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ABSTRACT

Dense document embeddings are central to neural retrieval. The dominant paradigm
is to train and construct embeddings by running encoders directly on individual
documents. In this work, we argue that these embeddings, while effective, are im-
plicitly out-of-context for targeted use cases of retrieval, and that a contextualized
document embedding should take into account both the document and neighboring
documents in context - analogous to contextualized word embeddings. We propose
two complementary methods for contextualized document embeddings: first, an
alternative contrastive learning objective that explicitly incorporates the document
neighbors into the intra-batch contextual loss; second, a new contextual architecture
that explicitly encodes neighbor document information into the encoded represen-
tation. Results show that both methods achieve better performance than biencoders
in several settings, with differences especially pronounced out-of-domain. We
achieve state-of-the-art results on the MTEB benchmark with no hard negative
mining, score distillation, dataset-specific instructions, intra-GPU example-sharing,
or extremely large batch sizes. Our method can be applied to improve performance
on any contrastive learning dataset and any biencoder.1

1 INTRODUCTION

Machine learning approaches to text retrieval aim to learn an embedded representation for indexing
documents. Classically, this area was dominated by statistical approaches using sparse lexical
matching methods based on n-gram frequencies such as BM25 (Robertson & Zaragoza, 2009).
Only recently have neural networks become competitive with state-of-the-art models on retrieval
tasks (Karpukhin et al., 2020; Thakur et al., 2021). The primary neural method is a dual encoder

architecture that independently encodes both a document and query to a dense latent space for
retrieval lookup. This document embedding space can improve upon a statistical model since it is
learned end-to-end for retrieval.

However, there is at least one notable benefit of statistical approaches that is lost by neural models.
Statistical models can easily incorporate prior corpus statistics such as inverse document frequency
(IDF), into their representation. This prior term imparts context-dependence onto the model, since it
can be updated based on information specific to retrieval in a given domain at test time. We contrast
this contextual formulation with neural document encoders that are by definition a function of the
document itself. For example consider the following document:

The National Football League Draft is an annual event in which the National
Football League (NFL) teams select eligible college football players...

Depending on the retrieval domain, e.g. Wikipedia search, sports articles, or televised events, IDF
may weight terms such as NFL, draft or annual higher; a neural document embedding model
would need to select a global weighting for this document.

In this work, we explore contextualization of document embeddings produced by dense encoders.
The goal is to produce embeddings that are better able to handle retrieval tasks in specific challenging
contexts. We propose two complementary changes to document encoders: a contextual training
procedure and architecture.

1We plan to release our code and data for clustering, training, and inference as well as cluster indices for the
corresponding datasets.

1



Under review as a conference paper at ICLR 2025

Figure 1: Overview of our system for contextual document embeddings (CDE). Our model operates
in two stages: a first stage used to characterize the dataset from samples, and a second stage used to
embed the final document.

For contextual training, we aim to build a notion of neighboring documents directly into the contrastive
learning process. We propose a method that uses on fast query-document clustering to produce a
group of neighbors for each training batch. Each update for training is constructed purely from
neighboring documents to ensure that embeddings can distinguish documents even in the most
challenging contexts.

For the architecture, we propose a new encoder that injects information about the contextual docu-
ments during embedding. The proposed architecture augments the standard BERT-style encoder with
additional conditioning that provides aggregated document-level information about neighboring doc-
uments. We call our method Contextual Document Embedding (CDE). Analogously to pre-computed
corpus-level statistics, this method provides a manner for the embedding to take into account the
relative frequency of terms in context. The final output is still an embedding of the same size, so this
does not require any additional storage or other changes to the retrieval process. When indexing, we
utilize information from the corpus to produce document and query embeddings that are specific to a
particular domain.

Experiments compare these two extensions to standard approaches for training document embeddings.
Our results show that contextual contrastive training improves standard text embedding model training,
and can be run without other approaches such as additional hard negatives. With the contextual
encoder architecture, we see additional improvements over a baseline model in all settings tested,
with larger improvements in highly specific domains such as small datasets of financial and medical
documents. When trained at industry-scale, our model achieves state-of-the-art results for small
(<250M parameter) models on the MTEB benchmark.

