, then SX ⊥⊥ SZ | SY holds.

Proof. This corollary introduces two sufficient conditions for conditional independence. While the
proofs for each are analogous, we demonstrate the proof for the first condition to avoid redundancy.

Proof that {SX ⊥⊥ Y1:k | SY } implies SX ⊥⊥ SZ | SY :

Assume that {SX ⊥⊥ Y1:k | SY } is true. By definition, this is equivalent to

pY1:k|SY ,SX
(y1:k|sY , sX) = pY1:k|SY

(y1:k|sY )

for all sX , y1:k, and sY . Utilizing the notation from Theorem 2, we can rewrite this as

β(y1:k, sY , sX) = γ(y1:k, sY ).
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This simplification makes it clear that the equality conforms to the second condition of Theorem 2,
which is

∫∫
Rk

α(sZ , sY , y1:k) (β(y1:k, sY , sX)− γ(y1:k, sY )) dy1... dyk = 0.

Because this holds for all sX , sY , and sZ in R, it follows that SX ⊥⊥ SZ | SY is true, completing
our proof.

Corollary. 1. For a fork-like aligned model:

• If fZ(Yt, Zt−1, eZ,t) is of the form α ∗ Yt + et, where α can be any real number, then
SZ ⊥⊥ Y1:k | SY .

• If fX(Xt−1, Yt, eX,t) is of the form α ∗Yt+ et, where α can be any real number, then
SX ⊥⊥ Y1:k | SY .

2. For a chain-like aligned model:

• If fZ(Yt, Zt−1, eZ,t) is of the form α ∗ Yt + et, where α can be any real number, then
SZ ⊥⊥ Y1:k | SY .

• If the time series is stationary and Gaussian, and fY (Xt, Yt−1, eY,t) is of the form
α ∗Xt + et, where α can be any real number, then SX ⊥⊥ Y1:k | SY .

Proof. The proof for these four sufficient conditions is tied to the bivariate substructure within the
fork and chain models.

We categorize the bivariate substructures within these trivariate structures into two types. The first
type is where the middle node directs the side nodes, such as in the fork structure where the middle
node Y directs X and Z. There are two such substructures in the fork model and one in the chain
model where Y directs Z. The second type is where the side node directs the middle node, seen in
the chain model with X directing Y .

Due to the causal direction in the bivariate structure, the sufficient conditions for SZ ⊥⊥ Y1:k | SY

and SX ⊥⊥ Y1:k | SY in the fork, and SZ ⊥⊥ Y1:k | SY in the chain are similar and share a similar
proof. The sufficient condition for SX ⊥⊥ Y1:k | SY in the chain is different from the other three. To
avoid redundancy, we provide a proof for the sufficient condition for SZ ⊥⊥ Y1:k | SY in the chain;
the proof for the two conditions in the fork model is similar to this. We also provide the proof for
the sufficient condition for SX ⊥⊥ Y1:k | SY in the chain.

proof for sufficient condition of SZ ⊥⊥ Y1:k | SY in chain model:

Suppose fZ(Yt, eZ,t) = α ∗ Yt + eZ,t for some real number alpha. Then, by substitution, we get

SZ =

k∑
t=1

Zt

=

k∑
t=1

(αYt + eZ,t)

= αSY +

k∑
t=1

eZ,t

Given SY , the random part of SZ is only
∑k

t=1 eZ,t, which is independent of Y1:k. Therefore, it
follows that SZ ⊥⊥ Y1:k | SY .

proof for sufficient condition of SX ⊥⊥ Y1:k | SY in chain model:
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We will prove the case for k = 2, and it can be easily generalized to k ≥ 3. In the linear, Gaussian,
stationary model for k = 2, we have:

X1 ∼ N (0, σ2
X1

)

Y1 = αX1 + eY,1

X2 = βX1 + eX,2

Y2 = αX2 + eY,2

where eX,2 ∼ N (0, σ2
eX ), eY,1, eY,2 i.i.d. ∼ N (0, σ2

eY ). And due to stationarity, σ2
X1

=
σ2
eX

1−β2 .

