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ABSTRACT

Maximizing a target variable as an operational objective within a structural causal
model is a fundamental problem. Causal Bayesian Optimization (CBO) approaches
typically achieve this either by performing interventions that modify the causal
structure to increase the reward or by introducing action nodes to endogenous
variables, thereby adjusting the data-generating mechanisms to meet the objective.
In this paper, we propose a novel method that learns the distribution of exogenous
variables-an aspect often ignored or marginalized through expectation in existing
CBO frameworks. By modeling the exogenous distribution, we enhance the ap-
proximation fidelity of the data-generating structural causal models (SCMs) used
in surrogate models, which are commonly trained on limited observational data.
Furthermore, the ability to recover exogenous variables enables the application of
our approach to more general causal structures beyond the confines of Additive
Noise Models (ANMs) and single-mode Gaussian, allowing the use of more expres-
sive priors for context noise. We incorporate the learned exogenous distribution
into a new CBO method, demonstrating its advantages across diverse datasets and
application scenarios.

1 INTRODUCTION

Bayesian Optimization (BO) is widely applied in domains such as automated industrial processes, drug
discovery, and synthetic biology, where the objective is to optimize black-box functions (Močkus,
1975; Astudillo & Frazier, 2019; Garnett, 2023; Frazier, 2018). In many real-world scenarios,
structural knowledge of the unknown objective function is available and can be exploited to enhance
the efficiency of BO. Causal Bayesian Optimization (CBO) has been developed to incorporate such
structural information (Aglietti et al., 2020; 2021; Sussex et al., 2023; Gultchin et al., 2023). CBO
integrates principles from causal inference, uncertainty quantification, and sequential decision-making.
Unlike traditional BO, which assumes independence among input variables, CBO accounts for known
causal relationships among them (Aglietti et al., 2020). This framework has been successfully
applied to optimize medical and ecological interventions (Aglietti et al., 2020; 2021), among other
applications.

1.1 APPROACH AND CONTRIBUTIONS

In this paper, we propose a novel method called EXogenous distribution learning augmented
Causal Bayesian Optimization (EXCBO). Given observational data from a structural causal
model (SCM Pearl (2009; 1995)), our method recovers the exogenous variable corresponding to each
endogenous node using an encoder-decoder framework, as illustrated in Figure 2. The recovered
exogenous variable distribution is then modeled using a flexible density estimator, such as a Gaussian
Mixture Model. This learned distribution significantly enhances the surrogate model’s approximation
of the underlying SCM, as shown in Figure 1.

Unlike existing CBO approaches (Aglietti et al., 2020; 2021; Sussex et al., 2023), which are typically
confined to Additive Noise Models (ANMs Hoyer et al. (2008)), our method generalizes CBO
to broader classes of causal models. By enabling the recovery of exogenous variables and their
distributions, our surrogate model provides improved accuracy and flexibility for causal inference in
the CBO update process.
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The contributions of this work are as follows:

• We introduce a method for recovering the exogenous noise variable of each endogenous
node in an SCM using observational data, which enables our model to capture multimodal
exogenous distributions.

• This flexible approach to learning exogenous distributions allows our CBO framework to
extend naturally to general causal models beyond the limitations of ANMs.

• We present a theoretical investigation of exogenous variable recovery through the proof
of counterfactual identification, and we further analyze the regret bounds of the proposed
algorithm.

• We conduct extensive experiments to evaluate the impact of exogenous distribution learning
and demonstrate the practical advantages of EXCBO through applications such as epidemic
model calibration, COVID-19 testing, and real-world planktonic predator–prey problem,
etc.

The remainder of the paper is organized as follows. Section 2 reviews background and related work.
Section 3 introduces the problem setup and outlines our proposed CBO framework. Section 4 presents
the method for recovering exogenous variables. The proposed algorithm, EXCBO, is detailed in
Section 5, followed by regret analysis in Section 6. Experimental results are presented in Section 7,
and the paper concludes in Section 8.

2 BACKGROUND

We provide a brief overview of SCMs, intervention mechanisms, and CBO in this section.

2.1 STRUCTURAL CAUSAL MODEL

An SCM is denoted by M = (G,F,V,U), where G is a directed acyclic graph (DAG), F = {fi}di=0
represents the d+1 structural mechanisms, V denotes the set of endogenous variables, and U the set
of exogenous (background) variables. The generation of the ith endogenous variable follows

Xi = fi(Zi, Ui); Zi = pa(i), Ui ∼ p(Ui), for i ∈ [d]. (1)

Here, [d] = {0, 1, . . . , d}, and Xi refers to both the variable and its corresponding node in G. The
set pa(i) denotes the parents of node i, while ch(i) refers to its children. We assume Ui ⊥⊥ Zi and
Ui ⊥⊥ Uj for all i ̸= j. Each fi is a mapping from R|pa(i)|+1 to R. The domains of Xi, Zi, and
Ui are denoted by Xi, Zi, and Ui, respectively. Additionally, we assume that the expectation E[Xi]
exists for all i ∈ [d]. Most existing CBO approaches (Aglietti et al., 2020; 2021; Sussex et al., 2023)
typically assume an Additive Noise Model (ANM Hoyer et al. (2008)) for exogenous variables, where
Xi = fi(Zi) + Ui with Ui ∼ N (0, 1).

2.2 INTERVENTION

In an SCM M, let I ⊂ V be a set of endogenous variables targeted for intervention. The post-
intervention structural mechanisms are represented by Fx = {fi | Xi /∈ I} ∪ {fj | Xj ∈ I}.
A hard intervention replaces the mechanism for each Xj ∈ I with a constant value, resulting in
Fx = {fi | Xi /∈ I}∪{fj := αj | Xj ∈ I}, where α is the realized value of the intervened variables.
This corresponds to Pearl’s do-operation (Pearl, 2009), denoted as do(XI := α), which alters M to
a new model Mα by severing the dependencies between each Xj and its parents.

This paper focuses on soft (or imperfect) interventions (Peters et al., 2017). Following the Model-
based CBO framework (Sussex et al., 2023), we associate each endogenous variable with an action
variable, modifying the mechanisms as Fx = {fi | Xi /∈ I} ∪ {fj := fj(Zj , Aj , Uj) | Xj ∈ I},
where Zj = pa(j). Under soft intervention, the data-generating mechanism becomes

Xi =

{
fi(Zi, Ui), if Xi /∈ I

fi(Zi, Ai, Ui), if Xi ∈ I
, (2)

where Ai is a continuous action variable associated with Xi and takes values in Ai. The soft
intervention is represented using Pearl’s notation as do

(
XI := f(ZI, A, UI)

)
.
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2.3 FUNCTION NETWORK BAYESIAN OPTIMIZATION

Function Network BO (FNBO Astudillo & Frazier (2021a; 2019)) operates under similar assumptions
as CBO, where the functional structure is known but the specific parameterizations are not. FNBO
applies soft interventions and employs an expected improvement (EI) acquisition function to guide
the selection of actions. However, FNBO assumes a noiseless environment, which may limit its
applicability in practical settings. Both FNBO and CBO contribute to the broader effort of leveraging
structured observations to improve the sample efficiency of standard BO techniques (Astudillo &
Frazier, 2021b).

2.4 CAUSAL BAYESIAN OPTIMIZATION

CBO performs sequential actions to interact with an SCM M. The causal graph structure G is
assumed known, while the functional mechanisms F = {fi}di=0 are fixed but unknown. CBO uses
probabilistic surrogate models - typically Gaussian Processes (GPs Williams & Rasmussen (2006)) -
to guide the selection of interventions for maximizing the objective.

In (Aglietti et al., 2020), a CBO algorithm was introduced to jointly identify the optimal intervention
set and the corresponding input values that maximize the target variable in an SCM. Dynamic CBO
(DCBO) (Aglietti et al., 2021) extends this approach to time-varying SCMs where causal effects
evolve over time.

The MCBO method (Sussex et al., 2023) optimizes soft interventions to maximize the target variable
within an SCM. In this setting, each edge function becomes fi : Zi × Ai → Xi. Let xi,t denote
the observation of node Xi at time step t, for i ∈ [d] and t ∈ [T ], where T is the total number
of time steps. At each step t, actions a:t = {ai,t}di=0 are selected, and the resulting observations
x:,t = {xi,t}di=0 are recorded. The relationship between action ai,t and the observation is modeled
using an additive noise structure: xi,t = fi(zi,t, ai,t) + ui,t, ∀i ∈ [d]. For the target node d,
the action is fixed at ad,t = 0, and the observed outcome is yt = fd(zd,t, ad,t) + ud,t, where
yt depends on the entire intervention vector. The optimal action vector a∗ that maximizes the
expected reward is obtained by solving a∗ = argmaxa∈A E[y | a]. A GP surrogate model is
employed to approximate the reward function and guide the BO process toward optimizing y.

		𝑋!

	𝑌		𝑋"

		𝑋#

	𝑈!

𝑈"

		𝑈#

		𝑎!

		𝑎"

		𝑎#

		𝑈$

Figure 1: EXCBO: Causal
Bayesian Optimization via ex-
ogenous distribution learning.
The distribution of Ui is approxi-
mated using the density of the re-
covered surrogate Ûi. EXCBO
searches for the action vector a
that maximizes the reward Y .

