
3D Optimization for AI Inference Scaling: Balancing Accuracy, Cost, and Latency

Minseok Jung1*, Abhas Ricky1, Rameez Chatni1

1 Cloudera
5470 Great America Parkway
Santa Clara, CA 95054 USA

Abstract

AI inference scaling is often tuned through 1D heuristics (a
fixed reasoning pass) or 2D bivariate trade-offs (e.g., accu-
racy vs. compute), which fail to consider cost and latency
constraints. We introduce a 3D optimization framework that
jointly calibrates accuracy, cost, and latency within a unified
decision space, enabling constraints-aware inference scaling.
Using Monte Carlo simulations across three representative
scenarios and nine simulated large language models, we eval-
uate four optimization methods to address the 3D multi-
objective optimization (MOO) problem. Framing inference
scaling in MOO shapes a feasible space that 1D and 2D opti-
mizations fail to capture, enabling environment-adaptive se-
lection of the inference scaling k. Results show that knee-
point optimization based on Pareto frontiers achieves the
best balance, while accuracy-maximization remains favorable
when accuracy is prioritized. Our results further show that
smaller models, when combined with optimal inference scal-
ing, can match or exceed the performance of larger models at
a fraction of the cost. The framework establishes a theoreti-
cal foundation for deployment-aware inference scaling across
diverse operational conditions. Code and simulation available
at https://github.com/masonjung/inference-scaling-moo.

Introduction
Beyond scaling AI training, which enhances performance
by providing more data, scaling inference—which executes
multiple reasoning paths before generating a final output—
has been highlighted as an efficient method to improve per-
formance (Snell et al. 2024) and reduce erroneous gener-
ations (Park et al. 2025). By sampling multiple responses,
instead of relying on a single generation, inference scaling
increases the likelihood of obtaining higher-quality outputs
at the inference stage. This enables even smaller models to
surpass the larger models (Wu et al. 2024; Wang et al. 2022).
This approach is particularly efficient when parallel comput-
ing is available, where advances in AI infrastructure allow
multiple inference instances to run concurrently (Bian, Yan,
and Venkataraman 2025; NVIDIA 2025).

Prior research on AI inference scaling has primarily fo-
cused on 2D relationships between performance and in-
ference scale, demonstrating accuracy gains with increased
computational allocation (Wang et al. 2022; Jin, Wei, and

*Contact: minseok.jung@cloudera.com.

Figure 1: AI inference scaling requires optimizing the mul-
tidimensional tradeoff among cost, latency, and accuracy
rather than relying on a bivariate performance-compute
tradeoff that neglects the cost and latency constraints inher-
ent in real-world deployment.

Brooks 2025). This approach addresses the limitation of
static inference scaling by allowing adaptive compute allo-
cation. For example, in medical AI applications, users may
willingly invest additional computational resources to obtain
more reliable results. Executing multiple inference passes
substantially increases the likelihood of generating higher-
quality outputs compared to the single-shot inference (Snell
et al. 2024). Such bivariate optimization effectively iden-
tifies the inference scale that maximizes accuracy under a
limited compute budget. However, the 2D optimization fails
to account for constraints on time and cost, factors that
critically considered in the real-world deployment settings
(NVIDIA 2025). Neglecting these dimensions renders exist-
ing scaling analyses incomplete for practical, deployment-
aware optimization of AI inference.

We argue that inference scaling should be formulated
as a multidimensional optimization problem (MOO) that
jointly considers accuracy, cost, and latency, as illustrated
in Fig. 1. Conventional 2D overlooks the associated costs
and latency constraints inherent in real-world deployments.
For example, in clinical decision support systems, where in-
ference must occur within strict latency and cost budgets,
the model can perform only a limited number of reasoning
passes, even if additional computation could marginally im-
prove accuracy. To capture these effects more realistically, it
is better to model the tradeoff in 3D space to be accountable
to core features: performance, cost, and latency.

Figure 2: Unlike conventional inference, which performs a single stochastic forward pass (k=1) to generate one output, parallel
inference scaling executes multiple inference batches concurrently (k ≥ 2) and aggregates their outputs (e.g., best-of-k) to
improve accuracy with minimal increase in latency. Parallelism is particularly effective when sufficient computational resources
are available to support concurrent execution.

To address the AI inference scaling problem from a mul-
tidimensional perspective, we develop a framework that in-
tegrates MOO, simulation for LLM generations, and Monte
Carlo (MC) estimation. Building on the 2D bivariate trade-
off between performance-compute, we extend the notion of
inference scaling into a tri-objective regime that jointly op-
timizes accuracy, cost, and latency. In the simulation, we
model inference for a stochastic generation with parallelism,
and formulate the search for the optimal scale k⋆ as a con-
strained MOO. We further run four optimization methods–
accuracy maximization, cube-volume balance, and Pareto-
based utopia closet and knee point selection–to characterize
efficiency trade-offs under diverse deployment constraints.

The proposed framework provides a unified lens for un-
derstanding deployment-aware inference scaling. The main
contributions of this research are as follows:
• MOO framework for inference scaling. We formal-

ize AI inference scaling as a multi-objective optimiza-
tion (MOO) problem that jointly considers accuracy,
cost, and latency. This framework explicitly incorporates
cost and latency–factors overlooked in prior 1D and 2D
optimizations–and establishes a theoretical foundation
for deployment-aware inference optimization.

• MC simulation under realistic constraints. We develop
a stochastic simulation that models LLM inference under
realistic variability in token length, cost, and latency. Us-
ing MC estimation across nine representative model con-
figurations and three constraint scenarios, we map opti-
mality in the 3D objective space.

• Comparative analysis of optimization strategies.
We evaluate four optimization methods—ACC max-
imization, maximal-cube, utopia-closest, and knee-
point—simulating how each performs under different de-

ployment priorities. The results show that knee-point se-
lection achieves the best relative efficiency, while ACC-
maximization is the best when accuracy is prioritized.

This MOO perspective to AI inference scaling not only
overcomes the limitation of the bivariate tradeoff optimiza-
tion but also bridges theoretical scaling-law and real-world
deployment needs.

Related Work
Research on AI inference scaling and optimization has pro-
gressed along three major directions: (1) scaling inference
through parallelism, (2) addressing operational constraints
in deployment environments, and (3) formalizing inference
selection as a MOO problem. These research threads are
deeply interrelated: scaling techniques enable performance
gains, system constraints delineate the feasible optimization
space, and MOO provides principled methods for balancing
the competing objectives.

