
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PUTNAM-AXIOM: A FUNCTIONAL & STATIC BENCH-
MARK FOR MEASURING HIGHER LEVEL MATHEMATI-
CAL REASONING IN LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

As large language models (LLMs) continue to advance, many existing bench-
marks designed to evaluate their reasoning capabilities are becoming saturated.
Therefore, we present the Putnam-AXIOM Original benchmark consisting of 236
mathematical problems from the William Lowell Putnam Mathematical Com-
petition, along with detailed step-by-step solutions. To preserve the Putnam-
AXIOM benchmark’s validity and mitigate potential data contamination, we cre-
ated the Putnam-AXIOM Variation benchmark with functional variations of 52
problems. By programmatically altering problem elements like variables and
constants, we can generate unlimited novel, equally challenging problems not
found online. We see that almost all models have significantly lower accuracy
in the variations than the original problems. Our results reveal that OpenAI’s
o1-preview, the best performing model, achieves merely 41.95% accuracy on
the Putnam-AXIOM Original but experiences around a 30% reduction in accu-
racy on the variations’ dataset when compared to corresponding original prob-
lems. Moreover, we explore metrics beyond boxed accuracy to assess models
on complex tasks like natural language theorem proving, crucial for evaluating
reasoning capabilities in depth, opening the possibility for open-ended evalu-
ation of reasoning strings. The data and the evaluation code are available at
https://anonymous.4open.science/r/putnam-axiom-B57C/.

1 INTRODUCTION

The ability for Large Language Models (LLMs) to reason about complex problems has a plethora of
applications in fields such as economics (Zhang et al., 2024), drug discovery (Bran et al., 2023), and
even simulations of human behavior and society (Park et al., 2023). The prominence of LLM rea-
soning use has led to significant development in their performance on many reasoning benchmarks.

Outpacing Current Evaluations. Indeed, advanced models like GPT-4 (OpenAI, 2023) and Gem-
ini Ultra (Team, 2023) have reported human-level performance on many benchmarks like MMLU
(Hendrycks et al., 2020) and MMMU (Yue et al., 2023). Similarly, LLMs have seen progress in other
challenging benchmarks like GSM8K (Chen et al., 2022) and MATH (Hendrycks et al., 2021), with
SOTA models attaining nearly 90% accuracy on MATH (Lei, 2024) and nearly perfect accuracy on
GSM8K (Zhong et al., 2024). Although this progress is a testament to the rapidly evolving capabil-
ity of LLMs, it also presents a problem: Current benchmarks are starting to fall short in evaluating
the reasoning capabilities of LLMs.

Data Contamination. The problem is further complicated by data contamination, which remains
a major concern for current evaluation benchmarks. By training LLMs on larger portions of the
internet, researchers are incorporating an increasing number of open-source benchmark data into
the models’ pretraining. Therefore, a model can display artificially high “reasoning ability” by
simply memorizing the answers it has seen, undermining the integrity of the evaluation.

To address these limitations, we introduce the Putnam-AXIOM (Advanced eXamination of
Intelligence in Operational Mathematics) dataset, a novel and challenging compilation of high-
level mathematics problems sourced from the William Lowell Putnam Mathematical Competition,
an annual mathematics competition for undergraduate college students in North America which re-
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quires advanced mathematical reasoning and covers a wide range of university-level mathematical
concepts. In addition, we also introduce functional variations of this AXIOM dataset to combat data
contamination, taking inspiration from the solution employed by Srivastava et al. (2024). Functional
variations adjust variables, constants, and the phrasing of problems through Python scripts, allowing
us to generate an unlimited number of new problems that are not found on the Web but still retain
their mathematical complexity and validity. AXIOM enables fully automated evaluations by requir-
ing models to provide final answers within “\boxed{}” brackets which can then be extracted and
compared to the ground truth final solution using an equivalence function 1 as used for the MATH
dataset (Hendrycks et al., 2021). This approach eliminates the need for human evaluation, and avoids
the limitations of multiple-choice formats Schaeffer et al. (2024), thus maintaining soundness while
enabling scalability.

Initial evaluations on Putnam-AXIOM demonstrate its difficulty with OpenAI o1-preview scoring
less than half at 41.95%, while GPT-4o achieves only 17.80%. Even math-specialized models such
as Qwen2-Math-7B and Qwen2-Math-7B-Instruct perform poorly, scoring 5.51% and 11.8% re-
spectively. Performance further declines on functional variations of Putnam-AXIOM, which include
significant drops for most models, decreasing by 20-30% in relative performance. These low scores
underscore Putnam-AXIOM’s utility for measuring LLMs’ advanced reasoning capabilities, while
the variations scrutinize true reasoning skills by exposing the models’ reliance on memorization.

Proof-based Evaluation Metrics. In addition to introducing the Putnam-AXIOM Original and
Variation benchmarks, we identified the need for more sophisticated LLM reasoning evaluation
metrics. Current evaluation metrics for reasoning are inadequate, as they rely solely on a final
“boxable” answer without assessing the actual reasoning process. Recent evidence also suggests
that LLM reasoning is not always faithful, resulting in answers that do not depend on the validity
of the reasoning, as shown in (Turpin et al., 2024; Pfau et al., 2024). This limitation is particularly
significant as the research community moves towards process-based reward models and step-wise
search algorithms where the soundness of intermediate reasoning is critical (Luo et al., 2024; Hubert
et al., 2024). It is also worrying in open-ended evaluations areas, like theorem proving, where human
evaluation is a current bottleneck. We therefore explore automatic alternative metrics to boxed
answers and find that a simple and cheap method, Teacher-Forced Accuracy (TFA), is a promising
approach. TFA represents a step forward in developing more sound LLM evaluations, which we
hope will lead to more accurate assessments of and claims about LLM reasoning capabilities.

Our contributions are:

• The Putnam-AXIOM, a new evaluation benchmark of 236 challenging mathematical
problems sourced from the William Lowell Putnam Competition, designed to assess ad-
vanced mathematical reasoning in LLMs.

• Functional variations for 52 of these problems using Python scripts, altering variables,
constants, and problem phrasing to generate unlimited novel problems while preserving
their mathematical complexity, effectively avoiding data contamination.

• Novel evaluations that measure the reasoning, such as teacher-forced accuracy (TFA), to
provide a more complete assessment of LLMs’ reasoning abilities – beyond traditional
boxed answers.

2 RELATED WORK

2.1 MATHEMATICS BENCHMARKS

Numerous benchmarks exist to assess the mathematical capabilities of models, each typically fo-
cusing on a specific task. Two notable examples are MATH (Hendrycks et al., 2021) and GSM8K
(Cobbe et al., 2021). The MATH dataset contains questions sourced from American high school
mathematics competitions such as the AMC 10, AMC 12, and AIME (Hendrycks et al., 2021),
while the GSM8K dataset contains 8.5K handwritten elementary school level questions Cobbe et al.
(2021). Both contain questions and answers with detailed rationale explanations.