2 RELATED WORK

Text retrieval. Our work is related to the general field of text retrieval; we propose specific
improvements to the training of “biencoder” text embedding models such as DPR (Karpukhin et al.,
2020), GTR (Ni et al., 2021), Contriever (Izacard et al., 2022), LaPraDoR (Xu et al., 2022), Instructor
(Su et al., 2023), Nomic-Embed (Nussbaum et al., 2024), E5 (Wang et al., 2024), and GTE (Li et al.,
2023). We focus on the problem of adapting these text retrieval models to new corpora at test time;
some prior work has noted this problem (Dai et al., 2022; Sciavolino, 2021) and proposed solutions
such as unsupervised span-sampling and training on test corpora (Gao & Callan, 2021) and distillation
on the test corpus from a reranker (Sung et al., 2023). Late interaction methods (Khattab & Zaharia,
2020; Santhanam et al., 2022) also offer one way to improve out-of-domain retrieval performance,
but increase the runtime and complexity of search. We propose a better sampling scheme that can be
used to train any biencoder or late interaction model as well as a training-free method for test-time
adaptation.
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Contrastive learning. Much research has focused on the effect of hard negatives on the performance
of contrastive learning methods (Chen et al., 2020; Qu et al., 2021; Robinson et al., 2021; Wang
et al., 2023). (Zhang & Stratos, 2021) observe that harder negatives provide a better approximation
of the overall cross-entropy loss, but do not consider batch-level optimizations for negative selection.
(Sachidananda et al., 2023) also consider contrastive batch sampling as a global optimization problem,
but do not apply their technique to state-of-the-art transformer-based text embedding models. (Ma
et al., 2024) use a clustering algorithm to partition a dataset into several sub-datasets, but train a
different model on each sub-dataset. Our training algorithm aims to find the hardest possible batches
to train text embedding model.

Test-time adaptation. Our method can be compared to other solutions to test-time adaptation, a
problem that has been well-studied across a variety of domains (Jang et al., 2023). In retrieval, one
form of test-time adaptation is pseudo-relevance feedback (PRF) (Rocchio, 1971; Li et al., 2018;
Wang et al., 2021), where documents relevant to the query are used to construct a final, enhanced
query representation. The query side of our model can be seen as a form of pseudo-relevance
feedback; however, we train from scratch to support a more general form of PRF natively, on the
document representation as well as the query.

Non-parametric modeling. Our contextual document model can be seen as a form of non-
parametric modeling. This shows connections with the a large body of deep learning research
such as the non-parametric transformer (NPT) (Kossen et al., 2022) and the subfield of Neural
Processes (Garnelo et al., 2018; Kim et al., 2019; Nguyen & Grover, 2023). Semi-parametric models
have been recently applied in NLP, specifically to the task of language modeling (Borgeaud et al.,
2022; Khandelwal et al., 2020). Instead of using a retrieval model to build a semi-parametric langauge
model, we build a semi-parametric model specifically for the task of retrieval.

3 BACKGROUND

We can view text retrieval methods probabilistically as computing a distribution over potential
documents based on a scalar score function f(d, q) matching documents and queries:

p(d | q) =
exp f(d, q)P

d02D
exp f(d0, q)

(1)

where D is a finite set of documents in a dataset. There is a wide variety of different definitions for f
including full pairwise neural parameterizations (Nogueira & Cho, 2020). In this work, we focus on
efficient retrieval methods using vector-based methods, also known as embedding models.

Vector retrieval methods assume that f(d, q) can be factored into two embedding terms, �(d) ·  (q),
the document and query embedding respectively. This factorization allows precomputation of the
document embeddings �(d) for all d 2 D. This is critical for facilitating fast computation of
argmaxd p(d | q) or top-k variants (Douze et al., 2024).