Inference Scaling through Parallelism. Inference scal-
ing methods enhance model performance by generating mul-
tiple candidate outputs and selecting the best among them.
Techniques such as best-of-k and self-consistency demon-
strate that additional sampling at inference time can en-
hance reasoning capacity without retraining (Sadhukhan
et al. 2025; Wang et al. 2022). Parallelism makes this at-
tainable by executing multiple inference passes simultane-
ously with minimal latency overhead, leveraging distributed
compute resources such as GPUs (NVIDIA 2025). Recent
studies also suggest that smaller models can match or even
exceed the accuracy of larger ones when parallel inference
is effectively utilized (Snell et al. 2024). While these tech-
niques highlight the potential of scaling inference through

Figure 3: Compute-optimal AI system requires scaling effi-
ciency in both training and inference. Training scaling laws
(e.g., Chinchilla law) guide how models are built, while in-
ference scaling laws govern how they are used efficiently
under real-world cost and latency constraints.

parallelism, most studies focus on increasing performance
via more computing, rather than configuring the optimality
with both cost and latency.

Operational Constraints and System Efficiency An-
other research line emphasized the need to incorporate cost
and latency factors for real-world AI systems (NVIDIA
2025; Aubrey 2025). These studies highlight that inference
performance is bounded by operational factors such as per-
query cost ceilings and service-level latency requirements.
Under such constraints, balancing performance, latency, and
cost is crucial to achieve effective AI infrastructure opera-
tion (Harris 2025). Most of the research remains grounded
in bivariate performance-compute tradeoff curve (Brown
et al. 2024; Snell et al. 2024; Wang et al. 2022; Jin, Wei, and
Brooks 2025; Park et al. 2025). To the best of our knowl-
edge, no prior research has formulated inference optimiza-
tion that simultaneously accounts for cost, latency, and per-
formance, despite increasing recognition of its necessity.

MOO for Tri-Objective Inference Scaling. From an op-
timization standpoint, MOO provides an essential frame-
work for balancing multiple competing factors in AI in-
ference. Classical MOO approaches—including distance-
to-utopia selection, hypervolume maximization, and knee-
point detection—identify Pareto-optimal configurations that
maintain balanced efficiency under resource constraints.
Also, accuracy-maximization serves as a useful upper bound
when performance dominates other considerations, whereas
Pareto-based criteria better capture realistic deployment
trade-offs. Building on these developments, our work explic-
itly formulates accuracy, cost, and latency as interdependent
objectives within a unified MOO framework, enabling prin-
cipled and deployment-aware determination of the optimal
inference scale k.

Problem Formulation and Modeling
Overview
The objective is to find the optimal inference scale k that
jointly balance accuracy, cost, and latency under resource
constraint scenarios. We formalize this as an MOO problem

with multiple constraints. The key parameters are summa-
rized in Table 1.

Symbol Definition
k Number of inference passes
Lin, Lout Input/output token lengths
µLin/out , σLin/out Mean and std. of in/out token lengths
Ai ACC of the i-th inference
A(k) Aggregate ACC from k (e.g. best-of-k)
µA, σA Mean and std. of single-inference ACC
Ci, Ti Cost and time of the i-th inference
cin/out Cost coefficients for in/out tokens
tin/out Latency coefficients for in/out tokens
P Parallel factor (concurrent inferences)
Cmax, Tmax Maximum cost/time constraints
Amin Minimum acceptable ACC
µ̂C(k) Expected cost (MC)
µ̂T (k) Expected time (MC)
µ̂A(k) Expected ACC (MC)
F Feasible set of inference counts

Table 1: Notation summary for the simulation. Symbols rep-
resent model-dependent quantities for ACC, cost, and la-
tency. MC estimates are denoted by the hat symbol (ĥ).

Stochastic Model of Inference Scaling
Each inference takes input tokens Lin and generates output
tokens Lout, drawn from Gaussian distributions:

(Lin, Lout) ∼
(
N (µLin , σ

2
Lin

),N (µLout , σ
2
Lout

)
)

(1)

with a clipping to ensure positivity. The accuracy of a sin-
gle inference is also modeled as a Gaussian random variable:

Ai ∼ N (µA, σ
2
A), Ai ∈ [0, 1]. (2)

This assumption of parametric distribution is justified
by the Central Limit Theorem (CLT) because both token
lengths and single-inference ACC result from the numerous
independent stochastic factors. The model is therefore ap-
propriate for applying the CLT assumption, as these aggre-
gated effects yield approximately normal variability around
their means. When k independent inferences are executed,
aggregate performance is defined by an evaluation metrics.
We use the “best-of-k” rule:

A(k) = max{A1, A2, . . . , Ak}. (3)

The “best-of-k” is the most common AI inference strat-
egy (Snell et al. 2024).

Cost and Latency per Inference
The costs and latency of an inference are modeled as linear
functions. For the i-th inference, the cost and latency are:

Ci = cinLin,i + coutLout,i; Ti = tinLin,i + toutLout,i (4)

In parallel computing environment, the k inferences are
executed concurrently (e.g., eight reasoning batches simul-
taneously) as shown in Fig. 2. Thus the latency can be di-
vided by the parallel factor P , while each inference cost is
same as a sequential execution:

C(k) =

k∑
i=1

Ci, (5)

T (k) =
1

P

k∑
i=1

Ti =

(
k

P

)
T̄ , T̄ =

1

k

k∑
i=1

Ti. (6)

In this equation, T̄ denotes the mean per-inference la-
tency, and P represents the degree of parallelism, reflecting
the assumption that P independent inference processes can
run concurrently on separate compute units.

Monte Carlo Approximation
Because C(k), T (k), A(k) are stochastic, closed-form ex-
pectations are generally intractable. That is to say, their val-
ues fluctuate across inference runs due to variability in us-
age. We therefore employ MC estimation with M trials to
approximate the mean and standard deviation.

µ̂q(k) =
1

M

M∑
j=1

q(j)(k), q∈{C, T,A}. (7)

Confidence intervals (CI) (e.g., 95%) could be also esti-
mated from percentiles across trials.

Feasible Region and Objective
Deployment settings typically impose an upper bound on
computational cost (Cmax) and latency (Tmax), as well as
a required minimum accuracy (Amin). These constraints
jointly define the feasible set of inference counts:

F = {k | µ̂C(k) ≤ Cmax, µ̂T (k) ≤ Tmax, µ̂A(k) ≥ Amin}
(8)

Within this feasible region, the inference scaling problem
seeks the optimal scale of inferences k⋆:

Given
(
µ̂A(k), µ̂C(k), µ̂T (k)

)
,

Find k⋆ ∈ F
(9)

such that k⋆ maximizes the joint objective
f(µ̂A(k), µ̂C(k), µ̂T (k)), where f(·) is defined by an
optimization method introduced in Section .

Scenario under Different Budgets
To simulate the MOO under the realistic 3D constraints, we
describe three representative budget scenarios in Table 2.

Scenario 1: Low cost and latency (Essay feedback). In
educational feedback applications, users prefer quick, low-
cost responses over higher-priced and slower outputs. Since
minor phrasing inconsistencies are acceptable, this scenario
tightens the feasible region F by imposing stricter cost and
time constraints.

