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ABSTRACT

Traditional machine learning and statistical modeling methodologies are rooted
in a fundamental assumption: that both training and test data originate from the
same underlying distribution. However, the practical reality often presents a chal-
lenge, as training and test distributions frequently manifest discrepancies or bi-
ases. In this work, we study covariate shift, a type of distribution mismatches,
in the context of deep nonparametric regression. We thus formulate a two-stage
pre-training reweighted framework relying on deep ReLU neural networks. We
rigorously establish convergence rates for the unweighted, reweighted, and pre-
training reweighted estimators, illuminating the pivotal role played by the density-
ratio reweighting strategy. Additionally, our analysis illustrates the efficacy of pre-
training and provides valuable insights for practitioners, offering guidance for the
judicious selection of the number of pre-training samples.

1 INTRODUCTION

Covariate shift (Quinoñero-Candela et al., 2009; Sugiyama & Kawanabe, 2012), a pervasive phe-
nomenon within the domains of machine learning and statistical modeling, bears notable relevance
across diverse domains, including computer vision, natural language processing, and medical im-
age analysis, among others. It distinguishes itself from conventional machine learning and statistical
modeling paradigms, where the traditional assumption posits that both training and testing data orig-
inate from the same underlying distribution. However, covariate shift manifests during the modeling
process when the distribution of training data significantly deviates from that of the testing data. In
simpler terms, covariate shift represents a scenario wherein the statistical properties of the data un-
dergo substantial changes between the training and testing phases of a machine learning or statistical
model. This phenomenon often leads to a deterioration in the model’s generalization capability, as
the model has primarily learned patterns from one distribution but is then tasked with making predic-
tions on a distinctly different distribution. Consequently, many researchers have proposed an array
of methods to address this intricate issue, seeking to mitigate the adverse effects of covariate shift
on model performance. In the work of Kuang et al. (2021), a balanced-subsampled stable prediction
algorithm is proposed, which is based on the fractional factorial design strategy. This algorithm is
designed to address covariate balancing and ensure stable predictions. Duchi & Namkoong (2021)
presented a distributionally robust stochastic optimization framework aimed at mitigating distribu-
tion shifts. It leverages the concept of f -divergence (Csiszár, 1967) to quantify the magnitude of
distribution shift from the training distribution. Subsequently, the framework is implemented by in-
corporating the empirical distribution plug-in methodology. Krueger et al. (2021) introduced the risk
extrapolation method, which performs as a form of robust optimization applied across a perturba-
tion set that encompasses extrapolated domains. Additionally, they have devised a penalty function
to tackle the variance in training risks, providing a simplified alternative. Dubois et al. (2021) ex-
plored covariate shift by focusing on the acquisition of optimal representations, ensuring that source
risk minimizers generalize effectively across distributional shifts. It is paramount to underscore
that density-ratio reweighting, referred to as importance weighting (Shimodaira, 2000; Huang et al.,
2006; Sugiyama & Storkey, 2006; Sugiyama et al., 2007a;b; Bickel et al., 2007; Sugiyama et al.,
2008; Bickel et al., 2009; Kanamori et al., 2009; Fang et al., 2020), emerges as a primary approach
for addressing the intricacies of covariate shift. Some researchers have conducted extensive error
analysis related to ratio-reweighting, as documented in the works of Cortes et al. (2008; 2010); Xu
et al. (2022). Recently, Ma et al. (2023) has explored the covariate shift problem within the frame-
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work of nonparametric regression over a reproducing kernel Hilbert space (RKHS), and endeavored
to provide some theoretical insights. In these studies, the authors assume prior knowledge of the
test distribution and directly employ the exact density ratio for the theoretical analysis. However,
in practical scenarios, the precise density ratio is often unattainable. In this paper, we propose a
pre-training strategy to initially estimate the density ratio using unlabeled data from both the source
and target distributions, followed by the derivation of the pre-training reweighted estimator. Fur-
thermore, covariate shift is also closely intertwined with out-of-distribution generalization, transfer
learning, domain adaptation, and stable learning. However, due to space constraints, we reserve this
discussion for Appendix A.

In comparison to RKHS, deep neural networks (DNNs) also stand out as a formidable technique
employed within machine learning and statistics. The capabilities of DNNs extend far beyond their
superficial appearance, encompassing a wide spectrum of applications and possibilities (Goodfellow
et al., 2016). Recently, DNNs have catalyzed a surge of interest in the field of deep nonparametric
regression, wherein these neural networks are harnessed to approximate underlying regression func-
tions within the context of nonparametric regression (Stone, 1982; Gyorfi et al., 2002; Tsybakov,
2009). Numerous studies have contributed to our understanding of deep nonparametric regression.
Remarkable works by Bauer & Kohler (2019); Schmidt-Hieber (2020); Nakada & Imaizumi (2020);
Kohler & Langer (2021); Farrell et al. (2021); Chen et al. (2022); Kohler et al. (2022); Nakada &
Imaizumi (2022); Jiao et al. (2023), and others have illuminated various facets of this burgeoning
field, elucidating intricate theoretical properties and unveiling innovative methodologies. However,
it is noteworthy that existing literature has thus far overlooked the covariate shift phenomenon in-
herent in deep nonparametric regression. Building upon this research trajectory, our investigation
embarks on a meticulous exploration of the covariate shift phenomenon in nonparametric regression
utilizing DNNs. To the best of our knowledge, this work conducts the first effort to uncover and pro-
vide robust theoretical guarantees pertaining to the covariate shift phenomenon within the context
of deep nonparametric regression.

1.1 CONTRIBUTIONS

Covariate shift poses a significant challenge in practical applications. One effective strategy for
mitigating the impact of covariate shift involves the utilization of a ratio-reweighted approach within
the context of nonparametric regression. However, it is important to note that in practical scenarios,
the precise density ratio is often unattainable, leaving us with access to only unlabeled data from
both the source and target distributions. To address this challenge, we propose a two-stage neural
network-based methodology tailored to this specific scenario. In the initial pre-training stage, we
leverage unlabeled data from both the source and target distributions to estimate the density ratio
through deep logistic regression. Subsequently, we seamlessly integrate a ratio-reweighted strategy
into the framework of deep nonparametric regression, relying exclusively on labeled data originating
from the source distribution. To underpin the effectiveness and robustness of our approach, we
provide a comprehensive error analysis encompassing unweighted, reweighted, and pre-training-
reweighted estimators. In summary, the main contributions of this study can be outlined as follows.

(i) We present oracle inequalities for unweighted, reweighted, and pre-training-reweighted esti-
mators. These inequalities are derived through a decomposition of the excess risk into two
terms: approximation error and generalization error (statistical error). Additionally, the es-
tablished generalization error bounds exhibit fast rates O(1/n), demonstrating a substantial
enhancement over the slow rate O(1/

√
n) originally posited by Cortes et al. (2008; 2010).

(ii) By strategically balancing these two terms, we establish convergence rates for the aforemen-
tioned estimators. These obtained convergence rates are with respect to the boundedness of the
density ratio and the sample size, which explicitly account for the impact of the shift between
source and target distributions. To the best of our knowledge, we are the first to elucidate the
convergence rates of deep nonparametric regression in the presence of covariate shift. More-
over, comparing these rates between unweighted and reweighted estimators provides strong
evidence of the benefits of ratio reweighting.

(iii) The convergence rates of the pre-training-reweighted estimator reflect the combined influence
of the number of unlabeled samples utilized in the pre-training phase and the number of labeled
samples employed in subsequent deep nonparametric regression, where the rates of the density
ratio estimator attain minimax optimal rates. These theoretical results provide valuable insights
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for determining not only the sample size for nonparametric regression, but also the sample size
required for the pre-training procedure.

1.2 MAIN RESULTS

In this section, we expound upon the primary findings of this paper, specifically, the convergence
rates pertaining to the unweighted estimator, reweighted estimator, and pre-training reweighted es-
timator within the context of the target distribution.

Estimator Definition Extra Information Convergence Rates

Unweighted estimator (2.3) None O(Λn
− 2β

d+2β ) Theorem 3.4

Reweighted estimator (2.5) Density ratio O(Λ
2β

d+2β n
− 2β

d+2β ) Theorem 3.8

Pre-training reweighted estimator (2.9)(2.10) Unlabeled data O(Λ
2β

d+2β n
− 2β

d+2β ) + O(m
− α

d+2α ) Theorem 3.13

1.3 PRELIMINARIES AND NOTATIONS

In this section, we introduce the notations utilized throughout this paper and subsequently present
the definition of ReLU DNNs.

Let P be a joint distribution over X × Y . Denote by PX the marginal distribution of X and PY |X
the conditional distribution of Y given X . By a similar argument, we can define the marginal distri-
bution QX and conditional distribution QY |X for some joint distribution Q. Then by the definition
it holds that P (X,Y ) = PY |X(Y |X)PX(X) and Q(X,Y ) = QY |X(Y |X)QX(X). Denote by
L (X ) the set of measurable functions on X .
Definition 1.1 (ReLU DNNs). A neural network ψ : RN0 → RNL+1 is a function defined by

ψ(x) = TL(ϕ(TL−1(· · ·ϕ(T0(x)) · · · ))),
where the ReLU activation function ϕ(x) := max{0, x} is applied component-wisely and Tℓ(x) :=
Aℓx + bℓ is an affine transformation with Aℓ ∈ RNℓ+1×Nℓ and bℓ ∈ RNℓ for ℓ = 0, . . . , L. In
this paper, we consider the case N0 = d and NL+1 = 1. The numbers W := max{N1, . . . , NL}
and L are called the width and the depth of neural networks, respectively. Additionally, S :=∑L
ℓ=0NℓNℓ+1 ≤ LW 2 is called the number of parameters of the neural network. We denote by

N (W,L) the set of functions implemented by ReLU neural networks with width at most W and
depth at most L.

1.4 ORGANIZATION

The remainder of this manuscript is structured as follows. Section 2 provides a comprehensive
exposition of the formulation of the two-stage pre-training-reweighted algorithm. It involves in
deriving three distinct estimators: the unweighted estimator, the reweighted estimator, and the pre-
training reweighted estimator. Section 3 furnishes the convergence analysis of these estimators,
elucidating their respective rates. Section 4 summarizes the conclusions of this work. Appendix A
presents a review of related work. Appendices B to E provides comprehensive technical proofs for
all the lemmas and theorems presented in this paper.

2 PROBLEM FORMULATION

Let X ⊆ [0, 1]d (d ≥ 1) be the feature space and Y ⊆ R be the response space. Consider the
following nonparametric regression model

Y = f0(X) + ξ. (2.1)

Here, the response variable Y ∈ Y is associated with the covariate X ∈ X . The underlying re-
gression function is defined as f0 : X → R. Furthermore, ξ represents a random noise term that is
independent of X and satisfies the condition E[ξ] = 0. It is obvious that f0(x) = E[Y |X = x] for
each x ∈ X . In particular, our analysis focus on cases where the noise term ξ exhibits sub-Gaussian
characteristics shown in the following assumption.

3



Under review as a conference paper at ICLR 2024

Assumption 1 (Sub-Gaussian noise). The noise ξ in (2.1) is a sub-Gaussian random variable with
mean 0 and finite variance proxy σ2, that is, its moment generating function satisfies

E[exp(aξ)] ≤ exp

(
σ2a2

2

)
, ∀ a ∈ R.

