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ABSTRACT

Model explanations are very valuable for interpreting and debugging prediction
models. We study a specific kind of global explanations called Concept Explana-
tions, where the goal is to interpret a model using human-understandable concepts.
Recent advances in multi-modal learning rekindled interest in concept explana-
tions and led to several label-efficient proposals for estimation. However, existing
estimation methods are unstable to the choice of concepts or dataset that is used
for computing explanations. We observe that instability in explanations is due
to high variance in point estimation of importance scores. We propose an uncer-
tainty aware Bayesian estimation method, which readily improved reliability of
the concept explanations. We demonstrate with theoretical analysis and empirical
evaluation that explanations computed by our method are more reliable while also
being label-efficient and faithful.

1 INTRODUCTION

With an ever increasing complexity of ML models, there is an increasing need to explain them.
Concept-based explanations are a form of interpretable methods that explain predictions using high-
level and semantically meaningful concepts (Kim et al., 2018). They are aligned with how humans
communicate their decisions (Yeh et al., 2022) and are shown (Kim et al., 2018; 2023b) to be more
preferable over explanations using salient input features (Ribeiro et al., 2016; Selvaraju et al., 2017)
or salient training examples (Koh & Liang, 2017). Concept explanations also show potential in
scientific discovery (Yeh et al., 2022) and for encoding task-specific prior knowledge (Yuksekgonul
et al., 2022).

Concept explanations explain a pretrained prediction model by estimating the importance of con-
cepts using two human-provided resources (1) a list of potentially relevant concepts for the task, (2)
a dataset of examples usually referred to as the probe-dataset. Estimation usually proceeds in two
steps (a) compute the log-likelihood of concept given an example called concept activations, and (b)
aggregate their local activation scores into a globally relevant explanation. For example, the concept
wing is considered important if the information about the concept is encoded in all examples of the
plane class in the dataset. Owing to example-agnostic and classifier-level nature of concept expla-
nations they are easy to interpret and have witnessed wide recognition in diverse applications (Yeh
et al., 2022).

Despite their easy interpretation, concept explanations are known to be unreliable and data expen-
sive. Ramaswamy et al. (2022a) showed that existing estimation methods are sensitive to the choice
of concept set and dataset raising concerns over their interpretability. Another major limitation of
concept-based explanation is the need for datasets with concept annotations in order to specify the
concepts. Increasingly popular multi-modal models such as CLIP (Radford et al., 2021) present an
exciting alternate direction to specify relevant concepts, especially for common image applications
through their text description. Recent work has explored using multi-modal models for training
concept-bottleneck models (Oikarinen et al., 2023; Yuksekgonul et al., 2022; Moayeri et al., 2023),
but they are not yet evaluated for generating post-hoc concept explanations.

Our objective is to generate reliable concept explanations without requiring datasets with concept
annotations. We begin by observing that existing estimation methods do not model noise in the esti-
mation pipeline leading to high variance and unreliable explanations. We identify at least two causes
of uncertainty (Section 4.1 presents more concrete scenarios) leading to unreliable explanations (1)
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When a concept is missing from the probe-dataset, we cannot estimate its importance with confi-
dence. Reporting uncertainty over estimated importance of a concept can thus help the user make a
more informed interpretation, (2) When a concept is hard or irrelevant to the task their correspond-
ing activations predicted from the representation layer of the model-to-be-explained are expected
to be noisy. For example, it is harder to recognise the concept whiskers when compared with the
concept wings. The noise or uncertainty in concept activations either due to their absence, hardness,
or relevance if not modelled cascades into noise in explanations. Appreciating the need to model un-
certainty, we present an estimator called Uncertainty-Aware Concept Explanations (U-ACE), which
we show is instrumental in improving reliability of explanations.

Contributions. • We motivate the need for modeling uncertainty for faithful estimation of concept
explanations. • We propose a Bayesian estimation method called U-ACE that is both label-free and
models uncertainty in the estimation of concept explanations. • We demonstrate the merits of our
proposed method U-ACE through theoretical analysis and empirical evidence on two controlled
datasets and two real-world datasets.

2 BACKGROUND AND MOTIVATION

We denote the model-to-be explained as f : RD → RL that maps D-dimensional inputs to L
labels. Further, we use f [l](x) to denote lth layer representation space and f(x)[y] for y ∈ [1, L] as
the logit for the label y. Given a probe-dataset of examples D = {x(i)}Ni=1 and a list of concepts
C = {c1, c2, . . . , cK}, our objective is to explain the pretrained model f using the specified concepts.
Traditionally, the concepts are demonstrated using potentially small and independent datasets with
concept annotations {Dk

c : k ∈ [1,K]} where Dk
c is a dataset with positive and negative examples

of the kth concept.

Concept-Based Explanations (CBE) estimate explanations in two steps. In the first step, they learn
what are known as concept activation vectors that predict the concept from lth layer representation
of an example. More formally, they learn the concept activation vector vk for kth concept by op-
timizing vk = argminv E(x,y)∼D(k)

c
[ℓ(vT f [l](x), y)] where ℓ is the usual cross-entropy loss. The

inner product of representation with the concept activation vector vTk f
[l](x) is usually referred to as

concept activations. Various approaches exist to aggregate example-specific concept activations in to
global example-agnostic explanations for the second step. Kim et al. (2018) computes sensitivity of
logits to interventions on concept activations to compute what is known as CAV score per example
per concept and report the fraction of examples in the probe-dataset with a positive CAV score as the
global importance of the concept known as TCAV score. Zhou et al. (2018) proposed to decompose
the classification layer weights as

∑
k αkvk and report the coefficients αk as the importance score

of the kth concept. We refer the reader to Yeh et al. (2022) for an in-depth survey.

Data-efficient concept explanations. A major limitation of traditional CBEs is their need for
datasets with concept annotations {D1

c ,D2
c , . . . }. In practical applications, we may wish to find

important concepts among thousands of potentially relevant concepts, which is not possible with-
out expensive data collection. Recent proposals (Yuksekgonul et al., 2022; Oikarinen et al., 2023;
Moayeri et al., 2023) suggested using pretrained multi-modal models like CLIP to evade the data
annotation cost for a related problem called Concept Bottleneck Models (CBM) (Koh et al., 2020).
CBMs aim to train inherently interpretable model with a concept bottleneck. Although CBMs can-
not generate explanations for a model-to-be-explained, a subset of methods propose to train what
are known as Posthoc-CBMs using the representation layer of a pretrained task model for data ef-
ficiency. Given that Posthoc-CBMs base on the representation of a pretrained task model, we may
use them to generate concept explanations. We describe briefly two such CBM proposals below.

Oikarinen et al. (2023) (O-CBM) estimates the concept activation vectors by learning to linearly
project from the representation space of CLIP where the concept is encoded using its text description
to the representation space of the model-to-be-explained f . It then learns a linear classification
model on concept activations and returns the weight matrix as the concept explanation. Based on
the proposal of Yuksekgonul et al. (2022), we can also generate explanations by training a linear
model to match the predictions of model-to-be-explained directly using the concept activations of
CLIP, which we denote by (Y-CBM).
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Figure 1: Our proposed estimator Uncertainty-Aware Concept Explanations

Unreliable Explanations, a limitation. Apart from data inefficiency, concept explanation methods
are known to be unreliable. We observed critical reliability concerns with existing CBEs in the same
spirit as the challenges raised in Ramaswamy et al. (2022a). As we demonstrate in Section 4.1,
concept explanations for the same model-to-be-explained vary with the choice of the probe-dataset
or the concept set bringing into question the reliability of explanations.