In statistical retrieval, � and  are closed-form functions of the data, often representing unigram or
bigram counts by the relative frequency of word types. Notably for this work, these methods can also
utilize distributional properties of the test dataset as a prior, for example through inverse document
frequency (IDF). We represent this integration of dataset-level information by writing the vector
product �(d;D) ·  (q;D).

In neural retrieval, we instead learn the representation as a dense vector. We assume access to a
training corpus of document and query pairs (these may be supervised, i.e. gold-standard annotations,
or unsupervised, i.e. noised synthetic examples), DT = {(d1, q1), ..., (dJ , qJ)}, with the aim of
learning the embedding function � and  .

Training can be motivated as maximizing likelihood of the document corresponding to each query, i.e.P
j log p(d

j
| qj). Unfortunately, since retrieval datasets can have |D| exceed millions of documents,

computing the normalizer in Eq 1 at each training step is not an option. Instead contrastive learning is
used where the likelihood is replaced with a biased approximation calculated from negative samples:
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max
�, 

X

j

log p(dj | qj) ⇡
X

j

log
exp f(dj , qj)P

d02H(qj) exp f(d
0, qj)

where H is a set of examples used to approximate the normalizing constant. In implementation,
in addition to these hard negative examples, other examples from the mini-batch are also used to
compute the normalizer since it requires no additional compute for calculating �(d).

4 METHODS

In our work, we are interested in integrating contextual information into our embedding functions
� and  . The standard neural � is purely a function of the document �(d) and does not take into
account any notion of context. This contrasts with the statistical model �(·;D) and  (·;D). Arguably
this is not an issue if retrieval is completely in domain, as � is capable of learning statistics such as
IDF and average document length on the training set through gradient descent.

However, in many retrieval benchmarks, models are trained over a single set of documents D and
then tested in many other domains D that differs significantly from DT . In this setting, training on
DT alone may not be able to provide robust embeddings when used in contexts such as D.

4.1 CONTEXTUAL TRAINING WITH ADVERSARIAL CONTRASTIVE LEARNING

Returning to the example from the introduction, we assume that in a general purpose training corpus
DT , the term NFL is a rare word appearing in relatively few documents and a useful signal. However,
if at test time D is a corpus of sports articles, this word would be exceedingly common. Evaluation
in this domain is, in a statistical sense, adversarial to the original dataset. To handle this issue,
meta-learning-style objectives have shown to be effective for training document embedders. In these
approaches, instead of sampling documents-query pairs iid, the objective first sample a domain and
then sample a batch of examples. This ensures that the model mostly sees related training points in
each domain.

We propose a training objective that synthesizes a large set of fine-grained domains to train the model
on. Formally, our aim is to partition the training dataset DT into groups (B1, . . .BB) such that each
group represents a self-similar pseudo-domain:

max
�, 

X

b

X

(d,q)2Bb

log p(d | q) = max
�, 

X

b

X

(d,q)2Bb

log
exp f(d, q)P

(d0,·)2Bb exp f(d0, q)

Computationally, the inner term can be implemented as a single batch and computed efficiently
without the need for separate hard negatives (H). Ideally we want groups that are as challenging as
possible. Zhang & Stratos (2021) show that increasing the partition term improves the contrastive
approximation to the maximum likelihood the gradient. We can formalize the search for the most
difficult configuration of batches as an optimization problem:

max
(B1,...BB)

X

b

X

(d,q)2B
b

(d0,q0)2B
b

f(d, q0)+ f(d0, q) = max
(B1,...BB)

X

b

X

(d,q)2B
b

(d0,q0)2B
b

�(d) · (q0)+�(d0) · (q) (2)

Solving this combinatorial objective exactly is intractable, but we can treat approximate a solution
using clustering. We first move from a maximization to a minimization by replacing the two dot
products with L2, i.e. m((d, q), (d0, q0)) = ||�(d)�  (q0)||+ ||�(0d)�  (q)|| which is equivalent
for normalized embeddings. We then note that treated as symmetric pairs, this term obeys the triangle
inequality for any other pair m i.e:

m((d, q),m) +m(m, (d0, q0)) � m((d, q), (d0, q0))
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This implies that the following centroid-based objective represents an upper-bound on our original
objective:

min
(B1,...BB)
(m1,...,mB)

X

b

X

(d,q)2B
b

m((d, q),mb) (3)

For a known size B, this defines an asymmetric K-Means clustering problem. A solution can be
efficiently computed using extremely fast Euclidean K-Means packages be treating each data point as
two separate vectors �(d)�  (q) and  (q)� �(d) where � is concatenation.