In the context of nonparametric regression, our focus centers on the observation of n independent
and identically distributed (i.i.d.) random pairs denoted as D := {(XP

i , Y
P
i )}ni=1. These pairs are

drawn from a training distribution P defined over X × Y . Specifically, {XP
i }ni=1 are sampled from

PX , and the conditional probability PY |X is determined in accordance with (2.1). We introduce
another distribution Q as the test distribution over X × Y . More precisely, the covariates of test
samples are derived from QX , and the corresponding responses are also generated following the
model (2.1), implying QY |X = PY |X .

Within this context, PX is referred to as the source distribution for covariates, while QX serves as
the target distribution for covariates. In practical scenarios, it is common for the target distribution
QX , on which a model is deployed, to exhibit divergence from the source distribution PX . This
phenomenon is commonly referred to as covariate shifts, and it can be attributed to various factors,
including temporal or spatial data evolution or inherent biases introduced during the data collection
process.

Our primary objective revolves around the development of an estimator denoted as f̂ , which is
constructed based on the observed data. This estimator is carefully designed with the primary aim
of minimizing the L2(QX)-risk, as defined below:

∥f̂ − f0∥2L2(QX) = EX∼QX

[
(f̂(X)− f0(X))2

]
=

∫
X
(f̂(x)− f0(x))

2qX(x)dx, (2.2)

where qX represents the probability density function associated with QX . In essence, our goal is
to minimize this risk, which quantifies the expected squared difference between the estimator f̂ and
the underlying regression function f0 over the distribution QX .

2.1 UNWEIGHTED ESTIMATORS

When confronted with a situation where information about the target distribution is unavailable, a
natural approach for constructing an estimator is to directly minimize the unweighted empirical risk
over a hypothesis class F , representing a set of measurable functions. This estimator, denoted as
f̂D, is determined as follows:

f̂D ∈ argmin
f∈F

L̂D(f) :=
1

n

n∑
i=1

(f(XP
i )− Y Pi )2. (2.3)

It is important to note that L̂D(f) serves as a sample average approximation to the unweighted
population risk L(f), expressed as:

L(f) := E(XP ,Y P )∼P
[
(f(XP )− Y P )2

]
.

According to (2.1), it is straightforward to verify that L(f̂D) = ∥f̂D−f0∥2L2(PX)+σ
2, which means

that the minimizer of the unweighted population risk concurrently minimizes the L2(PX)-risk, as
opposed to L2(QX)-risk defined in (2.2).

2.2 REWEIGHTED ESTIMATORS

When we have knowledge of the target distribution, a direct approach is available for minimizing
the population risk with the exact weight. To facilitate this, we introduce the concept of the density
ratio, as defined for the target distribution QX and the source distribution PX . We denote by pX
the probability density function of PX , then this density ratio, denoted as ϱ(x) := qX(x)/pX(x),
is also referred to as the importance weight (Cortes et al., 2010). It is worth noting that the density
ratio ϱ(·) measures the discrepancy between QX and PX . In this work, we specifically consider the
scenario where the density ratio is uniformly upper-bounded, a condition we formalize as follows:
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Assumption 2 (Uniformly upper-bounded density ratio). The density ratio ϱ has a finite upper
bound, that is, Λ := supx∈X ϱ(x) <∞.

With the exact density ratio ϱ at our disposal, our objective turns to minimizing the population
reweighted risk, defined as:

Lϱ(f) := E(XP ,Y P )∼P
[
ϱ(XP )(f(XP )− Y P )2

]
. (2.4)

Minimizing this population reweighted risk is equivalent to minimizing the L2(QX)-risk, that is,
Lϱ(f) = LQ(f). A commonly employed approach to achieve this is through empirical reweighted
risk minimization within a hypothesis class F , resulting in the following estimator:

f̂ϱ,D ∈ argmin
f∈F

L̂ϱ,D(f) :=
1

n

n∑
i=1

ϱ(XP
i )(f(X

P
i )− Y Pi )2. (2.5)

This approach leverages the density ratio ϱ to reweight the contributions of individual samples in the
empirical risk minimization, effectively adapting the learning process to account for the covariate
shift.

2.3 PRE-TRAINING REWEIGHTED ESTIMATORS

However, the accessibility of precise density ratio functions frequently confronts inherent limitations
in practical applications. Nonetheless, it is pertinent to note that a pragmatic solution presents itself
in the form of deriving estimations for these density ratio functions. This can be achieved through
the utilization of unlabeled data from both the source and target distributions. The methodology
underpinning this estimation process aligns with the well-defined principles expounded upon in the
following lemma.
Lemma 2.1. Let pX and qX be two probability density functions on X . Then the density ratio ϱ is
given by ϱ(x) = qX(x)/pX(x) = exp(−u∗(x)), where the function u∗ satisfies

u∗ = argmin
u∈L (X )

{
EX∼PX

[
log(1 + exp(−u(X)))

]
+ EX∼QX

[
log(1 + exp(u(X)))

]}
. (2.6)

Remark 2.2 (Pseudo-labels). Let XP and XQ be random variables distributed from PX and QX ,
respectively. We assign a pseudo-label ZP = +1 for XP and ZQ = −1 for XQ, and construct a
random variable pair (Xµ, Zµ) by{

Xµ = σXP + (1− σ)XQ,

Zµ = σZP + (1− σ)ZQ,
(2.7)

where σ is a random variable satisfying Pr(σ = 1) = Pr(σ = 0) = 1/2 and is independent of
XP , ZP , XQ, ZQ. We denote by µ the joint distribution of (Xµ, Zµ) in (2.7), then the population
logistic risk can be given by Llogit(u) = E(Xµ,Zµ)∼µ[log(1 + exp(−Zµu(Xµ)))], which is the
objective function in (2.6).

As shown in Lemma 2.1, we define the population pre-training risk as

Lpre(u) = EXP∼PX

[
log(1 + exp(−u(XP )))

]
+ EXQ∼QX

[
log(1 + exp(u(XQ)))

]
.

Let SP := {XP
i }mi=1 and SQ := {XQ

i }mi=1 represent the collections of unlabeled samples originating
from PX and QX , respectively. We proceed by assigning pseudo-labels ZPi = +1 for XP

i and
ZQi = −1 forXQ

i . Accordingly, we can construct a pseudo-labeled sample set S := {(Xµ
i , Z

µ
i )}mi=1

following the expressions: {
Xµ
i = σiX

P
i + (1− σi)X

Q
i ,

Zµi = σiZ
P
i + (1− σi)Z

Q
i ,

(2.8)

where {σi}mi=1 are random variables satisfying Pr(σi = 1) = Pr(σi = 0) = 1/2. Consequently,
the empirical pre-training risk L̂pre

S (·) is formulated as:

L̂pre
S (u) :=

1

m

m∑
i=1

log(1 + exp(−Zµi u(X
µ
i ))).
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It is straightforward to verify that ESL̂
pre
S (u) = Lpre(u) for each fixed u ∈ L (X ). Subsequently,

the minimization of the empirical pre-training risk L̂pre
S (·) within a given hypothesis class U yields

the following density ratio estimator:

ϱ̂S = exp(−ûS), where ûS ∈ argmin
u∈U

L̂pre
S (u). (2.9)

By substituting the weight function ϱ in (2.4) and (2.5) with ϱ̂S, we derive the population pre-
training-reweighted risk, defined as follows:

Lϱ̂S(f) := E(XP ,Y P )∼P
[
ϱ̂S(X

P )(f(XP )− Y P )2
]
.

Then, the pre-training-reweighted estimator is formulated as follows:

f̂ϱ̂S,D ∈ argmin
f∈F

L̂ϱ̂S,D(f) =
1

n

n∑
i=1

ϱ̂S(X
P
i )(f(X

P
i )− Y Pi )2. (2.10)

We notice that in the first stage, S = {(Xµ
i , Z

µ
i )}mi=1, is independent of the second stage data,

D = {(XP
i , Y

P
i )}ni=1. This independence between the two stages is noteworthy.

In summary, we present the pre-training-reweighted algorithm designed for regression tasks under
the influence of covariate shift, as outlined in Algorithm 1.

Algorithm 1 Two-stage life-cycle of pre-training-reweighted regression under covariate shift.
Input: Unlabeled data for pre-training

- SP = {XP
i }mi=1: Unlabeled data sampled from the source distribution PX .

- SQ = {XQ
i }mi=1: Unlabeled data sampled from the target distribution QX .

1: Pre-training: Estimate density ratio.
2: Construct pseudo-labeled sample set S = {(Xµ

i , Z
µ
i )}mi=1 by (2.8).

3: Minimize the empirical logistic risk based on S:

ûS ∈ argmin
u∈U

1

m

m∑
i=1

log(1 + exp(−Zµi u(X
µ
i ))).

Output: The density ratio estimator ϱ̂S = exp(−ûS).
Input: The density ratio estimator ϱ̂S and labeled data D = {(XP

i , Y
P
i )}ni=1 sampled from P .

4: Reweighted regression.
5: Minimize the empirical pre-training-reweighted risk based on D:

f̂ϱ̂S,D ∈ argmin
f∈F

1

n

n∑
i=1

ϱ̂S(X
P
i )(f(X

P
i )− Y Pi )2.

Output: The pre-training-reweighted estimator f̂ϱ̂S,D.

This algorithm is structured into two stages, each serving a crucial role in mitigating the challenges
posed by covariate shift. The first stage, denoted as the unsupervised pre-training stage, involves
the generation of pseudo-labels {Zµi }mi=1 for unlabeled data {Xµ

i }mi=1, as per the methodology de-
tailed in (2.8). Additionally, in this stage, we estimate the density ratio ϱ by employing logistic
regression on the unlabeled data augmented with these pseudo-labels. In the second stage, the su-
pervised phase, we employ the pre-trained density ratio ϱ̂S in conjunction with the labeled dataset
D = {(XP

i , Y
P
i )}ni=1 to estimate the underlying regression function f0. This multi-stage approach

encapsulates the essence of the pre-training-reweighted algorithm, which strategically combines un-
supervised and supervised learning paradigms to address the challenges posed by covariate shift in
regression tasks.

3 CONVERGENCE ANALYSIS

Up to now, we have introduced three estimators: unweighted estimator (2.3), reweighted estimator
(2.5), and pre-training-reweighted estimator (2.10). Our objective in this section is to demystify the
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advantage of ratio-reweighting and pre-training in deep nonparametric regression under covariate
shift. To accomplish this, we will rigorously analyze the performance of these three estimators by
addressing the following fundamental questions:

What are convergence rates of three estimators (2.3), (2.5) and (2.10) in the pres-
ence of covariate shift? How do these convergence rates depend on the discrep-
ancy between the source and target distribution?

Technically, the convergence analysis can be dissected into two fundamental components: the sta-
tistical error and the approximation error. Deep approximation theory has played a pivotal role in
elucidating the capabilities of neural networks in approximating smooth functions. A comprehen-
sive body of work, encompassing studies by Yarotsky (2018); Yarotsky & Zhevnerchuk (2020);
Shen et al. (2019); Shen (2020); Lu et al. (2021); Petersen & Voigtlaender (2018); Jiao et al. (2023),
has established the theoretical foundations for understanding the approximation capabilities of deep
neural networks. These theoretical contributions have provided insights into the capacity of neu-
ral networks to represent complex functions effectively. To bound the statistical error, researchers
have harnessed the tools of empirical process theory. The works of Van Der Vaart & Wellner (1996);
Van de Geer & van de Geer (2000); Van der Vaart (2000); Bartlett et al. (2005); Giné & Nickl (2021)
have been instrumental in this regard. These tools allow for the quantification of statistical errors
in terms of the complexity of a hypothesis class, often measured using concepts like the covering
number or VC-dimension.