3 PROBLEM STATEMENT

Following prior CBO approaches (Aglietti et al., 2020; 2021;
Sussex et al., 2023; Frazier, 2018), we assume that the DAG G is
known. Our framework employs GP surrogate models to guide
the optimization of soft interventions, which are controlled via
an action vector a = {ai}di=0, with the goal of maximizing the
reward. This section details the specific problem setting addressed
in this work.

3.1 ASSUMPTIONS FOR EXCBO

We assume that the causal structure, represented by the DAG G
of the SCM M = (G,F,V,U), is given. This paper focuses
exclusively on this setting. Additionally, we assume that M is
causally sufficient, meaning all endogenous variables in V are
observable. The problems of causal structure learning and handling
unobserved confounders are left for future work.

3.2 CBO VIA EXOGENOUS DISTRIBUTION LEARNING

In contrast to prior CBO approaches based on ANMs (Aglietti et al., 2021; Sussex et al., 2023),
we propose a more flexible modeling of the mappings fi() by explicitly incorporating exogenous
variables. To this end, we introduce EXCBO - a framework for CBO that leverages exogenous
distribution learning, as illustrated in Figure 1.

Let R denote the set of root nodes. Since root nodes have no parents, we set zi,t = 0 for all
i ∈ R. Similarly, we define ad,t = 0 at the target node d, and denote the reward at time t as

3
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yt = fd(zd,t, ad,t, ud,t). Given an action vector a = {ai}di=0 and exogenous variables u = {ui}di=0,
the reward is denoted as y = F(a,u). The optimization objective becomes

a∗ = argmax
a∈A

E[y | a], (3)

where the expectation is taken over the exogenous variables u. The goal is to identify a sequence
of interventions {at}Tt=0 that achieves high average expected reward. To evaluate convergence, we
study the cumulative regret over a time horizon T : RT =

∑T
t=1 [E[y | a∗]− E[y | a:,t]] . In our

experiments, we use the observed objective or reward value y as the primary performance metric
for comparing EXCBO against baseline methods. The best choice of evaluation metric may vary
depending on the application and the effectiveness of the optimized action sequence.

3.3 MOTIVATIONS FOR EXOGENOUS DISTRIBUTION LEARNING

In existing CBO frameworks, the distributions of exogenous variables are either ignored or marginal-
ized to simplify the intervention process (Aglietti et al., 2020; 2021; Sussex et al., 2023). Learning
the exogenous distribution, however, yields a more accurate surrogate model when observational data
is available. As outlined in later sections, we propose an encoder-decoder architecture (illustrated in
Figure 2) to recover the exogenous variable associated with each endogenous node in an SCM. The
distribution of an exogenous variable Ui is approximated by the density of its recovered surrogate Ûi,
modeled using a flexible distribution such as a Gaussian Mixture. This learned exogenous distribution
improves the surrogate model’s approximation of the underlying SCM.

As a result, EXCBO extends beyond the ANM framework assumed by prior work (Aglietti et al.,
2020; 2021; Sussex et al., 2023), enabling optimization under a broader class of causal models.
Moreover, by enhancing the surrogate model’s fidelity, our approach can potentially achieve superior
reward outcomes. Additional justification and motivation are provided in the Appendix.

3.4 DECOMPOSABLE GENERATION MECHANISM

In our setting, the edges in the SCM M correspond to a fixed but unknown set of functions
F = {fi}di=0. We assume the structure of the SCM is known and that the system is causally
sufficient—that is, it contains no hidden variables or confounders. We now define the Decomposable
Generation Mechanism (DGM) used in our analysis.
Definition 1. (DGM) A data-generating function f follows a decomposable generation mechanism
if X = f(Z, U) = fa(Z) + fb(Z)fc(U), where fa : Z → R, fb : Z → R, and fc : U → R. All
mappings are continuous, and fb(Z) ̸= 0 for all Z ∈ Z .

In a DGM, the function fc(U) may be a one-dimensional, nonlinear, and nonmonotonic transforma-
tion of the exogenous variable U . The term fb(Z)fc(U) implies that the variance of the generated
variable X , conditioned on its parents Z, depends on both U and Z. Consequently, DGMs represent
a broad class of mechanisms in which both parents and exogenous variables contribute to variance
modulation.

This modeling framework is notably more general than Location-Scale or Heteroscedastic Noise
Models (LSNMs) (Immer et al., 2023), which typically assume linear fc() and strictly positive
fb(). Therefore, DGMs constitute a superset of LSNMs. In Section 4.1, we demonstrate that the
distribution of exogenous variables can be recovered when the data-generating mechanism f in each
node equation 1 adheres to the DGM formulation.

4 EXOGENOUS DISTRIBUTION LEARNING

Given observations of an endogenous node and its parents within an SCM, our goal is to recover the
distribution of that node’s exogenous variable. This exogenous distribution learning is carried out
using GPs. We begin by focusing on the recovery of the exogenous distribution for a single node.

4.1 EXOGENOUS VARIABLE RECOVERY FOR ONE NODE

According to equation 2, an endogenous variable Xi may or may not have an associated ac-
tion variable Ai. To simplify notation, we use Zi in this section to denote both the parents

4
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of Xi and its action variable, i.e., Zi = (Zi, Ai) if Xi ∈ I. The task of learning the exoge-
nous distribution for X then becomes the problem of recovering the distribution of U given
observations of X and Z from the generative model X = f(Z, U). For clarity, we define
the causal mechanism for the triplet (Z, U,X) corresponding to a single node in an SCM.

Figure 2: Structure in one τ -
SCM node. Z denotes the par-
ent set of X . Our algorithm
learns an encoder h and a de-
coder g such that the surro-
gate Û = h(Z, X) and X =

g(Z, Û).

Definition 2. (τ -SCM) Let X and U be one-dimensional variables,
and let f() be the causal mechanism generating X from Z and U ,
such that X = f(Z, U). We assume Z ⊥⊥ U , and (Z, U,X, f) is
called a τ -SCM.

In a τ -SCM, Z may be multi-dimensional, representing the parents of
X , while U is the exogenous variable. This differs from the Bijective
Generation Mechanism (BGM Nasr-Esfahany et al. (2023)), where
f(Z, U) is assumed to be monotonic and invertible with respect to U
given fixed Z. We adopt an encoder-decoder framework (Figure 2)
to construct a surrogate for the exogenous variable.

Definition 3. (Encoder-Decoder Surrogate; EDS) Let (Z, U,X, f)
be a τ -SCM. Let ϕ() : Z → X be a regression model such that E[X]
exists and ϕ() can model the conditional mean µϕ() and variance
σϕ(). Define (Û , ϕ, h, g) as an encoder-decoder surrogate (EDS)
for exogenous variable U , where the encoder is h() : Z × X → Û ,
defined as Û := h(Z, X) :=

X−µϕ(Z)
σϕ(Z) ; and the decoder is g() :

Z × Û → X , where X := g(Z, Û).

Given observations of X and its parents Z, our method learns the
encoder h() to approximate the true value of U via û = h(z, x). Concurrently, the decoder g() serves
as a surrogate for the causal mechanism f(), reconstructing x = g(z, û). Theorem 4.1 establishes
that surrogate values of the exogenous variable U can be recovered from observations under the
DGM assumption on f .

Theorem 4.1. Let (Z, U,X, f) be a τ -SCM, and (Û , ϕ, h, g) an EDS surrogate of U . Suppose f is
differentiable and has the DGM structure X = f(Z, U) = fa(Z) + fb(Z)fc(U) with fb(Z) ̸= 0 for
all Z ∈ Z . Then with a constant a, we have Û = a(fc(U)− E[fc(U)]), with E[Û ] = 0 and Û ⊥⊥ Z.

BGMDGM

𝜏-SCM

ANM

EDS*

Figure 3: Scopes of different
mechanism classes.

We use the distribution of the recovered surrogate Û = s(U) =

h(Z, X) - denoted as p(Û) - as a proxy for the true p(U) in the
surrogate model. Consequently, the function f is approximated via
the learned decoder g and the surrogate û:

x = f(z, u) = g(z, û) = g(z, s(u)).

Figure 3 illustrates the relationship among different data generation
mechanisms regarding counterfactual identifiability. Definition and
analysis on counterfactual identifiability can be found in Appendix-
F. Notably, our framework generalizes beyond ANM (linear), and
BGM (monotonic) to a new class of nonlinear and nonmonotonic
models through DGM. This extends the identifiability of U signif-
icantly beyond the standard assumption X = f(pa(X)) + U used
in many BO and CBO methods. We use EDS∗ to represent the τ -SCMs that are counterfactually
identifiable via EDS either with or without the condition of Û ⊥⊥ Z.

The proof of Theorem 4.1 is provided in Appendix E. Our surrogate variable Û and encoder h()
are valid under both DGM and BGM (Nasr-Esfahany et al., 2023) assumptions. In the BGM case,
recovery of U requires enforcing Û ⊥⊥ Z, as detailed in Appendix F, which can be achieved through
independence regularization - albeit at additional computational cost. If f does not satisfy the DGM
or BGM assumptions, then the recovered Û may be dependent on Z, potentially degrading the
accuracy of the surrogate model and limiting the effectiveness of CBO in finding optimal y using
limited data.
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4.2 IMPLEMENTATION OF EXOGENOUS DISTRIBUTION LEARNING

The encoder-decoder architecture in Figure 2 can be implemented in various ways, such as using
Variational Autoencoders (VAEs) (Kingma & Welling, 2014) or sample efficient deep-generative
models (Liang et al., 2024; Wang et al., 2023). To keep the implementation straightforward, we adopt
GP regression for both the encoder and decoder, consistent with the EDS definition in Definition 3.