In the linear Gaussian case, conditional independence implies that the partial correlation equals 0.
We have:

covSX ,Y1|SY
= covSX ,Y1 −

covSX ,SY
covY1,SY

varSY

covSX ,Y2|SY
= covSX ,Y2

− covSX ,SY
covY2,SY

varSY

where

cov(SX , Y1) = cov(X1, Y1) + cov(X2, Y1),

cov(SX , Y2) = cov(X1, Y2) + cov(X2, Y2),

cov(SX , SY ) = cov(SX , Y1) + cov(SX , Y2),

cov(Y1, SY ) = var(Y1) + cov(Y1, Y2),

cov(Y2, SY ) = var(Y2) + cov(Y1, Y2).

Substitute these into the partial covariance equations to get

covSX ,Y1·Z = covSX ,Y2·Z = 0

C CAUSAL DISCOVERY FROM AGGREGATED DATA

To investigate the direct effects of aggregation on causal discovery, we applied three widely-used
causal discovery methods on both the original and aggregated data, comparing the results in both
linear and nonlinear scenarios. The performance of these methods is measured using the correct rate
over 100 repetitions.

For data generation, in each repetition, the original data is generated based on the causal graph
shown in Figure 4. The causal relationships are defined as:

Z = X + Y + eZ ,

H = Z + eH (for linear);

Z = X2 + Y 2 + eZ ,

H = Z2 + eH (for nonlinear).

The aggregated data is the result of aggregation with a factor of k = 2 based on the aligned model
2, having an instant structure resembling the original data. All datasets have a sample size of 500.

Regarding the method parameters, we used the Fisher-Z test for PC and FCI, and the BIC score for
GES in the linear scenario. In the nonlinear scenario, we set the conditional independence test for
PC and FCI as the Kernel Conditional Independence Test (KCI) with the default kernel and chose the
“local score CV general” score function for GES. All other settings are kept at their default values.
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Figure 4: Causal graph of original data

Figure 5: Linear Case: Correction Rate by Causal Discovery Method

From Figure 5, we observe that, in the linear scenario, aggregation does not adversely affect the
performance of the causal discovery methods. This might explain why the causal community has
not prioritized the aggregation issue in instantaneous causal discovery for a long time.

Contrastingly, the nonlinear scenario paints a completely different picture, with aggregation causing
a significant drop in the performance of all three methods. It is crucial to rigorously investigate this
issue to understand its causes and potential solutions.

D EXPERIMENT FOR FUNCTIONAL CONSISTENCY

Determining the causal direction between two variables is an essential task in causal discovery. To
understand the impact of aggregation on this task, we employed two renowned FCM-based causal
discovery methods: Direct LiNGAM for the linear scenario and Additive Nonlinear Model (ANM)
for the nonlinear one. We assessed how the correct rate in 100 repetitions varies with the aggregation
factor k.

For data generation, it’s straightforward. The data is generated based on an aligned model with an
instantaneous causal relationship, given by:

Y = 2X + eY (for linear);

Y = X2 + eY (for nonlinear),

where the independent noise follows a standard uniform distribution. The sample size is 500.

16



Under review as a conference paper at ICLR 2024

Figure 6: Nonlinear Case: Correction Rate by Causal Discovery Method

Figure 7: Linear Case: Direct LiNGAM Correction Rate with Different Aggregation Factors k

From the presented figures, it’s evident that in the linear non-Gaussian case, the non-Gaussian distri-
bution increasingly approaches a Gaussian one as k grows. Eventually, Direct LiNGAM resembles
a random guess. It’s noteworthy that the x-axis range for the linear scenario spans from 0 to 50,
while for the nonlinear case, it’s from 0 to 10. This difference suggests that the performance of
ANM deteriorates faster than Direct LiNGAM. ANM is not reliant on non-Gaussian properties but
on additive noise. Aggregated data lacks functional consistency as the additive noise function is
disrupted by the aggregation, rendering ANM ineffective.
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Figure 8: Nonlinear Case: ANM Correction Rate with Different Aggregation Factors k

E EXPERIMENT FOR CONDITIONAL INDEPENDENCE CONSISTENCY

We conduct experiments using three different structures: chain, fork, and collider, to validate our
theoretical results in Section 4. However, due to space constraints, we only report the results for the
fork-like model in the main text. In this section, we will reiterate the experiment details and report
the complete results for chain, fork, and collider structures, along with a more detailed analysis.