To facilitate our discussion, let us first introduce key findings from the approximation results
(Lemma 3.1) presented in Jiao et al. (2023) and delve into the VC-dimension analysis of ReLU
neural networks (Lemma 3.2), as explored in Bartlett et al. (2019), and introduce some assumptions
(Assumptions 3 and 4). Subsequently, we proceed the convergence rates of these three estimators,
as outlined in Sections 3.1 to 3.3. This comprehensive exploration aims to shed light on the intricate
dynamics of these estimators in the context of covariate shift, offering valuable insights into their
performance and utility.
Lemma 3.1 (Jiao et al. (2023, Theorem 3.3)). Let X ⊆ [0, 1]d and B > 0. Let β = s + r with
s ∈ N and r ∈ (0, 1]. Assume that µX is absolutely continuous with respect to the Lebesgue
measure. For each U,N ∈ N+, there exists a ReLU neural network class N (W,L) with width
W = O((s+ 1)2ds+1U logU) and depth L = O((s+ 1)2N logN) such that

sup
f∈Hβ(X ;B)

inf
ψ∈N (W,L)

∥f − ψ∥2L2(µX) ≤ cB2(s+ 1)4d2s+β∨1(UN)−4β/d,

where c is an absolute constant.
Lemma 3.2 (Bartlett et al. (2019, Theorem 7)). For each W,L ∈ N+, the VC-dimension of a ReLU
neural network N (W,L) with width W and depth L is given by

VCdim(N (W,L)) ≤ cW 2L2 log(WL),

where c is an absolute constant.
Assumption 3. The regression function f0 and functions in hypothesis class F are bounded, that is,
there exists some positive constant B such that {f0} ∪ F ⊆ {f : ∥f∥L∞(X ) ≤ B}.

Assumption 4. The regression function f0 is Hölder continuous, that is, f0 ∈ Hβ(X ) for some
β > 0.

3.1 UNWEIGHTED ESTIMATORS

Lemma 3.3 (Oracle inequality of unweighted estimator). Suppose that Assumptions 1 to 3 hold. Let
D = {(XP

i , Y
P
i )}ni=1 be an i.i.d. sample set drawn from P . Suppose that F is a hypothesis class

and f̂D ∈ F is defined by (2.3). Then the following inequality holds for n ≥ VCdim(F),

ED∼Pn

[
∥f̂D − f0∥2L2(QX)

]
≲ Λ inf

f∈F
∥f − f0∥2L2(PX) + Λ(B2 + σ2)VCdim(F)

log(en)

n
.

Theorem 3.4 (Convergence rates of unweighted estimator). Suppose that Assumptions 1 to 4
hold. Assume that PX is absolutely continuous with respect to the Lebesgue measure. Let
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D = {(XP
i , Y

P
i )}ni=1 be an i.i.d. sample set drawn from P . Set the hypothesis class F as

F = N (WF , LF ) with width WF = O(UF logUF ) and depth LF = O(NF logNF ) satisfy-
ing UFNF = O(n

d
2d+4β ). Suppose f̂D ∈ F is defined by (2.3). Then the following inequality

holds
ED∼Pn

[
∥f̂D − f0∥2L2(QX)

]
≤ O

(
Λn−

2β
d+2β (log n)2

)
.

Remark 3.5 (Consistency). In Theorem 3.4, the convergence rate is determined as O(Λn−
2β

d+2β ),
which demonstrates that the prediction error of the unweighted estimator f̂D is consistent in the
sense that E∥f̂D − f0∥2L2(QX) → 0 as n→ ∞, regardless the L∞-norm bound Λ of density-ratio.
Remark 3.6. According to the definition of the density ratio, when Λ = 1, the scenario simplifies to
the standard nonparametric regression. Then, the rate O(n−

2β
d+2β ) aligns with the minimax optimal

rate within the framework of nonparametric regression, as established in Stone (1982); Gyorfi et al.
(2002); Tsybakov (2009). Additionally, our theoretical findings correspond to those in deep non-
parametric regression (Schmidt-Hieber, 2020; Kohler & Langer, 2021; Jiao et al., 2023). It is worth
noting that our approach differs from the aforementioned literature in terms of the proof methodol-
ogy employed in statistical error analysis. Specifically, we derive the statistical error primarily based
on the offset Rademacher complexity (Liang et al., 2015). For a comprehensive elucidation of our
methodology and detailed insights, please refer to Appendices C and D.

3.2 REWEIGHTED ESTIMATORS

Lemma 3.7 (Oracle inequality of exact-reweighted estimator). Suppose that Assumptions 1 to 3
hold. Let D = {(XP

i , Y
P
i )}ni=1 be an i.i.d. sample set drawn from P . Suppose that F is a hypothesis

class and f̂ϱ,D ∈ F is defined by (2.5). Then the following inequality holds for n ≥ VCdim(F),

ED∼Pn

[
∥f̂ϱ,D − f0∥2L2(QX)

]
≲ inf
f∈F

∥f − f0∥2L2(QX) + (ΛB2 + σ2)VCdim(F)
log(eΛn)

n
.

Theorem 3.8 (Convergence rates of exact-reweighted estimator). Suppose that Assumptions 1
to 4 hold. Assume that QX is absolutely continuous with respect to the Lebesgue measure. Let
D = {(XP

i , Y
P
i )}ni=1 be an i.i.d. sample set drawn from P . Set the hypothesis class F as

F = N (WF , LF ) with width WF = O(U logU) and depth LF = O(N logN) satisfying
UFNF = O(Λ− d

2d+4β n
d

2d+4β ). Suppose f̂ϱ,D ∈ F is defined by (2.5). Then the following in-
equality holds

ED∼Pn

[
∥f̂ϱ,D − f0∥2L2(QX)

]
≤ O

(
Λ

2β
d+2β (log Λ)n−

2β
d+2β (log n)2

)
.

Remark 3.9. The rate O(Λ
2β

d+2β n−
2β

d+2β ) of the reweighted estimator derived in Theorem 3.8 is
much tighter than that O(Λn−

2β
d+2β ) of the unweighted estimator in Theorem 3.4, which shows a

theoretical advantage of the density-ratio reweighting strategy in nonparametric regression under
covariate shift.

3.3 PRE-TRAINING REWEIGHTED ESTIMATORS

In this section, we expound upon the cornerstone findings of this paper, focusing on the convergence
rate analysis of the pre-training reweighted estimator. This analysis extends beyond the results of the
two previous estimators, which makes it distinct from both. Consequently, additional assumptions
are introduced, as outlined below (refer to Assumptions 5 to 7). Specifically, one of the most crucial
steps involves obtaining density ratio estimator, which are derived from deep nonparametric logistic
regression, as detailed in Lemma 3.11. Subsequently, we can ascertain the convergence rate of the
pre-training reweighted estimator.
Assumption 5 (Uniformly lower-bounded density ratio). The density ratio ϱ has a positive lower
bound, that is, λ := infx∈X ϱ(x) > 0.
Assumption 6. The log of the density ratio ϱ is Hölder continuous, that is, log ϱ ∈ Hα(X ) for some
α > 0.
Assumption 7. For each u ∈ U , the inequality log(1/Λ) ≤ u(x) ≤ log(1/λ) holds for each x ∈ X .
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Lemma 3.10 (Oracle inequality of pre-training-reweighted estimator). Suppose Assumptions 1 to 3,
5 and 7 hold. Let S = {(Xµ

i , Z
µ
i )}mi=1 and D = {(XP

i , Y
P
i )}ni=1 be two i.i.d. sample sets drawn

from µ and P , respectively. Suppose that U is a hypothesis class and ûS ∈ U is defined by (2.9),
and suppose that F is a hypothesis class and f̂ϱ̂S,D ∈ F is defined by (2.10). Then the following
inequality holds for m ≥ VCdim(U) and n ≥ VCdim(F),

ES∼µmED∼Pn

[
∥f̂ϱ̂S,D − f0∥2L2(QX)

]
≲ B2ES∼µm

[
∥ϱ̂S − ϱ∥L2(PX)

]
+ inf
f∈F

∥f − f0∥2L2(QX) + (ΛB2 + σ2)VCdim(F)
log(eΛn)

n
.

Lemma 3.11 (Convergence rates of density-ratio estimator). Suppose that Assumptions 2 and 5 to 7
hold. Assume that PX and QX are absolutely continuous with respect to the Lebesgue measure.
Let S = {(Xµ

i , Z
µ
i )}mi=1 be an i.i.d. sample set drawn from µ. Set the hypothesis class U as

U = N (WU , LU ) with width WU = O(UU logUU ) and depth LU = O(NU logNU ) satisfying
UUNU = O(n

d
2d+4α ). Given ûS ∈ U defined in (2.9), then the following inequality holds

ES∼µm

[
∥ϱ̂S − ϱ∥2L2(PX)

]
≤ O

(
m− 2α

d+2α (logm)2
)
.

Remark 3.12. In Lemma 3.11, we derive the convergence rate of the density-ratio estimator, which is
given by O(m− 2α

d+2α ), with a logarithmic term omitted. The derivation of this error bound is mainly
facilitated through the utilization of local complexity techniques (Bartlett et al., 2005), enabling it to
achieve the minimax optimal rate.

In view of Theorem 3.8 and Lemmas 3.10 and 3.11, we archive the following rates of convergence
of pre-training reweighted estimator.
Theorem 3.13 (Convergence rates of pre-training-reweighted estimator). Suppose Assumptions 1
to 7 hold. Assume that PX andQX are absolutely continuous with respect to the Lebesgue measure.
Let S = {(Xµ

i , Z
µ
i )}mi=1 and D = {(XP

i , Y
P
i )}ni=1 be two i.i.d. sample sets drawn from µ and

P , respectively. Set the hypothesis class U as U = N (WU , LU ) with width WU = O(UU logUU )

and depth LU = O(NU logNU ) satisfying UUNU = O(n
d

2d+4α ). Further, set the hypothesis class
F as F = N (WF , LF ) with width WF = O(U logU) and depth LF = O(N logN) satisfying
UFNF = O(Λ− d

2d+4β n
d

2d+4β ). Given ûS ∈ U defined in (2.9) and f̂ϱ̂S,D ∈ F defined in (2.10),
then the following inequality holds

ES∼µmED∼Pn

[
∥f̂ϱ̂S,D−f0∥2L2(QX)

]
≤ O

(
Λ

2β
d+2β (log Λ)n−

2β
d+2β (log n)2

)
+O

(
m− α

d+2α logm
)
.

If the pre-training sample size m satisfies m ≥ O(Λ− 2β
d+2β

d+2α
α n

2β
d+2β

d+2α
α ), then the following

inequality holds

ES∼µmED∼Pn

[
∥f̂ϱ̂S,D − f0∥2L2(QX)

]
≤ O

(
Λ

2β
d+2β (log Λ)n−

2β
d+2β (log n)2

)
.

Remark 3.14. Theorem 3.13 establishes that, subsequent to the pre-training operation, the result-
ing pre-training-reweighted estimator can achieve the same nonparametric efficiency as that in
Theorem 3.8. This holds true under the condition that the pre-training sample size m satisfies
m ≥ O(Λ− 2β

d+2β
d+2α

α n
2β

d+2β
d+2α

α ), which provides valuable guidance for selecting an appropriate
pre-training sample size. Of paramount significance is the observation that this condition is often
straightforward to fulfill in practical applications. This is attributable to the fact that collecting un-
labeled data is typically more cost-effective than acquiring labeled data in many practical seniors,
rendering it a more feasible operation.