3 UNCERTAINTY-AWARE CONCEPT EXPLANATIONS

As summarized in the previous section, CBEs rely on concept activations for generating explana-
tions. It is not hard to see that the activation score of a concept cannot be predicted confidently if the
concept is hard/ambiguous or if it is not encoded by the model-to-be-explained. The noise in concept
activations if not modeled cascades into the next step leading to poor explanations. Moreover, im-
portance of a concept cannot be confidently estimated if it is missing from the probe-dataset, which
must be informed to the user through confidence interval on the concept’s estimated importance
score. Motivated by the role of uncertainty for trustworthy explanations, we design our estimator.

Our approach has the following steps. (1) Estimate concept activations along with their error inter-
val, (2) Aggregate concept activations and their confidence intervals in to a global concept explana-
tion. We describe the estimation of concept activations and their error given an instance x denoted
as m⃗(x), s⃗(x) respectively in Section 3.1. By definition, the true concept activation for a concept k
and instance x is in the range of m⃗(x) ± s⃗(x) with a high probability. We describe the estimation
of concept explanations in what follows using m⃗(x), s⃗(x), which is independent of how they are
computed.

We compute explanations by fitting a linear regression model on the concept activations in the same
spirit as many CBM methods because it is easier to incorporate the input noise in a regression
model. Our objective is to learn linear model weights Wc of size L × K (recall that L, K are the
number of labels and concepts respectively) that map the concept activations to their logit scores,
i.e. f(x) ≈ Wcm⃗(x). Since the concept activations contain noise, we require that Wc is such that
predictions do not change under noise, that is Wc[m⃗(x)+ s⃗(x)] ≈ Wcm⃗(x) =⇒ Wcs⃗(x) ≈ 0. I.e.
the inner product of each row (w⃗) of Wc with s⃗(x) must be negligible. For the sake of exposition,
we analyse the solution of yth ∈ [1, L] row w⃗ of Wc, which can be easily generalized to the other
rows. We cast the bounded error constraint, i.e. |w⃗T s⃗(x)| ≤ δ for some small positive δ and for
all the instances x in the probe-dataset, into a distributional prior over the weights. The prior over
weights can then be easily accommodated in the Bayesian estimation of the posterior on weights.

|w⃗T s⃗(x)| ≤ δ ∀x ∈ D =⇒ |w⃗T ϵ| ≤
∑

x∈D |w⃗T s⃗(x)|
N

≤ δ where ϵ ≜

∑
x∈D s⃗(x)

N

|w⃗T ϵ| ≤ δ, for some small δ > 0 with high probability =⇒ w⃗T ϵϵT w⃗ ≈ w⃗T diag(ϵϵT )w⃗ ≤ δ2

=⇒ −1

2
(w⃗ − 0)TS−1(w⃗ − 0) where S−1 = diag(ϵϵT ) is high when w⃗ satisfies the constraint

=⇒ N (w⃗;0, λS) is high for an appropriate λ > 0 =⇒ w⃗ ∼ N (0, λS)

We observe therefore that the weight vectors drawn from N (0, λdiag(ϵϵT )−1) satisfy the in-
variance to input noise constraint with high probability. We now estimate the posterior on the
weights after having observed the data with the prior on weights set to N (0, λdiag(ϵϵT )−1).
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The posterior over weights has the following closed form(Salakhutdinov, 2011) where CX =
[m⃗(x1), m⃗(x2), . . . , m⃗(xN )] is a K × N matrix and Y = [f(x1)[y], f(x2)[y], . . . , f(xN )[y]]T

is an N × 1 vector (derivation in Appendix A.1).

Pr(w⃗ | CX , Y ) = N (w⃗;µ,Σ) where µ = βΣCXY, Σ−1 = βCXCT
X + λ−1diag(ϵϵT ) (1)

β is the inverse variance of noise in observations Y. We optimise both β and λ using MLE on D
(more details in Appendix B). We could directly set the inverse of β approximately 0 since there is
no noise on the observations Y. Instead of setting β to an arbitrary large value, we observed better
explanations when we allowed the tuning algorithm to find a value of β, λ to balance the evidence
and noise.

Sparsifying weights for interpretability. Because a dense weight matrix can be hard to interpret,
we induce sparsity in Wc by setting all the values below a threshold to zero. The threshold is picked
such that the accuracy on train split does not fall by more than κ, which is a positive hyperparameter.

The estimator shown in Equation 1 and details on how we estimate the noise in concept activations
presented in the next section completes the description of our estimator. We call our estimator
Uncertainty-Aware Concept Explanations (U-ACE) because it computes and models the uncertainty
in concept activations. Algorithm 1 summarizes our proposed system.

3.1 ESTIMATION OF CONCEPT ACTIVATIONS AND THEIR NOISE

In this section, we discuss how we estimate m⃗(x), s⃗(x) using a pretrained multi-modal model.
Recall that image-text multi-modal (MM) systems such as CLIP (Radford et al., 2021) can embed
both images and text in a shared representation space, which enables one to estimate the similarity
of an image to any phrase. This presents us an interesting solution approach of specifying a concept
using its text description (Tk for the kth concept) without needing concept datasets Dk

c . We denote
by g(•) the image embedding function of MM and gtext(•) the text embedding function.

Our objective is to estimate m⃗(x), s⃗(x) such that the true concept activation value is in the range
m⃗(x) ± s⃗(x). Two major sources of uncertainty in concept activations are due to (1) epistemic
uncertainty arising from lack of information about the concept in the representation layer of the
model-to-be-explained, (2) data uncertainty arising from ambiguity (because the concept is not
clearly visible, see Appendix G.1 for some examples). We wish to estimate s⃗(x) that is aware of
both the forms of uncertainty.

We can obtain a point estimate for the activation vector of the kth concept vk such that f(x)T vk ≈
g(x)Twk (where wk = gtext(Tk)) for all x in the probe-dataset D through simple optimiza-
tion (Oikarinen et al., 2023; Moayeri et al., 2023). We may then simply repeat the estimation pro-
cedure multiple times to sample from the distribution of activation vectors and their corresponding
concept activations. However, as shown empirically in Appendix G.1, s⃗(x) estimated from random
sampling is a poor measure of uncertainty.

We instead derive a closed form for m⃗(x), s⃗(x) based on the following intuition. The concept
activations estimated using cos-sim(f(x), vk) must intuitively be in the ballpark of cos(θk) =
cos-sim(g(x), wk) where cos-sim is the cosine similarity (Wikipedia, 2023a) (we switched from
dot-products to cos-sim to avoid differences due to magnitude of the vectors). However, if the con-
cept k is not encoded in f(x) or if it is ambiguous, the concept activations are expected to deviate
by an angle αk, which is an error measure specific to the concept. Therefore, we expect the concept
activations to be in the range of cos(θk ± αk). The concept specific value αk must account for
uncertainty due to lack of knowledge (for eg. irrelevant concept) and due to ambiguity. In what
follows, we present a specific measure for αk and the closed form solution for m⃗(x), s⃗(x).

Borrowing from Oikarinen et al. (2023), we define cos(αk) as
maxv[cos-sim(e(v, f,X), e(wk, g,D))] where e(wk, g,D) ≜ [wT

k g(x1), . . . , w
T
k g(xN )]T , and

e(v, f,D) ≜ [vT f [−1](x1), . . . , v
T f [−1](xN )]T .

We may just as well adopt any other measure for αk.
Proposition 1. For a concept k and a measure for αk, we have the following result when concept
activations in f for an instance x are computed as cos-sim(f(x), vk) instead of vTk f(x).

m⃗(x)k = cos(θk)cos(αk), s⃗(x)k = sin(θk)sin(αk)

where cos(θk)=cos-sim(gtext(Tk), g(x)) and m⃗(x)k, s⃗(x)k denote the kth element of the vector.
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The proof can be found in Appendix C. The mean and scale values above have a clean interpretation.
If the model-to-be-explained (f ) uses the kth concept for label prediction, the information about the
concept is encoded in f and we get a good fit, i.e. cos(αk) ≈ 1, and a small error on concept
activations. On the other hand, error bounds are large and concept activations are suppressed when
the fit is poor, i.e. cos(αk) ≈ 0. In Appendix G.1, we contrasted different methods for estimation
of s⃗(x). We observed from the empirical evaluation that U-ACE modeled both model and data
uncertainty well.