The specific settings for these structures are as follows:

Chain-like Model: Xt = eX,t , Yt = f(Xt, eY,t) , Zt = g(Yt, eZ,t)

Fork-like Model: Xt = f(Yt, eX,t), Yt = eY,t, Zt = g(Yt, eZ,t)

Collider-like Model: Xt = eX,t , Yt = f(Xt, eY,t) + g(Zt, eY,t) , Zt = eZ,t

In all structures, each noise term e follows an independent and identically distributed (i.i.d) stan-
dard Gaussian distribution. For the causal relationship between X and Y , we use the function
f(·, e). In the linear case, f(·) = (·). In the nonlinear case, we use the post-nonlinear model
f(·, e) = G(F (·)+ e) Zhang & Hyvarinen (2012) and uniformly randomly pick F and G from (·)2,
(·)3, and tanh(·) for each repetition. This is to ensure that our experiment covers a wide range of
nonlinear cases. Similarly, the same approach is applied for the relationship between Y and Z with
the corresponding function g(·).
And t=1,2, SX = X1 + X2, SY = Y1 + Y2, SZ = Z1 + Z2. And we generate 1000 i.i.d. data
points for (X1, X2, Y1, Y2, SX , SY ) and feed them into the approximate kernel-based conditional
independence test Strobl et al. (2019). We test the null hypothesis(conditional independence) for (I)
SX ⊥⊥ SY , (II) SY ⊥⊥ SZ , (III) SX ⊥⊥ SZ , (IV) SX ⊥⊥ SY | SZ , (V)SY ⊥⊥ SZ | SX , (VI)SX ⊥⊥
SZ | SY . And we also test for the conditional independence in corollary 1: (A)SX ⊥⊥ Y1 | SY , and
(B)SZ ⊥⊥ Y1 | SY . We report the rejection rate, rounded to the nearest percent, at a 5% significance
level in 1000 repeated experiments in Table 2a, 2b, 2c.

This experiment support our theoretical results, suggesting that conditional independence consis-
tency can be ensured even with some nonlinearity in the model.

Specifically, let’s examine the results for chain and fork. We anticipate the tested conditional in-
dependence set to contain only SX ⊥⊥ SZ | SY . If so, we can assert that temporal aggregation
maintains conditional independence consistency.
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Table 2: Rejection rates for CIT tests with different combinations of linear and nonlinear relation-
ships. The index in the box represents the conditional independence that the structure should ideally
have. Simply speaking, for the column with the index in the box, the closer the rejection rate is to
5%, the better. For all other columns from I to VI, a higher rate is better.

(a) Chain Structure

Xt → Yt Yt → Zt I II III IV V VI A B

Linear Linear 100% 100% 100% 100% 100% 6% 4% 7%
Nonlinear Linear 92% 100% 89% 63% 100% 9% 27% 10%
Linear Nonlinear 100% 95% 87% 100% 94% 5% 6% 82%

Nonlinear Nonlinear 92% 86% 56% 89% 85% 18% 27% 39%

(b) Fork Structure

Xt → Yt Yt → Zt I II III IV V VI A B

Linear Linear 100% 100% 100% 100% 100% 5% 6% 5%
Nonlinear Linear 92% 100% 84% 92% 100% 5% 76% 5%
Linear Nonlinear 100% 93% 85% 100% 93% 5% 5% 71%

