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ABSTRACT

Maximizing a target variable as an operational objective within a structural causal
model is a fundamental problem. Causal Bayesian Optimization (CBO) approaches
typically achieve this either by performing interventions that modify the causal
structure to increase the reward or by introducing action nodes to endogenous
variables, thereby adjusting the data-generating mechanisms to meet the objective.
In this paper, we propose a novel method that learns the distribution of exogenous
variables-an aspect often ignored or marginalized through expectation in existing
CBO frameworks. By modeling the exogenous distribution, we enhance the ap-
proximation fidelity of the data-generating structural causal models (SCMs) used
in surrogate models, which are commonly trained on limited observational data.
Furthermore, the ability to recover exogenous variables enables the application of
our approach to more general causal structures beyond the confines of Additive
Noise Models (ANMs) and single-mode Gaussian, allowing the use of more expres-
sive priors for context noise. We incorporate the learned exogenous distribution
into a new CBO method, demonstrating its advantages across diverse datasets and
application scenarios.

1 INTRODUCTION

Bayesian Optimization (BO) is widely applied in domains such as automated industrial processes, drug
discovery, and synthetic biology, where the objective is to optimize black-box functions (Mockus,
1975; |Astudillo & Frazier, 2019; |Garnett, 2023} [Frazier, [2018)). In many real-world scenarios,
structural knowledge of the unknown objective function is available and can be exploited to enhance
the efficiency of BO. Causal Bayesian Optimization (CBO) has been developed to incorporate such
structural information (Aglietti et al., [2020; 2021} [Sussex et al., [2023} |Gultchin et al., 2023). CBO
integrates principles from causal inference, uncertainty quantification, and sequential decision-making.
Unlike traditional BO, which assumes independence among input variables, CBO accounts for known
causal relationships among them (Aglietti et al.| [2020). This framework has been successfully
applied to optimize medical and ecological interventions (Aglietti et al., 2020; 2021)), among other
applications.

1.1 APPROACH AND CONTRIBUTIONS

In this paper, we propose a novel method called EXogenous distribution learning augmented
Causal Bayesian Optimization (EXCBO). Given observational data from a structural causal
model (SCM [Pearl (2009;|1995))), our method recovers the exogenous variable corresponding to each
endogenous node using an encoder-decoder framework, as illustrated in Figure 2] The recovered
exogenous variable distribution is then modeled using a flexible density estimator, such as a Gaussian
Mixture Model. This learned distribution significantly enhances the surrogate model’s approximation
of the underlying SCM, as shown in Figure[I]

Unlike existing CBO approaches (Aglietti et al.||2020; [2021}; [Sussex et al.| [2023)), which are typically
confined to Additive Noise Models (ANMs |[Hoyer et al.| (2008)), our method generalizes CBO
to broader classes of causal models. By enabling the recovery of exogenous variables and their
distributions, our surrogate model provides improved accuracy and flexibility for causal inference in
the CBO update process.
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The contributions of this work are as follows:

* We introduce a method for recovering the exogenous noise variable of each endogenous
node in an SCM using observational data, which enables our model to capture multimodal
exogenous distributions.

* This flexible approach to learning exogenous distributions allows our CBO framework to
extend naturally to general causal models beyond the limitations of ANMs.

* We present a theoretical investigation of exogenous variable recovery through the proof
of counterfactual identification, and we further analyze the regret bounds of the proposed
algorithm.

* We conduct extensive experiments to evaluate the impact of exogenous distribution learning
and demonstrate the practical advantages of EXCBO through applications such as epidemic
model calibration, COVID-19 testing, and real-world planktonic predator—prey problem,
etc.

The remainder of the paper is organized as follows. Section [2]reviews background and related work.
Section 3]introduces the problem setup and outlines our proposed CBO framework. Section[d]presents
the method for recovering exogenous variables. The proposed algorithm, EXCBO, is detailed in
Section 5] followed by regret analysis in Section[6] Experimental results are presented in Section[7}
and the paper concludes in Section [§]

2 BACKGROUND

We provide a brief overview of SCMs, intervention mechanisms, and CBO in this section.

2.1 STRUCTURAL CAUSAL MODEL

An SCM is denoted by M = (G, F, V,U), where G is a directed acyclic graph (DAG), F = {f;}L,
represents the d + 1 structural mechanisms, V denotes the set of endogenous variables, and U the set
of exogenous (background) variables. The generation of the ith endogenous variable follows

Xi = fi(Zi, Us); Z; = pa(i), U; ~ p(U;), fori € [d]. (nH

Here, [d] = {0,1,...,d}, and X refers to both the variable and its corresponding node in G. The
set pa(i) denotes the parents of node ¢, while ch(z) refers to its children. We assume U; L Z; and
U; 1L Uj for all ¢ # j. Each f; is a mapping from RP2()I+1 to R. The domains of X;, Z;, and
U, are denoted by X;, Z;, and U;, respectively. Additionally, we assume that the expectation E[X;]
exists for all ¢ € [d]. Most existing CBO approaches (Aglietti et al., 2020; 2021} Sussex et al., 2023)
typically assume an Additive Noise Model (ANM Hoyer et al.[(2008)) for exogenous variables, where

2.2 INTERVENTION

In an SCM M, let I C V be a set of endogenous variables targeted for intervention. The post-
intervention structural mechanisms are represented by F, = {f; | X; ¢ I} U {f; | X; € I}.
A hard intervention replaces the mechanism for each X; € I with a constant value, resulting in
F,={fi| X; ¢ I}U{f; :== a; | X; € I}, where a is the realized value of the intervened variables.
This corresponds to Pearl’s do-operation (Pearl, 2009), denoted as do(Xj := «), which alters M to
anew model M, by severing the dependencies between each X; and its parents.

This paper focuses on soft (or imperfect) interventions (Peters et al.,|2017)). Following the Model-
based CBO framework (Sussex et al., [2023), we associate each endogenous variable with an action
variable, modifying the mechanisms as F, = {f; | X; ¢ I} U{f; = f;(Z,,4,,U;) | X; € I},
where Z; = pa(j). Under soft intervention, the data-generating mechanism becomes

X; = {fz(ZuUz)7 if X; §é I

2
fi(Zi, Ai, Us), ifX, eI’ 2

where A; is a continuous action variable associated with X; and takes values in A;. The soft
intervention is represented using Pearl’s notation as do (XI = 1(Zg, A, UI)).



Under review as a conference paper at ICLR 2026

2.3 FUNCTION NETWORK BAYESIAN OPTIMIZATION

Function Network BO (FNBO |Astudillo & Frazier|(2021a;2019)) operates under similar assumptions
as CBO, where the functional structure is known but the specific parameterizations are not. FNBO
applies soft interventions and employs an expected improvement (EI) acquisition function to guide
the selection of actions. However, FNBO assumes a noiseless environment, which may limit its
applicability in practical settings. Both FNBO and CBO contribute to the broader effort of leveraging
structured observations to improve the sample efficiency of standard BO techniques (Astudillo &
Frazier, 2021b).

2.4 CAUSAL BAYESIAN OPTIMIZATION

CBO performs sequential actions to interact with an SCM M. The causal graph structure G is
assumed known, while the functional mechanisms F = {f;}¢_, are fixed but unknown. CBO uses
probabilistic surrogate models - typically Gaussian Processes (GPs|Williams & Rasmussen|(2006)) -
to guide the selection of interventions for maximizing the objective.

In (Aglietti et al., 2020), a CBO algorithm was introduced to jointly identify the optimal intervention
set and the corresponding input values that maximize the target variable in an SCM. Dynamic CBO
(DCBO) (Aglietti et al., 2021} extends this approach to time-varying SCMs where causal effects
evolve over time.

The MCBO method (Sussex et al.,[2023)) optimizes soft interventions to maximize the target variable
within an SCM. In this setting, each edge function becomes f; : Z; x A; — Aj. Let x; + denote
the observation of node X; at time step ¢, for ¢ € [d] and t € [T], where T is the total number
of time steps. At each step ¢, actions a.; = {ai’t}fzo are selected, and the resulting observations
X, = {xi,t}fzo are recorded. The relationship between action a; ; and the observation is modeled
using an additive noise structure: x;; = fi(z;4,a;¢) + u;iy, Vi € [d]. For the target node d,
the action is fixed at aq; = 0, and the observed outcome is y; = fu(2za,¢,aa,) + wa,, Where
y; depends on the entire intervention vector. The optimal action vector a* that maximizes the
expected reward is obtained by solving a* = argmax,c 4 E[y | a]. A GP surrogate model is
employed to approximate the reward function and guide the BO process toward optimizing y.