3.2 THEORETICAL MOTIVATION

The motivation of this section is to demonstrate unreliability of concept explanations estimated
using standard methods that do not model uncertainty during estimation. We particularly focus
on unreliability due to misspecified concept set for the ease of analysis. In our study, we compared
explanations generated using a standard linear estimator and U-ACE. Recall that posthoc-CBMs (O-
CBM, Y-CBM), which are our primary focus for comparison, and they both estimate explanations
by fitting a linear model on concept activations.

We present two scenarios with noisy concept activations. In the first scenario (over-complete con-
cept set), we analyzed the estimation when the concept set contains many irrelevant concepts. We
show that the likelihood of marking an irrelevant concept as more important than a relevant concept
increases rapidly with the number of concepts when the explanations are estimated using a standard
linear estimator that is unaware of the uncertainty. We also show that U-ACE do not suffer the
same problem. In the second scenario (under-complete concept set), we analyzed the explanations
when the concept set only includes irrelevant concepts, which should both be assigned a zero score
ideally. We again show that standard linear model attributes a significantly non-zero score while
U-ACE mitigates the issue. In Section 4.1, we confirm our theoretical findings with an empirical
evaluation.

Unreliable explanations due to over-complete concept set. We analyze a simple setting where
the output (y) is linearly predicted from the input (x) as y = wTx. We wish to estimate the
importance of some K concepts by fitting a linear estimator on concept activations. Where concept
activations are computed as wT

k x using concept activation vectors (wk) that are distributed as wk ∼
N (uk, σ

2
kI), k ∈ [1,K].

Proposition 2. The concept importance estimated by U-ACE when the input dimension is sufficiently
large and for some λ > 0 is approximately given by vk =

uT
k w

uT
i uk+λσ2

k

. On the other hand, the impor-
tance scores estimated using Ordinary Least Squares (OLS) estimator under the same conditions is
distributed as vk ∼ N (

uT
k w

uT
k uk

, σ2
k

∥w∥2

∥uk∥2 ).

Proof of the result can be found in Appendix D. Based on the result, we can deduce the following
result for a specific case of uks and σks.
Corollary 1. For the data setup of Proposition 2, the following results holds when u1 = w, σ1 ≈ 0
and uT

kw = 0, ∀k ∈ [2,K]. Then the probability that the standard estimator returns the first
concept as the most salient decreases exponentially with the number of concepts. On the other hand,
the importance score assigned by U-ACE is 1 for the only relevant first concept and 0 otherwise.

Derivation of the result can be found in Appendix A.2. We observe therefore that the probability of
a random concept being estimated as more important than the relevant concept quickly converges
to 1 with the number of random concepts K-1 when the distribution or uncertainty is not modeled.
Sections 4.1, 5 demonstrate this phenomena in practice.

Unreliable explanations due to under-complete concept set. We now analyze explanations when
the concept set only includes two irrelevant concepts. Consider normally distributed inputs x ∼
N (0, I), and define two orthogonal unit vectors u,v. The concept activations: c

(i)
1 , c

(i)
2 and label

y(i) for the ith instance x(i) are as defined below.

y(i) = uTx(i), c
(1)
1 = (β1u+ (1− β1)v)

Tx(i), c
(i)
2 = (β2u+ (1− β2)v)

Tx(i)

If β1, β2 are very small, then both the concepts are expected to be unimportant for label prediction.
However, we can see with simple working (Appendix E) that the importance scores computed by a
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standard estimator are 1−β2

β1−β2
, 1−β1

β1−β2
, which are large because β1 ≈ 0, β2 ≈ 0 ∴ β1 − β2 ≈ 0. We

will now show that U-ACE estimates near-zero importance scores as expected.

Proposition 3. The importance score, denoted η1, η2, estimated by U-ACE are bounded from above
by 1

Nλ , where λ > 0 is a regularizing hyperparameter and N the number of examples.

Proof can be found in Appendix E. It follows from the result that the importance scores computed
by U-ACE are near-zero for sufficiently large value of λ or N.

4 EXPERIMENTS

We evaluate U-ACE on two synthetic and two real-world datasets. We demonstrate how reliability of
explanations is improved by U-ACE using a controlled study in Section 4.1. We make a quantitative
assessment with known ground-truth on a controlled dataset in Section 5. Finally, we evaluate on
two challenging real-world datasets with more than 700 concepts in Section 6.

Baselines. Simple: Wc is estimated using lasso regression of ground-truth concept annotations
to estimate logit values of f . Simple was also adopted in the past (Ramaswamy et al., 2022b;a) for
estimating completeness of concepts. Other baselines are introduced in Section 2: TCAV (Kim et al.,
2018), O-CBM (Oikarinen et al., 2023), Y-CBM based on (Yuksekgonul et al., 2022).

Standardized comparison between importance scores. The interpretation of the importance
score varies between different estimation methods. For instance, the importance scores in TCAV
is the fraction of examples that meet certain criteria while for other methods the importance scores
are the weights from linear model that predicts logits. Further, Simple operates on binary concept
annotations and O-CBM, Y-CBM, U-ACE on soft scores estimated using concept activation vectors.
For this reason, we cannot directly compare importance scores or their normalized variants. We
instead use negative scores to obtain a ranked list of concepts and assign to each concept an impor-
tance score given by its rank in the list normalized by number of concepts. Our sorting algorithm
ranks any two concepts with same score by alphabetical order of their text description. In all our
comparisons we use the rank score if not mentioned otherwise.

Other experiment details. For all our experiments, we used a Visual Transformer (with 32 patch
size called “ViT-B/32”) based pretrained CLIP model that is publicly available for download at
https://github.com/openai/CLIP. We use l = −1, i.e. last layer just before computation of logits
for all the explanation methods. U-ACE returns the mean and variance of the importance scores as
shown in Algorithm 1, we use mean divided by standard deviation as the importance score estimated
by U-ACE everywhere for comparison with other methods.

4.1 SIMULATED STUDY

Figure 2: Toy

In this section, we consider explaining a two-layer CNN model trained to classify
between solid color images with pixel noise as shown in Figure 2. The colors
red, green on the left are defined as label 0 and the colors blue, white on the right
are defined as label 1. The model-to-be-explained is trained on a dataset with
equal proportion of all colors, so we expect that all constituent colors of a label
are equally important for the label. We specify a concept set with the four colors
encoded by their literal name red, green, blue, white. U-ACE (along with others)
attribute positive importance for red, green and negative or zero importance for blue, white when
explaining label 0 using a concept set with only the four task-relevant concepts and when the probe-
dataset is the same distribution as the the training dataset. However, quality of explanations quickly
degrade when the probe-dataset is shifted or if the concept set is misspecified.

Unreliability due to dataset shift. We varied the probe-dataset to include varying population of
different colors while keeping the concept set and model-to-be-explained fixed. We observed that
importance of a concept estimated with standard CBEs varied with the choice of probe-dataset for
the same underlying model-to-be-explained as shown in left and middle plots of Figure 3. Most
methods attributed incorrect importance to the red concept when it is missing (left extreme of left
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Figure 3: Left, middle plots show the importance of red and green concepts while the rightmost plot
shows their importance score difference. U-ACE estimated large uncertainty in importance score
when red or green concept is missing from the dataset as seen in the left of the left and middle plots.
Also the difference in importance at either extreme in the right plot is not statistically significant.

plot), and similarly for the green concept (left extreme of middle plot). The explanations would have
led the user to believe that green is more important than red or red is more important than green
depending on the probe-dataset used as shown in the right most plot. Because U-ACE also informs
the user of uncertainty in the estimated importance, we see that the difference in importance scores
between the two colors at either extremes is not statistically significant as shown in the rightmost
plot.