Nonlinear Nonlinear 92% 93% 72% 86% 87% 58% 72% 74%

(c) Collider Structure

Xt → Yt Yt → Zt I II III IV V VI A B

Linear Linear 100% 100% 5% 100% 100% 99% 4% 5%
Nonlinear Linear 95% 89% 5% 96% 91% 51% 17% 56%
Linear Nonlinear 90% 95% 5% 91% 96% 48% 54% 15%
Nonlinear Nonlinear 81% 81% 6% 83% 81% 29% 26% 26%

From the first and second tables for chain and fork, it’s evident that when the model is entirely
nonlinear, the results for conditional independence can be erroneous. For instance, the rejection
rate for conditional independence that should have been rejected is not high. In the chain struc-
ture, the rejection rate for the conditional independence III is zero, implying that every conditional
independence test wrongly accepted this conditional independence (type II error). Conversely, the
conditional independence that should have been accepted, VI SX ⊥⊥ SZ | SY , has rejection rates
of 62% (chain) and 36% (fork), significantly exceeding the significance level of 5%. This aligns
with our conclusion in remark 1, stating that chain and fork models cannot guarantee conditional
independence consistency in general cases.

However, when half the model is linear, all conditional independence that should be rejected exhibit
high rejection rates, indicating fewer type II errors. Moreover, the rejection rate for the accept-
able conditional independence VI is quite low, closely approximating the significance level of 5%.
This suggests that conditional independence-based causal discovery methods can still be applied to
temporally aggregated data when the system is partially linear.

Columns A and B primarily aim to validate corollary 2 and corollary 1. The conditional indepen-
dence represented by A and B corresponds to the two sufficient conditions for conditional inde-
pendence consistency in corollary 1. From the experimental results, we find that if one of these
conditions holds, we can ensure conditional independence consistency. For example, in the fork
results, under the nonlinear+linear case, B holds while A does not. Nonetheless, we still have con-
ditional independence consistency. Moreover, our findings further verify corollary 2, indicating that
when a certain part of the causal mechanism is linear, the corresponding sufficient condition in this
part is satisfied, ultimately ensuring the conditional independence consistency of the entire system.

Finally, looking at the collider results, conditional independence consistency is maintained under
all nonlinear and linear combinations, which agrees with our conclusion in remark 1, stating that
collider can ensure conditional independence consistency under general conditions.
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F EFFECT OF k VALUE

Gong et al. (2017) have proven that the time-delay causal model (time series data) will transform into
an instantaneous causal model (i.i.d. data). In our paper, we utilize large k values to approximate the
aggregation of the time-delay model as the aggregation of the instantaneous model (aligned model
as defined in the main text). We aim to demonstrate the reasonableness of this approximation and to
show how quickly the time-delay model transitions to an instantaneous model.

We apply the GES method on a linear fork-like time-delay model (VAR) and a fork-like instanta-
neous model (aligned model) across different values of k.

Figure 9: GES Correct Rate vs. Factor k

From Figure 9, we observe that k does not need to be infinite. A sufficiently large k, such as 20,
ensures that the time-delay model becomes an instantaneous model detectable by the instantaneous
causal discovery method.

G CAUSAL DISCOVERY ON AGGREGATED DATA WITH PRIOR KNOWLEDGE

Inspired by Remark 1, we propose a straightforward solution to ensure that the PC algorithm iden-
tifies the correct Markov equivalence. The remark indicates that the collider structure retains con-
ditional independence consistency. This implies that the PC algorithm can determine the correct
v-structure if it has the correct skeleton. We therefore conducted experiments to assess whether the
PC with a given skeleton as prior knowledge can discern the correct Markov equivalence.

From Figure 10, it becomes evident that when the PC is applied directly to aggregated data, its
performance is subpar. However, when provided with the skeleton as prior knowledge, the PC
consistently identifies the correct v-structure, yielding accurate results(see Figure 11). This discov-
ery suggests that future work should concentrate on addressing the aggregation problem during the
skeleton discovery process.

20



Under review as a conference paper at ICLR 2024

Figure 10: Correct Rate: PC on Original Data vs. PC on Aggregated Data vs. PC with Prior on
Aggregated Data

Figure 11: PC can find correct v-structure on aggregated data
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