For nodes with an action variable A, the decoder becomes g() : Z ×A× Û → X , and the encoder
becomes h() : Z ×A×X → Û , while the regression model is ϕ() : Z ×A → X . Both g() and ϕ()
are implemented using GP regression models (Williams & Rasmussen, 2006). To approximate the
distribution of the recovered exogenous surrogate Û , we use a Gaussian Mixture model to estimate
p(Û), which serves as a replacement for p(U) in the probabilistic surrogate objective. For all nodes
in the SCM M, we denote the collection of decoders as G = {gi}di=0 and the collection of encoders
as H = {hi}di=0.

5 CBO WITH EXOGENOUS DISTRIBUTION LEARNING

In this section, we present the EXCBO algorithm, describing the probabilistic model and acquisition
function used.

5.1 STATISTICAL MODEL

In our model, the function fi that generates variable Xi is learned through gi, and Xi = gi(Zi, Ai, Ûi).
We use GPs (Williams & Rasmussen, 2006) to learn the surrogate of gi, i.e., g̃i. For i ∈ [d], let µg,i,0

and σg,i,0 denote the prior mean and variance function for each fi, respectively.

Following Chowdhury & Gopalan (2019), at time t, let G̃ be the statistically plausible function set of
G, i.e., G̃ = {g̃i}di=0. Similarly, the plausible model of H is denoted by H̃ = {h̃i}di=0. Moreover, at
step t, the observation set is Dt = {z:,1:t, a:,1:t, x:,1:t}. The posterior of gi with the input of node i,
(z̃i, ãi, ˜̂ui), is given by

g̃i,t(z̃i, ãi, ˜̂ui) ∼ GP(µg,i,t−1, σ
2
g,i,t−1); µg,i,t−1 = µg,i,t−1(z̃i, ãi, ˜̂ui);σg,i,t−1 = σg,i,t−1(z̃i, ãi, ˜̂ui).

Then x̃i,t = g̃i,t(z̃i, ãi, ˜̂ui) denotes observations from one of the plausible models. Here ˜̂ui ∼ p(Ûi)

in the sampling of the learned distribution of Ûi.

Given an observation (zi, ai, xi) at node i, the exogenous recovery ûi = hi(zi, ai, xi) =
xi−µϕ,i(zi,ai)

σϕ,i(zi,ai)
. At time step t, the posterior of ϕi with the input of node i, (zi, ai), is given by

ϕ̃i,t(zi, ai) ∼ GP
(
µϕ,i,t−1(zi, ai), σ

2
ϕ,i,t−1(zi, ai)

)
(4)

Therefore, ˜̂ui = h̃i,t(zi, ai, xi) =
xi−µϕ,i,t−1(zi,ai)

σϕ,i,t−1(zi,ai)
. According to the definition of h() in Theo-

rem 4.1, h() also follows a GP, i.e. hi,t(zi, ai, xi) ∼ GP(µh,i,t−1, σ
2
h,i,t−1). This GP is defined

by ϕ̃i,t() which is sampled with equation 4. Different from gi(), the observations of the input
(Zi, Ai, Xi) for hi() are only required at the training time, and we only need to sample the learned
p(Ûi) to get value ûi for model prediction or model sampling.

5.2 ACQUISITION FUNCTION

Algorithm 1 describes the proposed method solving equation 3. In iteration t, it uses GP posterior
belief of y to construct an upper confidence bound (UCB Brochu et al. (2010); Frazier (2018)) of y:

UCBt−1(a) = µt−1(a) + βtσt−1(a). (5)

Here µt−1(a) = E[µg,d,t−1(z̃d, ãd, ˜̂ud)] ; σt−1(a) = E[σg,d,t−1(z̃d, ãd, ˜̂ud)], where the expectation
is taken over p(Û). In equation 5, βt controls the tradeoff between exploration and exploitation of
Algorithm 1. The UCB-based algorithm is a classic strategy that is widely used in BO and stochastic
bandits (Lattimore & Szepesvári, 2020; Srinivas et al., 2010). The proposed algorithm adapts the
“optimism in the face of uncertainty” (OFU) strategy by taking the expectation of the UCB as part of
the acquisition process.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5.3 ALGORITHM

Let kg,i, kϕ,i, ∀i ∈ [d] represent the kernel functions of gi and ϕi. The proposed EXCBO algorithm
is summarized by Algorithm 1. In each iteration, a new sample is observed according to the UCB
values. Then the posteriors of G and H are updated with the new dataset. The next section gives a
theoretical analysis of the algorithm.

Algorithm 1 EXCBO
Input: kg,i, kϕ,i, ∀i ∈ [d]
Result: Intervention actions ai, ∀i ∈ [d]
for t = 1 to T do

Find at by optimizing the acquisition function, at ∈ argmaxUCBt−1(a);
Observe samples {zi,t, xi,t}di=0 with the action sequence at and update Dt;
Use Dt to update posteriors {µϕ,i,t, σ

2
ϕ,i,t}di=0 and sample the exogenous surrogate {ûi,t}di=0;

Use Dt ∪ {ûi,t}di=0 to update the decoder posteriors {µg,i,t, σ
2
g,i,t}di=0 ;

end for

6 REGRET ANALYSIS

This section describes the convergence guarantees for EXCBO using soft interventions. Our analysis
shows that EXCBO has a sublinear cumulative regret bound (Sussex et al., 2023). In DAG G over
{Xi}di=0, let N be the maximum distance from a root to Xd, i.e., N = maxi dist(Xi, Xd). Here
dist(·, ·) is a measure of the edges in the longest path from Xi to the reward node Y := Xd. Let
M denote the maximum number of parents of any variables in G,M = maxi |pa(i)|. Let Lt be a
function of Lg , Lσg

, and N . With Assumptions 1- 3 in the Appendix, the following theorem bounds
the performance of EXCBO in terms of cumulative regret. We present the assumptions used in the
regret analysis in Appendix G. Assumption 1 gives the Lipschitz conditions of gi, σg,i, and µg,i. It
holds if the RKHS of each gi has a Lipschitz continuous kernel (Curi et al., 2020; Sussex et al., 2023).
Assumption 3 holds when we assume that the ith GP prior uses the same kernel as the RKHS of gi
and that βi,t is sufficiently large to ensure the confidence bounds in∣∣∣∣gi(zi, ai, ûi)− µg,i,t−1(zi, ai, ûi)

∣∣∣∣ ≤ βi,tσg,i,t−1(zi, ai, ûi) , ∀zi ∈ Zi, ai ∈ Ai, ûi ∈ Ûi.

Theorem 6.1. Consider the optimization problem in equation 3, with the SCM satisfying Assump-
tions 1- 3, where G is known but F is unknown. Then with probability at least 1− α, the cumulative
regret of Algorithm 1 is bounded by RT ≤ O(LTM

Nd
√
TγT ).

Here γT = maxt γi,T denote the maximum information gain at time T . The proof of Theorem 6.1
and further analysis can be found in Appendix G.

7 EXPERIMENTAL STUDY

This section presents experimental comparisons of the proposed EXCBO and existing algorithms.
Different from the single-mode Gaussian noise in MCBO (Sussex et al., 2023), We use two-mode
exogenous distributions in the synthetic datasets, i.e.

p(U) = w1N (µ1, c1σ
2) + w2N (µ2, c2σ

2), w1, w2, c1, c2 > 0, w1 + w2 = 1.0. (6)

Additional experimental results and analysis are presented in Appendix D.

7.1 BASELINES

We compare EXCBO against three representative algorithms: UCB (Brochu et al., 2010; Frazier,
2018), EICF (Astudillo & Frazier, 2019), and MCBO (Sussex et al., 2023). UCB is a standard
Bayesian Optimization (BO) method (Brochu et al., 2010; Frazier, 2018), EICF applies a composite
function approach to BO, and MCBO is a Causal Bayesian Optimization method discussed in previous
sections. Unlike the other baselines, MCBO incorporates neural networks alongside GPs to capture
model uncertainty. All algorithms are implemented in Python using the BoTorch library (Balandat
et al., 2020).
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(a) λ = 1.0, σ = 0.1 (b) λ = 2.0, σ = 0.1 (c) λ = 3.0, σ = 0.1
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(d) λ = 1.0, σ = 0.3 (e) λ = 2.0, σ = 0.3 (f) λ = 3.0, σ = 0.3
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Figure 4: Results of Dropwave with σ ∈ {0.1, 0.3} and λ ∈ {1.0, 2.0, 3.0}.

For MCBO, we adopt the default initial observation size recommended in its original work, which
is 2(|A|+ 1), where |A| denotes the number of action variables. For the other methods, the initial
sample size ranges from 5 to 20. Each algorithm is executed four times with different random seeds
to compute the mean and standard deviation of the resulting reward values.