Over-complete concept set. We now evaluate the quality of explanations when the concept set
is misspecified. More specifically, when the concept set is made over-complete by gradually
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Figure 4: U-ACE is reliable even with
overly complete concept set.

expanding it to include common fruit names (Appendix F
contains the full list), which are clearly irrelevant to the
task. We obtain the explanations using an in-distribution
probe-dataset that contains all colors in equal proportion.
Figure 4 shows the score of most salient fruit concept with
increasing number of fruit (nuisance) concepts on X-axis.
We observe that U-ACE is far more robust to the pres-
ence of nuisance concepts. Robustness to irrelevant con-
cepts is important because it allows the user to begin with
a superfluous set of concepts and find their relevance to
model-to-be-explained instead of requiring to guess rele-
vant concepts, which is ironically the very purpose of us-
ing concept explanations. Appendix H presents and eval-
uates on an under-complete concept setting.

5 ASSESSMENT WITH KNOWN GROUND-TRUTH
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Figure 5: On the left is STL dataset with a spurious tag. In the middle is importance of a tag concept
for three different model-to-be-explained. X-axis shows the probability of tag in the training dataset
of model-to-be-explained. To the right is average rank of true concepts with irrelevant concepts
(lower is better).
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Tree Farm
Simple: tree, field, bush
O-CBM: forest, pot, sweater
Y-CBM: field, forest, elevator
U-ACE: foliage, forest, grass

Coast
Simple: sea, water, river
O-CBM: sea, island, pitted
Y-CBM: sea, sand, towel rack
U-ACE: sea, lake, island

Pasture
Simple: horse, sheep, grass
O-CBM: shaft, hoof, exhibitor
Y-CBM: field, grass, ear
U-ACE: grass, cow, banded

Runway
Simple: plane, field, sky
O-CBM: plane, fuselage, apron
Y-CBM: plane, clouds, candlestick
U-ACE: plane, windscreen, sky

Figure 6: Top-2 salient concepts plus any mistake (marked in red) from top-10 salient concepts for
a scene-classification model estimated with PASCAL (left) or ADE20K (right) probe-dataset.

Our objective in this section is to establish that U-ACE generates faithful and reliable concept expla-
nations. Subscribing to the common evaluation practice (Kim et al., 2018), we generate explanations
for a model that is trained on a dataset with controlled correlation of a spurious pattern. We make a
dataset using two labels from STL-10 dataset (Coates et al., 2011) car, plane and paste a tag U or Z
in the top-left corner as shown in the left panel of Figure 5. The probability that the examples of car
are added the Z tag is p and 1-p for the U tag. Similarly for the examples of plane, the probability
of U is p and Z is 1-p. We generate three training datasets with p=0, p=0.5 and p=1, and train three
classification models using 2-layer convolutional network. Therefore, the three models are expected
to have a varying and known correlation with the tag, which we hope to recover from its concept
explanation.

We generate concept explanations for the three model-to-be-explained using a concept set that in-
cludes seven car-related concepts and three plane-related concepts (Appendix F) along with the two
tags U, Z. We obtain the importance score of the concept U with car class using a probe-dataset
that is held-out from the corresponding training dataset (i.e. probe-dataset has the same input dis-
tribution as the training dataset). The results are shown in the middle plot of Figure 5. Since the
co-occurrence probability of U with car class goes from 1, 0.5 to 0 for p=0, 0.5, 1, we expect the
importance score of U should change from positive to negative as we move right. We note that
U-ACE, along with others, show the expected decreasing importance of the tag concept. The result
corroborates that U-ACE estimates a faithful explanation of model-to-be-explained while also being
more reliable as elaborated below.

Unreliability due to misspecified concept set. In the same spirit as the previous section, we
repeat the over-complete experiment of Section 4.1 and generated explanations as animal (irrelevent)
concepts are added (Appendix F contains the full list). Right panel of Figure 5 shows the average
rank of true concepts (lower the better). We note that U-ACE ranks true concepts highly even with
50 nuisance concepts.

6 REAL-WORLD EVALUATION

We expect that our reliable estimator to also generate higher quality concept explanations in practice.
To verify the same, we generated explanations for a scene classification model with ResNet-18
architecture pretrained on Places365 (Zhou et al., 2017a), which is publicly available. Following
the experimental setting of Ramaswamy et al. (2022a), we generate explanations when the probe-
dataset is set to PASCAL (Chen et al., 2014) or ADE20K (Zhou et al., 2017b), which are both part
of the Broden dataset (Bau et al., 2017b). The dataset contains images with dense annotations with
more than 1000 attributes. We ignored around 300 attributes describing the scene since model-to-
be-explained is itself a scene classifier. For the remaining 730 attributes, we defined a concept per
attribute using literal name of the attribute. We picked 50 scene labels (Appendix F contains the full
list) that have support of at least 20 examples in both ADE20K and PASCAL datasets.

We evaluate quality of explanations by their closeness to the explanations generated using the Simple
baseline. Simple estimates explanation using true concept annotations and therefore its explanation
must be the closest to the ground-truth. For the top-20 concepts identified by Simple, we compute the
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average absolute difference in importance scores estimated using any estimation method and Simple.
Table 1 presents the deviation in explanations averaged over all the 50 scene labels. Figure 6 shows
the most salient concepts for four randomly picked scene labels. We observe from the figure that
top-10 concepts identified by U-ACE seem more relevant to the scene when compared with Y-CBM
and O-CBM. We also evaluated the explanation quality using a standard measure for comparing
ranked lists, which is presented in Appendix F, which further confirms the dominance of U-ACE.

Dataset shift. Ramaswamy et al. (2022a) demonstrated with results the drastic shift in concept
explanations for the same model-to-be-explained when using ADE20K or PASCAL as the probe-
dataset. Explanations diverge partly because (a) population of concepts may vary between datasets
thereby influencing their perceived importance when using standard methods, (b) variance in expla-
nations. We have demonstrated that U-ACE estimated importance scores have low variance (shown
in Section 3.2, 4.1) and attributes high uncertainty and thereby near-zero importance to concepts that
are rare or missing from the probe-dataset (Section 4.1). For these reasons, we expect U-ACE to
mitigate the data-shift problem. We confirm the same by estimating the average difference in impor-
tance scores estimated using ADE20K and PASCAL for different estimation techniques (where the
average is only over salient concepts with non-zero importance). The results are shown in Table 2
and are inline with our prediction.

Dataset↓ TCAV O-CBM Y-CBM U-ACE
ADE20K 0.13 0.19 0.16 0.09
PASCAL 0.41 0.20 0.18 0.11

Table 1: Evaluation of explanation quality. Each
cell shows the average absolute difference of im-
portance scores for top-20 concepts estimated us-
ing Simple.

Simple TCAV O-CBM Y-CBM U-ACE
0.41 0.41 0.32 0.33 0.19

Table 2: Effect of data shift. Average absolute
difference between concept importance scores
estimated using ADE20K and PASCAL datasets
for the same model-to-be-explained using differ-
ent estimation methods.

7 RELATED WORK

Concept Bottleneck Models use a set of predefined human-interpretable concepts as an intermedi-
ate feature representation to make the predictions (Koh et al., 2020; Bau et al., 2017a; Kim et al.,
2018; Zhou et al., 2018). CBM allows human test-time intervention which has been shown to im-
prove overall accuracy (Barker et al., 2023). Traditionally, they require labelled data with concept
annotations and typically the accuracy is worse than the standard models without concept bottle-
neck. To address the limitation of concept annotation, recent works have leveraged large pretrained
multi-modal models like CLIP (Oikarinen et al., 2023; Yuksekgonul et al., 2022). There have also
been efforts to enhance the reliability of CBMs by focusing on the information leakage problem
(Havasi et al., 2022; Marconato et al., 2022), where the linear model weights estimated from con-
cept activations utilize the unintended information, affecting the interpretability. Concept Embed-
ding Models (CEM) (Espinosa Zarlenga et al., 2022) overcome the trade-off between accuracy and
interpretability by learning high-dimensional concept embeddings. However, addressing the noise in
the concept prediction remains underexplored. Collins et al. (2023) have studied human uncertainty
in concept-based models and have shown the importance of considering uncertainty over concepts
in improving the reliability of the model. Kim et al. (2023a) proposed the Probabilistic Concept
Bottleneck Models (ProbCBM) and is closely related to our work. They too argue for the need to
model uncertainty in concept prediction for reliable explanations. However, their method of noise
estimation in concept activations requires retraining the model and cannot be applied directly when
concept activations are estimated using CLIP. Moreover, they use simple MC sampling to account
for noise in concept activations.