As models have become larger and more powerful, even the most difficult existing benchmarks have
become less challenging. For instance, while the MATH dataset saw 6.9% accuracy on its release,

1For instance, the equivalence function would evaluate the answers 0.5, 1/2, and \frac{1}{2} as equal.
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it now sees 87.92% accuracy with GPT-4 MACM (Lei, 2024). Similarly, GPT4 has attained 97.1%
accuracy on the GSM8K (Zhong et al., 2024). This saturation necessitates the development of more
challenging benchmarks.

Many contemporary data sets have been created to combat the saturation of existing benchmarks.
For instance, the ARB dataset includes hundreds of challenging problems in high school and college-
level math, physics, and chemistry Sawada et al. (2023). Similarly OlympiadBench contains nearly
9,000 problems from the International Mathematics Olympiad (IMO), the Chinese GaoKao, and
more He et al. (2024). Finally, SciBench is a similar reasoning benchmark that includes hundreds
of college-level scientific reasoning questions from instructional textbooks Wang et al. (2023).

Although these datasets alleviate the saturation problem, they come with many limitations. For
instance, ARB Sawada et al. (2023) and OlympiadBench He et al. (2024) both contain several sym-
bolic and proof-based questions which cannot be graded automatically and require a costly and
lengthy human evaluation process. Though ARB attempts to utilize LLMs to grade their own re-
sponses with a rubric, this process is often unreliable and self-referential. Our Putnam-AXIOM
dataset addresses these limitations by offering challenging Putnam problems with fully-written so-
lutions and easily evaluable answers. It enables efficient automated assessment via frameworks like
LM Harness (Gao et al., 2024), avoiding costly human evaluation or unreliable self-grading.

2.2 FUNCTIONAL BENCHMARKS

Data contamination is a significant problem in creating evaluation benchmarks, as many of these
problems are openly available on the Internet and are likely included in the training data for large
models (Schaeffer, 2023; Sainz et al., 2023). Thus, the MATH (Hendrycks et al., 2021), AGIEval
(Zhong et al., 2023), OlympiadBench (He et al., 2024), and ARB (Sawada et al., 2023) benchmarks
(which are all sourced from problems on the Internet) could potentially be contaminated. Therefore,
models may achieve artificially high performance on an evaluation benchmark by memorizing the
answers to the problems Magar & Schwartz (2022); Ranaldi et al. (2023).

A straightforward way of avoiding data contamination issues is to utilize problems unavailable on
the Internet. However, even if problems are not currently part of model training data, it is unrealistic
to expect them to remain inaccessible. At the same time, it is costly to rely on the continuous human
development of new datasets.

Srivastava et al. (2024) attempts to alleviate this data contamination issue by creating functional
variations of the MATH dataset, where new problems can be generated simply by changing numeric
parameters, yielding different solutions. They observe a significant discrepancy in models’ perfor-
mance between standard benchmarks and these new variations. We recognize the potential of this
idea and have adapted it to our more challenging dataset. We have altered the variables, constants,
and phrasing of many Putnam questions while preserving their overall difficulty and requirements
for logical and mathematical reasoning.

2.3 EVALUATION METRICS

Several approaches have been proposed to reduce the reliance of model evaluations on box-able
answers, particularly in domains like free-form writing or translation where unique answers do not
exist Leiter et al. (2022); Opitz & Frank (2021). Historically, tasks such as translation and natural
language generation, which lack a single correct answer, have used more flexible metrics, includ-
ing n-gram match (Lin, 2004), model-based Guerreiro et al. (2023), embedding proximity (Zhang
et al., 2020), paraphrasing (Thompson & Post, 2020), generation as an evaluator (Yuan et al., 2021),
and information alignment (Deng et al., 2021). However, these metrics are not designed to assess
reasoning ability or the correctness of mathematical statements.

When relying on boxed answers, we simply do not know how often the generated reasoning steps
actually support the final answer. For evaluating reasoning abilities, the ROSCOE suite of met-
rics is noteworthy as it measures various fine-grained aspects of reasoning steps such as semantic
consistency, logicality, informativeness, fluency, and factuality Golovneva et al. (2023). We omit
descriptions of each metric, but highlight that most of them rely on sentence embedding models and
operate on a step-by-step level. Unfortunately, the original ROSCOE metrics were predominantly
tested on GPT-3 generations, and we find that these metrics do not provide evaluations that are
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comparable across different models. Although fine-grained metrics like ROSCOE can be useful for
interpreting specific aspects of a model’s capabilities, an ideal reasoning benchmark would employ
a single metric that is comparable across models and highly correlated with the correctness of the
generated reasoning.

In Huang et al. (2024), authors drew upon equivalence between language modelling and compres-
sion. They demonstrated that using bits per character (BPC) to measure a model’s compression rate
on several external large corpora is highly correlated with model performance on various bench-
marks. However, this approach has drawbacks: evaluating compression on large corpora is expen-
sive, and the equivalence only holds for base models, as fine-tuned models are not general-purpose
compressors for arbitrary text. Despite this, we suspect there would still be a relatively high correla-
tion for most fine-tuned models. Relatedly, Yuan et al. (2023) found that pre-training loss is strongly
correlated with mathematical ability for the LLaMA family Touvron et al. (2023a;b). Unfortunately,
creating an open benchmark using this metric is impractical due to the dependence of pre-training
loss on differences in pre-training data, tokenizers, and other training-specific parameters.

3 METHODS

3.1 PUTNAM-AXIOM ORIGINAL DATASET

Dataset. The Putnam-AXIOM Original Dataset contains 236 problems curated from the William
Lowell Putnam Mathematical Competition posed between 1985 and 2023. These problems were se-
lected based on their ability to yield a fixed final answer, to ensure compatibility with our automated
evaluation. The dataset encompasses various topics within university-level mathematics categorized
into 11 distinct domains – Geometry, Algebra, Trigonometry, Calculus, Linear Algebra, Combina-
torics, Probability, Number Theory, Complex Numbers, Differential Equations and Analysis.

To maintain a consistent and rigorous evaluation, each problem retains its original exam ID, which
indicates its difficulty level and the topic categories. The ID format includes the exam sitting (A or
B) and a number (1-6) representing increasing complexity, with 1 being easiest and 6 being most dif-
ficult. The dataset is formatted using LATEX to accurately capture the complex equations and symbols
the problems employ. Additionally, we utilize Asymptote vector graphics for encoding mathemati-
cal figures and diagrams to ensure language models can process visual elements directly. Further, we
standardized the placement of boxed answers by relocating them to the end of each solution string
to minimize unintended emergent behaviors leading to evaluations that are less “harsh” or prone to
penalizing the model for formatting deviations rather than actual comprehension.