3 PROBLEM STATEMENT

Following prior CBO approaches (Aglietti et al., [2020; 2021}
Sussex et al.,[2023}; [Frazier, 2018]), we assume that the DAG G is
known. Our framework employs GP surrogate models to guide
the optimization of soft interventions, which are controlled via
an action vector a = {a; }{_, with the goal of maximizing the
reward. This section details the specific problem setting addressed
in this work.

Figure 1: EXCBO: Causal
Bayesian Optimization via ex-
ogenous distribution learning.
We assume that the causal structure, represented by the DAG G  The distribution of Uj is approxi-
of the SCM M = (G,F,V,U), is given. This paper focuses mated using the density of the re-
exclusively on this setting. Additionally, we assume that M is covered surrogate (71 EXCBO
causally sufficient, meaning all endogenous variables in V are gearches for the action vector a
observable. The problems of causal structure learning and handling  that maximizes the reward Y.
unobserved confounders are left for future work.

3.1 ASSUMPTIONS FOR EXCBO

3.2 CBO viA EXOGENOUS DISTRIBUTION LEARNING

In contrast to prior CBO approaches based on ANMs (Aglietti et al., [2021; Sussex et al.| [2023)),
we propose a more flexible modeling of the mappings f;() by explicitly incorporating exogenous
variables. To this end, we introduce EXCBO - a framework for CBO that leverages exogenous
distribution learning, as illustrated in Figure[I]

Let R denote the set of root nodes. Since root nodes have no parents, we set z; ; = O for all
¢ € R. Similarly, we define a;: = 0 at the target node d, and denote the reward at time ¢ as



Under review as a conference paper at ICLR 2026

Yt = fa(Zd.t, aq.t,uq). Given an action vector a = {a;}%_, and exogenous variables u = {u; }¢_,
the reward is denoted as y = F(a, u). The optimization objective becomes

a* = argmaxE[y | a], 3)

acA
where the expectation is taken over the exogenous variables u. The goal is to identify a sequence
of interventions {a, }7_, that achieves high average expected reward. To evaluate convergence, we

study the cumulative regret over a time horizon T: Ry = Zthl [Ely | a*] = E[y | a.¢]] . In our
experiments, we use the observed objective or reward value y as the primary performance metric
for comparing EXCBO against baseline methods. The best choice of evaluation metric may vary
depending on the application and the effectiveness of the optimized action sequence.

3.3 MOTIVATIONS FOR EXOGENOUS DISTRIBUTION LEARNING

In existing CBO frameworks, the distributions of exogenous variables are either ignored or marginal-
ized to simplify the intervention process (Aglietti et al.,|2020; 2021} Sussex et al.,|2023). Learning
the exogenous distribution, however, yields a more accurate surrogate model when observational data
is available. As outlined in later sections, we propose an encoder-decoder architecture (illustrated in
Figure2)) to recover the exogenous variable associated with each endogenous node in an SCM. The
distribution of an exogenous variable U; is approximated by the density of its recovered surrogate UZ,
modeled using a flexible distribution such as a Gaussian Mixture. This learned exogenous distribution
improves the surrogate model’s approximation of the underlying SCM.

As a result, EXCBO extends beyond the ANM framework assumed by prior work (Aglietti et al.,
2020; 2021} Sussex et al., [2023)), enabling optimization under a broader class of causal models.
Moreover, by enhancing the surrogate model’s fidelity, our approach can potentially achieve superior
reward outcomes. Additional justification and motivation are provided in the Appendix.

3.4 DECOMPOSABLE GENERATION MECHANISM

In 0 e(}tlng, the edges in the SCM M corresgond to a fixed but unknown set of functions
'f’t S} We assume the structure of the SCM is known and that the system is causally

sufﬁc1ent—that is, it contains no hidden variables or confounders. We now define the Decomposable
Generation Mechanism (DGM) used in our analysis.

Definition 1. (DGM) A data-generating function f follows a decomposable generation mechanism
it X = f(Z,U) = fo(Z) + fo(Z)fc(U), where f, : Z > R, fp, : Z > R,and f. : U — R. All
mappings are continuous, and f;(Z) # 0 forall Z € Z.

In a DGM, the function f.(U) may be a one-dimensional, nonlinear, and nonmonotonic transforma-
tion of the exogenous variable U. The term f,(Z) f.(U) implies that the variance of the generated
variable X, conditioned on its parents Z, depends on both U and Z. Consequently, DGMs represent
a broad class of mechanisms in which both parents and exogenous variables contribute to variance
modulation.

This modeling framework is notably more general than Location-Scale or Heteroscedastic Noise
Models (LSNMs) (Immer et al., 2023)), which typically assume linear f.() and strictly positive
f5(). Therefore, DGMs constitute a superset of LSNMs. In Section we demonstrate that the
distribution of exogenous variables can be recovered when the data-generating mechanism f in each
node equation [[]adheres to the DGM formulation.

4 EXOGENOUS DISTRIBUTION LEARNING

Given observations of an endogenous node and its parents within an SCM, our goal is to recover the
distribution of that node’s exogenous variable. This exogenous distribution learning is carried out
using GPs. We begin by focusing on the recovery of the exogenous distribution for a single node.

4.1 EXOGENOUS VARIABLE RECOVERY FOR ONE NODE

According to equation |2} an endogenous variable X; may or may not have an associated ac-
tion variable A;. To simplify notation, we use Z; in this section to denote both the parents
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of X, and its action variable, i.e., Z; = (Z;, A;) if X; € I. The task of learning the exoge-
nous distribution for X then becomes the problem of recovering the distribution of U given
observations of X and Z from the generative model X = f(Z,U). For clarity, we define
the causal mechanism for the triplet (Z,U, X) corresponding to a single node in an SCM.

Definition 2. (7-SCM) Let X and U be one-dimensional variables, Q
and let f() be the causal mechanism generating X from Z and U,
such that X = f(Z,U). We assume Z 1L U, and (Z,U, X, f) is
called a 7-SCM. (0)

In a 7-SCM, Z may be multi-dimensional, representing the parents of

X, while U is the exogenous variable. This differs from the Bijective

Generation Mechanism (BGM |Nasr-Esfahany et al.|(2023))), where

f(Z,U) is assumed to be monotonic and invertible with respect to U

given fixed Z. We adopt an encoder-decoder framework (Figure [2) e
to construct a surrogate for the exogenous variable.

Definition 3. (Encoder-Decoder Surrogate; EDS) Let (Z, U, X, f) Figure 2: Structure in one 7-
bea7-SCM. Let ¢() : Z — X be aregression model such that E[X] SCM node. Z denotes the par-
exists and ¢() can model the conditional mean y4() and variance €0t set of X. Our algorithm

04(). Define (U, $,h, g) as an encoder-decoder surrogate (EDS) lce;ztjr:rs znsiré;(xtjﬁ;thtﬁreldsir(rig:

for exogenous variable U, where the encoder is h() : Z x X — u, gate U= h(Z,X) and X =

defined as U := h(Z,X) := X’%Z()Z) and the decoder is g() : 9(Z,0).

Z xU — X, where X := g(Z,0).

Given observations of X and its parents Z, our method learns the

encoder h() to approximate the true value of U via © = h(z, ). Concurrently, the decoder g() serves
as a surrogate for the causal mechanism f(), reconstructing x = ¢g(z, ). Theorem establishes
that surrogate values of the exogenous variable U can be recovered from observations under the
DGM assumption on f.

Theorem 4.1. Let (Z,U, X, f) be a T-SCM, and (U7 ¢, h, g) an EDS surrogate of U. Suppose f is
differentiable and has the DGM structure X = (Z,U) = fo(Z) + fio(Z)f.(U) with f,(Z) # 0 for

all Z € Z. Then with a constant a, we have U = a(fo(U) = E[f.(U)]), with E[ﬁ] =0and U 1L Z.