Concept based explanations use a separate probe dataset to first learn the concept and then explain
through decomposition either the individual predictions or overall label features. Yeh et al. (2022)
contains a brief summary of existing concept based explanation methods. Our proposed method is
very similar to concept based explanations (CBE) (Kim et al., 2018; Bau et al., 2017a; Zhou et al.,
2018; Ghorbani et al., 2019). Ramaswamy et al. (2022a) emphasized that the concepts learned are
sensitive to the probe dataset used and therefore pose problems when transferring to applications
that have distribution shift from the probe dataset. Moreover, they also highlight other drawbacks
of existing CBE methods in that concepts can sometimes be harder to learn than the label itself
(meaning the explanations may not be causal) and that the typical number of concepts used for ex-
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planations far exceed what a typical human can parse easily. Achtibat et al. (2022) championed an
explanation method that provides explanation highlighting important feature (answering “where”)
and what concepts are used for prediction thereby combining the strengths of global and local ex-
planation methods. Choi et al. (2023) have built upon the current developments in CBE methods for
providing explanations for out-of-distribution detectors. Wu et al. (2023) introduced the causal con-
cept based explanation method (Causal Proxy Model), that provides explanations for NLP models
using counterfactual texts. Moayeri et al. (2023) also used CLIP to interpret the representations of a
different model trained on uni-modal data.

8 CONCLUSION

We studied concept explanation methods with a focus on data-efficient systems that exploit pre-
trained multi-modal models. We demonstrated with simple examples the reliability challenge of
existing estimators of concept explanations and motivated the need for modeling uncertainty in es-
timation and informing user the uncertainty in importance scores. Accordingly, we proposed an
uncertainty-aware and data-efficient estimator called U-ACE, which readily yielded several ben-
efits. We demonstrated the merits of our estimator through theoretical analysis, controlled study
experiments and two challenging real-world evaluation with around 700 concepts. To the best of our
knowledge, previous evaluations did not consider concept explanations with as many concepts. Our
results showed that concept explanations estimated by U-ACE are more reliable.
Limitations and Future Work • The need and advantage when modeling uncertainty is also ap-
plicable when learning concept activations using datasets with concept annotations. However, our
experimental setup is only focused on using CLIP for specifying concepts. • We did not model the
uncertainty in CLIP’s knowledge of a concept. Epistemic uncertainty due to CLIP when modelled
may improve reliability further, which we leave for future work.
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Appendix

A MISCELLANEOUS

A.1 DERIVATION OF POSTERIOR ON WEIGHTS

The result of posterior distribution of weights follows directly from the form of posterior under nor-
mal prior on weights as explained as Salakhutdinov (2011) (Slide 10). For the sake of completeness,
we also derive the result below.

Pr(w⃗ | CX , Y ) ∝ Pr(Y | CX , w⃗) Pr(w⃗)

= N (Y ;CT
Xw⃗, β−1)N (w⃗; 0, S0) where S−1

0 = λ−1diag(ϵϵT )

∝ exp

{
−β

2
(Y − CT

Xw⃗)T (Y − CT
Xw⃗)− 1

2
w⃗TS−1

0 w⃗

}
∝ exp

{
−1

2
w⃗T [βCXCT

X + S−1
0 ]w⃗ − β(CXY )w⃗

}
We see that the posterior also takes the form of normal distribution with Σ−1 = βCXCT

X + S−1
0

and µ = βΣCXY .

A.2 COROLLARY OF PROPOSITION 2

Following the result of Proposition 2, we have the following result on the vk estimated by U-ACE
and the standard linear estimator.

Corollary 2. For the data setup of Proposition 2, the following results holds when u1 = w, σ1 ≈ 0
and uT

kw = 0, ∀k ∈ [2,K]. Then the probability that the standard estimator returns the first
concept as the most salient decreases exponentially with the number of concepts. On the other hand,
the importance score assigned by U-ACE is 1 for the only relevant first concept and 0 otherwise.

Proof. Plugging in the values for the special case of u1 = w, σ1 ≈ 0 and uT
kw = 0, k ≥ 2 in

the closed form solution from Proposition 2, we have the following results for the standard linear
estimator and U-ACE.

Solution of standard linear estimator: v1 = 1 and vk ∼ N (0, σ2
k

∥w∥
∥uk∥2 ) for k≥ 2.

For the first concept to remain the most salient, rest of the K-1 concepts must have an impor-
tance score less than 1. Recall that the probability that a random variable z∼ N (µ, σ2) less
than a value z0 is Φ( z0−µ

σ ) where Φ is the Cumulative Distribution Function of a standard nor-
mal distribution. Therefore the probability that all the K-1 concepts having a value less than 1 is∏K

k=2 Φ(
1−0

σk∥w∥/∥uk∥ ) =
∏K

k=2 Φ(
∥uk∥
σk∥w∥ ). Since the probability is a product over K-1 quantities, it

decreases exponentially with K.

Solution of U-ACE: v1 = 1, v2, v3, · · · = 0 follows directly from plugging in the values in to result
of the proposition.

A.3 ALGORITHM

B MAXIMUM LIKELIHOOD ESTIMATION OF U-ACE PARAMETERS

The posterior on weights shown in Equation 1 has two parameters: λ, β as shown below with CX

and Y are array of concept activations and logit scores (see Algorithm 1).

w⃗ ∼ N (µ,Σ) where µ = βΣCXY, Σ−1 = βCXCT
X + λ−1diag(ϵϵT )
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Algorithm 1: Uncertainty-Aware Concept Explanations (U-ACE)

Require: D={x1,x2, . . . ,xN}, T = {T1, T2, . . . , TK}, f (model-to-be-explained), g (CLIP), κ
for y = 1, . . . , L do

Y = [f(x)[y] for x ∈ DT ] ▷ Gather logits
CX = [m⃗(x1), . . . , m⃗(xN )], ϵ = ED[s⃗(x)] ▷ Estimate m⃗(x), s⃗(x) (Section 3.1)
w⃗y ∼ N (µy,Σy) where µy,Σy from Equation 1 ▷ Estimate λ, β using MLL

end for
Wc = sparsify([µ⃗1, µ⃗2, . . . µ⃗L], κ) ▷ Suppress less useful weights, Section 3
return Wc, [diag(Σ1), diag(Σ2), . . . diag(ΣL)]

We obtain the best values of λ and β that maximize the log-likelihood objective shown below.

λ∗, β∗ = argmax
λ,β

EZ [−
β2∥Y − (CX + Z)T w⃗(λ, β)∥2

2
+ log(β)]

where Z is uniformly distributed in the range given by error intervals
Z ∼ Unif([−s⃗(x1),−s⃗(x2), . . . , ], [s⃗(x1), s⃗(x2), . . . , ])

We implement the objective using Pyro software library (Bingham et al., 2019) and Adam optimizer.

C PROOF OF PROPOSITION 1

We restate the result for clarity.
For a concept k and cos(αk) defined as cos-sim(e(vk, f,D), e(wk, g,D)), we have the following
result when concept activations in f for an instance x are computed as cos-sim(f(x), vk) instead of
vTk f(x).

m⃗(x)k = cos(θk)cos(αk), s⃗(x)k = sin(θk)sin(αk)

where cos(θk)=cos-sim(gtext(Tk), g(x)) and m⃗(x)k, s⃗(x)k denote the kth element of the vector.