Scenario Cost Time Accuracy
1: Essay feedback Low Low Moderate
2: Medical AI High High Very high
3: Proposal writing Low High High

Table 2: Deployment scenarios showing how cost, time, and
accuracy priorities differ across domains.

Scenario 2: High cost and time budget (Medical AI). In
high-stakes domains such as medical decision support, users
are open to allocate greater budgets for both cost and time
while very high accuracy is demanded. Here, accuracy max-
imization naturally pushes toward the highest feasible set k.

Scenario 3: Low cost and high time budget (Proposal
writing). In proposal drafting, latency constraints are re-
laxed, allowing longer inference durations for improved ac-
curacy or style, while cost remains limited due to the ex-
ploratory nature of the task. Thus, the feasible region F
prioritizes low-cost efficiency and tolerates higher latency,
making accuracy maximization more viable.

These scenarios illustrate that the choice of optimization
method depends on the deployment context, as differing pri-
orities for cost, speed, and performance necessitate distinct
definitions of optimal inference scaling for each case.

Example Models for Simulations
We simulate nine model configurations derived from
three sample LLM families—GPT-5, Nemotron, and
Qwen3—each instantiated in large, medium, and small
sizes. These models capture a broad spectrum of contem-
porary inference settings with varying performance, latency,
and cost. This setup provides a unified basis for analyzing
how different budget regimes (Table 2) influence the opti-
mal inference scale k⋆ under MOO.

Methodology
Overview
Given the estimated metrics

(
µ̂A(k), µ̂C(k), µ̂T (k)

)
, we

identify the optimal inference count k⋆ within the feasible
set F . We evaluate four optimization strategies: (1) Accu-
racy Maximization, (2) Maximum Cube Volume, (3) Utopia-
Closest Selection, and (4) Knee-Point Selection. Each em-
bodies a distinct trade-off measure in the 3D space.

Accuracy Maximization
The most direct approach maximizes expected accuracy:

k⋆ = argmax
k∈F

µ̂A(k). (10)

This represents an upper bound that maximizes the ACC
while giving a negligible weight on cost and time.

Maximum Cube Volume
To balance all three objectives in the maximal cube volume
in the 3D space, we define normalized goodness scores:

gA(k) = µ̂A(k), gC(k) = 1− µ̂C(k)
Cmax

, gT (k) = 1− µ̂T (k)
Tmax

.
(11)

(a) 3D MOO results for Case 1. (b) 3D MOO results for Case 2. (c) 3D MOO results for Case 3.

Figure 4: Inference-scaling optimization results for GPT-5 across three simulated scenarios. (a–c) 3D feasible cubes in cost–
time–accuracy space with constraint planes of maximum cost, maximum latency, and minimal ACC (Cmax, Tmax, and Amin).
Markers denote each optimal point (• Maximum-ACC, ▲ Cube-Optimal, ♦ Utopia-Closest, ■ Knee-Point); purple colors
indicate cube volume (larger is better), and the yellow star marks the utopia point.

(a) 2D ACC–k with optimality for Case 1. (b) 2D ACC–k with optimality for Case 2. (c) 2D ACC–k with optimality for Case 3.

Figure 5: Accuracy-inference scale (k) trade-offs across three scenarios for GPT-5. These show MC means with CI = 95%; the
red dashed line indicates minimal ACC (Amin). Markers correspond to the optimal configurations identified in Fig. 4. Distinct
operational priorities yield different optimal inference scales k⋆.

The cube-volume objective maximizes their product:

k⋆ = argmax
k∈F

gA(k) gC(k) gT (k), (12)

favoring balanced solutions that make the largest cube under
the space rather than prioritizing one or two features.

Pareto Frontier Optimizations
We adopt a Pareto-frontier approach that identifies configu-
rations where no objective can improve without degrading
another, representing the best achievable balance among ac-
curacy, cost, and latency. Formally, Pareto frontiers p2 =
(C2, T2, A2) dominates others p1 = (C1, T1, A1) if

C2 ≤ C1, T2 ≤ T1, A2 ≥ A1, (13)

with at least one strict inequality. The Pareto frontier is then
defined as

P = { p ∈ F | ∄ q ∈ F : q ≻ p }. (14)

P represents the boundary of optimal trade-offs where im-
proving one metric inevitably worsens another, forming the
efficient surface in the cost–time–accuracy.

Utopia-Closest Selection The utopia point represents an
unattainable ideal corresponding to perfect accuracy, zero
cost and latency. We can get an efficient solution by picking
up a point from the Pareto-frontiers that is the most close to
the utopia point that is defined as

p⋆ = (time = 0, cost = 0, accuracy = 1). (15)

It is ideal but unreachable. But this point serves as a geo-
metric reference for evaluating Pareto-optimal points. Each
Pareto point is normalized to a comparable scale as

p̃ =
(

C
Cmax

, T
Tmax

, 1−A
)
, (16)

and the solution closest to this ideal is selected as

putopia = argmin
p∈P

∥p̃− p⋆∥. (17)

This distance-based criterion selects the configuration that
lies nearest to the utopia point on the Pareto surface.

Knee-Point Selection The knee point represents the re-
gion of maximum curvature on the Pareto surface. For ex-
ample, the knee point marks the moment where increasing

accuracy begins to yield diminishing returns relative to the
rising cost and latency, representing the relative efficiency.
Let p(k) = [µ̂C(k)

Cmax
, µ̂T (k)

Tmax
, 1 − µ̂A(k)] denote the normal-

ized trajectory of inference scaling. The curvature is then:

κ(k) =
∥p′(k)× p′′(k)∥

∥p′(k)∥3
. (18)

Intuitively, p′(k) measures how the trade-off surface
changes as k increases, and p′′(k) captures how rapidly that
change bends. The denominator normalizes for scale, ensur-
ing curvature reflects the shape of the trade-off rather than
its magnitude. The knee point corresponds to:

kknee = argmax
k

κ(k), pknee = p(kknee). (19)

where kknee denotes the inference count at which curva-
ture is maximal, and pknee represents the corresponding
cost–time–accuracy point on the Pareto surface. The opti-
mal knee point is found by locating the inference count kknee
where curvature is maximal and then mapping it to its cor-
responding trade-off coordinates pknee on the Pareto surface.

Rationales for Optimization Method Selection
These four criteria capture complementary perspectives: Ac-
curacy Maximization targets peak performance, Cube Vol-
ume enforces balanced efficiency, Utopia-Closest empha-
sizes geometric closeness to an ideal, and Knee-Point lo-
cates the inflection where marginal accuracy gains demand
disproportionate cost or time. Because deployment priorities
vary (e.g., latency-sensitive, cost-limited, and flawlessness),
no single criterion universally dominates. These optimiza-
tion methods provide practical solutions.