We use the distribution of the recovered surrogate U = s(U) =
h(Z,X) - denoted as p(U) - as a proxy for the true p(U) in the 7-SCM
surrogate model. Consequently, the function f is approximated via EDS*

the learned decoder g and the surrogate :

z = f(z,u) =g(z,u) = g(z,s(u)).
BGM
Figure [3]illustrates the relationship among different data generation

mechanisms regarding counterfactual identifiability. Definition and
analysis on counterfactual identifiability can be found in Appendix-
Notably, our framework generalizes beyond ANM (linear), and
BGM (monotonic) to a new class of nonlinear and nonmonotonic
models through DGM. This extends the identifiability of U signif- Figure 3: Scopes of different
icantly beyond the standard assumption X = f(pa(X)) + U used mechanism classes.

in many BO and CBO methods. We use EDS* to represent the 7-SCMs that are counterfactually

identifiable via EDS either with or without the condition of U L Z.

The proof of Theorem is provided in Appendix @ Our surrogate variable U and encoder h()
are valid under both DGM and BGM (Nasr-Esfahany et al.,|2023) assumptions. In the BGM case,
recovery of U requires enforcing U _LL Z, as detailed in Appendix@ which can be achieved through
independence regularization - albeit at additional computational cost. If f does not satisfy the DGM
or BGM assumptions, then the recovered U may be dependent on Z, potentially degrading the
accuracy of the surrogate model and limiting the effectiveness of CBO in finding optimal y using
limited data.
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4.2 IMPLEMENTATION OF EXOGENOUS DISTRIBUTION LEARNING

The encoder-decoder architecture in Figure [2can be implemented in various ways, such as using
Variational Autoencoders (VAEs) (Kingma & Welling, [2014) or sample efficient deep-generative
models (Liang et al., 2024} Wang et al.,|2023). To keep the implementation straightforward, we adopt
GP regression for both the encoder and decoder, consistent with the EDS definition in Deﬁnition

For nodes with an action variable A, the decoder becomes g() : Z x A x U—Xx , and the encoder

becomes h() : Z X AX X — U, while the regression model is ¢(): Zx A— X.Both g() and ¢()

are implemented using GP regression models (Williams & Rasmussen, [2006). To approximate the
distribution of the recovered exogenous surrogate U, we use a Gaussian Mixture model to estimate

-~

p(U), which serves as a replacement for p(U) in the probabilistic surrogate objective. For all nodes
in the SCM M, we denote the collection of decoders as G = {g; }¢_, and the collection of encoders

as H = {h;}¢_,.
5 CBO wiTH EXOGENOUS DISTRIBUTION LEARNING

In this section, we present the EXCBO algorithm, describing the probabilistic model and acquisition
function used.

5.1 STATISTICAL MODEL

In our model, the function f; that generates variable X; is learned through g;, and X; = ¢;(Z;, A;, (71)
We use GPs (Williams & Rasmussen, [2006) to learn the surrogate of g;, i.e., §;. For i € [d], let Hg,i,0
and o, ; o denote the prior mean and variance function for each f;, respectively.

Followin~g Chowdhury & Gopalan| (2019), at time ¢, let G be the statistically plagsible function set of
G,ie., G = {g}%,. Similarly, the plausible model of H is denoted by H = {h;}¢_,. Moreover, at
step t, the observation set is D, = {z:71:t, @: 1:t5 x:71:t}. The posterior of g; with the input of node i,

(Zi, s, 1;), is given by
gz}t(ii,dhﬁi) ~ gp(/‘g,i,t71703’i’t71); Mgit—1 = Ng,i,tfl(iu a“a\i); Ogit1= o’g,’b‘,tfl(ii, di7ﬁi)~

Then %; , = §i (2, Gi, ﬁi) denotes observations from one of the plausible models. Here @; ~ p(ﬁi)
in the sampling of the learned distribution of U;.
Given an observation (z;,a;,x;) at node 4, the exogenous recovery u; = h;(z;,a;,2;) =

Ti—pg,i(2i,0:)
U<¢>,i(zmai)

. At time step t, the posterior of ¢; with the input of node i, (z;, a;), is given by

Git(2i,ai) ~ GP(gie—1(2i, a;), 05.i1-1(2i,0;)) 4

Therefore, 1; = hi (2, a5, ;) = %ﬂlt—w According to the definition of A() in Theo-

rem h() also follows a GP, i.e. h; (2, ai, ;) ~ GP(thit—1, Ul2z,i,t71)' This GP is defined
by ¢;.¢() which is sampled with equation @ Different from g;(), the observations of the input
(Z;, A;, X;) for h;() are only required at the training time, and we only need to sample the learned
p(U;) to get value u; for model prediction or model sampling.

5.2 ACQUISITION FUNCTION

Algorithm T]describes the proposed method solving equation 3] In iteration ¢, it uses GP posterior
belief of y to construct an upper confidence bound (UCB |Brochu et al.|(2010); Frazier| (2018)) of y:

UCB;-1(a) = pt—1(a) + Bror—1(a). Q)

Here p;—1(a) = Elug,a,t—1(Zd, @q,Ua)]; o1—1(a) = E[og q,t—1(Za, @Ga, Uq)], where the expectation
is taken over p(U). In equation |5} ; controls the tradeoff between exploration and exploitation of
Algorithm[T] The UCB-based algorithm is a classic strategy that is widely used in BO and stochastic
bandits (Lattimore & Szepesvari, [2020; |Srinivas et al., |2010). The proposed algorithm adapts the
“optimism in the face of uncertainty”” (OFU) strategy by taking the expectation of the UCB as part of
the acquisition process.
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5.3 ALGORITHM

Let kg ;, ke, Vi € [d] represent the kernel functions of g; and ¢;. The proposed EXCBO algorithm
is summarized by Algorithm[l] In each iteration, a new sample is observed according to the UCB
values. Then the posteriors of G and H are updated with the new dataset. The next section gives a
theoretical analysis of the algorithm.

Algorithm 1 EXCBO

Input: kg ;, ke, Vi € [d]

Result: Intervention actions a;, Vi € [d]

fort=1to 1 do
Find a; by optimizing the acquisition function, a; € arg max UCB;_;(a);
Observe samples {z; , xi,t}fzo with the action sequence a; and update D,;
Use D to update posteriors {i¢,i¢,05 ; , }i—o and sample the exogenous surrogate {; ; }{_;
Use Dy U {1 1 }¢ to update the decoder posteriors {fg.i.¢, 02 ;  }¢ ;

end for ’

6 REGRET ANALYSIS

This section describes the convergence guarantees for EXCBO using soft interventions. Our analysis
shows that EXCBO has a sublinear cumulative regret bound (Sussex et al.}[2023). In DAG G over
{X;}4_,, let N be the maximum distance from a root to Xg, i.e., N = max; dist(X;, X,). Here
dist(+, -) is a measure of the edges in the longest path from X; to the reward node Y := X,. Let
M denote the maximum number of parents of any variables in G, M = max; |pa(i)|. Let L; be a
function of L, L, , and N. With Assumptions in the Appendix, the following theorem bounds
the performance of EXCBO in terms of cumulative regret. We present the assumptions used in the
regret analysis in Appendix [G} Assumption|[T|gives the Lipschitz conditions of g;, o4, and g ;. It
holds if the RKHS of each g; has a Lipschitz continuous kernel (Curi et al., 2020; [Sussex et al., [2023)).
Assumption [3|holds when we assume that the ith GP prior uses the same kernel as the RKHS of g;
and that 3; ; is sufficiently large to ensure the confidence bounds in

9i(Zi, a5, W) — pgit—1(2i, @iy i) | < Bii0gii—1(2i, a5, W), Vz; € Z4,a; € Ai, Uy € U

Theorem 6.1. Consider the optimization problem in equation[3| with the SCM satisfying Assump-
tions[I} 3| where G is known but F' is unknown. Then with probability at least 1 — «, the cumulative
regret ofAlgorithm is bounded by Ry < O(LrM™Nd/Tvr).