4 CONCLUSION

This study investigates nonparametric regression under covariate shift and then introduces a two-
stage pre-training reweighted approach. We focus on three estimators based on deep ReLU neural
networks: the unweighted estimator, reweighted estimator, and pre-training reweighted estimator.
We establish rigorous convergence rates for these estimators, wherein our technical novelty lies in
using local and offset complexity techniques for statistical error analysis, resulting in a fast rate of
O(1/n). These theoretical results shed light on the significance of density-ratio reweighting strategy
and offer a priori guide for selecting the appropriate number of pre-training samples.
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A RELATED TOPICS

In this section, we discuss several research topics related to the covariate shift.

Out-of-Distribution Generalization. The out-of-distribution (OOD) generalization problem, as
elucidated by Shen et al. (2021), represents a specific facet of the supervised learning paradigm
wherein the test distribution, denoted as Q, exhibits a notable divergence from the training distri-
bution, symbolized as P . It is imperative to emphasize that the test distribution remains unknown
during the entirety of the training phase. Within the framework of OOD generalization, the ob-
served distribution shift can be categorized into two principal types, namely concept shifts (Gama
et al., 2014; Cai & Wei, 2021) and covariate shifts (Shimodaira, 2000). Concept shifts manifest as
alterations in the conditional distribution, denoted as PY |X , resulting in a mismatch with the test
distribution QY |X . Conversely, covariate shifts are characterized by perturbations in the marginal
distribution PX , leading to incongruence with the test distribution QX .

Transfer Learning and Domain Adaptation. Transductive transfer learning constitutes a pivotal
domain within the broader framework of transfer learning, operating under the invariance assump-
tion that PY |X = QY |X . Notably, this assumption has been expounded upon by Pan & Yang (2009);
Zhuang et al. (2020). Transductive transfer learning can be dissected into two distinct scenarios,
each with its unique characteristics. The first scenario pertains to instances where the feature spaces
of the source and target distributions differ, i.e., XP ̸= XQ. Conversely, the second scenario in-
volves cases wherein the feature spaces in both the source and target domains remain identical, i.e.,
XP = XQ, while there exist disparities in the marginal probability distributions of the input data,
specifically PX ̸= QX . This latter case is commonly referred to as domain adaptation, predicated
on the assumption that prior knowledge regarding the test distribution is available, encompassing
either the joint distribution Q or the marginal distribution QX . This paper primarily addresses the
latter scenario of domain adaptation, wherein the alignment of marginal distributions between the
source and target domains becomes the focal point of consideration. Furthermore, it is noteworthy
that ratio-reweighting emerges as a crucial mechanism within the domain adaptation framework, as
acknowledged by Huang et al. (2006); Belkin et al. (2006); Sugiyama et al. (2008); Sun et al. (2011).

Stable Learning. In the context of machine learning, when provided with a training dataset
{(Xi, Yi)}ni=1, wherein {Xi}ni=1 are sampled from a single distribution defined over the feature
space X , the primary objective of stable learning is to formulate an estimator that exhibits consistent
and uniformly excellent performance across the entirety of possible distributions over X . To address
this formidable challenge, Shen et al. (2020) introduced an important technique known as sample
weighting. This technique serves as a pivotal tool in the pursuit of stable learning by assigning ap-
propriate weights to individual data points, thus allowing the learning process to emphasize those
instances that contribute significantly to achieving the desired uniformity of performance across
diverse distributions over X .
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B SUPPLEMENTARY DEFINITIONS AND LEMMAS

Definition B.1 (Hölder’s class). Let X ⊆ [0, 1]d and β = s + r with s ∈ N and r ∈ (0, 1]. The
Hölder’s class Hβ(X ) is defined by

Hβ(X ) =
{
f : X → R, ∥f∥Hβ(X ) := max

|α|≤s
∥∂αf∥∞ + max

|α|=s
sup
x ̸=y

|∂αf(x)− ∂αf(y)|
∥x− y∥r2

<∞
}
,

where ∂α = ∂α1 · · · ∂αd with α = (α1, . . . , αd)
T . Moreover, for some positive constant B, the

bounded Hölder’s class is defined by Hβ(X , B) = {f : X → R, ∥f∥Hβ(X ) ≤ B}.

Definition B.2 (VC-dimension). Let F be a class of functions from X to {±1}. For any non-
negative integer m, we define the growth function of F as

ΠF (m) = max
{xi}m

i=1⊆X

∣∣{(f(x1), . . . , f(xm)) : f ∈ F}
∣∣.

A set X = {xi}mi=1 is said to be shattered by F when |{(f(x1), . . . , f(xm)) : f ∈ F}| = 2m. The
Vapnik-Chervonenkis dimension of F , denoted VCdim(F), is the size of the largest set that can
be shattered by F , that is, VCdim(F) = max{m : ΠF (m) = 2m}. For a class F of real-valued
functions, we define VCdim(F) = VCdim(sign(F)).

Definition B.3 (Covering number). Let F be a class of measurable functions from X to R and
X = {Xi}mi=1 ⊆ X . Define the Lp(X)-norm as

∥f∥Lp(X) =
( 1

n

n∑
i=1

|f(Xi)|p
)1/p

, for 1 ≤ p <∞,

and ∥f∥L∞(X) = max1≤i≤m |f(Xi)|. A set Fδ is called a Lp(X) δ-cover of F if for each f ∈ F ,
there exits fδ ∈ Fδ such that ∥f − fδ∥Lp(X) ≤ δ. Furthermore,

N(δ,F , Lp(X)) = inf
{
|Fδ| : Fδ is a Lp(X) δ-cover of F

}
is called the empirical δ-covering number of F based the sample X = {Xi}ni=1.

Lemma B.4. Let ξj be a σ2-sub-Gaussian random variable for j ∈ [N ]. Then

E
[

max
1≤j≤N

ξ2j

]
≤ 4σ2(logN + 1).

Proof of Lemma B.4. By Jensen’s inequality, it is straightforward that

exp
( λ

2σ2
E
[

max
1≤j≤N

ξ2j

])
≤ E

[
max

1≤j≤N
exp

(λξ2j
2σ2

)]
≤ NE

[
exp

(λξ21
2σ2

)]
≤ N√

1− λ
,

where the last inequality holds from Wainwright (2019, Theorem 2.6) for each λ ∈ [0, 1). Letting
λ = 1/2 yields the desired inequality.

Proof of Lemma 2.1. Setting the first variation of∫
X
log(1 + exp(−u(x)))pX(x) + log(1 + exp(u(x)))qX(x)dx

to zero yields
exp(−u(x))

1 + exp(−u(x))
pX(x) =

exp(u(x))

1 + exp(u(x))
qX(x),

which completes the proof.
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C ERROR ANALYSIS FOR UNWEIGHTED ESTIMATORS

Proof of Lemma 3.3. According to Assumption 2, it is easy to show that

∥f̂D − f0∥2L2(QX) = EXP∼PX

[
(f̂D(XP )− f0(X

P ))2ϱ(XP )
]
≤ Λ∥f̂D − f0∥2L2(PX).

Define R(f) = E(XP ,Y P )∼P [(f(X
P ) − Y P )2]. By setting ϱ(x) ≡ 1 in the Step 1 of the proof of

Lemma 3.7, we find that

ED

[
R(f̂D)− 3R̂D(f̂D)

]
≤ 24B2VCdim(F) log(en)

n
, (C.1)

where R̂D(f) := 1
n

∑n
i=1(f(X

P
i ) − f0(X

P
i ))

2, f ∈ F . Similarly, it holds from the Step 2 in the
proof of Lemma 3.7 that

ED

[
R̂D(f̂D)

]
≤ 2 inf

f∈F
∥f − f0∥2L2(PX) + 100σ2VCdim(F) log(en)

n
+

4B2

n
. (C.2)

Combining (C.1) and (C.2) completes the proof.

Proof of Theorem 3.4. According to Assumption 4 and Lemma 3.1, there exists f ∈ F =
N(WF , LF ) such that

inf
f∈F

∥f − f0∥2L2(PX) ≤ C1(UFNF )
−4β/d,

where W = O(UF logUF ), L = O(NF logNF ) and C1 is a constant only depending on
∥f0∥Hβ(X ), d and β. Using Lemma 3.2, we find that VCdim(F) ≤ C2U

2
FN

2
F (logUF logNF )

2,

where the constant C2 depends on B, d and β. By setting UFNF = O(n
d

2d+4β ), we conclude the
final result.

D ERROR ANALYSIS FOR REWEIGHTED ESTIMATORS

Recall that D = {(XP
i , Y

P
i )}ni=1 are i.i.d. drawn from the probability distribution P . We define the

reweighted excess risk Rϱ by

Rϱ(f) = EXP∼PX

[
ϱ(XP )(f(XP )− f0(X

P ))2
]
,

and its empirical counterpart R̂ϱ,D based on D can be given by

R̂ϱ,D(f) =
1

n

n∑
i=1

ϱ(XP
i )(f(X

P
i )− f0(X

P
i ))

2.

It is easy to verify that Rϱ(f) = ∥f − f0∥2L2(QX).

Proof of Lemma 3.7. To begin with, it is straightforward that

ED

[
∥f̂ϱ,D − f0∥2L2(QX)

]
= ED

[
Rϱ(f̂ϱ,D)− 3R̂ϱ,D(f̂ϱ,D)

]
+ 3ED

[
R̂ϱ,D(f̂ϱ,D)

]
. (D.1)

We now derive the upper bound of these two parts on the right hand of (D.1), respectively.

Step 1. Symmetrization by a ghost sample.

We define the function class H = {x 7→ h(x) = ϱ(x)(f(x) − f0(x))
2 : f ∈ F}. Since that

0 ≤ ϱ(x) ≤ Λ for each x ∈ X , it is apparent that 0 ≤ h(x) ≤ 4ΛB2 for each x ∈ X and h ∈ H.
Then it is easy to show that

ED

[
Rϱ(f̂ϱ,D)− 3R̂ϱ,D(f̂ϱ,D)

]
≤ ED sup

h∈H

{
EXP [h(XP )]− 3

n

n∑
i=1

h(XP
i )

}
≤ ED sup

h∈H

{
2EXP [h(XP )]− 1

4ΛB2
EXP [h2(XP )]− 2

n

n∑
i=1

h(XP
i )−

1

4ΛB2n

n∑
i=1

h2(XP
i )

}
,
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where we used the fact that h2(x) ≤ 4ΛB2h(x) for each x ∈ X and h ∈ H.

Let us introduce a ghost sample D′ = {(XP,′
i , Y P,′i )}ni=1 sampled from P , which is independent of

D. Let {εi}ni=1 be a set of Rademacher variables. Then replacing the expectation by the empirical
mean based on the ghost sample D′ yields

ED sup
h∈H

{
2EXP [h(XP )]− 1

4ΛB2
EXP [h2(XP )]− 2

n

n∑
i=1

h(XP
i )−

1

4ΛB2n

n∑
i=1

h2(XP
i )

}
= ED sup

h∈H

{
2ED′

[ 1
n

n∑
i=1

(h(XP,′
i )− h(XP

i ))
]
− 1

4ΛB2
ED′

[ 1
n

n∑
i=1

(h2(XP,′
i ) + h2(XP

i ))
]}

≤ EDED′ sup
h∈H

{ 2

n

n∑
i=1

(h(XP,′
i )− h(XP

i ))−
1

4ΛB2

1

n

n∑
i=1

(h2(XP,′
i ) + h2(XP

i ))
}

= EDED′Eε sup
h∈H

{ 2

n

n∑
i=1

εi(h(X
P,′
i )− h(XP

i ))−
1

4ΛB2

1

n

n∑
i=1

(h2(XP,′
i ) + h2(XP

i ))
}

= EDEε sup
h∈H

{ 2

n

n∑
i=1

εih(X
P
i )−

1

4ΛB2

1

n

n∑
i=1

h2(XP
i )

}
,

where Eε[·] is the expectation conditional on D and D′, and the inequality holds from Jensen’s
inequality. We note that EDEε suph∈H

{
2
n

∑n
i=1 εih(X

P
i )− 1

4ΛB2
1
n

∑n
i=1 h

2(XP
i )

}
refers to the

offset Rademacher complexity (Liang et al., 2015). Then we transform into bounding this offset
Rademacher complexity to derive the upper bound.