Cluster Embeddings. Since clustering is performed before training, we do not have dense encoders
for � and  when constructing the groups. Borrowing methods from hard-negative mining (Robinson
et al., 2021) we can replace the � and  with a simpler embedding model when constructing groups.
We experiment with a sparse vector representation and with pretrained dense representations, settling
on GTR (Ni et al., 2021), a popular and generic text embedding model.

Filtering False Negatives. Our method is especially sensitive to false negatives, as they will be
more likely to be included in a given batch. Unfortunately, traditional retrieval datasets are not
designed with this type of global objective in mind: false negatives are common in most retrieval
datasets and their prevalence increases with dataset scale. As one datapoint, Qu et al. (2021) found
that over 70% of top-retrieved passages in MS Marco are false negatives.

To avoid a situation where each batch contains a large number of false negatives, we compute an
equivalence class: S(q, d) = {d0 2 D | f(q, d0) � f(q, d)} for some surrogate scoring function f .
At training time, we alter the partition function for d so that it no longer includes the elements of
S(q, d), which are not definitively negative examples:

log p(d | q) =
exp f(d, q)

exp f(d, q) +
P

d0 /2S(q,d) exp f(d
0, q)

(4)

For simplicity, we again select f to be a simple pre-trained embedding model. This method likely
over-prunes some potential true negatives found by the surrogate model; however we found it to be
critical to model accuracy.

Packing. Clusters found by our algorithm will be of varying sizes, and need to be packed into
equal-sized batches. We apply a post-hoc procedure. We consider both random partitioning and
grouping via greedy cluster-level traveling salesman, similar to Shi et al. (2024). In both cases, we
split large group into into smaller batches, and merge close small batches from within the same
domain into evenly-sized batches. This has an added benefit of introducing randomness into the
groups when training for multiple epochs. We leave it to future work to analyze the full effects of
different packing strategies such as expensive Balanced K-Means or heuristic approaches such as
Equal K-Means (Gururangan et al., 2023).

4.2 CONTEXTUAL DOCUMENT EMBEDDING (CDE)

Contextualization can also be added directly to the archiecture. Taking inspiration from sparse vector
retrieval which uses corpus statistics to determine the form of the embedding, we modify the encoders
to have access to the corpus itself, i.e. �(d;D) and  (d;D). This effectively augments the biencoder
model to give it the ability to contextualize documents directly.

The main challenge is how to design a neural architecture that can take into account dataset contex-
tualization. On one extreme, we could follow methods like BM25 and precompute a fixed set of
corpus statistics that could be fed to the document encoder. On the other extreme, we could allow the
encoder full access to the entire corpus, through some form of cross attention. The latter approach
has been explored on a small scale in methods like neural processes (Garnelo et al., 2018); however,
it would be difficult to scale to larger datasets.

We opt for a middleground that allows the model to learn corpus statistics, but is also relatively
efficient to compute, shown in Figure 1. Specifically, we note that document embeddings retain
a surprising amount of lexical information even after embedding (Morris et al., 2023). Therefore,
if we pre-embed a subset of the corpus, we believe we can still dynamically calculate key dataset
information during encoding.
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We produce contextualized embeddings via a two-stage process:

First stage: Gather and embed context. Given context documents d1, ..., dJ 2 D, we embed each
using a unique embedding model and concatenate embeddings into a sequence M1(d1)...M1(dJ).