7.2 DROPWAVE

There are two endogenous nodes in Dropwave, i.e., X and the target node Y (Figure 8
in D.2). There are two action nodes associated with X , i.e. a0, a1 ∈ [0, 1]. Here X =√
(10.24a0 − 5.12)2 + (10.24a1 − 5.12)2 + λUX , and Y = (1.0+ cos(12.0X))/(2.0+ 0.5X2) +

λUY , UX ∼ p(UX), and UY ∼ p(UY ). We vary σ and λ to simulate different levels of noise. While
σ controls the variance of the exogenous variables (UX and UY ), λ scales their effect on the target
variable Y . Figure 4 presents performance results under various σ and λ settings. In this set of
exeriments, EXCBO outperforms UCB and EICF in most cases, except when σ = 0.1 and λ = 1.0.

7.3 ALPINE2

(a) λ = 0.3, σ = 0.05 (b) λ = 0.3, σ = 0.2 (c) λ = 0.3, σ = 0.4

0 50 100 150 200
Round

0

50

100

150

200

250

Av
er

ag
e 

Re
wa

rd

UCB
EICF
EXCBO

0 50 100 150 200
Round

0

50

100

150

200

250

Av
er

ag
e 

Re
wa

rd

UCB
EICF
EXCBO

0 50 100 150 200
Round

0

50

100

150

200

Av
er

ag
e 

Re
wa

rd

UCB
EICF
EXCBO

(d) λ = 1.0, σ = 0.05 (e) λ = 1.0, σ = 0.2 (f) λ = 1.0, σ = 0.4
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Figure 5: Results of Alpine2 with σ ∈ {0.05, 0.2, 0.4} and λ ∈ {0.3, 1.0}.

We study the algorithms using the Alpine2 dataset (Sussex et al., 2023). There are six endogenous
nodes in the Alpine2 dataset as shown in Figure10. In first set of experiments, Alpine2 is generated
via DGM with multimodal exogenous distributions as given in equation 7 in Section D.3.1. The
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results of Alpine2 are shown in Figures 5. We also compared the algorithms on Non-DGM generated
Alpine2 dataset in Section D.3.2. As shown in the plots, our EXCBO outperforms the other methods
at different noise levels. It shows the effectiveness and benefits of the proposed EXCBO method in
multimodal exogenous distribution and mechanism learning.

7.4 EPIDEMIC MODEL CALIBRATION

We test EXCBO on an epidemic model calibration by following the setup in Astudillo & Frazier
(2021a). In this model, as shown in Figure 6-(c), Ii,t represents the fraction of the population in group
i that are “infectious” at time t; βi,j,t is the rate of the people from group i who are “susceptible” have
close physical contact with people in group j who are “infectious” at time t. We assume there are two
groups, and infections resolve at a rate of γ per period. The number of infectious individuals in group
i at the start of the next time period is Ii,t+1 = Ii,t(1 − γ) + (1 − Ii,t)

∑
j βi,j,tIj,t. We assume

each Ii,t has an observation noise Ui,t. The model calibration problem is that given limited noisy
observations of Ii,ts, how to efficiently find the βi,j,t values in the model. The reward is defined as
the negative mean square error (MSE) of all the Ii,t observations as the objective function to optimize.
In this model, βi,j,ts are the action variables. The noise is added with two-modes as in equation 6
under ANM (Hoyer et al., 2008). Figure 6-(a-b) visualize the results at the noise levels with σ = 0.1
and σ = 0.3.

(a) σ = 0.1 (b) σ = 0.3 (c)
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Figure 6: (a-b): Results of epidemic model calibration; (c): Graph structure for epidemic model
calibration.

7.5 PLANKTONIC PREDATOR–PREY COMMUNITY IN A CHEMOSTAT
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Figure 7: Results of P3C2

dataset; the reward y = −Dt.

We evaluate the algorithms on a real-world dataset from the
planktonic predator–prey community in a chemostat (P3C2). This
biological system involves two interacting species, one predator
and one prey, and our objective is to identify interventions that
reduce the concentration of dead animals in the chemostat, Dt. We
adopt the system of ordinary differential equations (ODE) from Bla-
sius et al. (2020); Aglietti et al. (2021) as the SCM, and construct
the DAG by unrolling the temporal dependencies of two adjacent
time steps. Observational data from Blasius et al. (2020) are used
to compute the dynamic causal prior. Unlike dynamic sequential
CBO (Aglietti et al., 2021), we employ the causal structure at t
and t+ 1 as the DAG for the algorithms. Figure 12 compares the
performance of EXCBO with baselines. Additional experimental
details are provided in the Appendix.

8 CONCLUSIONS

We propose a novel CBO algorithm, EXCBO, that approximately recovers the exogenous variables in
a structured causal model. With the recovered exogenous distribution, our method naturally improves
the surrogate model’s accuracy in the approximation of the SCM. Furthermore, the recovered
exogenous variables may enhance the surrogate model’s capability in causal inference and hence
improve the reward values attained by EXCBO. We additionally provide theoretical analysis on both
exogenous variable recovery and the algorithm’s cumulative regret bound. Experiments on multiple
datasets show the algorithm’s soundness and benefits.
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ETHICS STATEMENT

This study relies exclusively on synthetic and publicly available datasets, without the involvement
of human subjects or sensitive personal data. Therefore, we do not anticipate any ethical concerns
related to this work.

REPRODUCIBILITY STATEMENT

The assumptions and definitions of DGM are presented in Section 3.4. The assumptions and theoreti-
cal foundations for exogenous distribution learning are provided in Section 4.1 and in Sections E
and F of the Appendix. The implementation details of EXCBO are discussed in Sections 4.2 and 5.
Experimental details, including the generation of synthetic data, processing of real-world data, and
overall experimental setups, are presented in Section 7 and in Section D of the Appendix. The
assumptions and proof steps for the regret analysis are given in Section G of the Appendix. The code
and all datasets used in the paper will be released publicly after the review period.
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A STATMENT ON THE USE OF LARGE LANGUAGE MODELS (LLMS)

The authors acknowledge the use of large language models (LLMs) for the limited purpose of gram-
mar checking and language polishing. No LLMs were used for data analysis, methodological design,
or generation of scientific content. All ideas, results, and conclusions presented in this manuscript are
the full responsibility of the authors.

B NOMENCLATURE

Symbol Description
U a single exogenous variable
U the exogenous variable set of a SCM, i.e., U = {U1, ..., Ud}
Û the exogenous variable recovered via EDS, i.e., the EDS surrogate of U
u a value or realization of variable U

û a value or realization of variable Û
U the domain, or value space of variable U

Û the domain, or value space of variable Û
hi() the EDS encoder function for node Xi

ûi the output of hi() given an input
h̃i() a plausible function of hi via posterior GP trained with data in some step of EXCBO
˜̂ui the output of h̃i() given an input
Zi the parent of Xi, pa(i)
gi() the EDS decoder function for node Xi

G the collection of decoders, G = {gi}di=0

H the collection of encoders, H = {hi}di=0

C ADDITIONAL REMARKS

C.1 REMARKS ON MOTIVATIONS

Learning the exogenous distribution enhances the surrogate model’s ability to approximate the ground
truth SCMs. As discussed in Sections 4.1,E, andF, under moderate assumptions, the independence
between the recovered exogenous variable Û and both the parent Z and the action A empowers the
structured surrogate model in EXCBO to perform effective intervention inference. This independence
reduces the influence of environmental noise or exogenous variables on the actions or interventions
derived from the acquisition function.

This work considers the setting where the causal structure is known, and the model M is causally
sufficient. The challenges of learning causal structures and dealing with unobserved confounders are
left for future research.

We believe multi-modal and non-Gaussian exogenous distributions are prevalent in real-world systems.
When each exogenous variable is viewed as an unobserved latent factor, it is highly plausible that
such factors follow non-Gaussian distributions with multiple modes.

C.2 PERFORMANCE GAPS

UCB, EICF, and MCBO use X = f̂(Z, A) or X = f̂(Z, A, ϵ), ϵ ∈ N (0, 1) to approximate X =
f(Z, A, U) for each node or the overall reward function. The absence of information about U
introduces irreducible bias into the surrogate model of the reward function. In contrast, EXCBO
explicitly recovers the exogenous variable U and learns its multi-modal distribution, producing a more
accurate surrogate, i.e., X = f̂(Z, A, Û), for the objective reward function, even when the variance
σ2 in the data is small. Experimental results further show that EXCBO enhances the robustness of
CBO, particularly in scenarios with limited data samples.
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C.3 BROADER IMPACTS

As a new causal Bayesian optimization framework, EXCBO may help reduce the required training
samples for more efficient and cost-effective decision-making, which may have broader impacts
in many science and engineering applications, such as future pandemic preparedness with better-
calibrated epidemic dynamic models as illustrated in the paper. However, if misused, the societal
consequences of designing new systems or materials with unforeseen future threats has to be taken
into consideration with caution.

D ADDITIONAL EXPERIMENTAL RESULTS AND ANALYSIS

In our experiments, the synthetic data are generated via ANM, DGM, and Non-DGM mechanisms.