Simulation Overview and Hyperparameters
All simulations adopt consistent parameterization for com-
parability. Input lengths follow N (1024, 642) and output
lengths N (2048, 1282); parallelism factor P = 4; Monte
Carlo trials M = 300; random seed 42; and maximum in-
ference count kmax = 128. Each scenario applies distinct
budget constraints on maximum cost (Cmax), maximum la-
tency (Tmax), and minimum acceptable accuracy (Amin).
Full model configurations are listed in Appendix 3.

Results
Simulation Overview
We systematically evaluated four optimization criteria
across three deployment constraint regimes and nine repre-
sentative simulated LLMs drawn from the GPT-5, NVIDIA
Nemotron, and Qwen3 families noted in Appendix 4.

Results Across Deployment Scenarios
Across scenarios, Knee-point optimization produced the
most compute-efficient solutions under constrained settings
(Scenarios 1 and 3), while accuracy-maximization is the
most suite for Scenario 2.

Figures 4 and 5 visualize the corresponding Pareto sur-
faces in the accuracy–cost–latency space of GPT-5 and con-
ventional 2D tradeoff analysis from Scenario 1. The out-
comes are summarized below and in Appendix 2.

Scenario 1: Low Cost and Latency Budget (Essay Feed-
back). With Cmax=0.50, Tmax=60 s, and Amin=0.93, the
accuracy-optimal configuration occurred at k=16 (97.7 ±
1.1%, $0.349, 43.1 s). Cube-optimal and utopia-closest con-
verged at k=4 (96.0± 1.4%, $0.087, 10.8 s), whereas the
knee-point was identified at k=8 (96.8 ± 1.2%, $0.174,
21.5 s).

Scenario 2: High Cost and Time Budget (Medical AI).
For Cmax=0.95, Tmax=3600 s, and Amin=0.98, accuracy-
maximization yielded the best absolute accuracy at k=36
(98.2± 0.9%, $0.783, 96.7 s). Knee-point reached k=32
(98.2±1.0%, $0.696, 86.0 s) and cube-max and utopia-closet
suggested k=28 (98.0±1.0%, $0.609, 75.2 s).

Scenario 3: Low Cost, Flexible Latency (Proposal Writ-
ing). With Cmax=0.65, Tmax=1800 s, and Amin=0.96,
the accuracy-optimal configuration occurred at k=28 (98.0±
1.0%, $0.609, 75.2 s). The knee-point emerged at k=24
(97.9%±1.0%, $0.522, 64.5 s). Cube- and utopia-closest se-
lections (k=8) showing ACC of 0.968± 0.012% with total
cost of 0.174 in 21.5 s.

Results Across Models
All model families exhibit similar Pareto curvature: larger
architectures achieve higher baseline accuracy but incur
steeper cost and latency growth as inference multiplicity in-
creases. Smaller models attain comparable accuracy with
lower compute budget, reflecting greater efficiency rather
than higher absolute performance.

GPT-5 Family. For the GPT series, efficient compute allo-
cation compensates for model size differences. GPT-5 Nano
achieved 99.0% accuracy at k=56 from the knee method
exceeds GPT-5 Large’s 98% at k=16 from Max-ACC while
operating at approximately 1/7 of the total cost ($0.05 vs.
$0.35) under with lower latency (30.1/s vs. 43.1/s) in case 1.

NVIDIA Nemotron Family. Nemotron models exhibit
a clear efficiency trend in Scenario 2, demonstrating
that smaller architectures can match the accuracy of
much larger ones when inference parallelism is leveraged.
Nemotron Nano 9B reached perfect accuracy at k=52 (from
Max-ACC) with a total cost of $0.117 and latency of 33.5 s
earlier than the Ultra 253B model achieved the same accu-
racy at k=72 (from Max-ACC) with a cost of $0.479 and
latency of 386.9 s. This four-fold cost difference and ten-
fold latency reduction underscore the efficiency of allocating
compute to multiple inference paths in smaller models.

Qwen3 Family. Qwen3 models display stable and control-
lable scaling behavior. In Scenario 3, Qwen3-Max achieved
perfect accuracy at k=108 ($0.63, 464.6 s) with Max-ACC
and 0.99 at k=56 ($0.33, 240.8 s), which is from Knee
optimization, demonstrating efficiency of knee method in
accuracy–cost-latency trade-offs, by halving cost and la-
tency with a sacrifice of 1% of ACC in scenario 3.

Aggregate Trends- Knee
Across all nine model configurations and three con-
straint regimes, knee-point optimization consistently pro-

duced the most cost-efficient trade-offs, reducing mean la-
tency by 63% and total cost by 58% relative to accuracy-
maximization, while maintaining accuracy within 1–2%.
Cube-volume and utopia-closest methods offered additional
savings in cost and latency with a tradeoff in ACC. These
trends establish a consistent pattern of computing efficiency
that generalizes across model scales and deployment con-
texts. But Max-ACC optimization is the best when high
ACC is demanded.

One Null Case for Knee Detection
In one configuration in case 1, we failed to identify a knee
point because the feasible Pareto set under the imposed con-
straints collapsed to at most two non-dominated points, ren-
dering curvature-based knee detection ill-defined. In such
cases, utopia-closet or cube-volume can serve an alternative
approach to balance efficiency.

Discussion
Toward 3D Optimization from 1D and 2D
Conventional approaches to inference scaling typically re-
lied on 1D heuristics, such as executing a fixed number of
reasoning passes (e.g., 16 passes), or on 2D tradeoffs be-
tween performance and compute scale. While these meth-
ods improved accuracy, they failed to capture the constraints
of latency and cost that are essential for AI inference. Be-
cause real-world inference should operate within given cost
and latency budgets, ignoring these constraints leads to im-
practical inference. The proposed 3D MOO overcomes the
limitation of past approaches by jointly optimizing accuracy,
cost, and latency. This method reveals new feasible regions
that 1D and 2D optimization fail to capture. The 3D objec-
tive space provides an opportunity for a deployment-aware
inference optimization.

Efficiency through Scaling with Parallelism
The results demonstrate that additional compute allocation
can compensate the performance for the smaller size. When
parallelism is available, smaller models can achieve compa-
rable or even superior accuracy to larger architectures with
a lower cost and latency. For example, GPT-5 Nano with 56
inference paths showed ACC of 0.99 ($0.05, 30.1s), which
is greater than GPT-5 with 24 inference paths that achieved
ACC of 0.98 ($0.52, 64.5s) under the knee-point selection
criterion in Scenario 3. This result suggests that inference
scaling offers an efficient path for small models, especially
when parallel inference is available.