Modified Boxing. Given the complex nature of certain Putnam questions, some problems do not
lend themselves to simple, singular boxed final answers. Instead, they often include conditions,
multiple possible answers, varied answer formats and elaborate proofs. These original questions
would have necessitated costly and difficult human evaluations which we seek to avoid. To address
this, we modified these questions by adding a trivial next step to the original questions, changing
the solution accordingly. This additional step was designed so as to ensure that solvers reached the
same conclusions and insights necessary to solve the problem, but then output a single boxed final
answer. We provide an example of such a change in Figure 1. By incorporating this minor modifica-
tion, we preserved the inherent difficulty and complexity of the original problems while making the
answers suitable for automated evaluation. Furthermore, since Putnam proof-based problems often
test different reasoning abilities than Putnam answer-based problems, modified boxing allows us to
provide a more comprehensive test.

3.2 PUTNAM-AXIOM VARIATION DATASET

Models trained on snapshots of the internet have likely encountered Putnam questions, potentially
inflating their performance on the Putnam-AXIOM Original dataset. Therefore, drawing inspiration
from Srivastava et al. (2024), we introduce functional variations of select problems from Putnam-
AXIOM Original providing an effective way of evaluating models that have been trained on the
entire internet by taking advantage of weaknesses in model memorization. These variations are
classified into two types.

4
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Problem: Determine which positive inte-
gers n have the following property: For all
integers m that are relatively prime to n, there
exists a permutation π : {1, 2, . . . , n} →
{1, 2, . . . , n} such that π(π(k)) ≡ mk
(mod n) for all k ∈ {1, 2, . . . , n}.

Solution: The desired property holds if
and only if n = 1 or n ≡ 2 (mod 4) . Let
σn,m be the permutation of Z/nZ induced
by multiplication by m; the original problem
asks for which n does σn,m always have a
square root.

· · ·
By Lemma 1, σn,m does not have a square
root.

Year: 2016 ID: A1 Final Answer: ??

Problem: Determine the sum of the first
k positive integers n (in terms of k) which
have the following property: For all inte-
gers m that are relatively prime to n, there
exists a permutation π : {1, 2, . . . , n} →
{1, 2, . . . , n} such that π(π(k)) ≡ mk
(mod n) for all k ∈ {1, 2, . . . , n}.

Solution: Let σn,m be the permutation of
Z/nZ induced by multiplication by m; the
original problem asks for which n does σn,m

always have a square root.

· · ·

The desired property holds if and only if n =
1 or n ≡ 2 (mod 4), hence making the re-

quired sum 2k2 − 4k + 3 .

Year: 2016 ID: A1 Final Answer:
2k2 − 4k + 3

Figure 1: A modified boxing example in Putnam-AXIOM. Here we see that the original problem
holds true for a number of values of n conditioned on a specific property making it hard to find a
boxable expression. We thus modify the solution to still require the solver to get to that conclusion
and add a further computation of summing up the first k such values of n giving a boxable solution
while keeping the core of the problem the same.

1. Variable Change. The simplest variation is a variable change, where variable names are
altered and the final answer is unvaried. Variable changes slightly modify the problem from
its original statement, which models could have trained on.

2. Constant Change. Constant changes modify numeric properties of the question, altering
constants within the step-by-step solution and the final answer. Constant changes signif-
icantly transform the problem from its original statement, challenging models to perform
complex reasoning on how the changes affect the solution and final answer, as in the exam-
ple from Figure 2.

Variational Dataset Description. We created functional variations for 52 Putnam-AXIOM ques-
tions, considering limitations such as problem-specific constants, non-generalizable solutions, and
questions lacking constants or boxable answers. The dataset includes 26 constant+variable and 26
variable-only changes. We rephrased problem statements while maintaining the core task to prevent
pattern recognition by LLMs. Each variation can generate infinite unique, equally difficult snap-
shots, offering a sustainable evaluation method. To evaluate various SOTA models, evaluators are
expected to generate snapshots (instances of the infinite potential variations) of the variation dataset
by running the generation code.

3.3 MODEL EVALUATIONS

Using the LM Harness Evaluation framework (Gao et al., 2024), we evaluated several open-source
and proprietary SOTA LLMs. Models were prompted to provide answers in \boxed format, which
were then compared to Putnam ground truths with an exact final answer match. We evaluated the
236-question Putnam-AXIOM Original dataset once. For the variation dataset, we conducted five
trials, each using a randomly selected variation snapshot and its corresponding 52 original questions.
We then calculated mean accuracy and 95% confidence intervals.
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Problem: Define a growing spiral in the
plane to be a sequence of points with integer
coordinates P 0 = (0, 0), P 1, . . . , Pn such
that n ≥ 2 and:

· · ·
How many of the points (x, y) with integer
coordinates 0 ≤ x ≤ 2011, 0 ≤ y ≤ 2011
cannot be the last point, Pn of any growing
spiral?

Solution: We claim that the set of points
with 0 ≤ x ≤ 2011 and 0 ≤ y ≤ 2011 that
cannot be the last point of a growing spiral are
as follows: (0, y) for 0 ≤ y ≤ 2011; (x, 0)
and (x, 1) for 1 ≤ x ≤ 2011; (x, 2) for 2 ≤
x ≤ 2011; and (x, 3) for 3 ≤ x ≤ 2011.

· · ·

This gives a total of

2012 + 2011 + 2011

+2010 + 2009 = 10053

excluded points.

Year: 2011 ID: A1 Final Answer: 10053

Problem: Consider a growing spiral in the
plane, defined as a sequence of points L0 =
(0, 0), L1, . . . , Ln, each having integer coor-
dinates, where n ≥ 2 and:

· · ·

Determine the number of points (w, v) with
integer coordinates 0 ≤ w ≤ 4680, 0 ≤ v ≤
4680 that cannot be the final point, Ln of any
such growing spiral.

Solution: We claim that the set of points
with 0 ≤ w ≤ 4680 and 0 ≤ v ≤ 4680 that
cannot be the last point of a growing spiral
are as follows: (0, v) for 0 ≤ v ≤ 4680;
(w, 0) and (w, 1) for 1 ≤ w ≤ 4680; (w, 2)
for 2 ≤ w ≤ 4680; and (w, 3) for 3 ≤ w ≤
4680.

· · ·
This gives a total of

4681 + 4680 + 4680

+4679 + 4678 = 23398

excluded points.