Proof. Corresponding to vk in f , there must be an equivalent vector w in the embedding space of g.

cos(αk) = cos-sim(e(vk, f,D), e(wk, g,D)) = cos-sim(e(w, g,D), e(wk, g,D))

Denote the matrix of vectors embedded using g by G = [g(x1), g(x2), . . . , G(xN )]T a N × D
matrix (D is the dimension of g embeddings). Let U be a matrix with S basis vectors of size S ×D.
We can express each vector as a combination of basis vectors and therefore G = AU for a N × S
matrix A.

Substituting the terms in the cos-sim expression, we have:

cos(αk) = cos-sim(Gw,Gwk) = cos-sim(AUw,AUwk)

=
wTUTATAUwk√

(wTUTATAUw)(wT
k U

TATAUwk)
.

If the examples in D are diversely distributed without any systematic bias, ATA is proportional
to the identity matrix, meaning the basis of G and W are effectively the same. We therefore have
cos(αk) = cos-sim(Gw,Gwk) = cos-sim(Uw,Uwk), i.e. the projection of w,wk on the subspace
spanned by the embeddings have cos(αk) cosine similarity. Since w,wk are two vectors that are αk

apart, an arbitrary new example x that is at an angle of θ from wk is at an angle of θ ± αk from w.
The cosine similarity follows as below.

cos(θ) = cos-sim(wk, g(x)) =⇒ cos-sim(w, g(x)) = cos(θ ± αk)

= cos(θ)cos(αk)± sin(θ)sin(αk)

Because w is a vector in g corresponding to vk in f , cos-sim(w, g(x)) = cos-sim(vk, f(x)).
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D PROOF OF PROPOSITION 2

The concept importance estimated by U-ACE when the input dimension is sufficiently large and
for some λ > 0 is approximately given by vk =

uT
k w

uT
i uk+λσ2

k

. On the other hand, the importance
scores estimated using vanilla linear estimator under the same conditions is distributed as vk ∼
N (

uT
k w

uT
k uk

, σ2
k

∥w∥2

∥uk∥2 ).

Proof. We use the known result that inner product of two random vectors is close to 0 when the
number of dimensions is large, i.e. uT

i uj ≈ 0, i ̸= j.

Result with vanilla estimator. We first show the solution using vanilla estimator is distributed as
given by the result above. We wish to estimate v1, v2, . . . such that we approximate the prediction
of model-to-be-explained: y = wTx. We denote by wk sampled from the normal distributin of
concept vectors. We require wTx ≈

∑
k vkw

T
k x. In effect, we are optimising for vs such that ∥w−∑

k vkwk∥2 is minimized. We multiply the objective by uk and use the result that random vectors are
almost orthogonal in high-dimensions to arrive at objective argminvk ∥w

T
k w− vk(w

T
k wk)∥. Which

is minimized trivially when vk =
wT

k w
∥wk∥2 . Since wk is normally distributed with N (uk, σ

2
kI), w

T
k w =

(uk + ϵ)Tw, ϵ ∼ N (0, I) is also normally distributed with N (uT
kw, σ

2
k∥w∥2). We approximate

the denominator with its average and ignoring its variance, i.e. ∥wk∥2 = N (∥uk∥2, σ2
k) ≈ ∥uk∥2

which is when ∥uk∥2 >> σ2. We therefore have the result on distribution of vk.

Using U-ACE. Similar to vanilla estimator, U-ACE optimizes vk using the following objective.

ℓ = argmin
v

{∥w −
∑
k

vkuk∥2 + λ
∑
k

σ2
kv

2
k}

setting
∂ℓ

∂vk
= 0 and using almost zero inner product result above, we have

− uT
k (w −

∑
j

vjuj) + λσ2
kvk = 0

=⇒ vk =
uT
kw

∥uk∥2 + λσ2
k

E PROOF OF PROPOSITION 3

The importance score, denoted v1, v2, estimated by U-ACE are bounded from above by 1
Nλ , i.e.

v1, v2 = O(1/Nλ) where λ > 0 is a regularizing hyperparameter and N the number of examples.

Proof. We first show that the values of v1, v2 in closed form are as below before we derive the final
result.

v1 =
S1

S2
(1− β2)

2

S1

S2
(β2

2(1− β1)2 + β2
1(1− β2)2) + λ(1− β1)(1− β2)

v2 =
S1

S2
(1− β1)

2

S1

S2
(β2

1(1− β2)2 + β2
2(1− β1)2) + λ(1− β1)(1− β2)

where S1 =
∑

i y1, S2 =
∑

i y
2
i and λ > 0 is a regularizing hyperparameter.

We then observe that if x is normally distributed then y = wTx is also normally distributed with
the value of S1

S2
is of the order O(1/N). Since β1, β2 are very close to 0, we can approximate the

expression for v1 as below.

v1 ≈ S1

S2
(1− β2)

2 1

λ(1− β1)(1− β2)
= O(1/Nλ)

16



Importance scores from a standard estimator.

When c
(1)
1 = (β1u+ (1− β1)v)

T z(i), c
(i)
2 = (β2u+ (1− β2)v)

T z(i)

we can derive the value of the label by their scaled difference as shown below
(1− β2)c1 − (1− β1)c2
(1− β2)β1 − (1− β1)β2

=
(1− β2)c1 − (1− β1)c2

β1 − β2
= uT zi = yi

=⇒ 1− β2

β1 − β2
c1 +

1− β1

β1 − β2
c2 = yi

=⇒ v1 =
1− β2

β1 − β2
, v2 =

1− β1

β1 − β2

F ADDITIONAL EXPERIMENT DETAILS

List of fruit concepts from Section 4.1.

apple, apricot, avocado, banana, blackberry, blueberry, cantaloupe,
cherry, coconut, cranberry, cucumber, currant, date, dragonfruit,
durian, elderberry, fig, grape, grapefruit, guava, honeydew, kiwi,
lemon, lime, loquat, lychee, mandarin orange, mango, melon, nectarine,
orange, papaya, passion fruit, peach, pear, persimmon, pineapple, plum,
pomegranate, pomelo, prune, quince, raspberry, rhubarb, star fruit,
strawberry, tangerine, tomato, watermelon

List of animal concepts from Section 5.

lion, tiger, giraffe, zebra, monkey, bear, wolf, fox, dog, cat,
horse, cow, pig, sheep, goat, deer, rabbit, raccoon, squirrel, mouse,
rat, snake, crocodile, alligator, turtle, tortoise, lizard,
chameleon, iguana, komodo dragon, frog, toad, turtle, tortoise,
leopard, cheetah, jaguar, hyena, wildebeest, gnu, bison, antelope,
gazelle, gemsbok, oryx, warthog, hippopotamus, rhinoceros, elephant
seal, polar bear, penguin, flamingo, ostrich, emu, cassowary, kiwi,
koala, wombat, platypus, echidna, elephant

Concepts used for car and plane from Section 5

car: headlights, taillights, turn signals, windshield, windshield vipers,
bumpers, wheels

plane: wings, landing gear, sky

Scene labels considered in Section 6.