Here yr = max; 7; 7 denote the maximum information gain at time 7'. The proof of Theorem[@
and further analysis can be found in Appendix [G]

7 EXPERIMENTAL STUDY

This section presents experimental comparisons of the proposed EXCBO and existing algorithms.
Different from the single-mode Gaussian noise in MCBO (Sussex et al.,[2023)), We use two-mode
exogenous distributions in the synthetic datasets, i.e.

p(U) = wl./\/(,ul,cl(TQ) + wQN(uz,CQUQ), w1, Wwa, c1,C2 > 0, w1 +ws = 1.0. 6)

Additional experimental results and analysis are presented in Appendix
7.1 BASELINES

We compare EXCBO against three representative algorithms: UCB (Brochu et al., |2010; Frazier,
2018)), EICF (Astudillo & Frazier, [2019), and MCBO (Sussex et al., [2023). UCB is a standard
Bayesian Optimization (BO) method (Brochu et al.,2010; [Frazier, 2018)), EICF applies a composite
function approach to BO, and MCBO is a Causal Bayesian Optimization method discussed in previous
sections. Unlike the other baselines, MCBO incorporates neural networks alongside GPs to capture
model uncertainty. All algorithms are implemented in Python using the BoTorch library (Balandat
et al., [2020).
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Figure 4: Results of Dropwave with o € {0.1,0.3} and X € {1.0, 2.0, 3.0}.

For MCBO, we adopt the default initial observation size recommended in its original work, which
is 2(]A| 4+ 1), where | A| denotes the number of action variables. For the other methods, the initial
sample size ranges from 5 to 20. Each algorithm is executed four times with different random seeds
to compute the mean and standard deviation of the resulting reward values.

7.2 DROPWAVE

There are two endogenous nodes in Dropwave, i.e., X and the target node Y (Figure [§]
in D.2). There are two action nodes associated with X, ie. ag,a; € [0,1]. Here X =
V/(10.24a9 — 5.12)2 + (10.24a; — 5.12)2 4+ AUx, and Y = (1.0 + c0s(12.0X))/(2.0 + 0.5X?) +
Ay, Ux ~ p(Ux), and Uy ~ p(Uy). We vary o and X to simulate different levels of noise. While
o controls the variance of the exogenous variables (Ux and Uy ), A scales their effect on the target
variable Y. Figure 4| presents performance results under various o and A settings. In this set of
exeriments, EXCBO outperforms UCB and EICF in most cases, except when ¢ = 0.1 and A = 1.0.

7.3 ALPINE2
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Figure 5: Results of Alpine2 with o € {0.05,0.2,0.4} and A € {0.3,1.0}.

We study the algorithms using the Alpine2 dataset (Sussex et al.,[2023). There are six endogenous
nodes in the Alpine2 dataset as shown in FigurdI0] In first set of experiments, Alpine?2 is generated
via DGM with multimodal exogenous distributions as given in equation [7]in Section The
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results of Alpine2 are shown in Figures[5] We also compared the algorithms on Non-DGM generated
Alpine2 dataset in Section[D.3.2] As shown in the plots, our EXCBO outperforms the other methods
at different noise levels. It shows the effectiveness and benefits of the proposed EXCBO method in
multimodal exogenous distribution and mechanism learning.

7.4 EPIDEMIC MODEL CALIBRATION

We test EXCBO on an epidemic model calibration by following the setup in|Astudillo & Frazier
(2021a). In this model, as shown in Figure @-(c), 1; ¢ represents the fraction of the population in group
1 that are “infectious” at time t; 3; ; ; is the rate of the people from group ¢ who are “susceptible” have
close physical contact with people in group j7 who are “infectious” at time ¢. We assume there are two
groups, and infections resolve at a rate of v per period. The number of infectious individuals in group
i at the start of the next time period is I; ;11 = L; (1 — ) + (1 — I, 1) Zj Bi.j.t1; . We assume
each I; ; has an observation noise U; ;. The model calibration problem is that given limited noisy
observations of I; ;s, how to efficiently find the 3; ; ; values in the model. The reward is defined as
the negative mean square error (MSE) of all the I; ;, observations as the objective function to optimize.
In this model, 3; j ;s are the action variables. The noise is added with two-modes as in equation [6]
under ANM (Hoyer et al., 2008). Figure @-(a—b) visualize the results at the noise levels with o = 0.1
and o = 0.3.

(@) o = 0.1 (b)o = 0.3
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Figure 6: (a-b): Results of epidemic model calibration; (c): Graph structure for epidemic model
calibration.

7.5 PLANKTONIC PREDATOR—PREY COMMUNITY IN A CHEMOSTAT

We evaluate the algorithms on a real-world dataset from the o
planktonic predator—prey community in a chemostat (P3C?). This
biological system involves two interacting species, one predator
and one prey, and our objective is to identify interventions that
reduce the concentration of dead animals in the chemostat, D;. We
adopt the system of ordinary differential equations (ODE) from Bla{
sius et al.| (2020); |Aglietti et al.| (2021)) as the SCM, and construct

— EXCBO

the DAG by unrolling the temporal dependencies of two adjacent  -so—— —

60
Round

time steps. Observational data from Blasius et al.[(2020) are used
to compute the dynamic causal prior. Unlike dynamic sequential
CBO (Aglietti et al., [2021), we employ the causal structure at ¢ Figure 7: Results of P3C?
and ¢ 4 1 as the DAG for the algorithms. Figure [_I;Z] compares the  dataset; the reward y = —D;.
performance of EXCBO with baselines. Additional experimental

details are provided in the Appendix.

8 CONCLUSIONS

We propose a novel CBO algorithm, EXCBO, that approximately recovers the exogenous variables in

a structured causal model. With the recovered exogenous distribution, our method naturally improves
the surrogate model’s accuracy in the approximation of the SCM. Furthermore, the recovered
exogenous variables may enhance the surrogate model’s capability in causal inference and hence
improve the reward values attained by EXCBO. We additionally provide theoretical analysis on both
exogenous variable recovery and the algorithm’s cumulative regret bound. Experiments on multiple
datasets show the algorithm’s soundness and benefits.
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ETHICS STATEMENT

This study relies exclusively on synthetic and publicly available datasets, without the involvement
of human subjects or sensitive personal data. Therefore, we do not anticipate any ethical concerns
related to this work.

REPRODUCIBILITY STATEMENT

The assumptions and definitions of DGM are presented in Section[3.4] The assumptions and theoreti-
cal foundations for exogenous distribution learning are provided in Section .1 and in Sections [E]
and[F]of the Appendix. The implementation details of EXCBO are discussed in Sections 4.2 and [5]
Experimental details, including the generation of synthetic data, processing of real-world data, and
overall experimental setups, are presented in Section [7] and in Section [D] of the Appendix. The
assumptions and proof steps for the regret analysis are given in Section [G|of the Appendix. The code
and all datasets used in the paper will be released publicly after the review period.
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A STATMENT ON THE USE OF LARGE LANGUAGE MODELS (LLMS)

The authors acknowledge the use of large language models (LLMs) for the limited purpose of gram-
mar checking and language polishing. No LLMs were used for data analysis, methodological design,
or generation of scientific content. All ideas, results, and conclusions presented in this manuscript are
the full responsibility of the authors.

B NOMENCLATURE

Symbol | Description

a single exogenous variable

the exogenous variable set of a SCM, i.e., U = {Uy, ..., Uy}

the exogenous variable recovered via EDS, i.e., the EDS surrogate of U
a value or realization of variable U

a value or realization of variable [

the domain, or value space of variable U

the domain, or value space of variable U

the EDS encoder function for node X;

W) e

>
S
—
(-

5=

the output of h;() given an input
hi O a plausible function of h; via posterior GP trained with data in some step of EXCBO
U the output of /;() given an input
Z; the parent of X;, pa(i)

Q
ey
—~
—

the EDS decoder function for node X;
the collection of decoders, G = {g;}¢_,
the collection of encoders, H = {h,;}L_,

T Q=

C ADDITIONAL REMARKS

C.1 REMARKS ON MOTIVATIONS

Learning the exogenous distribution enhances the surrogate model’s ability to approximate the ground
truth SCMs. As discussed in Sections [.T|[E} andF] under moderate assumptions, the independence
between the recovered exogenous variable U and both the parent Z and the action A empowers the
structured surrogate model in EXCBO to perform effective intervention inference. This independence
reduces the influence of environmental noise or exogenous variables on the actions or interventions
derived from the acquisition function.

This work considers the setting where the causal structure is known, and the model M is causally
sufficient. The challenges of learning causal structures and dealing with unobserved confounders are
left for future research.

We believe multi-modal and non-Gaussian exogenous distributions are prevalent in real-world systems.
When each exogenous variable is viewed as an unobserved latent factor, it is highly plausible that
such factors follow non-Gaussian distributions with multiple modes.