Year: 2011 ID: A1 Final Answer: 23398

Figure 2: Constant and variable change in AXIOM. Here, we perform a variable change on the
original problem/solution on the left by changing variables ‘x’ to ‘w,’ ‘y’ to ‘v,’ and ‘P ’ to ‘L.’
We also perform a constant change by altering the constant ‘2011’ to ‘4680’. The constant change
affects the final answer, changing it from 10053 to 23398. Finally, we rephrase the problem.

3.4 PROXY REASONING METRICS

We explore two kinds of reasoning metrics. The first are based on teacher forcing (Jiang et al., 2023;
Lamb et al., 2016), where the ground truth solution is fed into the model. The model then predicts
the next token conditioned on the ground truth solution rather than its previous generations as is the
case with auto-regressive generation. The second group of reasoning metrics are those proposed by
ROSCOE (Golovneva et al., 2023).

Teacher Forcing: In teacher forcing, the model is conditioned on the ground truth solution tokens
rather than its own previous predictions. Given a question q and its ground truth solution tokenized
as s1, s2, . . . , sN , let ŝ1, ŝ2, . . . , ŝN be the tokens predicted by the model under teacher forcing. We
explore the following teacher forcing metrics:

1. Teacher-Forced Accuracy (TFA) measures the proportion of tokens that the model predicts
correctly when conditioned on the ground truth tokens.

TFA =
1

N

N∑
i=1

1[ŝi = si]

2. Teacher-Forced Cross Entropy (TFCE) measures the average negative log likelihood of the
ground truth tokens under the model’s predicted probability distribution.

TFCE = − 1

N

N∑
i=1

logP(ŝi = si | q, s1, s2, . . . , si−1)
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3. Perplexity is a measure of how well a probability distribution predicts a sample. In the
context of teacher forcing, it is an exponentiation of the cross entropy.

Perplexity = exp (TFCE) = exp

(
− 1

N

N∑
i=1

logP (ŝi = si | q, s1, s2, . . . , si−1)

)

4. Bits Per Character (BPC) Huang et al. (2024) is very similar to TFCE and has been shown to
correlate well with benchmarks when evaluated on very large corpora. The idea is that due
to differences in tokenization, average bits per token are not directly comparable. Instead
we use

BPC = − 1

T

N∑
i=1

logP(ŝi = si | q, s1, s2, . . . , si−1)

where T is the number of characters in the solution string rather than the number of tokens.

The main limitation of the teacher forcing approach is the dependency on the ground truth solution.
Models are often finetuned for a specific style or problem solving approach (such as tool use or code
generation). In this case, we would expect that teacher forcing metrics would under represent the
models’ abilities.

ROSCOE: The ROSCOE suite offers 18 distinct metrics, each tailored to assess a different facet of
reasoning as described by Golovneva et al. (2023). These metrics are broadly categorized into four
groups. The first category, semantic alignment, focuses on identifying relationships between con-
cepts that share the same or similar meanings. Metrics in this category typically examine reasoning
on a step-by-step basis. In contrast, semantic similarity metrics evaluate the problem and solution
holistically. Logical inference metrics, utilizing a specially trained model (Laurer et al., 2024), de-
tect contradictions between reasoning steps. Lastly, language coherence is assessed by evaluating
model outputs using the perplexity score from GPT-2 Large (Radford et al., 2019) and a grammar
model (Krishna et al., 2020). We use the code provided by the authors as is to evaluate these metrics.

Metric Evaluation: Given the challenging nature of Putnam-AXIOM and the poor performance of
existing models, we opted to test the proposed proxy metrics on the MATH dataset instead. For a
metric to be effective as a benchmark, its evaluations must be comparable across different models.
To generate evaluation data, we utilized 15 open-source models, ranging from 7 billion to 70 billion
parameters, which exhibit a wide range of performance across the 7 different MATH datasets. We
then compared the proxy metric evaluations with each model’s boxed accuracy for each dataset. A
high correlation between the proxy metric and boxed accuracy indicates a better proxy.2 Our results,
including the raw correlations for each metric in Table 4, are presented in the Appendix.

4 RESULTS

4.1 PUTNAM-AXIOM MODEL PERFORMANCE

Table 1 presents Putnam-AXIOM Original dataset accuracies. Most models score below 10%,
with even NuminaMath, the AI Mathematics Olympiad winner (Investments, 2024), achieving only
4.66%. These low accuracies underscore AXIOM’s difficulty. Figure 3 contrasts Putnam-AXIOM
Variation dataset mean accuracies with the 52 corresponding original questions, along with the con-
fidence intervals across the five variation snapshots with the average accuracies in Table 3. Original
accuracies typically surpass variation accuracies. For models like o1-preview, GPT-4o, Claude-3.5
Sonnet and NuminaMath-7B-TIR, non-overlapping confidence intervals reveal statistically signifi-
cant differences, indicating artificially inflated performance on original questions due to data con-
tamination. Looking at the numbers highlights significant accuracy declines across models: GPT-4o
shows the steepest drop at 44%, followed by o1-preview at 30%, GPT-4 at 29%, and Claude-3.5
Sonnet at 28.5%.

2We note that care must be made before optimizing any models using a proxy metric as otherwise Goodhart’s
Law may take effect.
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Model
Original (Final Accuracy) New (TFA)
Score Percentage (%) TFA

Gemma-2B-Base 7/236 2.97 0.717
Gemma-7B-Base 9/236 3.81 0.784

DeepSeek-Math-7B-Base 14/236 5.93 0.779
Qwen2-Math-7B-Base 13/236 5.51 0.770
NuminaMath-7B-Base 11/236 4.66 0.742
Mistral-7B-v0.3-Base 7/236 2.97 0.735

Llama-3-8B-Base 9/236 3.81 0.748

Gemma-2B-Instruct 2/236 0.85 0.634
Gemma-7B-Instruct 8/236 3.38 0.702

Qwen2-Math-7B-Instruct 28/236 11.86 0.758
DeepSeek-Math-7B-Instruct 12/236 5.08 0.750

Mistral-7B-Instruct-v0.3 8/236 3.38 0.735
Llama-3-8b Instruct 10/236 4.23 0.738

DeepSeek-Math-7B-RL 19/236 8.05 0.740

Claude-3.5 Sonnet 38/236 15.96 -

GPT-4 22/236 9.32 -
GPT-4o 42 / 236 17.80 -

o1-preview 99 / 236 41.94 -

Table 1: Putnam-AXIOM Original Results and New TFA Scores. TFA Scores showcase percent-
age of model next-token predictions matching ground truth.

Figure 3: The drop of accuracies on Putnam-AXIOM Variation from corresponding Original
questions is statistically significant for nearly all models. This figure shows the mean accuracies
for models along with 95% confidence intervals drawn.