Knee-Point Optimization for the Best Balance
Among MOOs, knee-point selection consistently achieved
the most balanced efficiency in the feasible space. The
Knee MOO identifies the point of maximum curvature on
the Pareto frontier, showing the relative efficiency in tri-
objectives. While it could be fail to be identified for the lin-
earity of the frontiers that does not show the knee point, it
can serve as the most practical solution except for the case
that needs the maximal accuracy. Regarding the inference

for the minimal cost and the best latency, the solution is al-
ways inference with a single path.

Limitations and Future Work

This study relies on stochastic simulation rather than LLM
deployments. Thus, it abstracts away system-level factors
such as GPU utilization, memory contention, and network
queuing delays. Real-world AI infrastructures often exhibit
non-Gaussian variability due to heterogeneous hardware,
fluctuating energy conditions, and network overhead, all of
which complicate inference MOO for further dimensions
and higher dimensions. Incorporating empirical traces from
AI infrastructure environments would further validate the
proposed framework.

Also, the proposed AI inference MOO framework is criti-
cal not only for single-agent models but also for multi-agent
systems, where multiple agents and tools compound the cost
and latency overhead, further amplifying the need for effi-
cient inference scaling. Moreover, as dimensions such as en-
ergy consumption, safety constraints, and thermal limits be-
come increasingly relevant, the framework can be extended
beyond 3D to support higher-dimensional MOO. Such a
generalized formulation would enable jointly optimizing en-
ergy, safety, and heat dissipation on top of the proposed
3D space will support deployment-aware reasoning for real-
world AI systems.

Future work could extend our framework to
infrastructure-aware optimization. This includes inte-
grating hardware metrics from GPUs and Kubernetes-based
orchestration to align inference scaling with real-time
resource allocation. The optimization layer could operate
as an adaptive router that dynamically selects the model
and inference scale based on complexity and system load.
Such integration would enable real-world MOO across
heterogeneous pools, improving inference efficiency on a
large scale.

Conclusion

We reframe AI inference scaling as a multidimensional opti-
mization problem that considers accuracy, cost, and latency
in one optimization to overcome the limitations of 1D and
2D optimization. By integrating MC simulations with MOO,
the proposed framework enables constraint-aware inference
scaling. Across diverse model families and scenarios, the re-
sult revealed that knee-optimality from the Pareto frontiers
makes the scale that shows a relative efficiency among oth-
ers. Also, we found that smaller models could show a better
performance than larger models with a lower cost and la-
tency. Beyond these findings, this framework establishes a
foundation for advanced inference systems that respond to
operational conditions. Embedding MOO into orchestration
layers will enable efficient inference across heterogeneous
AI models and diverse environments. As foundation mod-
els and agentic systems continue to expand, principled infer-
ence scaling will become essential to deploy AI efficiently.

Acknowledgments
This project is a part of Cloudera’s Accelerators for ML
Projects (AMPs). The AMP is accessible via https://github.
com/cloudera/CAI AMP Inference Scaling Optimization.
Thanks to Nashua Springberry and Michael Schuler for
constructive comments on the design and programming for
the simulation.

References
Aubrey, K. 2025. How the Economics of Inference Can
Maximize AI Value. NVIDIA Technical Blog. Available at
https://blogs.nvidia.com/blog/ai-inference-economics/.
Bian, S.; Yan, M.; and Venkataraman, S. 2025. Scal-
ing Inference-Efficient Language Models. arXiv preprint
arXiv:2501.18107.
Brown, B.; Juravsky, J.; Ehrlich, R.; Clark, R.; Le, Q. V.;
Ré, C.; and Mirhoseini, A. 2024. Large language monkeys:
Scaling inference compute with repeated sampling. arXiv
preprint arXiv:2407.21787.
Harris, D. 2025. Think SMART: How to Optimize AI Fac-
tory Inference Performance. NVIDIA Technical Blog. Avail-
able at https://blogs.nvidia.com/blog/think-smart-optimize-
ai-factory-inference-performance/.
Jin, Y.; Wei, G.-Y.; and Brooks, D. 2025. The Energy Cost
of Reasoning: Analyzing Energy Usage in LLMs with Test-
time Compute. arXiv preprint arXiv:2505.14733.
NVIDIA. 2025. The Art of Balancing AI Inference Cost and
Performance. https://nvdam.widen.net/s/hrprjhtmm9/the-it-
leaders-guide-to-ai-inference-and-performance.
Park, Y.-J.; Greenewald, K.; Alim, K.; Wang, H.; and Az-
izan, N. 2025. Know What You Don’t Know: Uncertainty
Calibration of Process Reward Models. arXiv preprint
arXiv:2506.09338.
Sadhukhan, R.; Chen, Z.; Zheng, H.; Zhou, Y.; Strubell, E.;
and Chen, B. 2025. Kinetics: Rethinking Test-Time Scaling
Laws. arXiv preprint arXiv:2506.05333.
Snell, C.; Lee, J.; Xu, K.; and Kumar, A. 2024. Scaling llm
test-time compute optimally can be more effective than scal-
ing model parameters. arXiv preprint arXiv:2408.03314.
Wang, X.; Wei, J.; Schuurmans, D.; Le, Q.; Chi, E.; Narang,
S.; Chowdhery, A.; and Zhou, D. 2022. Self-consistency
improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171.
Wu, Y.; Sun, Z.; Li, S.; Welleck, S.; and Yang, Y. 2024.
Inference scaling laws: An empirical analysis of compute-
optimal inference for problem-solving with language mod-
els. arXiv preprint arXiv:2408.00724.

Model Configuration and Hyperparameters
To evaluate the proposed inference scaling framework, we define a set of representative model configurations that approximate
contemporary large language models (LLMs) across different families and scales. These configurations are not tied to propri-
etary systems but serve as controllable abstractions for stochastic simulation. Each model specifies per-token costs, latencies,
and accuracy distributions used in the Monte Carlo analysis. Costs are expressed in U.S. dollars per million tokens, and latency
values represent seconds per input (tin) or output (tout) token. Unless otherwise stated, the parallelism factor is fixed at P = 4.
Table 3 summarizes all hyperparameters.

Model cin cout tin tout µLin µLout Accuracy Mean ± Std Pdefault

GPT-5 1.25e-6 10.00e-6 0.0005 0.0050 1024 2048 0.94 ± 0.02 4
GPT-5 Mini 0.25e-6 2.00e-6 0.00025 0.0020 1024 2048 0.92 ± 0.03 4
GPT-5 Nano 0.05e-6 0.40e-6 0.00010 0.0010 1024 2048 0.91 ± 0.04 4
Nvidia Nemotron Ultra 253B 0.90e-6 2.80e-6 0.0010 0.0100 1024 2048 0.93 ± 0.05 4
Nvidia Nemotron H 47B 0.40e-6 1.50e-6 0.0004 0.0040 1024 2048 0.92 ± 0.06 4
Nvidia Nemotron Nano 9B v2 0.20e-6 1.00e-6 0.00012 0.0012 1024 2048 0.91 ± 0.07 4
Qwen3-Max 0.90e-6 2.40e-6 0.0008 0.0080 1024 2048 0.90 ± 0.04 4
Qwen3-Next-80B-A3B 0.50e-6 1.25e-6 0.0004 0.0040 1024 2048 0.89 ± 0.05 4
Qwen3-30B-A3B 0.35e-6 0.90e-6 0.00025 0.0020 1024 2048 0.88 ± 0.06 4

Table 3: Representative model configurations used for stochastic simulation. Costs are given in USD per million tokens. Latency
values denote seconds per token for input (tin) and output (tout). All models assume a default parallelism of P = 4.