C.2 PERFORMANCE GAPS

UCB, EICF, and MCBO use X = f(Z,A) or X = f(Z, A,¢),e € N(0,1) to approximate X =
f(Z, A,U) for each node or the overall reward function. The absence of information about U
introduces irreducible bias into the surrogate model of the reward function. In contrast, EXCBO
explicitly recovers the exogenous variable U and learns its multi-modal distribution, producing a more
accurate surrogate, i.e., X = f(Z, A, ﬁ) for the objective reward function, even when the variance
o2 in the data is small. Experimental results further show that EXCBO enhances the robustness of
CBO, particularly in scenarios with limited data samples.

12
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C.3 BROADER IMPACTS

As a new causal Bayesian optimization framework, EXCBO may help reduce the required training
samples for more efficient and cost-effective decision-making, which may have broader impacts
in many science and engineering applications, such as future pandemic preparedness with better-
calibrated epidemic dynamic models as illustrated in the paper. However, if misused, the societal
consequences of designing new systems or materials with unforeseen future threats has to be taken
into consideration with caution.

D ADDITIONAL EXPERIMENTAL RESULTS AND ANALYSIS

In our experiments, the synthetic data are generated via ANM, DGM, and Non-DGM mechanisms.

D.1 EXPERIMENTAL SETUP

We report the expected reward, Ey [y | at], as a function of the number of system interventions
performed. Each figure presents the mean performance over four random seeds, with error bars
representing the interval [—0.20,0.20]. The GPs used in our models are implemented via the
SingleTaskGP () function from BoTorch (Balandat et al.,[2020), and are trained using the default
hyperparameters described in |[Hvarfner et al.| (2024). Each Gaussian Mixture Model (GMM) has
two components. Action node domains are normalized to lie within [0, 1]. To reduce computational
overhead, we restrict the number of o values considered for the exogenous variables in each dataset.

D.2 DROPWAVE

In Dropwave Dataset, the values of action nodes ag,a; € [0,1], X =
V(10.24a5 — 5.12)2 1 (10.24a; — 5.12)2 + AUx, and Y = (1.0 + cos(12.0X))/(2.0 + 0.5X2) +
AUy, Ux ~ p(Ux), and Uy ~ p(Uy). Here p(Ux) = 0.5N(—0.2,,1.40%) + 0.5N(0.4,0?%), and
p(Uy) = 0.5N(—0.1,0.320%) + 0.5N(0.05,0.3202). Clearly, the data generation here belongs to
the ANMs (Hoyer et al., [2008]).

As shown in the plots, UCB’s performance improves with increasing ¢ or A, suggesting that strong
exogenous noise may diminish the benefits of structural knowledge utilized by EICF and EXCBO.
Nevertheless, EXCBO still achieves superior (Figure d}f) or comparable (Figure @}c) performance
even under high-noise conditions.

Dropwave @
Figure 8: Graph structure of Dropwave dataset.

We further compare EXCBO with all the three baselines. Due to the high computational cost of
evaluating MCBO (Sussex et al.,2023), we only include the results at o € {0.05,0.3} and A = 1.0
in Figure 0] EXCBO gives slightly better results at o = 0.05, and MCBO achieves higher reward
before ¢ = 185 with 0 = 0.3.
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Figure 9: Results of all the four algorithms on Dropwave at o € {0.05,0.3} and A = 1.0.

D.3 ALPINE2

The Alpine2 dataset contains six endogenous nodes, as illustrated in Figure [I0] The exogenous
distributions for X and Y follow Gaussian Mixture models with two components, as defined in
equation equation[6] Due to the high computational cost of evaluating MCBO (Sussex et al.| 2023),

we restrict our comparisons in this experiment to UCB (Brochu et al.| |2010; [Frazier, [2018) and
EICF (Astudillo & Frazier,|[2019).

2,

Figure 10: Graph structure of the Alpine2 dataset.

D.3.1 ALPINE2 WITH DGM MECHANISM

We evaluate the algorithms on the synthetic Alpine2 dataset (Sussex et al.,|2023), generated using a
DGM mechanism with multimodal exogenous distributions. Each node is defined as

Xo = —V/10.0ag sin (10.0ag) + ( cos(10.0ag) + 1.2) - AUp; )
X; = /10.0a; sin (10.0a;) X;—1 + 0.1(cos(10.0a¢) + X2+ 1.2) . )\Uf, 1< <5
Y = Xs.

Here, U; ~ p(U;) as specified in equation@ with wy = we = 0.5, p € [—1.0,1.0], and ¢, 5 €
[0.05, 1.5]. The results for o € {0.05,0.2,0.4} and X € {0.3,1.0} are shown in Figure 3]

D.3.2 ALPINE2 WITH NON-DGM MECHANISM

For the non-DGM setting of the Alpine2 dataset (Sussex et al., 2023)), each node is defined as

Xo = —1/10.0ag + Up sin (10.0ag + Up); ®

X; = +/10.0a; + U; sin (10.004' + Ui)Xi—h 1<1<5;
Y = X;.
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Here, U; ~ p(U;) as defined in equation@ with wy = we = 0.5, p € [-1.0,1.0], and ¢1,¢5 €
[0.05,1.5].

Due to computational constraints, we use o € {0.05,0.1,0.2}. The corresponding results are reported
in Figures[IT}(a—c). As shown, EXCBO consistently achieves the best performance across all noise
levels, demonstrating the effectiveness and advantages of the proposed method. Although the Alpine2
generation mechanism does not strictly follow DGM or BGM, the strong results of EXCBO, as
illustrated in Figures [TT}(a—c), highlight its generalization capability, providing further empirical
support for the theoretical claims in Sections and[f
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Figure 11: (a-c): Results of Alpine2 (generated via Non-DGM mechanism in equation 3.

D.4 EPIDEMIC MODEL CALIBRATION

We adopt the additive noise model (ANM [Hoyer et al.| (2008)), i.e., X; = f(Z;) + U;, where
U; ~ p(U) = 0.5N (1, c10?) + 0.5N (o, ca0?), c1,c2 > 0. Since ANM is a subset of DGM,
this setup also satisfies the DGM assumption. To ensure consistency, we normalize and standardize
all action nodes to the range [0, 1]. Specifically, 3 is rescaled to [0, 1], with v = 0.5, I; o = 0.01
fori € {0,1}, and T = 3. For U; ; with ¢ € {1,2} and j € {1,2,3}, we set w; = wy = 0.5,
w1, 2 € [—1.0,1.0], and ¢1,c2 € {0.5,1.0,1.5}. With the capability to recover and learn the
exogenous distributions, our method is more robust and stable in this application scenario. Similarly
constrained by computational overhead, we use o € {0.1, 0.3}, with the other p(U) hyperparameters
set as in the Alpine2 experiments. Figure [6] shows that increased exogenous noise enhances the
performance of all methods. Our EXCBO performs better than state-of-the-art model calibration
methods in both cases, and our method has a faster convergence rate compared to the baselines.

D.5 PLANKTONIC PREDATOR—PREY COMMUNITY IN A CHEMOSTAT

We use the system of ordinary differential equations (ODE) given by Blasius et al.| (2020); |Aglietti
et al. (2021) as our SCM and construct the DAG by rolling out the temporal variable dependencies in
the ODE of two adjacent time steps while removing graph cycles. Observational data are provided in
Blasius et al.| (2020)), and are use to compute the dynamic causal prior. So different from dynamic
sequential CBO (Aglietti et al., 2021)), we use the causal structure at ¢ and ¢ + 1 as the DAG for the
algorithms. The causal graph is given in Figure [I2]

At each time step, the system includes the following variables:
- N;,,: Nitrogen concentration in the external medium

- N: Nitrogen (prey) concentration

- P: Phytoplankton (predator) concentration

- E: Predator egg concentration

- J: Predator juvenile concentration

- A: Predator adult concentration

- D: Dead animal concentration

15
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Nin,t

Figure 12: P3C? graph structure; exogenous nodes are not included.

Equations (21-26) in [Aglietti et al| (2021)) define the ODE, and equations (O}{I4) specify the corre-
sponding SCM. The action variables are N;;, +, J;, and A;, which we manipulate to minimize Dy ;.
We use GPs to fit the following SCM

Ny = fN(Nm,t,Nt—l,Pt—hEN) ©)]
P = fP(Nt7Pt—17€P) (10)
Ji = fr(Py, Ji-1, Ar—1,€7) (11)
Ay = fa(Pr, Ar—1,€a) (12)
Ey = fe(P, A, Bt—1,€R) (13)
D; = fp(Jt, At, Di—1,€p). (14)

Here {ej |7 € {N,P,J, A E, D}} are learned from the data |'|. The data processing is follow-
ing [Aglietti et al.| (2021)). As shown in Figure, the three action nodes are Ny, ¢+, J;—1, and A;_;.
The intervention domains are N, ; € [60.0,100.0], J;—1 € [0.0,36.0], and A;,—; € [0.0,180.0].
Here the domains are from the value range of the data. According to the result Figure[I2] EXCBO
outperforms the baselines on this real-world dataset.