D.1 EXPERIMENTAL SETUP

We report the expected reward, EU [y | at], as a function of the number of system interventions
performed. Each figure presents the mean performance over four random seeds, with error bars
representing the interval [−0.2σ, 0.2σ]. The GPs used in our models are implemented via the
SingleTaskGP() function from BoTorch (Balandat et al., 2020), and are trained using the default
hyperparameters described in Hvarfner et al. (2024). Each Gaussian Mixture Model (GMM) has
two components. Action node domains are normalized to lie within [0, 1]. To reduce computational
overhead, we restrict the number of σ values considered for the exogenous variables in each dataset.

D.2 DROPWAVE

In Dropwave Dataset, the values of action nodes a0, a1 ∈ [0, 1], X =√
(10.24a0 − 5.12)2 + (10.24a1 − 5.12)2 + λUX , and Y = (1.0+ cos(12.0X))/(2.0+ 0.5X2) +

λUY , UX ∼ p(UX), and UY ∼ p(UY ). Here p(UX) = 0.5N (−0.2, , 1.4σ2) + 0.5N (0.4, σ2), and
p(UY ) = 0.5N (−0.1, 0.32σ2) + 0.5N (0.05, 0.32σ2). Clearly, the data generation here belongs to
the ANMs (Hoyer et al., 2008).

As shown in the plots, UCB’s performance improves with increasing σ or λ, suggesting that strong
exogenous noise may diminish the benefits of structural knowledge utilized by EICF and EXCBO.
Nevertheless, EXCBO still achieves superior (Figure 4-f) or comparable (Figure 4-c) performance
even under high-noise conditions.

Figure 8: Graph structure of Dropwave dataset.

We further compare EXCBO with all the three baselines. Due to the high computational cost of
evaluating MCBO (Sussex et al., 2023), we only include the results at σ ∈ {0.05, 0.3} and λ = 1.0
in Figure 9. EXCBO gives slightly better results at σ = 0.05, and MCBO achieves higher reward
before t = 185 with σ = 0.3.
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(a) σ = 0.05 (b) σ = 0.3

20 40 60 80 100
Round

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Av
er

ag
e 

Re
wa

rd

UCB
EICF
MCBO
EXCBO

0 25 50 75 100 125 150 175 200
Round

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Av
er

ag
e 

Re
wa

rd

UCB
EICF
MCBO
EXCBO

Figure 9: Results of all the four algorithms on Dropwave at σ ∈ {0.05, 0.3} and λ = 1.0.

D.3 ALPINE2

The Alpine2 dataset contains six endogenous nodes, as illustrated in Figure 10. The exogenous
distributions for X and Y follow Gaussian Mixture models with two components, as defined in
equation equation 6. Due to the high computational cost of evaluating MCBO (Sussex et al., 2023),
we restrict our comparisons in this experiment to UCB (Brochu et al., 2010; Frazier, 2018) and
EICF (Astudillo & Frazier, 2019).

Y		𝑋!

		𝑎! 		𝑎"

		𝑋"
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…
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Figure 10: Graph structure of the Alpine2 dataset.

D.3.1 ALPINE2 WITH DGM MECHANISM

We evaluate the algorithms on the synthetic Alpine2 dataset (Sussex et al., 2023), generated using a
DGM mechanism with multimodal exogenous distributions. Each node is defined as

X0 = −
√
10.0a0 sin (10.0a0) +

(
cos(10.0a0) + 1.2

)
· λU4

0 ; (7)

Xi =
√
10.0ai sin (10.0ai)Xi−1 + 0.1

(
cos(10.0ai) +X2

i−1 + 1.2
)
· λU4

i , 1 ≤ i ≤ 5;

Y = X5.

Here, Ui ∼ p(Ui) as specified in equation 6, with w1 = w2 = 0.5, µ ∈ [−1.0, 1.0], and c1, c2 ∈
[0.05, 1.5]. The results for σ ∈ {0.05, 0.2, 0.4} and λ ∈ {0.3, 1.0} are shown in Figure 5.

D.3.2 ALPINE2 WITH NON-DGM MECHANISM

For the non-DGM setting of the Alpine2 dataset (Sussex et al., 2023), each node is defined as

X0 = −
√
10.0a0 + U0 sin (10.0a0 + U0); (8)

Xi =
√

10.0ai + Ui sin (10.0ai + Ui)Xi−1, 1 ≤ i ≤ 5;

Y = X5.
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Here, Ui ∼ p(Ui) as defined in equation 6, with w1 = w2 = 0.5, µ ∈ [−1.0, 1.0], and c1, c2 ∈
[0.05, 1.5].

Due to computational constraints, we use σ ∈ {0.05, 0.1, 0.2}. The corresponding results are reported
in Figures 11-(a–c). As shown, EXCBO consistently achieves the best performance across all noise
levels, demonstrating the effectiveness and advantages of the proposed method. Although the Alpine2
generation mechanism does not strictly follow DGM or BGM, the strong results of EXCBO, as
illustrated in Figures 11-(a–c), highlight its generalization capability, providing further empirical
support for the theoretical claims in Sections 4.1 and F.

(a) σ = 0.05 (b) σ = 0.1 (c) σ = 0.2
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Figure 11: (a-c): Results of Alpine2 (generated via Non-DGM mechanism in equation 8).

D.4 EPIDEMIC MODEL CALIBRATION

We adopt the additive noise model (ANM Hoyer et al. (2008)), i.e., Xi = f(Zi) + Ui, where
Ui ∼ p(U) = 0.5N (µ1, c1σ

2) + 0.5N (µ2, c2σ
2), c1, c2 > 0. Since ANM is a subset of DGM,

this setup also satisfies the DGM assumption. To ensure consistency, we normalize and standardize
all action nodes to the range [0, 1]. Specifically, β is rescaled to [0, 1], with γ = 0.5, Ii,0 = 0.01
for i ∈ {0, 1}, and T = 3. For Ui,j with i ∈ {1, 2} and j ∈ {1, 2, 3}, we set w1 = w2 = 0.5,
µ1, µ2 ∈ [−1.0, 1.0], and c1, c2 ∈ {0.5, 1.0, 1.5}. With the capability to recover and learn the
exogenous distributions, our method is more robust and stable in this application scenario. Similarly
constrained by computational overhead, we use σ ∈ {0.1, 0.3}, with the other p(U) hyperparameters
set as in the Alpine2 experiments. Figure 6 shows that increased exogenous noise enhances the
performance of all methods. Our EXCBO performs better than state-of-the-art model calibration
methods in both cases, and our method has a faster convergence rate compared to the baselines.

D.5 PLANKTONIC PREDATOR–PREY COMMUNITY IN A CHEMOSTAT

We use the system of ordinary differential equations (ODE) given by Blasius et al. (2020); Aglietti
et al. (2021) as our SCM and construct the DAG by rolling out the temporal variable dependencies in
the ODE of two adjacent time steps while removing graph cycles. Observational data are provided in
Blasius et al. (2020), and are use to compute the dynamic causal prior. So different from dynamic
sequential CBO (Aglietti et al., 2021), we use the causal structure at t and t+ 1 as the DAG for the
algorithms. The causal graph is given in Figure 12.

At each time step, the system includes the following variables:

- Nin: Nitrogen concentration in the external medium

- N : Nitrogen (prey) concentration

- P : Phytoplankton (predator) concentration

- E: Predator egg concentration

- J : Predator juvenile concentration

- A: Predator adult concentration

- D: Dead animal concentration

15
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Figure 12: P3C2 graph structure; exogenous nodes are not included.

Equations (21–26) in Aglietti et al. (2021) define the ODE, and equations (9-14) specify the corre-
sponding SCM. The action variables are Nin,t, Jt, and At, which we manipulate to minimize Dt+1.
We use GPs to fit the following SCM

Nt = fN (Nin,t, Nt−1, Pt−1, ϵN ) (9)
Pt = fP (Nt, Pt−1, ϵP ) (10)
Jt = fJ(Pt, Jt−1, At−1, ϵJ) (11)
At = fA(Pt, At−1, ϵA) (12)
Et = fE(Pt, At, Et−1, ϵE) (13)
Dt = fD(Jt, At, Dt−1, ϵD). (14)

Here
{
ϵj |j ∈ {N,P, J,A,E,D}

}
are learned from the data 1 . The data processing is follow-

ing Aglietti et al. (2021). As shown in Figure, the three action nodes are Nin,t, Jt−1, and At−1.
The intervention domains are Nin,t ∈ [60.0, 100.0], Jt−1 ∈ [0.0, 36.0], and At−1 ∈ [0.0, 180.0].
Here the domains are from the value range of the data. According to the result Figure 12, EXCBO
outperforms the baselines on this real-world dataset.

D.6 POOLED TESTING FOR COVID-19

We further compare EXCBO and existing methods using the COVID-19 pooled testing problem (As-
tudillo & Frazier, 2021a). The graphical structure is given by Figure 13-(c). In Figure 13-(c), It is
the fraction of the population that is infectious at time t; Rt is the fraction of the population that
is recovered and cannot be infected again, and time point t ∈ {1, 2, 3}. The additional fraction
St = 1 − It − Rt of the population is susceptible and can be infected. During each period t, the
entire population is tested using a pool size of xt. The loss Lt, incorporates the costs resulting from
infections, testing resources used, and individuals isolated at period t. The objective is to choose
pool size xt to minimize the total loss

∑
t Lt. Therefore, xts are the action variables/nodes that the

algorithms try to optimize to achieve lower costs.