These parameters ensure that the optimal inference scale k⋆ under the default budget constraints (Cmax = 0.50, Tmax =
60 s) typically falls within a practical range (k ≈ 10–20), allowing interpretable comparisons across model families while
maintaining computational realism.

Simulations
Scenario 1: Low Cost and Time Budget (Essay Feedback)
This scenario represents lightweight applications such as automated essay evaluation or short-form feedback generation, where
users prioritize quick turnaround and low cost while maintaining reasonable accuracy. We set the budget constraints to a max-
imum cost of $0.50 and a latency limit of 60 seconds, with a minimum acceptable accuracy of Amin = 0.93. Under these
deployment limits, four optimization strategies—accuracy-maximization, cube-optimal (multiplicative balance), utopia-closest,
and knee-point—are evaluated across nine representative models.

Table 4 summarizes the simulation results. The knee-point method consistently achieves the best efficiency across most
models, delivering near-maximal accuracy with notably reduced cost and latency. Cube- and utopia-based selections favor
minimal resource use but sacrifice accuracy, while accuracy-maximization frequently over-computes within the same budget.
Overall, knee-point optimization provides the most balanced solution for latency-sensitive or cost-limited settings such as real-
time educational feedback.

Model Accuracy-Optimal Cube-Optimal Utopia-Closest Knee-Point
G-5 k=16 / 0.98 / 0.35 / 43.1 k=4 / 0.96 / 0.09 / 10.8 k=4 / 0.96 / 0.09 / 10.8 k=8 / 0.97 / 0.17 / 21.5
G-5M k=52 / 0.99 / 0.23 / 56.6 k=4 / 0.95 / 0.02 / 4.4 k=4 / 0.95 / 0.02 / 4.4 k=40 / 0.98 / 0.17 / 43.5
G-5N k=108 / 1.00 / 0.09 / 58.1 k=4 / 0.95 / 0.00 / 2.2 k=4 / 0.95 / 0.00 / 2.2 k=56 / 0.99 / 0.05 / 30.1
N-253B k=8 / 0.99 / 0.05 / 42.9 k=4 / 0.97 / 0.03 / 21.5 k=4 / 0.97 / 0.03 / 21.5 –
N-47B k=24 / 1.00 / 0.08 / 51.6 k=4 / 0.97 / 0.01 / 8.6 k=4 / 0.97 / 0.01 / 8.6 k=8 / 0.99 / 0.03 / 17.2
N-9B k=52 / 1.00 / 0.12 / 33.5 k=4 / 0.97 / 0.01 / 2.6 k=4 / 0.97 / 0.01 / 2.6 k=48 / 1.00 / 0.11 / 31.0
Q3-M k=12 / 0.96 / 0.07 / 51.6 k=4 / 0.94 / 0.02 / 17.2 k=4 / 0.94 / 0.02 / 17.2 k=8 / 0.96 / 0.05 / 34.4
Q3-80B k=24 / 0.98 / 0.07 / 51.6 k=4 / 0.94 / 0.01 / 8.6 k=4 / 0.94 / 0.01 / 8.6 k=8 / 0.96 / 0.03 / 17.2
Q3-30B k=52 / 1.00 / 0.11 / 56.6 k=4 / 0.94 / 0.01 / 4.4 k=4 / 0.94 / 0.01 / 4.4 k=48 / 0.99 / 0.11 / 52.2

Table 4: Scenario 1 (Essay Feedback). Optimal configurations across nine models under Cmax = 0.50, Tmax = 60 s, and
Amin = 0.93. Each cell shows k / accuracy / total cost ($) / total latency (s). Model abbreviations: G–5 (GPT–5), G–5M (GPT–
5 Mini), G–5N (GPT–5 Nano), N–253B (Nemotron Ultra 253B), N–47B (Nemotron H 47B), N–9B (Nemotron Nano 9B v2),
Q3–M (Qwen3-Max), Q3–80B (Qwen3-Next-80B-A3B), and Q3–30B (Qwen3-30B-A3B). Standard deviations (omitted for
brevity) were all within approximately ±0.01.

Scenario 2: High Cost and Time Budget (Medical AI)

This scenario reflects mission-critical domains such as medical diagnostics or clinical report generation, where users prioritize
maximum accuracy and reliability over latency or cost considerations. Here, the system operates under relaxed constraints with
a maximum cost of $0.95 and a latency budget of 3600 seconds, while requiring a minimum target accuracy of Amin = 0.98.
Under these generous budgets, we again evaluate four optimization strategies—accuracy-maximization, cube-optimal, utopia-
closest, and knee-point—across nine representative model configurations.

Table 5 summarizes the results. Accuracy-maximization consistently delivers the highest absolute accuracy, making it prefer-
able in precision-critical settings such as medical AI. However, the knee-point approach achieves nearly identical accuracy at
substantially lower computational cost and latency, demonstrating superior efficiency when resource constraints or throughput
considerations are present. Cube- and utopia-based methods remain the most cost-efficient but trade off small amounts of ac-
curacy. Overall, these findings suggest that while accuracy-maximization remains ideal for clinical-grade precision, knee-point
optimization provides a more balanced and deployable alternative.

Model Accuracy-Optimal Cube-Optimal Utopia-Closest Knee-Point
G–5 k=36 / 0.98 / 0.78 / 96.7 k=28 / 0.98 / 0.61 / 75.2 k=28 / 0.98 / 0.61 / 75.2 k=32 / 0.98 / 0.70 / 86.0
G–5M k=128 / 0.99 / 0.56 / 139.3 k=32 / 0.98 / 0.14 / 34.8 k=32 / 0.98 / 0.14 / 34.8 k=64 / 0.99 / 0.28 / 69.7
G–5N k=128 / 1.00 / 0.11 / 68.8 k=16 / 0.98 / 0.01 / 8.6 k=16 / 0.98 / 0.01 / 8.6 k=56 / 0.99 / 0.05 / 30.1
N–253B k=72 / 1.00 / 0.48 / 386.9 k=8 / 0.99 / 0.05 / 42.9 k=8 / 0.99 / 0.05 / 42.9 k=48 / 1.00 / 0.32 / 258.0
N–47B k=52 / 1.00 / 0.18 / 111.8 k=8 / 0.99 / 0.03 / 17.2 k=8 / 0.99 / 0.03 / 17.2 k=48 / 1.00 / 0.17 / 103.2
N–9B k=52 / 1.00 / 0.12 / 33.5 k=8 / 0.99 / 0.02 / 5.2 k=8 / 0.99 / 0.02 / 5.2 k=48 / 1.00 / 0.11 / 31.0
Q3–M k=128 / 1.00 / 0.75 / 550.5 k=32 / 0.98 / 0.19 / 137.6 k=32 / 0.98 / 0.19 / 137.6 k=56 / 0.99 / 0.33 / 240.8
Q3–80B k=128 / 1.00 / 0.39 / 275.3 k=24 / 0.98 / 0.07 / 51.6 k=24 / 0.98 / 0.07 / 51.6 k=68 / 1.00 / 0.21 / 146.3
Q3–30B k=128 / 1.00 / 0.28 / 139.3 k=16 / 0.98 / 0.04 / 17.4 k=16 / 0.98 / 0.04 / 17.4 k=68 / 1.00 / 0.15 / 74.0