/a/arena/hockey, /a/auto_showroom, /b/bedroom, /c/conference_room, /c/corn_field
/h/hardware_store, /l/legislative_chamber, /t/tree_farm, /c/coast,
/p/parking_lot, /p/pasture, /p/patio, /f/farm, /p/playground, /f/field/wild
/p/playroom, /f/forest_path, /g/garage/indoor
/g/garage/outdoor, /r/runway, /h/harbor, /h/highway
/b/beach, /h/home_office, /h/home_theater, /s/slum,
/b/berth, /s/stable, /b/boat_deck, /b/bow_window/indoor,

/s/street, /s/subway_station/platform, /b/bus_station/indoor, /t/television_room,
/k/kennel/outdoor, /c/campsite, /l/lawn, /t/tundra, /l/living_room,
/l/loading_dock, /m/marsh, /w/waiting_room, /c/computer_room,

/w/watering_hole, /y/yard, /n/nursery, /o/office, /d/dining_room, /d/dorm_room,
/d/driveway
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F.1 ADDITION RESULTS FOR SECTION 6

We report also the tau (Wikipedia, 2023b) distance from concept explanations computed by Simple
as a measure of explanation quality. Kendall Tau is a standard measure for measuring distance
between two ranked lists. It does so my computing number of pairs with reversed order between any
two lists. Since Simple can only estimate the importance of concepts that are correctly annotated in
the dataset, we restrict the comparison to only over concepts that are attributed non-zero importance
by Simple.

Dataset↓ TCAV O-CBM Y-CBM U-ACE
ADE20K 0.36 0.48 0.48 0.34
PASCAL 0.46 0.52 0.52 0.32

Table 3: Quality of explanation comparison. Kendall Tau Distance between concept importance
rankings computed using different explanation methods shown in the first row with ground-truth.
The ranking distance is averaged over twenty labels. U-ACE is better than both Y-CBM and O-
CBM as well as TCAV despite not having access to ground-truth concept annotations.

G ABLATION STUDY

G.1 UNCERTAINTY OF CONCEPT ACTIVATIONS

As explained in Section 3.1, we estimate the uncertainty on concept activations using a measure on
predictability of the concept as shown in Proposition 1. In this section we evaluate the quality of es-
timated uncertainty and compare with other (potentially simpler) variants of uncertainty estimation.
More crisply, we ask the following question.
Why not estimate uncertainty using any other uncertainty quantification method?

We conduct our study using the ResNet-18 model pretrained on Places365 and Pascal dataset that
were discussed in Section 6. We use human-provided concept annotations to train per-concept linear
classifier on the representation layer. We retained only 215 concepts of the total 720 concepts that
have at least two positive examples in the dataset. We then evaluated the per-concept linear classifier
on a held-out test set to obtain macro-averaged accuracy. The concepts with poor accuracy are the
ones that cannot be classified linearly using the representations. Therefore the error rate per concept
is the ground-truth for uncertainty that we wish to quantify.

We may now evaluate the goodness of uncertainty: ϵ of U-ACE by comparing it with ground-truth
(error-rate); observe they are both K-dimensional vectors. We report two measures of similarity in
Table 4: (1) Cosine-Similarity (Cos-Sim) between ϵ and error-rate, (2) Jaccard Similarity (JS) (https:
//en.wikipedia.org/wiki/Jaccard index) between top-k least uncertain concepts identified using error-
rate and ϵ. For any two vectors u, v, and their top-k sets: S1(u), S2(v), the Cos-Sim and JS are
evaluated as follows.

Cos-Sim(u, v) =
uT v

∥u∥∥v∥

JS(S1(u), S2(v)) =
|S1(u) ∩ S2(v)|
|S1(u) ∪ S2(v)|

We will now introduce two other variants of estimating ϵ.
MC Sampling. We may simply repeat the estimation procedure several times (denote
by S) with different seed and data split to sample multiple concept activation vectors:
{a(1)k , a

(2)
k , . . . , a

(S)
k } k ∈ [1,K]. We empirically estimate per-concept uncertainty by averag-

ing over examples: ϵMC = Ex∈D[std([xTa
(1)
k ,xTa

(2)
k , . . . ,xTa

(S)
k ])]. Where std is the sample

standard deviation: std(b1, b2, . . . , bS) =

√∑
s(bs−

∑
s bs
S )2

S−1 . We simply repeated the estimation pro-
cedure of Oikarinen et al. (2023) that is summarized in Section 3.1 multiple times with different
seed and data split to sample different activation vectors.
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Distribution Fit. Inspired by ProbCBM proposed in Kim et al. (2023a), we estimate ϵ from the data
as a learnable parameter through distribution fitting. We assume normal distrbution of the noise and
model the standard deviation as a linear projection of the feature vector. The model is summarized
below.

g(x)T gtext(Tk) ∼ N (µk(x), σ
2
k(x))

µk(x) = p⃗k
T f(x), σk(x) = q⃗k

T f(x)

We obtain the observed score of a concept given an example: x using the multi-modal model:
g, gtext and the text description of the kth concept Tk. The concept score is modeled to be
distributed by a normal distribution whose mean and standard deviation are linear functions of
the feature representation of the model-to-be-explained: f [−1](x). We optimize the value for
[p⃗1, p⃗2, . . . , p⃗K ], [q⃗1, q⃗2, . . . , q⃗K ] through gradient descent on the objective β = MLL(D, g) + β ×
EDEk[KL(N (0, I)∥N (µk(x), σk(x)))] very similar to the proposal of Kim et al. (2023a). We
picked the best value of β and obtained ϵDF by averaging over all the examples: ϵDF = ED[σk(x)].

Evaluation of epistemic uncertainty. We compared the estimate of uncertainty obtained through
MC sampling (ϵMC with hundred samples) and Distribution Fitting (ϵDF ) with ϵ of U-ACE in
Table 4. We observe that uncertainty obtained using distributional fitting is decent without incurring
huge computational cost, however U-ACE produced the highest quality uncertainty at the same or
slightly lower computational cost of distributional fitting.

Method Cos-Sim Top-10 Top-40 Top-80
MC Sampling -0.13 0 0.08 0.21

Distribution Fit 0.06 0.11 0.19 0.31
U-ACE 0.36 0.11 0.29 0.36

Table 4: Evaluation of uncertainties estimated using U-ACE, MC sampling and Distribution Fit (see
text for their description). Cos-Sim is the cosine-similarity with ground-truth value of uncertainty.
The next three columns show Jaccard similarity between the top-k concepts ranked by ground-truth
uncertainty and each of the three methods.

Evaluation of uncertainty due to ambiguity. The results so far have confirmed the merits of U-
ACE over the other two in modelling the uncertainty due to lack of information. In Figures 7,8,9,10,
we present anecdotal evidence that U-ACE is very effective at modelling uncertainty due to ambi-
guity. In each figure, we compare most (first two columns) and least (last two columns) uncertain
images identified by Distribution Fit (in the first row) and U-ACE in the second row.

Figure 7: Comparison of ambiguity ranking for Cat with Distr. Fit in the top row and U-ACE in the
bottom row. Most uncertainty (due to ambiguity) on the left to least uncertainty on the right.
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Figure 8: Comparison of ambiguity ranking for Bird with Distr. Fit in the top row and U-ACE in
the bottom row. Most uncertainty (due to ambiguity) on the left to least uncertainty on the right.

Figure 9: Comparison of ambiguity ranking for Sky with Distr. Fit in the top row and U-ACE in the
bottom row. Most uncertainty (due to ambiguity) on the left to least uncertainty on the right.

G.2 BAYESIAN ESTIMATION AND SIGNIFICANCE OF PRIOR

The focus of this section is to motivate the uncertainty-aware prior used by U-ACE. More crisply,
the subject of this section is to answer the following question.
What is the role of prior in U-ACE, and what happens without it?

We replicate the study on Broden dataset of Section 6 of Table 1 with two new baselines. We re-
place the linear model estimation of U-ACE described in Section 3 with an out-of-the-box Bayesian
Regression estimator available from sklearn1, which we refer as Bayes Regr. Effectively, Bayes
Regr. is different from U-ACE only in the prior. We also compare with the estimation of fitting
using Bayes Regr. but when the input is perturbed with the noise estimated by U-ACE. We refer to
this baseline as Bayes Regr. with MC.

Table 5 contrasts the two methods that differ majorly only on the choice of prior with U-ACE. We
observe a drastic reduction in the quality of explanations by dropping the prior.