Second stage: Embed document with additional context tokens. To compute � for document d0 we
integrate contextual embedding sequence at the input of second-stage embedding model M2:

�(d0;D) = M2(M1(d
1), . . . ,M1(d

J), E(d01), . . . , E(d0T )) (5)

Here M1 is the first-stage encoder model, M2 is a second-stage encoder model, and E is the token
embedding matrix of M2 applied to each token in d0. In practice, we parameterize both M1 and
M2 using traditional bidirectional transformers, so our model is comprised of two biencoder-like
backbones called in sequence.

There is a similar contextualized model for the query encoder  which is also given document context
(as we do not have query context at test time):

�(q;D) = M2(M1(d
1), . . . ,M1(d

J), E(q1), . . . , E(qT )) (6)

We note several implementation properties of this architecture. During training, computing contextual
embeddings for each contextual document for each training instance would naively increase training
by a computational factor proportional to J , the number of documents in context. This time increase
would not be tractable, since contrastive training can already take many days. We overcome this
difficulty by sharing context d1, ..., dJ within a batch of documents; this allows us to compute
representations just once per training step and reuse them between documents via computational
graph. 2

When indexing a new corpus D, first stage representations M1(d1)...M1(dJ) can be computed once
and cached, so M1 does not add parameters or runtime to the search process. Query representations
can also use the cached context, which only require additional inputs to the encoder. (Our model does
not include contextualized queries, only documents, as we typically do not assume access to example
queries at test-time.)

Embedding without context. Individual corpora during training may not have sufficient or available
context. To improve our model’s generalization, we use sequence dropout, where we randomly replace
context embeddings M1(d⇤) with some null token v; according to some a uniform probability p.

At test time, if no corpus information is available, our model can now function as a non-contextual
biencoder simply by replacing all sequence token inputs with v;.

Position-agnostic embedding. Since documents of D are unordered, we remove all positionality
from the neural encodings. When parameterizing ✓ with a traditional transformer, this can be
achieved by omitting positional embeddings at the positions corresponding to D. In practice, we use
transformers implementations dependent on FlashAttention with rotary positional embeddings at
each self-attention layer. Full details of how we disable positionality are available in Section 9.4.

Two-stage gradient caching. To improve training we employ a gradient-caching technique analo-
gous to a two-stage version of GradCache (Gao et al., 2021). This technique allows us to fit larger
batches, longer sequences with more contextual samples without running out of memory. Essentially,
we compute first-stage and second-stage representations independently without gradients. We then
use these frozen representations to compute the loss, and gradients with respect to the second-stage
representations. We then re-run the second stage with gradients enabled and use the output gradients
to backpropagate through the second-stage model, and obtain gradients for the first-stage representa-
tions. We repeat this process for the first-stage representations. This allows us to tradeoff computation
(running each transformer forward pass twice) for memory.

2Context reuse is only feasible because documents within the same batch typically share a large amount of
context anyway, since they are clustered.

6



Under review as a conference paper at ICLR 2025

Contextual
Batch Arch Batch Size Cluster Size Train loss Train acc. NDCG@10

16384 - 0.39 90.3 59.9
3 512 512 0.81 77.7 61.7

3 16384 - 0.37 90.7 62.4
3 3 512 512 0.68 80.9 63.1

Table 1: Performance of our small models with and without the two improvements proposed in this
paper, measured on a shortened version of the BEIR benchmark. Numbers are NDCG@10.

5 EXPERIMENTAL SETUP

We consider a range of retrieval experiments across different scales. To run experiments across a suit-
able number of settings, we devise a small setting: six-layer transformer, maximum sequence length
of 64, and maximum number of 64 additional contextual tokens. In this scenario, we evaluate on a
truncated version of the BEIR benchmark (Thakur et al., 2021). Given the low cost of each experiment,
we are able to pre-train and fine-tune both biencoder and contextual models across a variety of batch
sizes in {256, 512, 1024, 2048, 4096} and cluster sizes {64, 256, 1024, 4096, ..., 2097152, 4194304}.
As typical state-of-the-art text embedding models are trained in two phases, a large weakly-supervised
pre-training phase and a short supervised phase, we run all experiments for both phases.