Let δ ∈ (0, 4ΛB2) and Hδ be a L∞(D) δ-cover of H satisfying |Nδ| = N(δ,H, L∞(D)). Then for
each h ∈ H, there exists hδ ∈ Hδ such that max1≤i≤n |h(XP

i ) − hδ(X
P
i )| ≤ δ. Consequently, it

follows from Hölder’s inequality that

1

n

n∑
i=1

εih(X
P
i ) ≤

1

n

n∑
i=1

εihδ(X
P
i ) +

1

n

n∑
i=1

|εi||h(XP
i )− hδ(X

P
i )| ≤

1

n

n∑
i=1

εihδ(X
P
i ) + δ,

and

− 1

n

n∑
i=1

h2(XP
i ) ≤ − 1

n

n∑
i=1

h2δ(X
P
i ) +

1

n

n∑
i=1

|h(XP
i ) + hδ(X

P
i )||hδ(XP

i )− h(XP
i )|

≤ − 1

n

n∑
i=1

h2δ(X
P
i ) + 8ΛB2δ.

Hence we find that

Eε sup
h∈H

{ 2

n

n∑
i=1

εih(X
P
i )−

1

4ΛB2n

n∑
i=1

h2(XP
i )

}
≤ Eε max

hδ∈Hδ

{ 2

n

n∑
i=1

εihδ(X
P
i )−

1

4ΛB2n

n∑
i=1

h2δ(X
P
i )

}
+ 4δ.

(D.2)

By Hoeffding’s inequality (Mohri et al., 2018, Theorem D.2), the conditional probability can be
bounded as follows

Pr
( 2

n

n∑
i=1

εihδ(X
P
i ) > t+

1

4ΛB2

1

n

n∑
i=1

h2δ(X
P
i )

∣∣∣D = {(XP
i , Y

P
i )}ni=1

)
= Pr

( n∑
i=1

εihδ(X
P
i ) >

nt

2
+

1

8ΛB2

n∑
i=1

h2δ(X
P
i )

∣∣∣D = {(XP
i , Y

P
i )}ni=1

)
≤ exp

(
−

(nt2 + 1
8ΛB2

∑n
i=1 h

2
δ(X

P
i ))

2

2
∑n
i=1 h

2
δ(X

P
i )

)
≤ exp

(
− nt

8ΛB2

)
.
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As a consequence, it follows that for each T > 0,

Eε max
hδ∈Hδ

{ 2

n

n∑
i=1

εihδ(X
P
i )−

1

4ΛB2n

n∑
i=1

h2δ(X
P
i )

}
≤

∫ ∞

0

Pr
(

max
hδ∈Hδ

{ 2

n

n∑
i=1

εihδ(X
P
i )−

1

4ΛB2n

n∑
i=1

h2δ(X
P
i )

}
> t

∣∣∣D = {(XP
i , Y

P
i )}ni=1

)
dt

≤ T + |Hδ|
∫ ∞

T

Pr
( 2

n

n∑
i=1

εihδ(X
P
i ) > t+

1

4ΛB2n

n∑
i=1

h2δ(X
P
i )

∣∣∣D = {(XP
i , Y

P
i )}ni=1

)
dt

≤ T +
8ΛB2

n
|Hδ| exp

(
− nT

8ΛB2

)
Letting T = 8ΛB2

n log |Hδ| gives that

Eε max
hδ∈Hδ

{ 2

n

n∑
i=1

εihδ(X
P
i )−

1

4ΛB2n

n∑
i=1

h2δ(X
P
i )

}
≤ 8ΛB2

n
(log |Hδ|+ 1). (D.3)

It remains to estimate the covering number |Hδ|. Noticing

|h(x)− h′(x)| = |ϱ(x)||(f(x)− f0(x))
2 − (f ′(x)− f0(x))

2| ≤ 4ΛB|f(x)− f ′(x)|,

we find that

logN(δ,H, L∞(D)) ≤ logN
( δ

4ΛB
,F , L∞(D)

)
≤ VCdim(F) log

(4eΛB2n

δ

)
, (D.4)

where the last inequality is owing to Anthony et al. (1999, Theorem 12.2). By setting δ = 4ΛB2/n,
it holds from (D.2) to (D.4) that

ED

[
Rϱ(f̂ϱ,D)− 3R̂ϱ,D(f̂ϱ,D)

]
≤ 24ΛB2VCdim(F) log(en)

n
. (D.5)

Step 2. Estimate of empirical excess risk.

For each function f : X → R, we connect the empirical risk of it with its empirical excess risk by

R̂ϱ,D(f) = L̂ϱ,D(f) +
2

n

n∑
i=1

ϱ(XP
i )ξi(f(X

P
i )− f0(X

P
i ))−

1

n

n∑
i=1

ϱ(XP
i )ξ

2
i .

Plugging the reweighted empirical risk minimizer f̂ϱ,D and taking expectation with respect to D on
both sides of the equality implies that for each f ∈ F ,

ED

[
R̂ϱ,D(f̂ϱ,D)

]
= ED

[
L̂ϱ,D(f̂ϱ,D)

]
− σ2 + 2ED

[ 1
n

n∑
i=1

ϱ(XP
i )ξif̂ϱ,D(XP

i )
]

≤ ED

[
L̂ϱ,D(f)

]
− σ2 + 2ED

[ 1
n

n∑
i=1

ϱ(XP
i )ξif̂ϱ,D(XP

i )
]

= ∥f − f0∥2L2(QX) + 2ED

[ 1
n

n∑
i=1

ϱ(XP
i )ξif̂ϱ,D(XP

i )
]
,

which deduces

ED

[
R̂ϱ,D(f̂ϱ,D)

]
≤ inf
f∈F

∥f − f0∥2L2(QX) + 2ED

[ 1
n

n∑
i=1

ϱ(XP
i )ξif̂ϱ,D(XP

i )
]
. (D.6)

Define ĝD(x) = ϱ(x)f̂ϱ,D(x) and g0 = ϱ(x)f0(x) for each x ∈ X . In addition, define the function
class G = {x 7→ g(x) = ϱ(x)f(x) : f ∈ F}. Let δ ∈ (0,ΛB) and Gδ be a L∞(D) δ-cover of G
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with |Gδ| = N(δ,G, L∞(D)). Suppose that gδ is a function in Gδ such that max1≤i≤n |ĝD(XP
i )−

gδ(X
P
i )| ≤ δ. Then we find that

ED

[ 1
n

n∑
i=1

ξi(ĝD(XP
i )− gδ(X

P
i ))

]
≤ δED

[ 1
n

n∑
i=1

|ξi|
]
≤ δσ,

where the last inequality is due to Hölder’s inequality. Consequently, we have

ED

[ 1
n

n∑
i=1

ξiĝD(XP
i )

]
= ED

[ 1
n

n∑
i=1

ξi(ĝD(XP
i )− g0(X

P
i ))

]
≤ ED

[ 1
n

n∑
i=1

ξi(gδ(X
P
i )− g0(X

P
i ))

]
+ δσ

≤ ED

[∥ĝD − g0∥L2(D) + δ
√
n

ψ(gδ)
]
+ δσ

≤
(
E1/2
D

[
∥ĝD − g0∥2L2(D)

]
+ δ

) 1√
n
E1/2
D

[
ψ2(gδ)

]
+ δσ

≤ 1

4
ED

[
∥ĝD − g0∥2L2(D)

]
+

2

n
ED

[
ψ2(gδ)

]
+

1

4
δ2 + δσ. (D.7)

Here, the first and second inequalities are from the definition of covering, and

ψ(gδ) :=

∑n
i=1 ξi(gδ(X

P
i )− g0(X

P
i ))√

n∥gδ − g0∥L2(D)
,

the third inequality holds from Cauchy-Schwarz inequality, while the last one is owing to the AM-
GM inequality ab ≤ a2/4 + b2. Observe that for each fixed gδ , the random variable ψ(gδ) is
sub-Gaussian with variance proxy σ2. Then using Lemma B.4 gives that

Eξ
[
ψ2(gδ)

]
≤ Eξ

[
max
g∈Gδ

ψ2(g)
]
≤ 4σ2(log |Gδ|+ 1). (D.8)

We now estimate the covering number |Gδ|. Using the fact that

|g(x)− g′(x)| = |ϱ(x)||f(x)− f ′(x)| ≤ Λ|f(x)− f ′(x)|,

we implies for n ≥ VCdim(F),

logN(δ,G, L∞(D)) ≤ logN
( δ
Λ
,F , L∞(D)

)
≤ VCdim(F) log

(eΛBn
δ

)
, (D.9)

where the last inequality is due to Anthony et al. (1999, Theorem 12.2). Combining (D.7) to (D.9)
and setting δ = B/n gives

ED

[ 1
n

n∑
i=1

ξiĝD(XP
i )

]
≤ 1

4
ED

[
R̂ϱ,D(f̂ϱ,D)

]
+ 25σ2VCdim(F) log(eΛn)

n
+
B2

n
. (D.10)

Using (D.6) and (D.10) yields

ED

[
R̂ϱ,D(f̂ϱ,D)

]
≤ 2 inf

f∈F
∥f − f0∥2L2(QX) + 100σ2VCdim(F) log(eΛn)

n
+

4B2

n
. (D.11)

Combining (D.1), (D.5) and (D.11) completes the proof.

Proof of Theorem 3.8. According to Assumption 4 and Lemma 3.1, there exists f ∈ F =
N(WF , LF ) such that

inf
f∈F

∥f − f0∥2L2(QX) ≤ C1(UFNF )
−4β/d,

where W = O(UF logUF ), L = O(NF logNF ) and C1 is a constant only depending on
∥f0∥Hβ(X ), d and β. Using Lemma 3.2, we find that VCdim(F) ≤ C2U

2
FN

2
F (logUF logNF )

2,

where the constant C2 depends on B, d and β. By setting UFNF = O(Λ− d
2d+4β n

d
2d+4β ), we

conclude the final result.
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Proof of Lemma 3.10. It is straightforward to verify that

ED

[
∥f̂ϱ̂S,D − f0∥2L2(QX)

]
= ED

[
Rϱ(f̂ϱ̂S,D)−Rϱ̂S(f̂ϱ̂S,D)

]
+ ED

[
Rϱ̂S(f̂ϱ̂S,D)− 3R̂ϱ̂S,D(f̂ϱ̂S,D)

]
+ 3ED

[
R̂ϱ̂S,D(f̂ϱ̂S,D)

]
.