4.2 LLM ERROR ANALYSIS

Though we used automated evaluations for efficiency, a manual review of model responses on
Putnam-AXIOM Original provides deeper insights into models’ reasoning and errors. We selected
the two best-performing models, GPT-4o and OpenAI o1-preview, as they likely exhibit the strongest
reasoning abilities. Our goal is to analyze this reasoning in greater depth.

OpenAI o1-preview Performance: Out of all models, we see that OpenAI o1-preview performed
the best on Putnam-AXIOM Original, receiving 41.9% boxed accuracy (99/236) while other mod-
els received less than 20%. Analyzing the answers, we see that most of the OpenAI o1-preview
responses followed generally the same logical path as the ground truth solution. However, several
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of these questions contained logical mistakes and inconsistencies. The biggest discrepancy between
model responses and the ground-truth solution was a general lack of mathematical rigor. Whereas
the ground truth solution will make claims to advance its solution then prove those claims step-by-
step, o1-preview will often make and use claims without justification. While this does succeed in
getting to the correct boxed final answer, these unjustified claims would receive little credit when
marked by a human grader. A large part of the difficulty of mathematical reasoning is being logi-
cally airtight throughout the entire solution; thus, though o1-preview shows promise, there are still
evident flaws in its mathematical reasoning abilities. In several solutions like Figure 5, for instance,
o1-preview correctly identified the maximal or minimal value of a variable, but failed to provide
sufficient proof that the value it provided was indeed the maximum or minimum.

GPT-4o Performance: Like the o1-preview, GPT-4o mostly followed correct logical reasoning for
most of its solutions. For GPT-4o, the biggest discrepancy between model responses and the ground-
truth solution is the same general lack of mathematical rigor throughout most of the solutions. An
example of this lack of rigor is shown in Figure 6, where GPT-4o makes the claim that a rectangle
gives the minimal area subject to a set of constraints without any justification. In addition to issues
with rigor, GPT-4o also displayed logical leaps and incoherent reasoning, as displayed in Figure 7
where the model simply assumes that an answer is correct. These logical leaps are symptomatic of
an issue in the GPT-4o’s CoT reasoning, as the model prioritizes reaching the final answer rather
providing a rigorous logical output.

General Analysis: Beyond GPT-4o and the o1-preview, we wanted a general overview of the
reasoning behaviors of models. To do so, we chose the best-performing open-source models,
DeepSeek-Math-7B-RL, Qwen2-Math-7B, and NuminaMath-7B. We tend to see that open-source
models are much more error-prone than the proprietary models we evaluated earlier. In general,
we notice that open-source models are subject to the same lack of mathematical rigor. However,
this rigor issue is overshadowed by major calculation errors, hallucinated/irrelevant information,
misunderstandings of the problem, and logical jumps. For instance, in Figure 8, NuminaMath si-
multaneously makes a calculation, irrelevancy, and misunderstanding error when writing the last
step of its solution; in Figure 9, the model makes false assumptions about functions defined in the
problem; in Figure 10, the model completely removes a crucial part of the problem and proceeds to
an incorrect final solution.

4.3 PROXY METRICS

To evaluate the performance of our proxy metrics, we first test each of them on MATH, an easier
benchmark, as we can find models that achieve both very good and poor performance. In Table 2 we
compare how our chosen metrics are correlated with the boxed accuracy of the answer on MATH.
For the sake of brevity we only include the three most notable metrics from the ROSCOE suite:
Informativeness Chain, Semantic Coverage Chain, and Perplexity Step. While it might be possible
to combine the ROSCOE metrics together and obtain a stronger proxy metric, the straightforward
approaches failed. Simple averaging performed poorly, and we could not find a weighted or sparse
combination of the ROSCOE metrics without overfitting to the specific models that the weights were
fit on. See Table 4 in the Appendix for the full results. Despite it’s simplicity, TFA outperforms (i.e.
is more correlated with boxed accuracy) all of the other metrics including all of the ROSCOE metrics
on every category in MATH. Interestingly, the ROSCOE methods that correlate best with boxed
accuracy are semantic similarity metrics quantifying the degree of semantic equivalence between
pieces of text. BPC performs reasonably well, but still trails behind TFA.

Thus we select TFA as our proxy metric of choice for Putnam-AXIOM for both its correlation with
accuracy and because of its low evaluation cost. In Table 1 are the results of TFA on Putnam-
AXIOM Original. Figure 4 showcases the relationship between TFA and accuracy on Putnam-
AXIOM. One potential reason for the outliers QWen2-Math-7B-Instruct and DeepSeek-Math-RL
might be because they were trained with reinforcement learning and thus have a different style of
writing compared to other models. Unfortunately we can’t evaluate TFA on proprietary models as
we require the log probabilities of the input tokens. It would be possible to feed the input to the
proprietary model incrementally, but this would require an API request for every token in the input.
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TFA 0.718 0.632 0.663 0.645 0.644 0.660 0.669 0.662
TFCE -0.486 -0.442 -0.458 -0.468 -0.501 -0.466 -0.505 -0.475
Perpelexity -0.413 -0.385 -0.390 -0.381 -0.441 -0.399 -0.416 -0.403
BPC -0.542 -0.519 -0.561 -0.507 -0.568 -0.558 -0.527 -0.540

Info. Chain -0.494 -0.536 -0.486 -0.616 -0.550 -0.460 -0.542 -0.526
Sem. Cov. Chain -0.450 -0.499 -0.437 -0.559 -0.523 -0.449 -0.486 -0.486
Perp. Step -0.644 -0.207 -0.252 -0.081 -0.314 -0.224 0.145 -0.225

Table 2: Correlation with respect to model choice between proxy metrics and boxed accuracy
on the MATH dataset. We refer to the ROSCOE metrics by the names used in the released code
base, which differ slightly from those in the original paper. Notably, among the ROSCOE metrics,
only the Informativeness Chain and Semantic Coverage Chain appear to be somewhat comparable
across models. TFA performs the best with an average correlation around 0.67.
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Figure 4: TFA against boxed accuracy with respect to model choice on Putnam-AXIOM. We
see a general positive relationship between the two metrics with a couple outliers.

5 CONCLUSION

In this paper, we present Putnam-AXIOM, a novel challenging benchmark of 236 problems from
the Putnam examination for evaluating reasoning capabilities of large language models. Our dataset
allows for automated evaluations with an equivalence function. While SOTA LLMs already have
saturated performance on benchmarks like MATH, they still struggle with successfully answering
questions in Putnam-AXIOM. To address potential data contamination issues, we introduce Putnam-
AXIOM Variations, altering the variable names, constant values, or the phrasing of the question to
create a potentially infinite number of problems not found anywhere on the internet. We notice that
for most problems, models get significantly worse on the variations than they do the corresponding
original questions. Our dataset fills the void opened by rapid progress in model reasoning capabili-
ties. We hope that our benchmark will accelerate future research into artificial reasoning.
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A APPENDIX

A.1 LEGAL COMPLIANCE

We collect and modify various problems from the William Lowell Putnam Competition to create the
original and variation datasets of Putnam-AXIOM. Putnam problems are created by the Mathemati-
cal Association of America (MAA), which is also the source of the AMC and AIME problems used
in the MATH dataset (Hendrycks et al., 2021). Like Hendrycks et al. (2021), we do not in any form
seek to monetize or commercialize Putnam problems—only to utilize them for academic purposes.

