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Abstract
Due to the realization that deep reinforcement
learning algorithms trained on high-dimensional
tasks can strongly overfit to their training envi-
ronments, there have been several studies that
investigated the generalization performance of
these algorithms. However, there has been no
similar study that evaluated the generalization per-
formance of algorithms that were specifically de-
signed for generalization, i.e. meta-reinforcement
learning algorithms. In this paper, we assess the
generalization performance of these algorithms by
leveraging high-dimensional, procedurally gen-
erated environments. We find that these algo-
rithms can display strong overfitting when they
are evaluated on challenging tasks. We also ob-
serve that scalability to high-dimensional tasks
with sparse rewards remains a significant problem
among many of the current meta-reinforcement
learning algorithms. With these results, we high-
light the need for developing meta-reinforcement
learning algorithms that can both generalize and
scale.

1. Introduction
In recent years, deep reinforcement learning (RL) algo-
rithms have achieved significant success in a wide variety of
challenging tasks, ranging from board games (Silver et al.,
2017; 2018) to video games (Mnih et al., 2015; Vinyals
et al., 2017). Despite the ever-increasing successes, these
algorithms require a substantial amount of data for achiev-
ing good performance in a narrowly-defined domain, and
they can perform very poorly even when slight modifica-
tions occur in the environment. This indicates that RL al-
gorithms tend to overfit to the tasks on which they were
trained (Zhang et al., 2018b; Farebrother et al., 2018). If
we want RL algorithms that can learn multiple tasks and
quickly adapt to new ones, such algorithms need to learn
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the common structure across many tasks and then use this
information to quickly generalize to new tasks.

Recent studies in the field of meta-reinforcement learning
(meta-RL) have shown promising results in this direction
(Duan et al., 2016; Wang et al., 2016; Finn et al., 2017).
Meta-RL algorithms are trained on multiple related envi-
ronments, in order to learn a learning algorithm that can
perform quick adaptation to new unseen tasks. While these
algorithms have shown promise, due to the lack of well-
designed benchmarks, they have often been trained and eval-
uated on very narrow and simple task distributions, leaving
their true generalization capabilities unclear. For instance,
one of the popular benchmarks involves two tasks which re-
quire training a simulated legged robot to run either forward
or backward, and another one involves different parametriza-
tions of these robots in terms of their limb configurations
(Finn et al., 2017; Houthooft et al., 2018; Rakelly et al.,
2019). To overcome this problem and study the capabilities
of these algorithms, recently Yu et al. (2019) have designed
a simulated robot benchmark with 50 qualitatively-diverse
manipulation tasks. However, despite the diversity, the
benchmark lacks challenging high-dimensional tasks with
sparse rewards, leaving their capabilities in these domains
unclear.

In this study, we examine the generalization performance of
meta-RL algorithms using challenging vision-based sparse-
reward environments. To achieve this, we leverage proce-
durally generated environments (Cobbe et al., 2019), which
allow generating an infinite amount of game levels with
greatly varying difficulty. We find that current meta-RL
algorithms show strong signs of overfitting when evaluated
on challenging environments. We also observe that scalabil-
ity to high-dimensional tasks remains a significant problem
among current meta-RL algorithms, as most of them either
perform poorly or run very slowly. Our main contribution
is the empirical study of the generalization performance
of meta-RL algorithms in vision-based sparse-reward envi-
ronments. We hope that our findings will stimulate further
research progress in improving generalization.

The rest of the paper is structured as follows. In section 2,
we provide a brief preliminary about the formulation we
assume in this paper. In section 3, we review the studies
that are most relevant to this study. In section 4, we describe
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Figure 1. (Left) Example observations from the ModifiedCoinrun and Heist environments that the agent receives. Observations consist of
only a small patch of space surrounding the agent, making these environments partially observable. (Right) Bird’s-eye view of some of
the levels from these environments. The difficulty of the levels increases from left to right.

our experimental setting and provide our empirical findings.
Finally, in section 5, we provide a discussion and suggest
possible future directions.

2. Preliminaries
Reinforcement Learning. We assume the standard formu-
lation of RL in Sutton & Barto (2018), where a task is
represented by a Markov Decision Process (MDP), a tu-
ple T = (S,A, p, r, γ, T ). Here S is the state space, A is
the action space, p : S × A × S → R+ is the transition
distribution, r : S × A → [−Rmax,+Rmax] is the reward
function, γ ∈ (0, 1) is the discount factor and T is the hori-
zon. The aim of a RL agent is to learn a stochastic policy
πθ : S × A → [0, 1] that maximizes the expected sum
of discounted rewards, which is also known as the return
Eτ [

∑T−1
k=0 γ

krt+k+1], where τ denotes trajectories.

Meta-Reinforcement Learning. In meta-RL, we assume
a distribution over tasks p(T ), where each task is a separate
MDP as described above. Importantly, it is often assumed
that these tasks share either S and A or only A as in our
case. In this setting, the aim of the meta-RL agent is to learn
a an update method U from training tasks, which can be
learned to generate new stochastic policies πU(θ), allowing
quick adaptation to testing tasks. Both training and testing
tasks are assumed to be sampled from p(T ).

3. Related Work
Overfitting in Reinforcement Learning. Due to the real-
ization that training and testing RL agents in the same envi-
ronments can prevent the detection of overfitting, there have
been a variety of generalization studies where RL agents

are evaluated on different environments (mostly different
levels and modes of a single game) than those on which
they are trained (Cobbe et al., 2018; Justesen et al., 2018;
Farebrother et al., 2018; Zhang et al., 2018a;b; Cobbe et al.,
2019). Among these studies, the works of Justesen et al.
(2018) and Cobbe et al. (2018; 2019) are closest to our
study. These works use procedural content generation to
evaluate generalization in regular RL algorithms. Although
our evaluation is inspired by these studies, we look at the
generalization problem in the context of meta-RL rather
than regular RL.