For the large setting, we use the best settings found via small experiments. We train a single model
on sequences of length 512 with 512 contextual documents, evaluating on the full MTEB benchmark
(Muennighoff et al., 2022). This includes tasks from retrieval as well as tasks like classification,
clustering, and reranking.

Training Data and Metrics We train on the meta-datasets collected in Nussbaum et al. (2024) for
training text embedding models. This collection of datasets includes data from 24 datasets scraped
from web sources such as Wikipedia and Reddit. Our unsupervised training phase trains on 200M
weakly-supervised datapoints scraped from large internet sources such as Reddit and Wikipedia.
The supervised training phase includes 1.8M human-written query-document pairs intended for text
retrieval, and is aggregated from popular retrieval datasets such as HotpotQA and MS MARCO (Yang
et al., 2018; Bajaj et al., 2018). For our full model, we also consider supervised training on the BGE
meta-datasets (Xiao et al., 2024). We evaluate our models using NDCG@10, a conventional retrieval
metric that enables comparison across many disparate datasets.

Implementation When partitioning our dataset into batches, we encode documents and queries
using GTR (Ni et al., 2021) and implement our clustering algorithm on top of FAISS (Douze et al.,
2024). We cluster per-domain for 100 steps and take the best clustering out of 3 attempts. We
select NomicBERT as our pre-trained model backbone (Nussbaum et al., 2024), which has 137M
parameters. We prepend all texts with short task-specific prefixes to identify each task; prefixes are
listed in Section 9.7.

Training We initialize both M1 and M2 using the BERT-base model from Nussbaum et al. (2024)
that includes flash attention. Weights are shared between � and  , but notably not between M1

and M2. For all experiments, we train with the Adam optimizer with 1000 steps of warmup to a
learning rate of 2 · 10�5 and linearly decay to 0 throughout training. We train for three epochs unless
otherwise specified. We set the maximum sequence length for all inputs to 512 and the number of
contextual inputs to 512 (so the second-stage model has an input length of 1024). When computing
contrastive loss, we use a fixed temperature of ⌧ = 0.02. When sequence dropout is enabled in our
contextual architecture, we set contextual input tokens to null vectors with a uniform probability
p = 0.005. If the batch size exceeds the number of contextual documents, we randomly sample to
produce contextual inputs.
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Clssfctn Cluster PairCls Rerank Retrvl STS Summ. Mean

nomic-embed-v1 74.1 43.9 85.2 55.7 52.8 82.1 30.1 62.39
stella-base-en-v2 75.3 44.9 86.5 58.8 50.1 83.0 32.5 62.61
bge-base-en-v1.5 75.5 45.8 86.6 58.9 53.3 82.4 31.1 63.56
GIST-Embedding-v0 76.0 46.2 86.3 59.4 52.3 83.5 30.9 63.71
gte-base-en-v1.5 77.2 46.8 85.3 57.7 54.1 82.0 31.2 64.11

anon-model-v1
[Random] 81.3 46.6 84.1 55.3 51.1 81.4 31.6 63.81
[Contextual] 81.7 48.3 84.7 56.7 53.3 81.6 31.2 65.00

Table 2: Performance of models with 250M or fewer parameters on the MTEB benchmark for
text embedding models. “Random” indicates the performance of our model with random training
documents included instead of per-domain contextual documents.

6 RESULTS

The main results are highlighted in Table 1 and Section 6. In the smaller setting, we observe that both
adversarial contrastive learning and our contextual architecture improve performance compared to
vanilla biencoder training. We observe the largest improvement when we combine these techniques.

Contextual batching After controlling for batch size and filtering for false negatives, we observe a
strong correlation (visualized in Figure 2) between batch difficulty and downstream performance:
reordering datapoints to make batches harder definitively enhances overall learning. This corrob-
orates prior findings (Xiong et al., 2020; Qu et al., 2021) and theory (Zhang & Stratos, 2021) that
more difficult batches in contrastive learning form a better overall gradient approximation and learn
more effectively.