1https://scikit-learn.org/stable/modules/generated/sklearn.linear model.BayesianRidge.html
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Figure 10: Comparison of ambiguity ranking for Snow with Distr. Fit in the top row and U-ACE in
the bottom row. Most uncertainty (due to ambiguity) on the left to least uncertainty on the right.

Can we trivially fix TCAV with a simple uncertainty estimate?
TCAV is already equipped with a simple uncertainty measurement to distinguish a truly important
concept from a random concept. TCAV computes ⃗m(x) and ⃗s(x) of concept activations by simply
training multiple concept activation vectors. Yet, TCAV estimated explanations are noisy as seen in
Table 1 and in the top-10 salient concepts shown below. The poor quality of TCAV explanations
despite employing uncertainty (although in a limited capacity) is likely because simple measurement
of uncertainty through MC sampling is not the best method for estimating uncertainty as shown in
Table 4.

Dataset Bayes Regr. Bayes Regr. with MC U-ACE
ADE20K 0.39 0.43 0.09

Pascal 0.40 0.45 0.11

Table 5: Significance of prior: quality of explanations severely degrades without the uncertainty-
aware prior.

The tables below give a detailed view of the top-10 salient concepts identified using ADE20K for
the ResNet-18 scene classification model. The problematic or outlandish concepts are marked in
red. We observe that although Bayesian Regr. and Y-CBM are practically the same, the choice
of the estimator and sparsity seems to have helped Y-CBM produce (seemingly) higher quality
explanations.

Label: Tree Farm (ADE20K)

TCAV palm, horse, pane of glass, helicopter,
rubbish, cap, boat, organ, tent, footbridge

Bayes Regr.
with MC sampling

net, merchandise, labyrinth, black, big top, ottoman, chest,
pigeonhole, tree, sky

Bayes Regr. oar, forest, pigeonhole, merchandise, sand trap,
net, wallpaper, tray, calendar, tree

O-CBM forest, pot, pottedplant, hedge, trestle, sweater,
bush, leaf, foliage, coat

Y-CBM field, forest, foliage, elevator, gravestone,
hedge, bush, vineyard, covered bridge, baptismal font

U-ACE foliage, forest, grass, field, hedge, covered bridge,
tree, leaves, bush, gravestone

Label: Coast (ADE20K)
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TCAV shutter, manhole, baby buggy, umbrella, sand, boat,
arch, minibike, rubbish, column

Bayes Regr.
with MC sampling

wineglass, guitar, headlight, chest, jersey, roundabout,
witness stand, magazine, folding door, shaft

Bayes Regr. lake, headlight, island, hen,
dog, chest, jersey, mosque, shaft, windshield

O-CBM sea, island, lighthouse, cliff, wave, shore,
rock, sand, pitted, crystalline

Y-CBM sea, sand, lake, island, runway, cliff,
fog bank, clouds, towel rack, pier

U-ACE sea, lake, island, pier, cliff, lighthouse,
shore, fog bank, water, sand

G.3 EFFECT OF REGULARIZATION STRENGTH ON Y-CBM AND O-CBM

We present the sensitivity analysis for the two strong baselines: Y-CBM and O-CBM in this section.

How are the hyperparams tuned?
Hyperparameter tuning is tricky for concept explanations since they lack a ground-truth or valida-
tion set. The reported results for Y-CBM and O-CBM in the main paper used the default value
of the regularization strength of the corresponding estimator, which is Lasso2 for Y-CBM and
LogisticRegression3 for O-CBM. Both the estimators are part of sklearn. We had to reduce
the default regularization strength of Y-CBM to α = 10−3 so that estimated weights are not all 0.
The κ of U-ACE is somewhat arbitrarily set to 0.02 on Broden dataset for sparse explanation with
non-zero weight for only 20-30% of the concepts.

Can Y-CBM and O-CBM do much better if we tune the regularization strength?
We present the results of the two baselines for various values of the regularization strength in Table 6.
The table shows quality of explanations in the first two rows for the same setup as Table 1 and also
shows the measure of drift in explanations like in Table 2. We tried C=1e-2, 0.1, 1, 10 for
O-CBM and α =1e-4, 1e-3, 1e-2, 1e-1 for Y-CBM. We dropped C=1e-2 and α =1e-2, 1e-1
from the table because then the exaplanations were overly sparsified to zero.

We observe from the table that U-ACE still is the best method that that yields high-quality explana-
tion while also being less sensitive to shift in the probe-dataset.

Dataset O-CBM Y-CBM U-ACE
Regularization strength → C=0.1 C=1 C=10 α=10−4 α=10−3 κ=0.02

ADE20K 0.12 0.20 0.29 0.24 0.14 0.09
Pascal 0.11 0.25 0.35 0.27 0.13 0.11

ADE20K→Pascal 0.46 0.26 0.12 0.29 0.34 0.19

Table 6: Results on Broden dataset with varying value of regularization strength for O-CBM and
Y-CBM. ADE20K and Pascal rows compare the distance between the explanations computed from
the ground-truth exactly like Table 1. The last row compares how much the explanations drifted
between the datasets exactly like in Table 2. Lower is better everywhere. Observe that U-ACE has
high explanation quality while also being relatively more robust to data shift.

H EXTENSION OF SIMULATION STUDY

Under-complete concept set. We now generate concept explanations with concepts set to {“red or
blue”, “blue or red”, “green or blue”, “blue or green”}. The concept “red or blue” is expected
to be active for both red or blue colors, similarly for “blue or red” concept. Since all the concepts
contain a color from each label, i.e. are active for both the labels, none of them must be useful for
prediction. Yet, the importance scores estimated by Y-CBM and O-CBM shown in the Figure 7

2https://scikit-learn.org/stable/modules/generated/sklearn.linear model.Lasso.html
3https://scikit-learn.org/stable/modules/generated/sklearn.linear model.LogisticRegression.html
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table attribute significant importance. U-ACE avoids this problem as explained in Section 3.2 and
attributes almost zero importance.

Concept Y-CBM O-CBM U-ACE
red or blue -75.4 -1.8 0.1
blue or red 21.9 -1.9 0

green or blue -1.4 1.6 0
blue or green -23.1 1.6 0

Table 7: When the concept set is under-complete and contains only nuisance concepts, their esti-
mated importance score must be 0.

I EVALUATION USING CUB DATASET

Wah et al. (2011) released a bird dataset called CUB with 11,788 images and 200 bird species.
Moreover, each bird image is annotated with one of 312 binary attributes indicating the presence
or absence of a bird feature. Koh et al. (2020) popularized an improved version of the dataset that
retained only 112 clean attribute annotations. We evaluate using the cleaner dataset released by Koh
et al. (2020) owing to their popularity in evaluating CBMs. We train a pretrained ResNet-18 model
using the training split of CUB dataset. We then compute the explanation (i.e. saliency of concepts)
using the test split. Similar to the evaluation of Section 6, we quantify the quality of explanations
using distance from explanations computed using true concept annotations when using Simple.

TCAV O-CBM Y-CBM U-ACE
Top 3 0.38 0.43 0.46 0.43
Top 5 0.39 0.45 0.46 0.44
Top 10 0.37 0.43 0.45 0.42
Top 20 0.36 0.40 0.41 0.39

Table 8: Distance of top-k salient concepts computed using Simple and different estimation methods
shown in the first row (lower the better). TCAV does well overall and U-ACE performs the best
among methods without access to concept annotations.
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TCAV O-CBM Y-CBM U-ACE
Top 3 0.22 0.17 0.13 0.20
Top 5 0.5 0.33 0.28 0.45
Top 10 1.68 1.18 1.02 1.34
Top 20 5.16 4.185 3.935 4.51

Table 9: Average overlap between top-k salient concepts computed using Simple and different es-
timation methods shown in the first row (higher the better). TCAV does well overall and U-ACE
performs the best among methods without access to concept annotations.
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