Our use of the Putnam problems to create an evaluation dataset completely falls under the “research”
section of Fair Use. Indeed, according to Section 107, of the U.S. Copyright Act (USC, 1976), our
work certainly qualifies as Fair Use for the following reasons:

1. Our use of MAA problems is only for academic research purposes. We do not monetize or
commercialize the problems.

2. Our use of Putnam problems as a reasoning evaluation benchmark for large language mod-
els is significantly different from their original use as competition problems.

3. Our use of Putnam problems is transformative. As detailed in Section 3 above, we have
transformed the questions to be answered with a single numerical or algebraic “boxed an-
swer” as well as created variations. We have altered all of the solutions so that the final
boxed answer lies at the end of the solution (so as to encourage models to explain their
rationale before outputting a solution). We have also standardized the solutions: If there
are many solutions given, we only use the first; if there are any references irrelevant to
mathematics necessary to understand and solve the problem (such as comments like “Com-
municated by ...”), we have removed those.

4. Our use of Putnam problems to construct a benchmark has no effect on the demand for or
supply of Putnam problems in the William Lowell Putnam Competition. The existence of
our dataset does not alter the value of the original problems—as those are already freely
available online—nor does it influence the market of future competitors/problem writers.
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A.2 FULL TABLE OF ACCURACIES FOR PUTNAM-AXIOM VARIATION AND
CORRESPONDING ORIGINAL QUESTIONS

Model
Original Variation

Score Percentage (%) Score Percentage (%)
Gemma-2B-Base 1.4 / 52 2.63 1.2 / 52 2.26
Gemma-7B-Base 1.6 / 52 3.01 1.7 / 52 3.39

DeepSeek-Math-7B-Base 3.2 / 52 6.03 2.4 / 52 4.52
Qwen2-Math-7B-Base 5.2 / 52 9.81 4.8 / 52 9.05
NuminaMath-7B-Base 5.6 / 52 10.56 2.8 / 52 5.28
Mistral-7B-v0.3-Base 3.5 / 52 6.78 2.6 / 52 4.90

Llama-3-8B 2 / 52 3.77 2 / 52 3.77

Gemma-2B-Instruct 1.8 / 52 3.39 1.4 / 52 2.64
Gemma-7B-Instruct 1.8 / 52 3.39 2.8 / 52 5.28

Qwen2-Math-7B-Instruct 5.4 / 52 10.19 4 / 52 7.54
DeepSeek-Math-7B-Instruct 4.2 / 52 7.92 2.4 / 52 4.52

Mistral-7B-Instruct-v0.3 1.2 / 52 2.26 2.4 / 52 4.52
Llama-3-8b Instruct 4 / 52 7.69 2 / 52 3.84

DeepSeek-Math-RL 5.6 / 52 10.56 4.4 / 52 8.29

Claude-3.5 Sonnet 14 / 52 26.40 10 / 52 18.86

GPT-4 7 / 52 13.20 5 / 52 9.43
GPT-4o 9 / 52 16.98 5 / 52 9.43

o1-preview 26 / 52 50.0 18 / 52 33.96

Table 3: Accuracy drops significantly on Putnam-AXIOM Variation compared to correspond-
ing Original questions for nearly all models. These are mean accuracies over five trials.
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A.3 PROXY METRIC CORRELATIONS WITH BOXED ACCURACY

We use the facebook/roscoe-512-roberta-base embedding model for the computation
of some of the ROSCOE metrics. Everything else is set to the default in the released code.

Metric A
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TFA 0.718 0.632 0.663 0.645 0.644 0.660 0.669 0.662
TFCE -0.486 -0.442 -0.458 -0.468 -0.501 -0.466 -0.505 -0.475
Perpelexity -0.413 -0.385 -0.390 -0.381 -0.441 -0.399 -0.416 -0.403
BPC -0.542 -0.519 -0.561 -0.507 -0.568 -0.558 -0.527 -0.540

Grammar Step 0.024 -0.007 -0.274 -0.112 -0.109 -0.204 -0.471 -0.165
Grammar Step Max -0.033 -0.088 -0.103 -0.045 -0.173 -0.134 -0.070 -0.092

Faithfulness 0.005 -0.116 -0.092 -0.159 -0.102 -0.036 -0.125 -0.089
Informativeness Step -0.146 -0.268 -0.183 -0.338 -0.268 -0.201 -0.315 -0.246
Informativeness Chain -0.494 -0.536 -0.486 -0.616 -0.550 -0.460 -0.542 -0.526
Repetition Step 0.006 -0.110 0.035 0.134 -0.248 0.014 0.224 0.008
Reasoning Alignment 0.176 0.078 0.109 0.054 0.050 0.108 0.135 0.102
External Hallucination -0.055 -0.131 -0.093 -0.168 -0.179 -0.111 -0.109 -0.121
Redundancy 0.035 -0.040 -0.035 -0.074 -0.118 -0.016 0.006 -0.035
Common Sense Error 0.324 0.489 0.347 0.289 0.456 0.425 0.248 0.368
Missing Step 0.168 0.334 0.243 0.105 0.298 0.163 0.030 0.192
Semantic Coverage Step -0.039 -0.163 -0.124 -0.228 -0.172 -0.111 -0.196 -0.148
Semantic Coverage Chain -0.450 -0.499 -0.437 -0.559 -0.523 -0.449 -0.486 -0.486

Discourse Representation -0.080 -0.086 -0.162 -0.115 -0.221 -0.142 -0.029 -0.119
Coherence Step vs Step -0.159 -0.232 -0.265 -0.165 -0.367 -0.210 -0.085 -0.212

Perplexity Step -0.644 -0.207 -0.252 -0.081 -0.314 -0.224 0.145 -0.225
Perplexity Chain 0.025 0.093 0.117 0.054 0.190 0.146 -0.029 0.085
Perplexity Step Max -0.256 -0.024 0.388 0.171 -0.107 0.182 0.323 0.097

Table 4: Correlations between proxy metrics and boxed accuracy on the MATH dataset. The
proxy metrics are split into five categories: teacher forcing based, grammar based, embedding based,
consistency based, and perplexity based. With the exception of the teacher forcing category, the
remaining categories are all ROSCOE metrics. We refer to the ROSCOE metrics by the names used
in the released code base, which differ slightly from those in the original paper. Notably, among
the ROSCOE metrics, only the Informativeness Chain and Semantic Coverage Chain appear to be
somewhat comparable across models. TFA performs the best with an average correlation around
0.67.
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A.4 MODEL ANALYSIS EXAMPLES

Problem: Let n be a positive integer. Determine, in terms of n, the largest integer m with
the following property: There exist real numbers x1, . . . , x2n with −1 < x1 < x2 < · · · <
x2n < 1 such that the sum of the lengths of the n intervals

[x2k−1
1 , x2k−1

2 ], [x2k−1
3 , x2k−1

4 ], . . . , [x2k−1
2n−1, x

2k−1
2n ]

is equal to 1 for all integers k with 1 ≤ k ≤ m.