(D.12)

Notice that for each f : X → [−B,B], it holds that

Rϱ(f)−Rϱ̂S(f) = EXP∼PX

[
(ϱ(XP )− ϱ̂S(X

P ))(f(XP )− f0(X
P ))2

]
≤ E1/2

XP∼PX

[
(ϱ(XP )− ϱ̂S(X

P ))2
]
E1/2

XP∼PX

[
(f(XP )− f0(X

P ))4
]

≤ 4B2∥ϱ− ϱ̂S∥L2(PX), (D.13)

where the first inequality is due to Cauchy-Schwarz inequality. As a consequence, we have

ED

[
Rϱ(f̂ϱ̂S,D)−Rϱ̂S(f̂ϱ̂S,D)

]
≤ 4B2∥ϱ− ϱ̂S∥L2(PX). (D.14)

We next consider the second and third terms in (D.12). Using a same technique as that used in the
Step 3 of the proof of Lemma 3.7, it follows from Assumption 7 that

ED

[
Rϱ̂S(f̂ϱ̂S,D)− 3R̂ϱ̂S,D(f̂ϱ̂S,D)

]
≤ 24ΛB2VCdim(F) log(en)

n
. (D.15)

Finally, we estimate the last term in (D.12). To this end, we next relate the reweighted population
loss with the reweighted L2-risk by

Lϱ̂S(f) = E(XP ,Y P )∼P

[
ϱ̂S(X

P )(f(XP )− f0(X
P )− ξ)2

]
= Rϱ̂S(f) + EXP∼PX

[
ϱ̂S(X

P )
]
σ2. (D.16)

Similarly, their empirical counterparts are related by

L̂ϱ̂S(f) = R̂ϱ̂S(f)−
2

n

n∑
i=1

ϱ̂S(X
P
i )ξi(f(X

P
i )− f0(X

P
i )) +

1

n

n∑
i=1

ϱ̂S(X
P
i )ξ

2
i . (D.17)

Then it follows for each f ∈ F that

ED

[
R̂ϱ̂S,D(f̂ϱ̂S,D)

]
= ED

[
L̂ϱ̂S,D(f̂ϱ̂S,D)

]
+ 2ED

[ 1
n

n∑
i=1

ϱ̂S(X
P
i )ξif̂ϱ̂S,D(XP

i )
]
− EXP∼PX

[
ϱ̂S(X

P )
]
σ2

≤ ED

[
L̂ϱ̂S,D(f)

]
+ 2ED

[ 1
n

n∑
i=1

ϱ̂S(X
P
i )ξif̂ϱ̂S,D(XP

i )
]
− EXP∼PX

[
ϱ̂S(X

P )
]
σ2

= Lϱ̂S(f) + 2ED

[ 1
n

n∑
i=1

ϱ̂S(X
P
i )ξif̂ϱ̂S,D(XP

i )
]
− EXP∼PX

[
ϱ̂S(X

P )
]
σ2

=
(
Rϱ̂S(f)−Rϱ(f)

)
+Rϱ(f) + 2ED

[ 1
n

n∑
i=1

ϱ̂S(X
P
i )ξif̂ϱ̂S,D(XP

i )
]

≤ 4B2∥ϱ̂S − ϱ∥L2(PX) + ∥f − f0∥2L2(QX) + 2ED

[ 1
n

n∑
i=1

ϱ̂S(X
P
i )ξif̂ϱ̂S,D(XP

i )
]
,

where the first equality holds from (D.17) and the fact that Eξ[
∑n
i=1 ϱ̂S(X

P
i )ξif0(X

P
i )] = 0, the

first inequality holds since f̂ϱ̂S,D is the minimizer of L̂ϱ̂S(f) over F , the third equality is due to
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(D.16), and the last inequality is from (D.13). Using a similar argument as (D.11) in the Step 3 of
the proof of Lemma 3.7, we have

ED

[
R̂ϱ̂S,D(f̂ϱ̂S,D)

]
≤ 8B2∥ϱ̂S − ϱ∥L2(PX) + 2 inf

f∈F
∥f − f0∥2L2(QX)

+ 100σ2VCdim(F) log(eΛn)

n
+

4B2

n
.

(D.18)

Combining (D.12), (D.14), (D.15) and (D.18) completes the proof.

Proof of Theorem 3.13. Combing Lemmas 3.10 and 3.11 and the proof of Theorem 3.8 concludes
the final result.

E ERROR ANALYSIS FOR DENSITY RATIO ESTIMATE

E.1 SUPPLEMENTARY MATERIALS ABOUT LOCAL RADEMACHER COMPLEXITY

Definition E.1 (Rademacher complexity). Let F be a class of functions from X to R and X =
{Xi}mi=1 ⊆ X be a sample drawn from µmX . Let ε = {εi}mi=1 be independent Rademacher variables.
Then the empirical Rademacher complexity of F with respect to the sample X is defined as

R̂X(F) = Eε
[
sup
f∈F

1

m

m∑
i=1

εif(Xi)
]
,

where Eε[·] is the expectation with respect to ε conditional on X. The Rademacher complexity of
F is the expectation of the empirical Rademacher complexity over all samples drawn according to
µmX , that is, Rm = EX[R̂X(F)].
Lemma E.2 (Lemma A.4 in Bartlett et al. (2005)). Let F be a class of functions that map X into
[−B,B] for some positive constant B. Then with probability at least 1− δ, the following inequality
holds

Rm(F) ≤ 2R̂X(F) +
2B log(1/δ)

n
.

Lemma E.3 (Theorem 2.1 in Bartlett et al. (2005)). Let F be a class of functions that map X into
[−B,B] for some positive constant B. Assume that there exists some r > 0 such that

F ⊆
{
f ∈ F : EX [f2(X)] ≤ r

}
.

Then for each δ ∈ (0, 1) with probability at least 1− δ, the following inequality holds

sup
f∈F

( 1

m

m∑
i=1

f(Xi)− EX [f(X)]
)
≤ 3Rm(F) +

√
2r log(1/δ)

m
+

14

3

B log(1/δ)

m
.

Lemma E.4 (Corollary 2.2 in Bartlett et al. (2005)). Let F be a class of functions that map X into
[−B,B] for some positive constant B. For each δ ∈ (0, 1) and each r satisfy

r ≥ 12BRm

({
f ∈ F ,EX [f2(X)] ≤ r

})
+

12B2 log(1/δ)

m
,

the following holds with probability at least 1− δ{
f ∈ F : EX [f2(X)] ≤ r

}
⊆

{
f ∈ F :

1

m

m∑
i=1

f2(Xi) ≤ 2r
}
.

Proof. Note that EX [f2(X)] ≤ r implies E[f4(X)] ≤ B2E[f2(X)] ≤ B2r. Then applying
Lemma E.3 gives that for each f ∈ F satisfying EX [f2(X)] ≤ r, the following holds with proba-
bility at least 1− δ

1

m

m∑
i=1

f2(Xi) ≤ EX [f2(X)] + 3Rm

({
f2 : f ∈ F ,EX [f2(X)] ≤ r

})
+

√
2B2r log(1/δ)

m
+

14

3

B2 log(1/δ)

m

≤ r + 6BRm

({
f ∈ F ,EX [f2(X)] ≤ r

})
+
r

2
+

17

3

B2 log(1/δ)

m
≤ 2r,
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where the second inequality is due to Ledoux-Talagrand contraction inequality (Ledoux & Tala-
grand, 1991) and Cauchy-Schwarz inequality ab ≤ a2/4 + b2, while the last inequality is owing to
the assumption.

Definition E.5 (Sub-root function). A function ψ : [0,∞) → [0,∞) is sub-root if it is non-negative,
non-decreasing and if r 7→ ψ(r)/

√
r is non-increasing for r > 0.

Lemma E.6 (Lemma 3.2 in Bartlett et al. (2005)). If ψ : [0,∞) → [0,∞) is a nontrivial sub-root
function, then it is continuous on [0,∞) and the equality ψ(r) = r has a unique positive solution.
Moreover, if we denote the solution by r∗, then for each r > 0, the inequality r ≥ ψ(r) holds if and
only if r∗ ≤ r.

Lemma E.7 (Bartlett et al. (2005, Theorem 3.3)). Suppose the following conditions hold:

(i) Let F be a class of functions taking values in [−B,B].

(ii) There are some functional T : F → [0,+∞) and some positive constant V such that
EX [f2(X)] ≤ T (f) ≤ V EX [f(X)] for each f ∈ F .

(iii) Let ψ be a sub-root function and let r∗ be the fixed point of ψ, satisfying

ψ(r) ≥ VRm

({
f ∈ F : T (f) ≤ r

})
.

Then for each δ ∈ (0, 1), the following holds with probability at least 1− δ

EX
[
f(X)

]
≤ 2

m

m∑
i=1

f(Xi) +
1408

V
r∗ +

(22B + 52V ) log(1/δ)

m
, (E.1)

for each f ∈ F . Also, the following holds with probability at least 1− δ

1

m

m∑
i=1

f(Xi) ≤
3

2
EX

[
f(X)

]
+

1408

V
r∗ +

(22B + 52V ) log(1/δ)

m
, (E.2)

for each f ∈ F .

To compute the local Rademacher complexities, we introduce Lemma E.8, which is a simplified
version of Dudley’s integral bound (Srebro & Sridharan, 2010, Theorem 2.1). This lemma is also
inspired by Lemma 5.7 in van Handel (2016).

Lemma E.8 (Lipschitz maximal inequality). Let F be a class of functions. The following inequality
holds for each r > 0

R̂X

({
f ∈ F :

1

m

m∑
i=1

f2(Xi) ≤ r
})

≤ inf
ε>0

{
2ε+

√
2r logN(ε,F , L∞(X))

m

}
.

Before the proof of Lemma E.8, we first introduce Massart’s lemma as preparation.

Lemma E.9 (Massart’s lemma). Let F be a class of functions satisfying |F| < ∞. The following
inequality holds for each r > 0

R̂X

({
f ∈ F :

1

m

m∑
i=1

f2(Xi) ≤ r
})

≤
√

2r log |F|
m

.

Proof. Let {εi}mi=1 be a set of independent Rademacher random variables. For the fixed sample
X = {Xi}ni=1, {εif(Xi)}mi=1 are random variables satisfying −f(Xi) ≤ εif(Xi) ≤ f(Xi) and
E[εif(Xi)|Xi] = 0 for i ∈ [n]. Then it follows from Hoeffding’s lemma (Mohri et al., 2018,
Lemma D.1) that for each i ∈ [n],

E
[
exp(λεif(Xi))

∣∣Xi

]
≤ exp

(λ2f2(Xi)

2

)
.
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Consequently, we have

E
[
exp

(
λ

m∑
i=1

εif(Xi)
)∣∣∣X] = E

[ m∏
i=1

exp(λεif(Xi))
∣∣∣X] =

m∏
i=1

E
[
exp(λεif(Xi))

∣∣Xi

]
≤

m∏
i=1

exp
(λ2f2(Xi)

2

)
= exp

(λ2 ∑m
i=1 f

2(Xi)

2

)
.

Furthermore, it follows from Jensen’s inequality that

exp
(
λE

[
max
f∈F

m∑
i=1

εif(Xi)
∣∣∣X])

≤ E
[
exp

(
λmax
f∈F

m∑
i=1

εif(Xi)
)∣∣∣X] = E

[
max
f∈F

exp
(
λ

m∑
i=1

εif(Xi)
)∣∣∣X]

≤ E
[ ∑
f∈F

exp
(
λ

m∑
i=1

εif(Xi)
)∣∣∣X] ≤ |F| exp

(λ2 ∑m
i=1 f

2(Xi)

2

)
.

Taking the logarithm of both sides of the inequality yields

E
[
max
f∈F

m∑
i=1

εif(Xi)
∣∣∣X] ≤ log |F|

λ
+
λ
∑m
i=1 f

2(Xi)

2
.