D.6 POOLED TESTING FOR COVID-19

We further compare EXCBO and existing methods using the COVID-19 pooled testing problem (As{
tudillo & Frazier 2021a). The graphical structure is given by Figure[I3}(c). In Figure[I3}(c), I; is
the fraction of the population that is infectious at time ¢; R, is the fraction of the population that
is recovered and cannot be infected again, and time point ¢ € {1,2,3}. The additional fraction
S; = 1 — I; — R; of the population is susceptible and can be infected. During each period ¢, the
entire population is tested using a pool size of x;. The loss L;, incorporates the costs resulting from
infections, testing resources used, and individuals isolated at period ¢. The objective is to choose
pool size x; to minimize the total loss Zt L;. Therefore, x;s are the action variables/nodes that the
algorithms try to optimize to achieve lower costs.

We employ the ANM (Hoyer et al 2008) setup: X; = f(Z;) + U;, where U; ~ p(U) =
0.5N (1, c10?) + 0.5N (2, cao?), c1,co > 0. Data are generated using the dynamic SIR model

1https ://figshare.com/articles/dataset/Time_series_of_long-term_
experimental_predator-prey_cycles/10045976/1
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from|Astudillo & Frazier|(2021a) with 5 = 3.23. For varying exogenous distributions p(U ), we use
fi1, 12 € [—0.5,0.5] and c1, ¢ € {0.05,0.5,1.0}.
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Figure 13: (a-b): Results of COVID-19 pooled testing optimization; (c): Graph structure for COVID-
19 pooled testing problem.

Figure [I3}(a-b) presents the optimization results obtained from different methods, where the reward
is defined as y = — Zt L;. As shown in Figure UCB, EICF, and EXCBO exhibit similar
performance across both o values. However, after 140 rounds, EXCBO achieves the best overall
performance. The relatively poor performance of MCBO can be attributed partly to the bias introduced
by the use of single-mode Gaussian distribution, and partly to the overfitting issues of the neural
networks.

D.7 EXCBO AND MCBO ON SINGLE-MODE EXOGENOUS DISTRIBUTION

We follow exactly the same setting in MCBO paper to compare EXCBO and MCBO using
Dropwave data, i.e., ag,a1 € [0,1], X = /(10.24a¢ — 5.12)2 + (10.24a; — 5.12)2, and Y =
(1.0 + cos(12.0X)) /(2.0 + 0.5X?) + 0.1U, U ~ N(0, 1), and the data generation code is from the
MCBO package. The exogenous environment noise is unit-Gaussian scaled by 0.1. We report the best
expected reward for both EXCBO and MCBO in Table[I] We can see EXCBO achieves improved
performance in most steps, but MCBO gives a better result in the final round step ¢ = 100.

Table 1: Results of Dropwave with unit-Gaussian noise.
Round 20 40 60 80 100
MCBO | 0.78 £0.05 | 0.83+£0.04 | 0.87+£0.03 | 0.88£0.03 | 0.91 +£0.02
EXCBO | 0.76 £ 0.04 | 0.84 +£0.04 | 0.89 £0.03 | 0.89 £ 0.02 | 0.89 + 0.02

Similarly, we follow the exact setting of Alphine2 in MCBO paper, ie., Xg =

—1/10.0a sin (10.0ag) + Uy, X; = +/10.0a; sin (10.0a;)X;—1 + U; for 1 < ¢ < 5; and here
€ [0,1],U; ~ N(0,1),0 < i < 5. The exogenous environment noise is unit-Gaussian as reported

in the MCBO paper. We report the best expected reward for both EXCBO and MCBO in Table[2}

Table 2: Results of Alphine2 with unit-Gaussian noise.

Round 20 40 60 80 100

MCBO | 38.46 £14.13 | 76.47 +£16.56 | 189.40 £15.43 | 327.07 £12.38 | 363.86 + 3.26
EXCBO | 28.98 +£13.32 | 106.42 + 33.44 | 166.48 +42.43 | 196.22 + 32.33 | 241.57 +14.00

From these results, we conclude that for single-mode Gaussian exogenous distributions, MCBO
performs better than EXCBO when the exogenous noise is strong (i.e., large o, or large scale
coefficient). In contrast, EXCBO achieves comparable or superior performance when the exogenous
signal is weak or when o is small.
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For multimodal exogenous distributions, as reported in Sections[7.4and [D.6| MCBO tends to be more
vulnerable to complex exogenous distributions, particularly when they involve multimodal exogenous
distributions with small variances. By comparison, the proposed exogenous learning framework
effectively mitigates these challenges.

D.8 RUNNING TIME
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Figure 14: Running time of the three algorithms on Dropwave data with 0 = 0.1 and A = 1.0 for
four random seeds.

Figure [I4] reports the actual running time of the three algorithms on the Dropwave dataset with
o = 0.1 and A = 1.0. Relative running times across datasets are consistent with the ratios shown in
the figure. Empirically, EXCBO requires a similar amount of CPU time per iteration as UCB and
EICF. In contrast, MCBO consumes significantly more computational resources - more than 10 times
as much - due to its reliance on neural networks. This highlights EXCBO’s scalability advantage
over existing state-of-the-art methods.

D.9 ANALYSIS ON EXPERIMENTAL RESULTS

The experimental results across different datasets demonstrate that learning the exogenous distribu-
tions enhances EXCBO’s ability to achieve optimal reward values. In particular, incorporating the
distribution of exogenous variables yields a more accurate surrogate model when given an SCM and
observational data.

Our method shows clear advantages over existing approaches when the exogenous noise is relatively
weak. In such cases, the Gaussian Processes employed by UCB, EICF, and MCBO fail to capture
the multimodality of the exogenous distribution, leading to a biased surrogate model with respect to
the optimal intervention values. In contrast, EXCBO leverages a Gaussian mixture model, which
effectively captures the multimodal exogenous distribution recovered by the proposed EDS under the
DGM conditions. When the multimodal distribution of U; in X; = f(Z;, U;) has small variances,
the uncertainty is highly concentrated, making it harder to distinguish different modes in the plausible
function map and resulting in larger bias in the objective approximation. By contrast, larger variances
in the exogenous distribution allow the GPs in UCB, EICF, and MCBO to better discriminate
between modes, thereby providing more accurate estimates of the expected objective function, i.e.,
Xi =Epw,) f(Z:,Uy).

Gaps among different methods have been reported in previous studies, e.g., in MCBO (Sussex
et al.,|2023), Figures 2-f, 2-c, and 2-d. We speculate that this discrepancy arises because GPs with
plain kernels are not universal approximators. Consequently, their limited expressiveness leads to
irreducible bias, even with infinite data samples. This underscores the importance of incorporating
structural knowledge to improve performance, as evidenced in MCBO, EICF, and EXCBO.

Finally, the regret bound in Theorem [6.1] depends on Assumptions [IH3]and holds with probability
1 — o, where « is specified in Assumption[3] This implies that different GP-based CBO methods are
not guaranteed to converge to the same optimal reward value.
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E PROOF OF THEOREM 4.1

Before we prove Theorem[4.1] we present a similar result for ANMs (Hoyer et al., [2008).

Theorem E.1. Let (X,Z,U, f) be a T-SCM. Let p() : X x Z — Rl be a predefined function
regarding X and Z, and ¢() be a regression model with ¢() : Z — p(X, Z). We define an encoder

function h() : ZxX — UwithU := h(Z, X) := p(X,Z)—(Z). The decoderis g() : ZxU — X,
e, X = g(Z,U). Let p() maps the values of X and Z to an additive function of Z and U, i.e.,
p(X,Z) = p1(Z) + pa(U). Then U = h(Z, X) = po(U) — Elpo(U)], and U 1L Z.