Table 5: Scenario 2 (Medical AI). Optimal configurations across nine models under Cmax = 0.95, Tmax = 3600 s, and
Amin = 0.98. Each cell shows k / accuracy / total cost ($) / total latency (s). Model abbreviations follow Table 4. Standard
deviations (omitted for brevity) were all within approximately ±0.01.

Scenario 3: Moderate Cost and Strict Latency (Proposal Writing)

This scenario models creative or document-generation tasks such as research proposal drafting or long-form text refinement,
where users can tolerate longer inference durations but still operate under limited cost budgets. We set a moderate cost constraint
of $0.65 and a latency limit of 1800 seconds, with a minimum acceptable accuracy of Amin = 0.96. Under these deployment
conditions, four optimization strategies—accuracy-maximization, cube-optimal, utopia-closest, and knee-point—are compared
across nine representative language models.

Table 6 presents the results. The knee-point method again demonstrates superior efficiency, consistently achieving accuracy
close to the accuracy-optimal solution while reducing total cost and latency by up to 40–70%. Accuracy-maximization delivers
the best possible accuracy but often over-computes under the same cost limit, while cube- and utopia-based methods mini-
mize resource use but underperform in accuracy-sensitive settings. Overall, knee-point optimization remains the most balanced
approach for moderate-cost, latency-constrained tasks such as real-time writing or interactive drafting systems.

Model Accuracy-Optimal Cube-Optimal Utopia-Closest Knee-Point
G–5 k=28 / 0.98 / 0.61 / 75.2 k=8 / 0.97 / 0.17 / 21.5 k=8 / 0.97 / 0.17 / 21.5 k=24 / 0.98 / 0.52 / 64.5
G–5M k=128 / 0.99 / 0.56 / 139.3 k=8 / 0.96 / 0.04 / 8.7 k=8 / 0.96 / 0.04 / 8.7 k=68 / 0.99 / 0.30 / 74.0
G–5N k=128 / 1.00 / 0.11 / 68.8 k=16 / 0.98 / 0.01 / 8.6 k=16 / 0.98 / 0.01 / 8.6 k=56 / 0.99 / 0.05 / 30.1
N–253B k=72 / 1.00 / 0.48 / 386.9 k=4 / 0.97 / 0.03 / 21.5 k=4 / 0.97 / 0.03 / 21.5 k=48 / 1.00 / 0.32 / 258.0
N–47B k=52 / 1.00 / 0.18 / 111.8 k=4 / 0.97 / 0.01 / 8.6 k=4 / 0.97 / 0.01 / 8.6 k=48 / 1.00 / 0.17 / 103.2
N–9B k=52 / 1.00 / 0.12 / 33.5 k=8 / 0.99 / 0.02 / 5.2 k=8 / 0.99 / 0.02 / 5.2 k=48 / 1.00 / 0.11 / 31.0
Q3–M k=108 / 1.00 / 0.63 / 464.6 k=12 / 0.96 / 0.07 / 51.6 k=12 / 0.96 / 0.07 / 51.6 k=56 / 0.99 / 0.33 / 240.8
Q3–80B k=128 / 1.00 / 0.39 / 275.3 k=12 / 0.97 / 0.04 / 25.8 k=12 / 0.97 / 0.04 / 25.8 k=68 / 1.00 / 0.21 / 146.3
Q3–30B k=128 / 1.00 / 0.28 / 139.3 k=8 / 0.96 / 0.02 / 8.7 k=8 / 0.96 / 0.02 / 8.7 k=68 / 1.00 / 0.15 / 74.0

Table 6: Scenario 3 (Proposal Writing). Optimal configurations across nine models under Cmax = 0.65, Tmax = 1800 s, and
Amin = 0.96. Each cell shows k / accuracy / total cost ($) / total latency (s). Model abbreviations follow Table 4. Standard
deviations (omitted for brevity) were all within approximately ±0.01.

Optimization Results for Inference Scaling across Models and Scenarios

This section provides 3D and 2D visualizations of the optimization process of the simulation. It includes the simulation for
three scenarios across three models with large, medium, and small model size. The result for the sample GPT-5 simulation has
been noted in the main body of the paper.

GPT5-mini

This shows the MOO from the GPT-mini case across three scenarios.

(a) 3D MOO results for Case 1. (b) 3D MOO results for Case 2. (c) 3D MOO results for Case 3.

Figure 6: Inference-scaling optimization results for GPT5-mini across three simulated scenarios. (a–c) 3D feasible cubes in
cost–time–accuracy space with constraint planes at Cmax, Tmax, and Amin. Markers denote optimization criteria (• Accuracy-
Optimal, ▲ Cube-Optimal, ♦ Utopia-Closest, ■ Knee-Point); colors indicate cube volume (larger is better), and the yellow star
marks the utopia point.

(a) 2D ACC–K with optimality for Case 1. (b) 2D ACC–K with optimality for Case 2. (c) 2D ACC–K with optimality for Case 3.

Figure 7: Accuracy-inference compute (K) trade-offs across three scenarios. These show Monte Carlo means with CI = 95%;
the red dashed line indicates Amin. Distinct operational priorities yield different optimal inference scales k⋆.

GPT5-nano

This shows the MOO from the GPT-nano case across three scenarios.

(a) 3D MOO results for Case 1. (b) 3D MOO results for Case 2. (c) 3D MOO results for Case 3.

Figure 8: Inference-scaling optimization results for GPT5-nano across three simulated scenarios. (a–c) 3D feasible cubes in
cost–time–accuracy space with constraint planes at Cmax, Tmax, and Amin. Markers denote optimization criteria (• Accuracy-
Optimal, ▲ Cube-Optimal, ♦ Utopia-Closest, ■ Knee-Point); colors indicate cube volume (larger is better), and the yellow star
marks the utopia point.