Setting λ2 = 2 log |F|(
∑m
i=1 f

2(Xi))
−1 gives

R̂X(F) ≤ E
[
max
f∈F

m∑
i=1

εif(Xi)
∣∣∣X] ≤

√
2( 1
m

∑m
i=1 f

2(Xi)) log |F|
m

,

which completes the proof.

Proof of Lemma E.8. Denote Fr = {f ∈ F : 1
m

∑m
i=1 f

2(Xi) ≤ r}. Let Fr
ε be an L∞(X) ε-cover

of Fr such that |Fr
ε | = N(ε,Fr, L∞(X)), which means, for each f ∈ Fr there exists fε ∈ Fr

ε such
that max1≤i≤n |f(Xi)− fε(Xi)| ≤ ε. For fε ∈ Fε, if 1

m

∑m
i=1 f

2
ε (Xi) ≤ r, we define f̃ε = fε. If

1
m

∑m
i=1 f

2
ε (Xi) > r, let f̃ε be the nearest element of fε in Fr, that is,

f̃ε ∈ argmin
f∈Fr

(
max
1≤i≤n

|f(Xi)− fε(Xi)|
)
.

Then it is apparent that for each f ∈ Fr,

max
1≤i≤n

|fε(Xi)− f̃ε(Xi)| ≤ max
1≤i≤n

|fε(Xi)− f(Xi)| ≤ ε.

According to the triangular inequality, for each f ∈ Fr satisfying max1≤i≤n |f(Xi)−fε(Xi)| ≤ ε,
it holds that

max
1≤i≤n

|f(Xi)− f̃ε(Xi)| ≤ max
1≤i≤n

|f(Xi)− fε(Xi)|+ max
1≤i≤n

|fε(Xi)− f̃ε(Xi)| ≤ 2ε.

Hence F̃r
ε = {f̃ε : fε ∈ Fr

ε } is an L∞(X) (2ε)-cover of Fr satisfying |F̃r
ε | = N(ε,Fr, L∞(X)),

and 1
m

∑m
i=1 f̃

2
ε (Xi) ≤ r for each f̃ε ∈ F̃r

ε . Then it is straightforward that

R̂X(Fr) = E
[
sup
f∈Fr

1

m

m∑
i=1

εi(f(Xi)− f̃ε(Xi))
∣∣∣X]+ E

[
sup
f̃ε∈F̃r

ε

1

m

m∑
i=1

εif̃ε(Xi)
∣∣∣X]

≤ sup
f∈Fr

max
1≤i≤n

|f(Xi)− f̃ε(Xi)|+ R̂X(F̃r
ε ) ≤ 2ε+ R̂X(F̃r

ε ),

where the first inequality holds from Hölder’s inequality. Combining this with Lemma E.9 and
noting that N(ε,Fr, L∞(X)) ≤ N(ε,F , L∞(X)) yield the desired result.
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Lemma E.10. Let F be a class of functions, and f∗ be a function may depending on X. Then it
follows that

R̂X(F) = R̂X(F − f∗),

where F − f∗ = {f − f∗ : f ∈ F}.

Proof of Lemma E.10. It is straightforward that

R̂X(F − f∗) = Eε
[
sup
f∈F

1

m

m∑
i=1

εi(f(Xi)− f∗(Xi))
]

= Eε
[
sup
f∈F

1

m

m∑
i=1

εif(Xi)
]
− Eε

[ 1

m

m∑
i=1

εif
∗(Xi)

]
= R̂X(F),

which completes the proof.

Definition E.11 (Star-hull). Let F be a class of functions mapping X to R. The star-hull of F
around f∗ : X → R is defined by

star(F , f∗) =
{
f∗ + α(f − f∗) : f ∈ F , α ∈ [0, 1]

}
.

Notice that making a class star-hull increases the complexities. However, this increase is moderate
as shown in the following lemma.

Lemma E.12 (Lemma 4.5 in Mendelson (2002)). Let f∗ : X → [−B,B] and F be a class of
functions that map X into [−B,B] for some positive constant B. Then the following inequality
holds for each ε > 0

logN(ε, star(F , f∗), L∞(X)) ≤ logN(ε/2,F , L∞(X)) + log(4B/ε).

Proof. Let Fε be an L∞(X) (ε/2)-cover of F such that

N = |Fε| = N(ε/2,F , L∞(X)).

Denote Fε = {fj}Nj=1. Without loss of generality, we assume that |fj(Xi)| ≤ B for each i ∈ [m].
Then for each f ∈ F there exists j ∈ [N ] such that max1≤i≤n |f(Xi)− fj(Xi)| ≤ ε/2. Denote by
I(f∗, fj) the segment between f∗ and fj :

I(f∗, fj) =
{
f∗ + α(fj − f∗) : α ∈ [0, 1]

}
.

Furthermore, we construct an L∞(X) (ε/(4B))-cover of it by

Iε(f
∗, fj) =

{
f∗ + αk(fj − f∗) : αk =

kε

4B
, k = 1, . . . ,

⌊4B
ε

⌋}
.

Observe that ∪Nj=1I(f
∗, fj) is an L∞(X) ε-cover of star(F , f∗). Indeed, it holds that

max
1≤i≤n

|f∗(Xi) + α(f(Xi)− f∗(Xi))− f∗(Xi)− αk(fj(Xi)− f∗(Xi))|

≤ |α− αk| max
1≤i≤n

|f∗(Xi)|+ α max
1≤i≤n

|f(Xi)− fj(Xi)|+ |α− αk| max
1≤i≤n

|fj(Xi)|

≤ ε

4B
B +

ε

2
+

ε

4B
B = ε.

Therefore, it follows that N(ε, star(F , f∗), L∞(X)) ≤ N(ε/2,F , L∞(X))4B/ε, which completes
the proof.

E.2 ORACLE INEQUALITY OF DENSITY RATIO ESTIMATOR

To begin with, we have S = {(Xµ
i , Z

µ
i )}mi=1 i.i.d. drawn from the probability distribution µ, which

denotes the distribution of (Xµ, Zµ) defined in Remark 2.2. Let µX be the marginal distribution of
Xµ. It is easy to verify that 2∥u∥2L2(µX) = ∥u∥2L2(PX) + ∥u∥2L2(QX). Let u∗ = − log ϱ and define
the pre-training excess risk Rpre(u) by Rpre(u) = Lpre(u)− Lpre(u∗).
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Lemma E.13. Suppose Assumptions 2, 5 and 7 hold. Let u∗ = − log ϱ. Then it follows that

1

2
min

{ Λ

(1 + Λ)2
,

λ

(1 + λ)2

}
∥u− u∗∥2L2(µX) ≤ Lpre(u)− Lpre(u∗) ≤ 1

8
∥u− u∗∥2L2(µX).

Proof. Denote ℓlogit(v, z) = log(1 + exp(−zv)). According to Taylor’s expansion, we find that

ℓlogit(u(X), Z)− ℓlogit(u
∗(X), Z)

= − u(X)− u∗(X)

1 + exp(Zu∗(X))
+

1

2

exp(Zθ(X))

(1 + exp(Zθ(X)))2
(u(X)− u∗(X))2,

where θ(x) = cu(x) + (1 − c)u∗(x) for some c ∈ [0, 1]. Taking expectation with respect to
(X,Z) ∼ µ yields

Lpre(u)− Lpre(u∗) = E(X,Z)∼µ

[1
2

exp(Zθ(X))

(1 + exp(Zθ(X)))2
(u(X)− u∗(X))2

]
,

where we used the fact that u∗ is the minimizer of Lpre(·) over L (X ). According to Assumptions 2
and 7, the following inequality holds for each x ∈ X

min
{ Λ

(1 + Λ)2
,

λ

(1 + λ)2

}
≤ exp(θ(x))

(1 + exp(θ(x)))2
≤ 1

4
,

which completes the proof.

Lemma E.14. Suppose Assumptions 2, 5 and 7 hold. Let u∗ = − log ϱ. Let S = {(Xµ
i , Z

µ
i )}mi=1 be

an i.i.d. sample set drawn from µ. Let ûS ∈ U be defined in (2.9). Define the distribution-dependent
measurement functional

T (u) = EXµ∼µX

[
(u(Xµ)− u∗(Xµ))2

]
.

Assume that ψ ia a sub-root function for which

ψ(r) ≥ VRm

({
u ∈ U : T (u) ≤ r

})
.

Further, let r∗ be the fixed point of ψ. Then for each δ ∈ (0, 1) the following inequality holds with
probability as least 1− 2δ

Rpre(ûS) ≤ 3 inf
u∈U

Rpre(u) +
4224

V
r∗ +

(132M + 156V ) log(1/δ)

m
,

where V = 1
2 max{ (1+Λ)2

Λ , (1+λ)
2

λ } and M = max{log(1 + 1/λ), log(1 + Λ)}.

Proof of Lemma E.14. For simplicity of notations, we define

g(u, x, z) = ℓlogit(u(x), z)− ℓlogit(u
∗(x), z), ℓlogit(v, z) = log(1 + exp(−zv)).

Notice that the pre-training excess risk satisfies Rpre(u) = E(X,Z)∼µ[g(u,X,Z)]. Since
ℓlogit(u(x), z) is 1-Lipschitz with respect to u(x) for each z ∈ {±1}, which deduces that the fol-
lowing inequality holds for each (x, z) ∈ X × {±1}

|g(u, x, z)| = |ℓlogit(u(x), z)− ℓlogit(u
∗(x), z)| ≤ |u(x)− u∗(x)|.

As a consequence, it holds that

E(Xµ,Zµ)∼µ
[
g2(u,Xµ, Zµ)

]
≤ ∥u− u∗∥2L2(µX) = T (u), (E.3)

where T (u) is called the measurement functional. On the other hand, using Lemma E.13 yields

T (u) ≤ V Rpre(u) = V E(Xµ,Zµ)∼µ
[
g(u,Xµ, Zµ)

]
. (E.4)

By Ledoux-Talagrand contraction inequality (Ledoux & Talagrand, 1991), we have

Rm

({
g ◦ u : u ∈ U , T (u) ≤ r

})
≤ Rm

({
u ∈ U : T (u) ≤ r

})
, (E.5)
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which implies that

ψ(r) ≥ VRm

({
g ◦ u : u ∈ U , T (u) < r

})
.

By applying (E.1) in Lemma E.7 to the function g ◦ u, (E.3) to (E.5) deduces that the following
inequality holds with probability as least 1− δ for each u ∈ U

Rpre(u) ≤ 2R̂pre
S (u) +

1408

V
r∗ +

(44M + 52V ) log(1/δ)

m
,

where we used the fact that |g(u, x, z)| ≤ |u(x)− u∗(x)| ≤ 2M for each (x, z) ∈ X × {±1} from
Assumptions 2 and 7. Since ûS is the minimizer of R̂pre

S (·) over U , we have that with probability as
least 1− δ for each u ∈ U ,

Rpre(ûS) ≤ 2R̂pre
S (u) +

1408

V
r∗ +

(44M + 52V ) log(1/δ)

m
, (E.6)

Further, using (E.2) in Lemma E.7 gives that the following inequality holds with with probability as
least 1− δ for each u ∈ U ,

R̂pre
S (u) ≤ 3

2
Rpre(u) +

1408

V
r∗ +

(44M + 52V ) log(1/δ)

m
. (E.7)

Combining (E.6) and (E.7) yields the desired result.