Proof. As ¢(z) is an optimal approximation of p(X,z), with Z L U, we have

#(z) = E[p(X,z)] = E[p1(z) + p2(U)] = / (p1(2) + pa(u))p(u)du
= p1(z) + E[p2(U)].
Thus, the decoder becomes
h(z,2) = ple.2) - G(Z = 2)

= p1(z) + p2(u) — p1(z) — E[p2(U)]
= pa2(u) — E[p2(U)].

Therefore, U = h(Z,X) = p2(U) — E[po(U)] is a function of U, and h(Z, X) 1L Z,ie., U 1L
Z. O

Example 1. For an ANM (Hoyer et al., 2008) model X = f(Z) + U, we have p(X,Z) = X,
p1(Z) = f(Z),and po(U) = U, thenU = h(Z,X)=U - U .

Example 2. Foramodel X =2Ze~Y —e=% wehave p(X, Z) = log(X +e~%), p1(Z) = 10g(22),
and po(U) = —U,thenU = h(Z,X) = -U + U .

Example[T] shows that the exogenous variable in any ANM model is identifiable. In practice, variable

X’s generation mechanism f() is generally unknown, and it is hard to propose a general form
function p() that can perform on any f()s and transform them to ANMs.

Theorem Let (Z,U, X, f) be a T-SCM, and ((7, ¢, h, g) an EDS surrogate of U. Suppose f is
differentiable and has the DGM structure X = f(Z,U) = fo(Z) + fo(Z) [e(U) with f,(Z) # 0 for

all Z € Z. Then with a constant a, we have U = a(f.(U) —E|[f.(U))), with E[U] = 0 and U 1L Z.

Proof. Vz € Z, as ¢(z) is an optimal approximation of any value of X = f(z,U), withZ 1L U, we
have the mean function as

pole) = BIX (@ V)] = [ (fu(a) + fl@) o)) ()i

/fb ) fe(u)p(u)du

= fa(2) + fo(2)E[f.(U >]
Then with U = u,

x — pig(2)
=fa(z) + fo(2) fe(u) — fo(z) — fb(z)]E[fC(U)]
=/(2)(fe(u) = E[f(U)]). (15)
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With equation|15] the variance of regression model ¢() is
E[(X - 11g(2))%]

—E [fb<z) (f(U) - E[fcw)])?fb(z)}
_fE [(fc(U) - Emwmﬂ

=fi(2)7..

As Z 11 U, as a function of Z, the learned variance ai(z) does not capture the information of U.

02 (z) learns the variance function with respect to variable Z, i.e., f5(z). Therefore, 04(z) = c| f,(2)|.
Then, by equation[T5]

 — pg(z) _ fo(z) (fe(w) — E[fe(U)])
04(2) clfo(2)]
= (Jelw) = E[L(0))). (16)
Here s = sign[fy(z)]. Let a = 2, we define

5. X=m(2) _
U= (fo(U) = E[f(U)]).

It shows that E[U] = 0, and U L Z. O

F EXOGENOUS DISTRIBUTION LEARNING

F.1 CAUSAL INFERENCE WITH EXOGENOUS DISTRIBUTION

Under the monotonicity assumption on f (), the EDS framework can be extended to BGMs, building
upon the analysis in (Lu et al.,|2020} Nasr-Esfahany et al., 2023} Nasr-Esfahany & Kiciman, 2023}
Chao et al., [2023). Counterfactual queries utilize functional models of generative processes to reason
about alternative outcomes for individual data points, effectively answering questions like: “What if I
had done A instead of B?” Such queries are formally described as a three-step process: abduction,
action, and prediction (Pearl, [2009). A model that can be learned from data and execute these three
steps is said to be counterfactually identifiable.

It is straightforward to show that a 7-SCM with a decomposable f() is counterfactually identifiable.
Thus, Theorem [4.1] introduces a novel class of 7-SCMs that achieve counterfactual identifiability
beyond BGMs (Nasr-Esfahany et al., 2023)).

Remark 1. We use the distribution of U = s(U) = h(Z, X), i.e., p(U), to represent p(U) within
the surrogate model. With the decomposability assumption on f(), a 7-SCM is counterfactually
identifiable.

Here, the parent set Z may include action variables, and the learned U remains independent of
the actions or interventions. Therefore, we can leverage the action variables to optimize the target
variable through causal intervention operations.

This work lies within the line of research on counterfactual identification, such as ANM (Hoyer et al.|
2008), BGM (Nasr-Esfahany et al.,[2023)), and LSNM (Immer et al.,[2023)). The proposed DGM is
a new family of models that are counterfactually identifiable and can be easily implemented using
GPs. Gaussian mixture models are employed to learn the recovered exogenous variable distribution,
enabling a more accurate surrogate of the true data-generating mechanism, as demonstrated in the
paper and our responses. The applicability of the proposed framework extends beyond CBO to
broader causal inference tasks, including interventions and counterfactual inference.

F.2 ANALYSIS ON BGMS

We first present a lemma on the BGM equivalence class of a 7-SCM with a monotonic mechanism.

20



Under review as a conference paper at ICLR 2026

LemmaF.1. Let (Z,U, X, f)bea1-SCM.Vz € Z, f(z,-) is differentiable and strictly monotonic
regarding u € U. We define a differentiable and invertible encoder function h() : Z x X — LA{,
ie, U= hZ,X), and U AL Z. The decoder is g() : Z x U— X, ie, X = 9(Z, (7) Then
U= hZ,X) is a function of U, i.e., U= s(U), and s() is an invertible function.

Proof. According to the definition of 7-SCM, we have Z 1l U. According to the assumption,
Vz € Z, f(z,u) is differentiable and strictly monotonic regarding u. Hence X = f(Z,U) is a BGM,
and we use [ to represent BGM class that satisfies the independence (Z L U) and the function
monotone conditions. We can see that k=1 € F, h=1(z,-) = g(z,-), and h~1(z,-) and f(z,-) are
counterfactually equivalent BGMs that generate the same distribution p(Z, X ). Based Lemma B.2,
Proposition 6.2, and Definition 6.1 in (Nasr-Esfahany et al.,|2023)), there exists an invertible function
s() that satisfies Vz € Z,z € X, h(z,x) = s(f~!(z,)), i.e, u = h(z,z) =s(f1(z,2)) = s(u),
which is U = s(U). O

We can easily prove that an EDS model of a monotonic 7-SCM belongs to its BGM equivalence class
under the independence assumption U Ll Z.

Theorem F.2. Let (Z,U, X, f) be a 7-SCM. Vz € Z, f(z,-) is differentiable and strictly monotonic
regarding u € U. Let (U, ¢, h, g) be an EDS surrogate of U. We further assume that U 1L Z. Then
U = h(Z,X) is a function of U, i.e., U = s(U), and s() is an invertible function.

Proof. Tt is to prove that the encoder of an EDS, i.e., U= hZ,X) = X;:i(d’z()z), is invertible

regarding U and X given a value of Z. With the assumption U 1z, by using the results of
Lemma@ we have U = h(Z, X) is a function of U, i.e., U = s(U), and s() is an invertible
function. O

Based on the proof of Theorem [F:2] a 7-SCM with a monotonic mechanism is counterfactually
identifiable by using an EDS model with the U L Z constraint.

G REGRET ANALYSIS

G.1 REMARKS ON REGRET BOUND

The analysis in this paper focuses on the DGM mechanisms. To extend the analysis to BGMs, we
need to consider the computation cost involving the independence penalization on variables U and Z.
For mechanisms beyond DGMs and BGMs, we conjecture that the surrogate approximation accuracy
may decrease, but the convergence rate may not decrease a lot. The cumulative regret provides insight
into the convergence behavior of the algorithm.

Our analysis follows the study in (Sussex et al., 2023). In the DAG G over {Xl-}g, let N be the
maximum distance from a root to Xy, i.e., N = max; dist(X;, X). Here dist(-, -) is a measure of
the edges in the longest path from X to the reward node X ;. Let M denote the maximum number
of parents of any variables in G, M = max; |[pa(i)|. Let L; be a function of L, L. According to
Theorem [{.T] with the EDS structure given in Figure 2)in the main text, the exogenous variable and
its distribution can be recovered. For each observation of the dynamic surrogate model, we assume
the sampling of p(U), 4 = () = s(u). This maximum information gain is commonly used in many
Bayesian Optimizations (Srinivas et al.,2010). Many common kernels, such as linear and squared
exponential kernels, lead to sublinear information gain in 7', and it results in an overall sublinear
regret for EXCBO (Sussex et al., 2023)).