(a) 2D ACC–K with optimality for Case 1. (b) 2D ACC–K with optimality for Case 2. (c) 2D ACC–K with optimality for Case 3.

Figure 9: Accuracy-inference compute (K) trade-offs across three scenarios. These show Monte Carlo means with CI = 95%;
the red dashed line indicates Amin. Distinct operational priorities yield different optimal inference scales k⋆.

Nvidia Nemotron Ultra 253B
This shows the MOO from the Nvidia Nemotron Ultra 253B case across three scenarios.

(a) 3D MOO results for Case 1. (b) 3D MOO results for Case 2. (c) 3D MOO results for Case 3.

Figure 10: Inference-scaling optimization results for Nvidia Nemotron Ultra 253B across three simulated scenarios. (a–c)
3D feasible cubes in cost–time–accuracy space with constraint planes at Cmax, Tmax, and Amin. Markers denote optimization
criteria (• Accuracy-Optimal, ▲ Cube-Optimal, ♦ Utopia-Closest, ■ Knee-Point); colors indicate cube volume (larger is better),
and the yellow star marks the utopia point.

(a) 2D ACC–K with optimality for Case 1. (b) 2D ACC–K with optimality for Case 2. (c) 2D ACC–K with optimality for Case 3.

Figure 11: Accuracy-inference compute (K) trade-offs across three scenarios. These show Monte Carlo means with CI = 95%;
the red dashed line indicates Amin. Distinct operational priorities yield different optimal inference scales k⋆.

Nvidia Nemotron H 47B
This shows the MOO from the Nvidia Nemotron H 47B case across three scenarios.

(a) 3D MOO results for Case 1. (b) 3D MOO results for Case 2. (c) 3D MOO results for Case 3.

Figure 12: Inference-scaling optimization results for Nvidia Nemotron H 47B across three simulated scenarios. (a–c) 3D fea-
sible cubes in cost–time–accuracy space with constraint planes at Cmax, Tmax, and Amin. Markers denote optimization criteria
(• Accuracy-Optimal, ▲ Cube-Optimal, ♦ Utopia-Closest, ■ Knee-Point); colors indicate cube volume (larger is better), and
the yellow star marks the utopia point.

(a) 2D ACC–K with optimality for Case 1. (b) 2D ACC–K with optimality for Case 2. (c) 2D ACC–K with optimality for Case 3.

Figure 13: Accuracy-inference compute (K) trade-offs across three scenarios. These show Monte Carlo means with CI = 95%;
the red dashed line indicates Amin. Distinct operational priorities yield different optimal inference scales k⋆.

Nvidia Nemotron Nano 9B V2
This shows the MOO from the Nvidia Nemotron Nano 9B V2 case across three scenarios.

(a) 3D MOO results for Case 1. (b) 3D MOO results for Case 2. (c) 3D MOO results for Case 3.

Figure 14: Inference-scaling optimization results for Nvidia Nemotron Nano 9B V2 across three simulated scenarios. (a–c)
3D feasible cubes in cost–time–accuracy space with constraint planes at Cmax, Tmax, and Amin. Markers denote optimization
criteria (• Accuracy-Optimal, ▲ Cube-Optimal, ♦ Utopia-Closest, ■ Knee-Point); colors indicate cube volume (larger is better),
and the yellow star marks the utopia point.

(a) 2D ACC–K with optimality for Case 1. (b) 2D ACC–K with optimality for Case 2. (c) 2D ACC–K with optimality for Case 3.

Figure 15: Accuracy-inference compute (K) trade-offs across three scenarios. These show Monte Carlo means with CI = 95%;
the red dashed line indicates Amin. Distinct operational priorities yield different optimal inference scales k⋆.

Qwen3-max
This shows the MOO from the Qwen3-max case across three scenarios.

(a) 3D MOO results for Case 1. (b) 3D MOO results for Case 2. (c) 3D MOO results for Case 3.

Figure 16: Inference-scaling optimization results for Qwen3-max across three simulated scenarios. (a–c) 3D feasible cubes in
cost–time–accuracy space with constraint planes at Cmax, Tmax, and Amin. Markers denote optimization criteria (• Accuracy-
Optimal, ▲ Cube-Optimal, ♦ Utopia-Closest, ■ Knee-Point); colors indicate cube volume (larger is better), and the yellow star
marks the utopia point.

(a) 2D ACC–K with optimality for Case 1. (b) 2D ACC–K with optimality for Case 2. (c) 2D ACC–K with optimality for Case 3.

Figure 17: Accuracy-inference compute (K) trade-offs across three scenarios. These show Monte Carlo means with CI = 95%;
the red dashed line indicates Amin. Distinct operational priorities yield different optimal inference scales k⋆.

Qwen3-next 30B A3B
This shows the MOO from the Qwen3-next 80B A3B case across three scenarios.

(a) 3D MOO results for Case 1. (b) 3D MOO results for Case 2. (c) 3D MOO results for Case 3.

Figure 18: Inference-scaling optimization results for Qwen3-next 80B A3B across three simulated scenarios. (a–c) 3D feasible
cubes in cost–time–accuracy space with constraint planes at Cmax, Tmax, and Amin. Markers denote optimization criteria (•
Accuracy-Optimal, ▲ Cube-Optimal, ♦ Utopia-Closest, ■ Knee-Point); colors indicate cube volume (larger is better), and the
yellow star marks the utopia point.

(a) 2D ACC–K with optimality for Case 1. (b) 2D ACC–K with optimality for Case 2. (c) 2D ACC–K with optimality for Case 3.

Figure 19: Accuracy-inference compute (K) trade-offs across three scenarios. These show Monte Carlo means with CI = 95%;
the red dashed line indicates Amin. Distinct operational priorities yield different optimal inference scales k⋆.

Qwen3 30B A3B
This shows the MOO from the Qwen3 30B A3B case across three scenarios.

(a) 3D MOO results for Case 1. (b) 3D MOO results for Case 2. (c) 3D MOO results for Case 3.

Figure 20: Inference-scaling optimization results for Qwen3 30B A3B across three simulated scenarios. (a–c) 3D feasible
cubes in cost–time–accuracy space with constraint planes at Cmax, Tmax, and Amin. Markers denote optimization criteria (•
Accuracy-Optimal, ▲ Cube-Optimal, ♦ Utopia-Closest, ■ Knee-Point); colors indicate cube volume (larger is better), and the
yellow star marks the utopia point.

(a) 2D ACC–K with optimality for Case 1. (b) 2D ACC–K with optimality for Case 2. (c) 2D ACC–K with optimality for Case 3.

Figure 21: Accuracy-inference compute (K) trade-offs across three scenarios. These show Monte Carlo means with CI = 95%;
the red dashed line indicates Amin. Distinct operational priorities yield different optimal inference scales k⋆.