Model’s Response: We are given n positive integers and need to determine the largest
integer m, in terms of n, such that there exist real numbers x1, x2, . . . , x2n satisfying:
1. The xi are strictly increasing between −1 and 1:

−1 < x1 < x2 < · · · < x2n < 1

2. For each integer k with 1 ≤ k ≤ m, the sum of the lengths of n intervals is equal to 1:
n∑

i=1

(
x2k−1
2i − x2k−1

2i−1

)
= 1

Our goal is to find the largest integer m (in terms of n) satisfying these conditions.

. . .

**General Case:** We have 2n variables and m equations.
- Each equation is independent due to the distinct exponents.
- To have a solution, we must have at least as many variables as equations.

- **Therefore, the maximum number m is bounded by 2n.**

- However, since we have 2n variables but they are constrained by the ordering and
the interval (−1, 1), the effective degrees of freedom are less than 2n.

*Conclusion:**

Given the constraints and the increasing number of equations with m, the largest in-
teger m for which the conditions can be satisfied is:

m = n

**Final Answer:**

The final answer is n . I hope it is correct.

Year: 2022 ID: A6 Final Answer: n

Figure 5: An example response where OpenAI o1-preview gets the final answer correct, but
made an unjustified claim. OpenAI o1-preview claims that the largest possible value for m is n.
However, its only justification for this claim is that m is bounded by 2n. OpenAI o1-preview does
not justify why a value of m between n and 2n cannot work.
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Problem: Find the least possible area of a convex set in the plane that intersects both
branches of the hyperbola xy = 1 and both branches of the hyperbola xy = −1. (A set S
in the plane is called convex if for any two points in S the line segment connecting them is
contained in S.)

Model’s Response: To find the least possible area of a convex set in the plane that
intersects both branches of the hyperbolas xy = 1 and xy = −1, we need to consider the
geometric constraints. Let’s start by visualizing these hyperbolas:

The hyperbola xy = 1 consists of two branches in the first and third quadrants:

y =
1

x
.

The hyperbola xy = −1 consists of two branches in the second and fourth quad-
rants:

y = − 1

x
.

We aim to place a convex set that intersects both branches of each hyperbola. One
useful geometric figure for this is a rectangle aligned along the hyperbolic axes. We can
guarantee that the rectangle will intersect both branches of xy = 1 and xy = −1 by making
its sides tangent to the hyperbolas.

. . .

The geometric configuration simplifies the calculation:
The minimum enclosing convex area tangency ideally is of square structure, yielding the
unit hyperbola intersection:

area = 4 (Since side 2 · 2 = 4formation in closed square).

This geometric construction ensures least, minimum convex interaction:

Final Answer: The final answer is 4 . I hope it is correct.

Year: 2007 ID: A2 Final Answer: 4

Figure 6: An example response where GPT-4o gets the final answer correct, but made an un-
justified logical step, resulting in a non-rigorous solution. OpenAI o1-preview logically jumps to
the idea that the geometric shape that minimizes the area is a rectangle. However, it does not attempt
to justify this claim in any way, and proceeds as though this is obvious.
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Problem: Given
11z10 + 10iz9 + 10iz − 11 = 0,

find the value of |z|. (Here z is a complex number and i2 = −1.)

Model’s Response: To solve the equation

11z10 + 10iz9 + 10iz − 11 = 0

and find the value of |z|, where z is a complex number, we’ll proceed step by step.

. . .

**Step 2: Assume |z| = 1**
Let’s assume that |z| = 1, which means z = eiθ for some real number θ.
*Step 3: Substitute z = eiθ into the Equation**
Substituting z = eiθ into the equation, we get:

11(eiθ)10 + 10i(eiθ)9 + 10ieiθ − 11 = 0

Simplify each term:
- (eiθ)10 = e10iθ

- (eiθ)9 = e9iθ

So the equation becomes:

11e10iθ + 10ie9iθ + 10ieiθ − 11 = 0

. . .

**Step 6: Analyze the Equations**
The trigonometric equations are complex and difficult to solve directly. However, notice that
if |z| = 1, then z = eiθ lies on the unit circle, and its magnitude is indeed 1.
Moreover, since we couldn’t find any specific θ that satisfies both equations simultaneously
(as shown by trying several angles), this suggests that no specific angle θ other than those
corresponding to |z| = 1 satisfy the equation.
**Conclusion:**
Since our manipulations suggest that |z| = 1 is necessary (and given the nature of complex
numbers and the unit circle), we conclude that:
*Final Answer:** The final answer is 1 . I hope it is correct.

Year: 1989 ID: A3 Final Answer: 1

Figure 7: An example response where GPT-4o make a logical leap and is completely incoherent.
In this solution, the model jumps to assume that |z| = 1 and performs a series of calculations. Then,
it concludes that the final answer is 1 simply because the equations it made were too “complex and
difficult” to solve.
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Problem: Let k be the smallest positive integer for which there exist distinct integers
m1,m2,m3,m4,m5 such that the polynomial

p(x) = (x−m1)(x−m2)(x−m3)(x−m4)(x−m5)

has exactly k nonzero coefficients. Find a set of integers m1,m2,m3,m4,m5 for which
this minimum k is achieved and given the sum k+m1 +m2 +m3 +m4 +m5 as the final
answer.