G.2 PROOF OF THEOREMI[6.]]

We give the assumptions used in the regret analysis. Assumption [I] gives the Lipschitz conditions
of g;, 04,4, and g ;. It holds if the RKHS of each g; has a Lipschitz continuous kernel (Curi et al.,
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2020; Sussex et al., [2023)). Assumption@holds when we assume that the ith GP prior uses the same
kernel as the RKHS of g; and that j3; ; is sufficiently large to ensure the confidence bounds in

9i(Z4, 05, W) — Pgit—1(2i, @i, i) | < Bit0gir—1(2i,04,Us) , Vz; € Z4,a; € Ay, Uy € U

Assumption 1. Vg; € G, g; is L -Lipschitz continuous; moreover, Vi, t, jiq ;¢ and o4 ; ; are Ly,
and L, Lipschitz continuous.

Assumption 2. Vf; € F, f; is differentiable and has a decomposable structure with X =
[i(Zi, Us) = fia)(Zi) + fiw)(Zi) ficey(Us), and fipy(2:) # 0,Vz; € Z;.

Assumption 3. Vi, t, there exists sequence §;; € R, with probability at least (1 — «), for all
zi,ai,U; € Z; x A; x U; we have |gi(zi,ai7az‘) - ﬂg,i,t—l(ziaaiaai” < Bin0g,it—1(2Zi, @i, W;),
and |h(z;, i, i) — fnii—1(2i, @i, i) < BitOhit—1(2i, @i, T5).

The following lemma bounds the value of & with the variance of the encoder.

Lemma G.1.

[Ts,e — tiell < 2Belloa,, | = 2Btllon.ie—1l-

Proof. With Assumption and U;; = hii1(ziai,25), let Uiy = pg,, %, 0,7 +
Bioa, . (i, ai,75) o wa, ,_, (24, as, v;), and here |wg, , _, (2i, a;, x;)| < 1. Then

||ﬂz',t - azt|| =||1~7i,t - /’Lai,t—l(z'h aiaxi) - ﬂtgﬁi,t,l(zia Qs l‘i) o wai,t,l(zi, Clz',l‘z')H
<Wit — pa, , o (zisai, )| + Billoa, ., (205 @iy 24) o wa, , (24, ais @) |
<2Billoa, ,_ 1 (zi, ai, 23) || = 2B¢||on,ii—1]]-

With the decomposable Assumption [2on fi, o7 ;1 o< fii; (i, ai)(fiey(U) — E[fi(c)(U)DQ
according to the proof of Theorem fiv)() is learned with the variance of regression model ¢(),
ie. U¢,i,t()-

Lemma G.2.

|zt — Zal < 25tMNi(25tLog + Lg)Ni (Ug,y}t—l(zji) + Uﬂ_j,t—l)'
j=0

Proof. We use g;(2; ¢, U; ) to represent g;(z; ¢, a; ¢, U; ;) because we assume the actions to be the
same for the process generating x; ; and &; ;. Similarly, pog i 1—1(Zi ¢, Wi t) = fg,it—1(Zit, Qi g, Uirt),
Og,it—1(Zit, Uit) = Ogit—1(Zit, @it Ust).

We use the reparameterization trick, and write Z; ; as
Zit = Gi(Zity Wirt) = Pgit—1(Zit, Uit) + BrOgit—1(Zi, Uit) © Wy i t—1(Zs, Uig)-
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Here |wg$i,t,1(ii7ﬁi,t)| < 1. Hence, we have

2ie — itll = [19i(Zie Tie) — gia—1 (i Uie) — Bu0g i1 (Zi, Ui )wgi -1 (Zi, i) |

S

= |19i(Zi ¢, azt) — Ugit—1(Zig, ﬁi,t) — Brog,it—1(2i, ﬁi,t)wg,i,t—l(iia Uit)
+ 9i(Zit, Uit) — 9i(Zig, Uig)||
< |19i(Zi, Wit) — pgit—1(Zie, Uie)|| + |Be0g,it—1(Zis Wit )wg i t—1(Zis Wi ) ||

1 119i ity Tig) — gi(Zie, Uit

Hzi,t;ai,t] — [Zis; ﬁ7t]||

¢1 = _ox
< Billog,ie—1(Zs, Uig)|| + Bellog,it—1(Zis Wie)|| + Ly,

=2B¢|l0g,i—1(2Zi, Wip) + O'g,i,t—l(iia{’ii,t) —0git—1(2i, Uie)|l + Lgi{

¢ ~
) (nag,i,t_l(zi,ui,t)n L,

= 2B10g,it—1(2i, Wi t) + (2Bt Lo, , + qu‘,)H[zi,t;ai,t] —[Zis; ﬁzt]”
< 28,0g.50-1(2i, Ui s) + (281 Lo, , + Lg)|Ziw — Zill + (281 Lo, , + Lg,) |0 — |

¢ R ~
<2810 1-1(2is Uie) + (2Bt Loy, + Lg ) Zit — Ziell +28:(2B¢ Lo, , + Lg,)oa,,_,

= 2Bt0g,i,t—1(zia ai,t) + 2Bt(2/BtLag,i + Lgi)gai,t—l + (2/BtL0'g,i + Lgi) Z |
Jj€pa(i)

(24,3 Wi e] — [Zi,e5 im}”

(203 4] — [zi,t;éi,tm) Ly [z a] — s ]|

Zjt — Zjt|

< 2B¢0g,i0-1(2i, Ui ) + 2B:(2B¢t Lo, + Lg)oa, ,_, + (28tLo, + Ly) Z 20 — 2l

jEpa(s)
G R
< 2B10gi0—1(2i, Ui e) +2B:(28¢ Lo, + Lg)oa, ,_,
J
+(2BtLo, + Lg) Y 2B:MMNi(2Bi Lo, + L)V Y (0gni-1(2ns) + 07, )
j€pa(i) h=0

7
< 25tMNi(26tLag + Lg)Ni Z (Ug,jﬂf—l(zjyt) + aﬂj,tfl)
=0

In steps ¢; and (2, we rely on the calibrated uncertainty and Lipschitz dynamics; in step (2, we also
apply the triangle inequality; step (3 is by LemmalG.1} (4 applies the inductive hypothesis. O

Theorem [6.1] Consider the optimization problem in equation[3| with the SCM satisfying Assump-
tionsm- EI where G is known but F' is unknown. Then with probability at least 1 — «, the cumulative
regret of Algorithm[lis bounded by

Ry < O(Lr MY d\/Tyr).

Proof. The cumulative regret is

T

Rr=3" [E[ya*] ~ Elgla.d]|.

t=1

At step ¢, the instantaneous regret is r;. By applying Lemmal[G.2] r; is bounded by
Tt = E[y|F7 a*] - E[ZAF? a:,t]

S E[yt‘ﬁv a:ﬂf] - ]E[yt|Fa a:,t}
= E[HZCi,t — Ty |a:,t]

d

< 28, MY (26, L, + L@NE[Z logseos (@) + o o
1=0
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Here Lt = 2ﬂt(2ﬂtLa'g + Lg)N Thus,
d 2
/2 < L2 (E[Z 100t @ll + loa oy D
1=0

d
< zdeMQNE[Z loo e (@OlB + loa s ||§]
1=0

We define RZ% as

T T
= (Zrt)Z < TZT?
t=1

t=1

T d
< QdTL%MQNZ [Znagzt 1 Zzt ||2 + ||0'u” 1||2:|

t=1 =0
= 2dTLAM*NTr.

Here,

T d
I'r = max ZZ |:Uzt 1 Zztaazt)||2+ ||Uu” 1||2]

(zau)EZX.AXL{t 1i=0

522 [m (2o aie) |3+ oo, 1|2}
U = =

a.

T
xS o310 03.) 1B + o, 1

IA
M=~
>8

s
I
Sk

o~
Il
-

MH

d;
[ (0501 (@10 a0 D2 + |o|}

d
<3
i=0 AnUiz=1 Loy
d
¢1 2
< 5Vi, T
iz:; In(1+ p; H

=0(dvr).

Here (; is due to the upper bound of the information gain (Srinivas et al.| [2010), and v will often
scale sublinearly in 7" (Sussex et al.,2023). Therefore,

R2 < 2TLAM*NdO(dvr).
And,
Ry < O(LyMYNdv\/Tvr).

This completes the proof of the theorem.
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