The results in Lemma E.14 use distribution-dependent measures of complexity of the class. By a
similar technique as the proof of Bartlett et al. (2005, Lemma 3.4), we next provide error bounds
which can be identified directly from the sample set, without a priori information.

Lemma E.15. Suppose Assumptions 2, 5 and 7 hold. Let u∗ = − log ϱ. Let S = {(Xµ
i , Z

µ
i )}mi=1

be an i.i.d. sample set drawn from µ. Let ûS ∈ U be defined in (2.9). Define the data-dependent
measurement functional

T̂S(u) =
1

m

m∑
i=1

(u(Xµ
i )− u∗(Xµ

i ))
2

Assume that ψ̂S ia a sub-root function for which

ψ̂S(r) ≥ 2(12M + V )R̂S

({
u ∈ star(U , u∗) : T̂S(u) ≤ 2r

})
+

(36M2 + 2VM) log(1/δ)

m
.

Further, let r̂∗S be the fixed point of ψ̂S and r ≥ r̂∗S. Then for each δ ∈ (0, 1) the following inequality
holds with probability at least 1− 4δ

Rpre(ûS) ≤ 3 inf
u∈U

Rpre(u) +
4224

V
r +

(132M + 156V ) log(1/δ)

m
,

where V = 1
2 max{ (1+Λ)2

Λ , (1+λ)
2

λ } and M = max{log(1 + 1/λ), log(1 + Λ)}.

Proof. We use the same definition of the measurement functional T (u) as in Lemma E.14. The
proof is divided into two steps.

Step 1. Construct a non-trivial sub-root function.

Let ψ be a sub-root function satisfying

ψ(r) ≥ VRm

({
u ∈ U : T (u) ≤ r

})
, (E.8)

and

ψ(r) ≥ 12MRm

({
u ∈ U : T (u) ≤ r

})
+

12M2 log(1/δ)

m
. (E.9)

To this end, we set ψ as

ψ(r) = (12M + V )Rm

({
u ∈ star(U , u∗) : T (u) ≤ r

})
+

12M2 log(1/δ)

m
. (E.10)
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Now we show that ψ is a sub-root function. By Jensen’s inequality, we find that the Rademacher
complexity is non-negative and thus ψ is non-negative. Furthermore, ψ is non-decreasing since the
following holds for r ≤ r′{

u ∈ star(U , u∗) : T (u) ≤ r
}
⊆

{
u ∈ star(U , u∗) : T (u) ≤ r′

}
.

It remains to show that for each 0 < r1 < r2, it holds that ψ(r1) ≥
√
r1/r2ψ(r2). According to

(E.10) and Lemma E.10, we only need to verify

Rm

({
v ∈ star(U − u∗, 0) : EXµ∼µX

[
v2(Xµ)

]
≤ r1

})
≥

√
r1
r2

Rm

({
v ∈ star(U − u∗, 0) : EXµ∼µX

[
v2(Xµ)

]
≤ r2

})
.

(E.11)

Fix a sample set {Xi}mi=1 drawn from µX and a set of Rademacher variables {εi}mi=1, define

η = sup
{ 1

m

m∑
i=1

εiv(X
µ
i ) : v ∈ star(U − u∗, 0),EX∼µX

[
v2(Xµ)

]
≤ r2

}
.

Let {vk}∞k=1 ⊆ {v ∈ star(U −u∗, 0),EX∼µX
[v2(Xµ)] ≤ r2} be a sequence of functions for which

η = lim
k→∞

1

n

m∑
i=1

εivk(X
µ
i ) and η ≥ 1

m

m∑
i=1

εivk(X
µ
i ), k ≥ 1

Since EXµ∼µX
[v2k(X

µ)] ≤ r2, we find that EXµ∼µX
[(
√
r1/r2vk(X

µ))2] ≤ r1. Moreover, by the
definition of star-hull, we find that

√
r1/r2vk ∈ star(U −u∗, 0) for each k ≥ 1. Thus the following

inequality holds for each k ≥ 1

sup
{ 1

m

m∑
i=1

εiv(X
µ
i ) : v ∈ star(U − u∗, 0),EXµ∼µX

[v2(Xµ)] ≤ r1

}
≥

√
r1
r2

1

m

m∑
i=1

εivk(X
µ
i ).

Then taking limitation as k → ∞, we find that

sup
{ 1

m

m∑
i=1

εiv(X
µ
i ) : v ∈ star(U − u∗, 0),EXµ∼µX

[v2(Xµ)] ≤ r1

}
≥

√
r1
r2
η.

Taking expectation with respect to the sample set {Xµ
i }mi=1 and Rademacher variables {εi}ni=1 yields

(E.11). Hence we conclude that ψ(r) is a non-trivial sub-root function.

Step 2. Data-dependent error bounds.

Let r∗ be the fixed point of the sub-root function ψ defined as (E.10). Since ψ satisfies (E.8), using
Lemma E.14 implies that for δ ∈ (0, 1) the following inequality holds with probability as least 1−2δ

Rpre(ûS) ≤ 3 inf
u∈U

Rpre(u) +
4224

V
r∗ +

(132M + 156V ) log(1/δ)

m
. (E.12)

Notice that (E.12) uses distribution-dependent measures of complexity of the function class. We
next establish distribution-free bounds, which only depend on a sample set S. Since that ψ satisfies
(E.9), applying Lemma E.4 gives that with probability at least 1− δ,{

u ∈ star(U , u∗) : T (u) ≤ r∗
}
⊆

{
u ∈ star(U , u∗) : T̂S(u) ≤ 2r∗

}
,

which means that the following inequality holds with probability at least 1− δ

R̂S

({
u ∈ star(U , u∗) : T (u) ≤ r∗

})
≤ R̂S

({
u ∈ star(U , u∗) : T̂S(u) ≤ 2r∗

})
. (E.13)

In addition, we find from Lemma E.2 that the following inequality holds with probability at least
1− δ

Rm

({
u ∈ star(U , u∗) : T (u) ≤ r∗

})
≤ 2R̂S

({
u ∈ star(U , u∗) : T (u) ≤ r∗

})
+

2M log(1/δ)

m
.

(E.14)
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Combining (E.10), (E.13) and (E.14) obtains that the following inequality holds with probability at
least 1− 2δ

ψ(r∗) ≤ 2(12M + V )R̂S

({
u ∈ star(U , u∗) : T (u) ≤ r∗

})
+

(36M2 + 2VM) log(1/δ)

m

≤ 2(12M + V )R̂S

({
u ∈ star(U , u∗) : T̂S(u) ≤ 2r∗

})
+

(36M2 + 2VM) log(1/δ)

m

≤ ψ̂S(r
∗).

As a consequence, we have r∗ = ψ(r∗) ≤ ψ̂S(r
∗), which deduces r∗ ≤ r̂∗S with probability 1− 2δ

from Lemma E.6. Recalling that (E.12) holds with probability at least 1 − 2δ yields the desired
result.

Lemma E.16. Suppose Assumptions 2, 5 and 7 hold. Let u∗ = − log ϱ. Let S = {(Xµ
i , Z

µ
i )}mi=1

be an i.i.d. sample set drawn from µ. Let ûS ∈ U be defined as (2.9). Then the following inequality
holds

ES

[
Rpre(ûS)

]
≲ inf
u∈U

Rpre(u) +
M2 + V 2

V

VCdim(U) log(em)

m
,

where V = 1
2 max{ (1+Λ)2

Λ , (1+λ)
2

λ } and M = max{log(1 + 1/λ), log(1 + Λ)}.

Proof of Lemma E.16. We divide the proof into two steps.

Step 1. Oracle inequality with high-probability statement.

Using Lemmas E.8 and E.12 and setting ε =M/m, we find that for n ≥ VCdim(F),

R̂S

({
u ∈ star(U , u∗) : T̂S(u) ≤ 2r

})
≤ 2M

m
+ 2

√
log{4mN(M/(2m),U , L∞(S))}

m

√
r

≤ 2M

m
+ 4

√
VCdim(U) log(em)

m

√
r,

where the second inequality is due to Anthony et al. (1999, Theorem 12.2). Define the sub-root
function ψ̂S(r) by ψ̂S(r) = a

√
r + b, where

a = 8(12M + V )

√
VCdim(U) log(em)

m
and b =

(60M2 + 4VM) log(1/δ)

m
.

By setting r = 4a2 + 2b, we find that ψ̂S(r) ≤ r. Combining this with Lemma E.6 implies r̂∗S ≤ r.
Then using Lemma E.15 yields

Pr(Rpre(ûS) > ε(δ, n)) ≤ 4δ,

where

ε(δ, n) = 3 inf
u∈U

Rpre(u) +
4224(4a2 + 2b)

V
+

(132M + 156V ) log(1/δ)

m
.

Step 2. Convergence rates of the density ratio estimator.

Since g(u, x, z) ≤ 2M for each u ∈ U and (x, z) ∈ X × {±1}, it follows that Rpre(ûS) ≤ 2M ,
and consequently,

ES

[
Rpre(ûS)

]
= ES

[
Rpre(ûS) · I(Rpre(ûS) > ε(δ, n))

]
+ ES

[
Rpre(ûS) · I(Rpre(ûS) ≤ ε(δ, n))

]
≤ 2M · Pr(Rpre(ûS) > ε(δ, n)) + ε(δ, n) · (1− Pr(Rpre(ûS) > ε(δ, n)))

≤ 8Mδ + ε(δ, n),

Setting δ = 1/m completes the proof.
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Lemma E.17 (Oracle inequality of density-ratio estimator). Suppose Assumptions 2, 5 and 7 hold.
Let S = {(Xµ

i , Z
µ
i )}mi=1 be an i.i.d. sample set drawn from (2.8).Suppose that U is a hypothesis

class and ûS ∈ U is defined by (2.9). Then the following inequality holds for m ≥ VCdim(U),

ES∼µm

[
∥ϱ̂S − ϱ∥2L2(PX) + ∥ϱ̂S − ϱ∥2L2(QX)

]
≲ inf
u∈U

(
∥u+ log ϱ∥2L2(PX) + ∥u+ log ϱ∥2L2(QX)

)
+
M2 + V 2

V
VCdim(U) log(em)

m
,

where V = 1
2 max{ (1+Λ)2

Λ , (1+λ)
2

λ } and M = max{log(1 + 1/λ), log(1 + Λ)}.

Proof of Lemma E.17. Observe that

∥ϱ̂S − ϱ∥2L2(µX) = EXµ∼µX

[
(ϱ̂S(X

µ)− ϱ(Xµ))2
]

= EXµ∼µX

[
(exp(−ûS(Xµ))− exp(−u(Xµ)))2

]
≤ EXµ∼µX

[
(ûS(X

µ)− u(Xµ))2
]
= ∥ûS − u∥2L2(µX).

Combining this with Lemma E.13 yields the desired result.

E.3 CONVERGENCE RATES OF DENSITY RATIO ESTIMATOR

Proof of Lemma 3.11. According to Assumption 6 and Lemma 3.1, there exists u ∈ U =
N(WU , LU ) such that

inf
u∈U

∥u+ log ϱ∥2L2(QX) + ∥u+ log ϱ∥2L2(PX) ≤ C1(UUNU )
−4α/d,

where W = O(UU logUU ), L = O(NU logNU ) and C1 is a constant only depending on
∥ log ϱ∥Hα(X ), d and α. Using Lemma 3.2, we find that VCdim(U) ≤ C2U

2
UN

2
U (logUU logNU )

2,
where the constant C2 depends on B, d and α. By setting UUNU = O(n

d
2d+4α ), we conclude the

final result.
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