Model’s Response: The polynomial p(x) = (x−m1)(x−m2)(x−m3)(x−m4)(x−m5)
has exactly k nonzero coefficients when the values of mi are distinct integers. We want to
minimize k and find a set of values for mi that achieves this minimum.
The expansion of p(x) will include all possible products of the differences (x − mi). For
each term of the form (x−a), this generates a coefficient for that term, and this will happen
for each combination of i and j, including when i = j.
The minimum possible value for k can be calculated by considering the sparsity of nonzero
coefficients in the polynomial’s expansion. This is achieved when the polynomial is written
in the form that it eliminates as many terms as possible, leading to a minimal number of
nonzero coefficients.
For (x −m1)(x −m2)(x −m3)(x −m4)(x −m5), it can be achieved if the differences
(x − mi) produce terms that include maximal cancellation. The problem becomes one of
determining the minimal degree of the polynomial that includes maximal cancellation.
The key observation here is that the minimal nonzero coefficients are achieved when the
polynomial is arranged in such a way that most coefficients are zero due to symmetry and
cancellation properties.
The smallest positive integer k for such polynomials happens at k = 2, for instance,
(x− 1)(x− 2)(x− 3)(x− 4)(x− 5) results in a polynomial with precisely coefficients as
follows:

p(x) = x5 − (1 + 2 + 3 + 4 + 5)x4

+(sum of products of each combination of 2 distinct elements)x3 etc...

Since the polynomial in this problem demands exactly k nonzero coefficients, the product
of differences can lead to cancellations resulting in minimal terms.
Let’s consider the initial observation:

m1 = 1,m2 = 2,m3 = 3,m4 = 4,m5 = 5

The resulting polynomial, (x− 1)(x− 2)(x− 3)(x− 4)(x− 5)

Final answer: 15

Year: 1985 ID: B1 Final Answer: 3

Figure 8: An example response where NuminaMath makes a calculation error, includes irrele-
vant information, and misunderstands the problem. In this solution, we see that the final answer
is obtained by adding k+m1 +m2 +m3 +m4 +m5. In the model’s final solution, its value of k is
2, so its final answer should be 2 + 1 + 2 + 3 + 4 + 5 = 17, not 15; this is due a misunderstanding
of the problem and/or a calculation error. Furthermore, the model includes the expression of the
“resulting polynomial,” which is completely irrelevant to the problem it’s attempting to solve.
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Problem: If p(x) = a0 + a1x + · · · + amxm is a polynomial with real coefficients ai,
then set

Γ(p(x)) = a2
0 + a2

1 + · · ·+ a2
m.

Let f(x) = 3x2 + 7x+ 2. Find, with proof, a polynomial g(x) with real coefficients such
that

(i) g(0) = 1, and

(ii) Γ(f(x)n) = Γ(g(x)n)

for every integer n ≥ 1.

Model’s Response: We have that F (x) = 3x2 + 7x + 2 and thus Γ(F (x)) = 32 +
72 + 22 = 9 + 49 + 4 = 62. We want to find a polynomial g(x) such that g(0) = 1 and
Γ(F (x)n) = Γ(g(x)n) for every integer n ≥ 1. Suppose g(x) = x2 + bx + 1. Then
Γ(g(x)) = 1+ b2 +1 = b2 +2. If we can find a value for b such that b2 +2 = 62, then we
have Γ(g(x)n) = Γ(F (x)n). Solving b2 + 2 = 62 gives b2 = 60, so b =

√
60 = 2

√
15.

Therefore, we can take g(x) = x2 + 2
√
15x + 1. Since g(0) = 1, g(x) satisfies both

conditions.
Final Answer: The final answer is x2 + 2

√
15x+ 1 . I hope it is correct.

Year: 1985 ID: A6 Final Answer: 6x2 + 5x+ 1

Figure 9: An example response where Qwen2-Math-7B hallucinates and misunderstands the
problem. First, Qwen misunderstands that the polynomial is quadratic—which is not stated any-
where in the problem statement. Then, Qwen falsely states assumes that if Γ(g(x)) = Γ(f(x)), then
Γ(g(x)n) = Γ(f(x))n for all n. These mistakes lead Qwen to the wrong solution.
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Problem: Let x0 = 1 and for n ≥ 0, let xn+1 = 3xn + ⌊xn

√
5⌋. In particular, x1 = 5,

x2 = 26, x3 = 136, x4 = 712. Find a closed-form expression for x2007. (⌊a⌋ means the
largest integer ≤ a.)

Model’s Response:

xn+1 = 3xn + ⌊xn

√
5⌋

= 3xn + ⌊xn(
√
5− 2) + 2xn⌋

= 3xn + xn(
√
5− 2) + 2xn

= 5xn + xn(
√
5− 2)

= xn(2 +
√
5).

If we let yn = xn(2 +
√
5), then xn = yn/(2 +

√
5), so

yn+1 = yn · 2 +
√
5

2 +
√
5
= yn.

Thus, yn = y0 for all n ≥ 1, so

xn =
y0

2 +
√
5
=

1

2 +
√
5
=

2−
√
5

(−2 +
√
5)(2 +

√
5)

=
2−

√
5

5− 2
= 2−

√
5.

Final Answer: The final answer is 2−
√
5 . I hope it is correct.

Year: 2007 ID: A5 Final Answer: 22006√
5

((
1+

√
5

2

)3997

−
(

1+
√
5

2

)−3997
)

Figure 10: An example response where DeepSeek-Math-7B-RL makes an incorrect logical
jump. In the series of equalities in the beginning, DeepSeek simply removes the floor function and
proceeds. However, the floor function is an integral part of the problem, and without it, DeepSeek is
unable to come to the right solution.
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Figure 11: Putnam-AXIOM vs Putnam-AXIOM with only complex questions

A.5 BINARY AND COMPLEX QUESTIONS

Several questions in Putnam-AXIOM are binary, meaning that the question inherently has two pos-
sible answers. These include true/false questions, questions about divergence or convergence, or
questions about the winner of a two-player game. These questions make up 26 of the 262 question
in Putnam-AXIOM Original; of the 60 questions of Putnam-AXIOM Variation, binary questions
make up 8. We refer to all questions that are not binary as “complex” questions.

Given the guessable nature of these questions and our answer-matching evaluation method, models
have a much higher chance of randomly guessing the right answer on these questions. To dis-
cern whether the inclusion of these guessable questions significantly affects the overall difficulty of
Putnam-AXIOM, we conducted an analysis of the accuracy of various models with and without the
binary questions, with the overall accuracies in Figure 11.

We see that, with the exception of Qwen2 Math 7B, almost all models have a higher accuracy on
Putnam-AXIOM with its binary questions than without, meaning that guessing is contributing to
their success to some extent. However, we see that on the more advanced models—Qwen2 Math
7B, GPT 4, and Claude Sonnet 3.5—the gap between the accuracies on the entire dataset and the
accuracies on only complex questions is much smaller. This is likely because these models are ca-
pable enough that they successfully answer a similar percentage of complex questions and binary
questions; less advanced models get significantly fewer complex questions correct than binary ques-
tions, so we see a large accuracy gap. Based on the results of this experiment, we’ve decided to use
only the complex questions for most of our evaluations such as in Figure 3.
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