We employ the ANM (Hoyer et al., 2008) setup: Xi = f(Zi) + Ui, where Ui ∼ p(U) =
0.5N (µ1, c1σ

2) + 0.5N (µ2, c2σ
2), c1, c2 > 0. Data are generated using the dynamic SIR model

1https://figshare.com/articles/dataset/Time_series_of_long-term_
experimental_predator-prey_cycles/10045976/1
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from Astudillo & Frazier (2021a) with β = 3.23. For varying exogenous distributions p(U), we use
µ1, µ2 ∈ [−0.5, 0.5] and c1, c2 ∈ {0.05, 0.5, 1.0}.

(a) σ = 0.2 (b) σ = 0.4 (c)
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Figure 13: (a-b): Results of COVID-19 pooled testing optimization; (c): Graph structure for COVID-
19 pooled testing problem.

Figure 13-(a-b) presents the optimization results obtained from different methods, where the reward
is defined as y = −

∑
t Lt. As shown in Figure 13, UCB, EICF, and EXCBO exhibit similar

performance across both σ values. However, after 140 rounds, EXCBO achieves the best overall
performance. The relatively poor performance of MCBO can be attributed partly to the bias introduced
by the use of single-mode Gaussian distribution, and partly to the overfitting issues of the neural
networks.

D.7 EXCBO AND MCBO ON SINGLE-MODE EXOGENOUS DISTRIBUTION

We follow exactly the same setting in MCBO paper to compare EXCBO and MCBO using
Dropwave data, i.e., a0, a1 ∈ [0, 1], X =

√
(10.24a0 − 5.12)2 + (10.24a1 − 5.12)2, and Y =

(1.0 + cos(12.0X))/(2.0 + 0.5X2) + 0.1U , U ∼ N (0, 1), and the data generation code is from the
MCBO package. The exogenous environment noise is unit-Gaussian scaled by 0.1. We report the best
expected reward for both EXCBO and MCBO in Table 1. We can see EXCBO achieves improved
performance in most steps, but MCBO gives a better result in the final round step t = 100.

Table 1: Results of Dropwave with unit-Gaussian noise.
Round 20 40 60 80 100
MCBO 0.78± 0.05 0.83± 0.04 0.87± 0.03 0.88± 0.03 0.91± 0.02
EXCBO 0.76± 0.04 0.84± 0.04 0.89± 0.03 0.89± 0.02 0.89± 0.02

Similarly, we follow the exact setting of Alphine2 in MCBO paper, i.e., X0 =
−
√
10.0a0 sin (10.0a0) + U0, Xi =

√
10.0ai sin (10.0ai)Xi−1 + Ui for 1 ≤ i ≤ 5; and here

ai ∈ [0, 1], Ui ∼ N (0, 1), 0 ≤ i ≤ 5. The exogenous environment noise is unit-Gaussian as reported
in the MCBO paper. We report the best expected reward for both EXCBO and MCBO in Table 2.

Table 2: Results of Alphine2 with unit-Gaussian noise.

Round 20 40 60 80 100
MCBO 38.46± 14.13 76.47± 16.56 189.40± 15.43 327.07± 12.38 363.86± 3.26
EXCBO 28.98± 13.32 106.42± 33.44 166.48± 42.43 196.22± 32.33 241.57± 14.00

From these results, we conclude that for single-mode Gaussian exogenous distributions, MCBO
performs better than EXCBO when the exogenous noise is strong (i.e., large σ, or large scale
coefficient). In contrast, EXCBO achieves comparable or superior performance when the exogenous
signal is weak or when σ is small.
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For multimodal exogenous distributions, as reported in Sections 7.4 and D.6, MCBO tends to be more
vulnerable to complex exogenous distributions, particularly when they involve multimodal exogenous
distributions with small variances. By comparison, the proposed exogenous learning framework
effectively mitigates these challenges.

D.8 RUNNING TIME
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Figure 14: Running time of the three algorithms on Dropwave data with σ = 0.1 and λ = 1.0 for
four random seeds.

Figure 14 reports the actual running time of the three algorithms on the Dropwave dataset with
σ = 0.1 and λ = 1.0. Relative running times across datasets are consistent with the ratios shown in
the figure. Empirically, EXCBO requires a similar amount of CPU time per iteration as UCB and
EICF. In contrast, MCBO consumes significantly more computational resources - more than 10 times
as much - due to its reliance on neural networks. This highlights EXCBO’s scalability advantage
over existing state-of-the-art methods.

D.9 ANALYSIS ON EXPERIMENTAL RESULTS

The experimental results across different datasets demonstrate that learning the exogenous distribu-
tions enhances EXCBO’s ability to achieve optimal reward values. In particular, incorporating the
distribution of exogenous variables yields a more accurate surrogate model when given an SCM and
observational data.

Our method shows clear advantages over existing approaches when the exogenous noise is relatively
weak. In such cases, the Gaussian Processes employed by UCB, EICF, and MCBO fail to capture
the multimodality of the exogenous distribution, leading to a biased surrogate model with respect to
the optimal intervention values. In contrast, EXCBO leverages a Gaussian mixture model, which
effectively captures the multimodal exogenous distribution recovered by the proposed EDS under the
DGM conditions. When the multimodal distribution of Ui in Xi = f(Zi, Ui) has small variances,
the uncertainty is highly concentrated, making it harder to distinguish different modes in the plausible
function map and resulting in larger bias in the objective approximation. By contrast, larger variances
in the exogenous distribution allow the GPs in UCB, EICF, and MCBO to better discriminate
between modes, thereby providing more accurate estimates of the expected objective function, i.e.,
Xi = Ep(Ui)f(Zi, Ui).

Gaps among different methods have been reported in previous studies, e.g., in MCBO (Sussex
et al., 2023), Figures 2-f, 2-c, and 2-d. We speculate that this discrepancy arises because GPs with
plain kernels are not universal approximators. Consequently, their limited expressiveness leads to
irreducible bias, even with infinite data samples. This underscores the importance of incorporating
structural knowledge to improve performance, as evidenced in MCBO, EICF, and EXCBO.

Finally, the regret bound in Theorem 6.1 depends on Assumptions 1–3 and holds with probability
1− α, where α is specified in Assumption 3. This implies that different GP-based CBO methods are
not guaranteed to converge to the same optimal reward value.
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E PROOF OF THEOREM 4.1

Before we prove Theorem 4.1, we present a similar result for ANMs (Hoyer et al., 2008).

Theorem E.1. Let (X,Z, U, f) be a τ -SCM. Let ρ() : X × Z → R1 be a predefined function
regarding X and Z, and ϕ() be a regression model with ϕ() : Z → ρ(X ,Z). We define an encoder
function h() : Z×X → Û with Û := h(Z, X) := ρ(X,Z)−ϕ(Z). The decoder is g() : Z×Û → X ,
i.e., X = g(Z, Û). Let ρ() maps the values of X and Z to an additive function of Z and U , i.e.,
ρ(X,Z) = ρ1(Z) + ρ2(U). Then Û = h(Z, X) = ρ2(U)− E[ρ2(U)], and Û ⊥⊥ Z.

Proof. As ϕ(z) is an optimal approximation of ρ(X, z), with Z ⊥⊥ U , we have

ϕ(z) = E[ρ(X, z)] = E[ρ1(z) + ρ2(U)] =

∫ (
ρ1(z) + ρ2(u)

)
p(u)du

= ρ1(z) + E[ρ2(U)].

Thus, the decoder becomes

h(z, x) = ρ(x, z)− ϕ(Z = z)

= ρ1(z) + ρ2(u)− ρ1(z)− E[ρ2(U)]

= ρ2(u)− E[ρ2(U)].

Therefore, Û = h(Z, X) = ρ2(U) − E[ρ2(U)] is a function of U , and h(Z, X) ⊥⊥ Z, i.e., Û ⊥⊥
Z.

Example 1. For an ANM (Hoyer et al., 2008) model X = f(Z) + U , we have ρ(X,Z) = X ,
ρ1(Z) = f(Z), and ρ2(U) = U , then Û = h(Z, X) = U − Ū .
Example 2. For a model X = 2Ze−U −e−Z , we have ρ(X,Z) = log(X+e−Z), ρ1(Z) = log(2Z),
and ρ2(U) = −U , then Û = h(Z,X) = −U + Ū .

Example 1 shows that the exogenous variable in any ANM model is identifiable. In practice, variable
X’s generation mechanism f() is generally unknown, and it is hard to propose a general form
function ρ() that can perform on any f()s and transform them to ANMs.

Theorem 4.1 Let (Z, U,X, f) be a τ -SCM, and (Û , ϕ, h, g) an EDS surrogate of U . Suppose f is
differentiable and has the DGM structure X = f(Z, U) = fa(Z) + fb(Z)fc(U) with fb(Z) ̸= 0 for
all Z ∈ Z . Then with a constant a, we have Û = a(fc(U)−E[fc(U)]), with E[Û ] = 0 and Û ⊥⊥ Z.