Section 6 showcases model performance across batch and cluster sizes after both phases of training.
We observe that although a large batch and cluster size are useful when filtering is not enacted, when
including filtering, smaller cluster (and harder) are clearly better, and large batches do not add much.
When comparing filtered to non-filtered models (Figure 4), filtering false negatives clearly improves
performance.

Contextual architecture In addition to adversarial batching, we compare our contextual archi-
tecture to a biencoder across the datasets of BEIR in Table 1. Our architecture generally matches
or improves performance on all downstream datasets, with largest improvements in ArguAna and
SciFact, two of the smaller and more out-of-domain datasets.

Full-scale training Figure 5 shows our models’ performance when trained for multiple epochs on
the supervised datasets, relative to the best similar-sized embedding model (dashed line). We find
best performance when training for four epochs on the BGE meta-datasets. Although our best model
does use a single hard negative per query, we are still able to to achieve state-of-the-art performance
without using any hard negatives.

For our final model (anon-model-v1), we select the best of the supervised models, which comes
from finetuning on the BGE dataset. On MTEB, anon-model-v1 obtains state-of-the-art results
compared to models of the same size. Although inspired by problems in the specific domain of text
retrieval, we observe that our approach improves embedding performance in all domains, including
clustering, classification, and semantic similarity. We also evaluate a “random documents” baseline,
where we sample random documents from the training dataset to simulate a scenario where we lack
access to the test corpus. In this setting, we drop around 1.2 points on average across all tasks; the
STS tasks in particular appear to produce representations that are close to context-agnostic.

7 ANALYSIS

How hard are our clusters? To analysis the relationship between cluster size in our clustering
algorithm and the overall average difficulty of in-batch negatives, we measure the average difficulty
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Figure 2: Performance vs. average batch difficulty (as measured by loss at the end of pre-training and
supervised training) across batch sizes, after supervised contrastive training. Within a given batch
size, we observe a clear increase in performance by making individual batches harder. Correlations
are Pearson.

Figure 3: Biencoder performance with filtering (left) and without (right) across batch and cluster
sizes during unsupervised contrastive pre-training. With filtering, small cluster sizes clearly improve
performance, and larger batch sizes do not.

of 1000 batches across a variety of batch and cluster sizes and plot the data in Figure 6. We observe
that larger batches bring easier non-negative examples, and decreasing cluster size clearly increases
the average hardness of negative examples in a given cluster.
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Figure 4: Impact of filtering during training
across various batch and cluster sizes. Each dot
is a biencoder pretrained with a different batch
and cluster size.

Figure 5: Performance on MTEB across epochs
of supervised training on the Nomic and BGE
supervised meta-datasets.

Figure 6: Average difficulty of in-batch negatives
as measured by a surrogate model as cluster size
and batch size change.

Figure 7: Impact of context by testing our
model with different Stackexchange forum
input types. Y-axis indicates the input do-
main, X-axis indicates the test domain. Dark
squares come within one point NDCG@10.

Which contextual documents help? To confirm that the CDE model is utilizing contextual
information from D we consider how different contextual documents help for a given docuent d.
Figure 7 measures results on CQADupstack, a collection of Stack Exchange forum posts. We
randomly sample inputs to from D from a domain (x-axis) and use them as input to the downstream
task d marked along the y-axis. We mark a square as red if its score comes within 1 point of NDCG of
the top score for its domain. Generally utilizing the documents for that domain are best, but there are
some cross-over interactions. Full results for each input-output task pair are shown in the appendix.

8 CONCLUSION

We propose two improvements to traditional biencoder models for generating embeddings. The
first improvement involves an algorithm for reordering training datapoints to make batches harder
and improves vanilla training with minimal changes. Our second improvement involves a new
corpus-aware architecture for retrieval and allows us to train a state-of-the-art text embedding model.
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