Proof. ∀z ∈ Z , as ϕ(z) is an optimal approximation of any value of X = f(z, U), with Z ⊥⊥ U , we
have the mean function as

µϕ(z) = E[X(z, U)] =

∫ (
fa(z) + fb(z)fc(u)

)
p(u)du

= fa(z) +

∫
fb(z)fc(u)p(u)du

= fa(z) + fb(z)E
[
fc(U)

]
.

Then with U = u,

x− µϕ(z)

=fa(z) + fb(z)fc(u)− fa(z)− fb(z)E
[
fc(U)

]
=fb(z)

(
fc(u)− E[fc(U)]

)
. (15)
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With equation 15, the variance of regression model ϕ() is

E[(X − µϕ(z))
2]

=E
[
fb(z)

(
fc(U)− E[fc(U)]

)2
fb(z)

]
=f2

b (z)E
[(
fc(U)− E[fc(U)]

)2]
=f2

b (z)σ
2
fc .

As Z ⊥⊥ U , as a function of Z, the learned variance σ2
ϕ(z) does not capture the information of U .

σ2
ϕ(z) learns the variance function with respect to variable Z, i.e., f2

2 (z). Therefore, σϕ(z) = c|fb(z)|.
Then, by equation 15,

x− µϕ(z)

σϕ(z)
=
fb(z)

(
fc(u)− E[fc(U)]

)
c|fb(z)|

=
s

c

(
fc(u)− E[fc(U)]

)
. (16)

Here s = sign[fb(z)]. Let a = s
c , we define

Û :=
X − µϕ(Z)

σϕ(Z)
= a

(
fc(U)− E[fc(U)]

)
.

It shows that E[Û ] = 0, and Û ⊥⊥ Z.

F EXOGENOUS DISTRIBUTION LEARNING

F.1 CAUSAL INFERENCE WITH EXOGENOUS DISTRIBUTION

Under the monotonicity assumption on f(), the EDS framework can be extended to BGMs, building
upon the analysis in (Lu et al., 2020; Nasr-Esfahany et al., 2023; Nasr-Esfahany & Kiciman, 2023;
Chao et al., 2023). Counterfactual queries utilize functional models of generative processes to reason
about alternative outcomes for individual data points, effectively answering questions like: “What if I
had done A instead of B?” Such queries are formally described as a three-step process: abduction,
action, and prediction (Pearl, 2009). A model that can be learned from data and execute these three
steps is said to be counterfactually identifiable.

It is straightforward to show that a τ -SCM with a decomposable f() is counterfactually identifiable.
Thus, Theorem 4.1 introduces a novel class of τ -SCMs that achieve counterfactual identifiability
beyond BGMs (Nasr-Esfahany et al., 2023).
Remark 1. We use the distribution of Û = s(U) = h(Z, X), i.e., p(Û), to represent p(U) within
the surrogate model. With the decomposability assumption on f(), a τ -SCM is counterfactually
identifiable.

Here, the parent set Z may include action variables, and the learned Û remains independent of
the actions or interventions. Therefore, we can leverage the action variables to optimize the target
variable through causal intervention operations.

This work lies within the line of research on counterfactual identification, such as ANM (Hoyer et al.,
2008), BGM (Nasr-Esfahany et al., 2023), and LSNM (Immer et al., 2023). The proposed DGM is
a new family of models that are counterfactually identifiable and can be easily implemented using
GPs. Gaussian mixture models are employed to learn the recovered exogenous variable distribution,
enabling a more accurate surrogate of the true data-generating mechanism, as demonstrated in the
paper and our responses. The applicability of the proposed framework extends beyond CBO to
broader causal inference tasks, including interventions and counterfactual inference.

F.2 ANALYSIS ON BGMS

We first present a lemma on the BGM equivalence class of a τ -SCM with a monotonic mechanism.
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Lemma F.1. Let (Z, U,X, f) be a τ -SCM. ∀z ∈ Z , f(z, ·) is differentiable and strictly monotonic
regarding u ∈ U . We define a differentiable and invertible encoder function h() : Z × X → Û ,
i.e., Û := h(Z, X), and Û ⊥⊥ Z. The decoder is g() : Z × Û → X , i.e., X = g(Z, Û). Then
Û = h(Z, X) is a function of U , i.e., Û = s(U), and s() is an invertible function.

Proof. According to the definition of τ -SCM, we have Z ⊥⊥ U . According to the assumption,
∀z ∈ Z , f(z, u) is differentiable and strictly monotonic regarding u. Hence X = f(Z, U) is a BGM,
and we use F to represent BGM class that satisfies the independence (Z ⊥⊥ U ) and the function
monotone conditions. We can see that h−1 ∈ F, h−1(z, ·) = g(z, ·), and h−1(z, ·) and f(z, ·) are
counterfactually equivalent BGMs that generate the same distribution p(Z, X). Based Lemma B.2,
Proposition 6.2, and Definition 6.1 in (Nasr-Esfahany et al., 2023), there exists an invertible function
s() that satisfies ∀z ∈ Z, x ∈ X , h(z, x) = s(f−1(z, x)), i.e., û = h(z, x) = s(f−1(z, x)) = s(u),
which is Û = s(U).

We can easily prove that an EDS model of a monotonic τ -SCM belongs to its BGM equivalence class
under the independence assumption Û ⊥⊥ Z.

Theorem F.2. Let (Z, U,X, f) be a τ -SCM. ∀z ∈ Z , f(z, ·) is differentiable and strictly monotonic
regarding u ∈ U . Let (Û , ϕ, h, g) be an EDS surrogate of U . We further assume that Û ⊥⊥ Z. Then
Û = h(Z, X) is a function of U , i.e., Û = s(U), and s() is an invertible function.

Proof. It is to prove that the encoder of an EDS, i.e., Û = h(Z, X) =
X−µϕ(Z)
σϕ(Z) , is invertible

regarding Û and X given a value of Z. With the assumption Û ⊥⊥ Z, by using the results of
Lemma F.1, we have Û = h(Z, X) is a function of U , i.e., Û = s(U), and s() is an invertible
function.

Based on the proof of Theorem F.2, a τ -SCM with a monotonic mechanism is counterfactually
identifiable by using an EDS model with the Û ⊥⊥ Z constraint.

G REGRET ANALYSIS

G.1 REMARKS ON REGRET BOUND

The analysis in this paper focuses on the DGM mechanisms. To extend the analysis to BGMs, we
need to consider the computation cost involving the independence penalization on variables Û and Z.
For mechanisms beyond DGMs and BGMs, we conjecture that the surrogate approximation accuracy
may decrease, but the convergence rate may not decrease a lot. The cumulative regret provides insight
into the convergence behavior of the algorithm.

Our analysis follows the study in (Sussex et al., 2023). In the DAG G over {Xi}d0, let N be the
maximum distance from a root to Xd, i.e., N = maxi dist(Xi, Xd). Here dist(·, ·) is a measure of
the edges in the longest path from Xi to the reward node Xd. Let M denote the maximum number
of parents of any variables in G,M = maxi |pa(i)|. Let Lt be a function of Lg, Lσg

. According to
Theorem 4.1, with the EDS structure given in Figure 2 in the main text, the exogenous variable and
its distribution can be recovered. For each observation of the dynamic surrogate model, we assume
the sampling of p(Û), ˜̂u = s(ũ) = s(u). This maximum information gain is commonly used in many
Bayesian Optimizations (Srinivas et al., 2010). Many common kernels, such as linear and squared
exponential kernels, lead to sublinear information gain in T , and it results in an overall sublinear
regret for EXCBO (Sussex et al., 2023).

G.2 PROOF OF THEOREM 6.1

We give the assumptions used in the regret analysis. Assumption 1 gives the Lipschitz conditions
of gi, σg,i, and µg,i. It holds if the RKHS of each gi has a Lipschitz continuous kernel (Curi et al.,
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2020; Sussex et al., 2023). Assumption 3 holds when we assume that the ith GP prior uses the same
kernel as the RKHS of gi and that βi,t is sufficiently large to ensure the confidence bounds in∣∣∣∣gi(zi, ai, ûi)− µg,i,t−1(zi, ai, ûi)

∣∣∣∣ ≤ βi,tσg,i,t−1(zi, ai, ûi) , ∀zi ∈ Zi, ai ∈ Ai, ûi ∈ Ûi.

Assumption 1. ∀gi ∈ G, gi is Lg-Lipschitz continuous; moreover, ∀i, t, µg,i,t and σg,i,t are Lµg

and Lσg
Lipschitz continuous.

Assumption 2. ∀fi ∈ F, fi is differentiable and has a decomposable structure with X =
fi(Zi, Ui) = fi(a)(Zi) + fi(b)(Zi)fi(c)(Ui), and fi(b)(zi) ̸= 0, ∀zi ∈ Zi.

Assumption 3. ∀i, t, there exists sequence βi,t ∈ R>0, with probability at least (1 − α), for all
zi, ai, ûi ∈ Zi × Ai × Ûi we have

∣∣gi(zi, ai, ûi) − µg,i,t−1(zi, ai, ûi)
∣∣ ≤ βi,tσg,i,t−1(zi, ai, ûi),

and |h(zi, ai, xi)− µh,i,t−1(zi, ai, xi)| ≤ βi,tσh,i,t−1(zi, ai, xi).

The following lemma bounds the value of ˜̂u with the variance of the encoder.

Lemma G.1.

∥ûi,t − ˜̂ui,t∥ ≤ 2βt∥σûi,t−1
∥ = 2βt∥σh,i,t−1∥.

Proof. With Assumption 3 and ûi,t = hi,i−1(zi, ai, xi), let ˜̂ui,t = µûi,t−1
zi, ai, xi +

βtσûi,t−1
(zi, ai, xi) ◦ ωûi,t−1

(zi, ai, xi), and here |ωûi,t−1
(zi, ai, xi)| ≤ 1. Then

∥ûi,t − ˜̂ui,t∥ =∥˜̂ui,t − µûi,t−1
(zi, ai, xi)− βtσûi,t−1

(zi, ai, xi) ◦ ωûi,t−1
(zi, ai, xi)∥

≤∥˜̂ui,t − µûi,t−1
(zi, ai, xi)∥+ βt∥σûi,t−1

(zi, ai, xi) ◦ ωûi,t−1
(zi, ai, xi)∥

≤2βt∥σûi,t−1
(zi, ai, xi)∥ = 2βt∥σh,i,t−1∥.

With the decomposable Assumption 2 on fi, σ2
h,i,t−1 ∝ f2

i(b)(zi, ai)
(
fi(c)(U) − E[fi(c)(U)]

)2
according to the proof of Theorem 4.1. fi(b)() is learned with the variance of regression model ϕ(),
i.e. σϕ,i,t().

Lemma G.2.

∥xd,t − x̃d,t∥ ≤ 2βtM
Ni(2βtLσg

+ Lg)
Ni

i∑
j=0

(
σg,j,t−1(zj,t) + σûj,t−1

)
.

Proof. We use gi(zi,t, ûi,t) to represent gi(zi,t, ai,t, ûi,t) because we assume the actions to be the
same for the process generating xi,t and x̃i,t. Similarly, µg,i,t−1(z̃i,t, ˜̂ui,t) = µg,i,t−1(z̃i,t, ãi,t, ˜̂ui,t),
σg,i,t−1(z̃i,t, ˜̂ui,t) = σg,i,t−1(z̃i,t, ãi,t, ˜̂ui,t).

We use the reparameterization trick, and write x̃i,t as

x̃i,t = g̃i(z̃i,t, ˜̂ui,t) = µg,i,t−1(z̃i,t, ˜̂ui,t) + βtσg,i,t−1(z̃i, ˜̂ui,t) ◦ ωg,i,t−1(z̃i, ˜̂ui,t).
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Here |ωg,i,t−1(z̃i, ˜̂ui,t)| ≤ 1. Hence, we have

∥xi,t − x̃i,t∥ = ∥gi(zi,t, ûi,t)− µg,i,t−1(z̃i,t, ˜̂ui,t)− βtσg,i,t−1(z̃i, ˜̂ui,t)ωg,i,t−1(z̃i, ˜̂ui,t)∥
= ∥gi(z̃i,t, ˜̂ui,t)− µg,i,t−1(z̃i,t, ˜̂ui,t)− βtσg,i,t−1(z̃i, ˜̂ui,t)ωg,i,t−1(z̃i, ˜̂ui,t)

+ gi(zi,t, ûi,t)− gi(z̃i,t, ˜̂ui,t)∥
≤ ∥gi(z̃i,t, ˜̂ui,t)− µg,i,t−1(z̃i,t, ˜̂ui,t)∥+ ∥βtσg,i,t−1(z̃i, ˜̂ui,t)ωg,i,t−1(z̃i, ˜̂ui,t)∥

+ ∥gi(zi,t, ûi,t)− gi(z̃i,t, ˜̂ui,t)∥
ζ1
≤ βt∥σg,i,t−1(z̃i, ˜̂ui,t)∥+ βt∥σg,i,t−1(z̃i, ˜̂ui,t)∥+ Lgi

∥∥[zi,t; ûi,t]− [z̃i,t; ˜̂ui,t]
∥∥

= 2βt∥σg,i,t−1(zi, ûi,t) + σg,i,t−1(z̃i, ˜̂ui,t)− σg,i,t−1(zi, ûi,t)∥+ Lgi

∥∥[zi,t; ûi,t]− [z̃i,t; ˜̂ui,t]
∥∥

ζ2
≤ 2βt

(
∥σg,i,t−1(zi, ûi,t)∥+ Lσg,i

∥∥[zi,t; ûi,t]− [z̃i,t; ˜̂ui,t]
∥∥)+ Lgi

∥∥[zi,t; ûi,t]− [z̃i,t; ˜̂ui,t]
∥∥

= 2βtσg,i,t−1(zi, ûi,t) + (2βtLσg,i
+ Lgi)

∥∥[zi,t; ûi,t]− [z̃i,t; ˜̂ui,t]
∥∥

≤ 2βtσg,i,t−1(zi, ûi,t) + (2βtLσg,i + Lgi)∥zi,t − z̃i,t∥+ (2βtLσg,i + Lgi)∥ûi,t − ˜̂ui,t∥
ζ3
≤ 2βtσg,i,t−1(zi, ûi,t) + (2βtLσg,i

+ Lgi)∥zi,t − z̃i,t∥+ 2βt(2βtLσg,i
+ Lgi)σûi,t−1

= 2βtσg,i,t−1(zi, ûi,t) + 2βt(2βtLσg,i
+ Lgi)σûi,t−1

+ (2βtLσg,i
+ Lgi)

∑
j∈pa(i)

∥zj,t − z̃j,t∥

≤ 2βtσg,i,t−1(zi, ûi,t) + 2βt(2βtLσg
+ Lg)σûi,t−1

+ (2βtLσg
+ Lg)

∑
j∈pa(i)

∥xj,t − x̃j,t∥

ζ4
≤ 2βtσg,i,t−1(zi, ûi,t) + 2βt(2βtLσg

+ Lg)σûi,t−1

+ (2βtLσg
+ Lg)

∑
j∈pa(i)

2βtM
Nj (2βtLσg

+ Lg)
Nj

j∑
h=0

(
σg,h,t−1(zh,t) + σûh,t−1

)
≤ 2βtM

Ni(2βtLσg
+ Lg)

Ni

i∑
j=0

(
σg,j,t−1(zj,t) + σûj,t−1

)
In steps ζ1 and ζ2, we rely on the calibrated uncertainty and Lipschitz dynamics; in step ζ2, we also
apply the triangle inequality; step ζ3 is by Lemma G.1; ζ4 applies the inductive hypothesis.

Theorem 6.1 Consider the optimization problem in equation 3, with the SCM satisfying Assump-
tions 1- 3, where G is known but F is unknown. Then with probability at least 1− α, the cumulative
regret of Algorithm 1 is bounded by

RT ≤ O(LTM
Nd

√
TγT ).

Proof. The cumulative regret is

RT =

T∑
t=1

[
E[y|a∗]− E[y|a:,t]

]
.

At step t, the instantaneous regret is rt. By applying Lemma G.2, rt is bounded by

rt = E[y|F,a∗]− E[y|F, a:,t]
≤ E[yt|F̃, a:,t]− E[yt|F, a:,t]
= E[∥xi,t − x̃i,t∥|a:,t]

≤ 2βtM
N (2βtLσg

+ Lg)
NE

[ d∑
i=0

∥σg,i,t−1(zi,t)∥+ ∥σûi,t−1
∥
]
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Here Lt = 2βt(2βtLσg
+ Lg)

N . Thus,

r2t ≤ L2
tM

2N

(
E
[ d∑

i=0

∥σg,i,t−1(zi,t)∥+ ∥σûi,t−1
∥
])2

≤ 2dL2
tM

2NE
[ d∑

i=0

∥σg,i,t−1(zi,t)∥22 + ∥σûi,t−1
∥22
]

We define R2
T as

R2
T = (

T∑
t=1

rt)
2 ≤ T

T∑
t=1

r2t

≤ 2dTL2
TM

2N
T∑

t=1

E
[ d∑

i=0

∥σg,i,t−1(zi,t)∥22 + ∥σûi,t−1
∥22
]

= 2dTL2
TM

2NΓT .

Here,

ΓT = max
(z,a,û)∈Z×A×Û

T∑
t=1

d∑
i=0

[
∥σi,t−1(zi,t, ai,t)∥22 + ∥σûi,t−1

∥22
]

≤max
A,Û

T∑
t=1

d∑
i=0

[
∥σi,t−1(zi,t, ai,t)∥22 + ∥σûi,t−1

∥22
]

≤
d∑

i=0

max
Ai,Ûi

T∑
t=1

[
∥σi,t−1(zi,t, ai,t)∥22 + ∥σûi,t−1

∥22
]

≤
d∑

i=0

max
Ai,Ûi

T∑
t=1

[ di∑
l=1

∥σi,t−1(zi,t, ai,t, l)∥22 + ∥σûi,t−1
∥22
]

ζ1
≤

d∑
i=0

2

ln(1 + ρ−2
i )

γi,T

=O(dγT ).

Here ζ1 is due to the upper bound of the information gain (Srinivas et al., 2010), and γT will often
scale sublinearly in T (Sussex et al., 2023). Therefore,

R2
T ≤ 2TL2

TM
2NdO(dγT ).

And,

RT ≤ O(LTM
Nd

√
TγT ).

This completes the proof of the theorem.
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