Curriculum Learning in Reinforcement Learning. The
idea of training RL agents using curricula has been explored
widely in the RL literature (Schmidhuber, 2013; Graves
et al., 2017; Justesen et al., 2018; Matiisen et al., 2019;
Wang et al., 2019). In these approaches, the agent is trained
with an increasing difficulty of levels. However, in this
work we do not consider a structured curriculum, but rather
consider one with mixed difficulties (the default setting of
Procgen environments (Cobbe et al., 2019)). It might also be
interesting to explore the option of increasing task difficulty
in the context of meta-RL, but we leave this for future work.
Our approach has the advantage of forcing the agent to
perform well at all levels of difficulty at the same time.

Meta-Reinforcement Learning Evaluation. Meta-RL al-
gorithms have been evaluated on a wide range of simu-
lated environments which include 3D maze navigation tasks
(Duan et al., 2016; Wang et al., 2016; Mishra et al., 2017),
continuous control tasks with parametric variations (Finn
et al., 2017; Rothfuss et al., 2018; Rakelly et al., 2019;
Houthooft et al., 2018; Kirsch et al., 2019), bandit/MDP
problems (Duan et al., 2016; Wang et al., 2016; Mishra
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Figure 2. Example visualizations of the RL2 agent’s behavior in randomly chosen levels. In both of the environments, the agent follows
the exploratory red path in the first episode. Then, after discovering where the coin/gem is, in the second episode it follows the yellow
path which directly leads to the target. This behavior only arises when given enough training levels.

et al., 2017), challenging gridworlds (Stadie et al., 2018)
and robotic manipulation tasks (Yu et al., 2019). However,
except for the 3D maze navigation tasks, these domains lack
two important challenges: high-dimensionality and reward
sparsity. Thus, the generalization performance of these al-
gorithms beyond 3D maze navigation tasks remains unclear.
In order to investigate this, we evaluate meta-RL algorithms
on challenging vision-based, sparse-reward, procedurally
generated environments (Cobbe et al., 2019).

4. Experiments
4.1. Experimental Setting

Environments. As a testbed, we used two different games
from the Procgen environments (Cobbe et al., 2019).1 Our
first choice is a platformer game, Coinrun. However, since
the original game requires no exploration, we modified it
so that the agent has to perform exploration to find the coin,
which is placed either on the far right or far left side of the
level. We refer to this modified version as ModifiedCoinrun.
Our second choice is a navigation game called Heist, where
the agent has to first collect scattered keys to unlock doors,
and then reach the gem. In both of these environments, the
agent receives a reward of +10 when the coin/gem is picked
and the levels end without any reward if the agent dies (only
in ModifiedCoinrun) or the 1,000 timesteps limit is reached.
Both games are also partially observable, requiring memory
(see left side of Fig. 1).

Since meta-RL algorithms are often evaluated in environ-
ments where only the level layouts change (Duan et al.,
2016; Mishra et al., 2017), as opposed to the additional
changing colors in the Procgen environments, we also cre-
ated versions of the above environments where only the
layout changes across different levels. We refer to these
environments as ModifiedCoinrun (Easy Mode) and Heist
(Easy Mode). More information on the environments we

1We have chosen only two environments as the computational
cost for our experiments is very high.

used can be found in Appendix A.

An important thing to note is that the levels of the games
in Procgen environments are generated deterministically
from a given seed, allowing generation of an infinite amount
of training and testing levels. They also greatly vary in
difficulty, providing a natural curriculum for learning. Some
of the levels, ranging from the easiest to the hardest, are
depicted in the right side of Figure 1.

Algorithm Choice. For the evaluation process, we experi-
mented with many different meta-RL algorithms that meta-
learn a policy. However, we only evaluated RL2 (Duan et al.,
2016; Wang et al., 2016) as it was the only algorithm that
we were able to successfully train. In our experiments, we
found E-RL2 (Stadie et al., 2018) to perform very poorly
(possibly due to the very delayed reward), SNAIL (Mishra
et al., 2017) to require a very large trajectory (which requires
an infeasible amount of memory), and PEARL (Rakelly
et al., 2019) to run very slowly. We also do not include
MAML (Finn et al., 2017), and the algorithms that build on
top of it (Stadie et al., 2018; Rothfuss et al., 2018; Gupta
et al., 2018), as Mishra et al. (2017) has found the compu-
tational expense of training MAML in high-dimensional
tasks to be prohibitively high. To support our observations,
we would also like to note that except for RL2 and SNAIL,
there has been no study that we are aware, at the time of
this paper, that reported success of meta-RL algorithms in
high-dimensional tasks.

Implementation Details. Our RL2 implementation, builds
on top of the PPO (Schulman et al., 2017) implementation
of Liang et al. (2017) and uses the IMPALA CNN (Espeholt
et al., 2018) as its visual feature extractor. We use this CNN
over the one in Mnih et al. (2015), as Cobbe et al. (2019)
has shown that it performs significantly better on Procgen
environments. As in Duan et al. (2016), the previous actions,
rewards and done signals are fed to the network along with
the current observation. We concatenate 2 episodes to form
a trial, as we found that adding more episodes does not
make any difference in the final performance. In all of
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Figure 3. (Top row) The final training and test performance of RL2 as a function of the number training tasks. The horizontal black and
vertical green dashed lines indicate the maximum achievable scores and recommended training levels, respectively. (Bottom row) The
training and test performance for each of the training level difficulties. For each of the plots, we report the mean score in the last episode
of the trial. The means and standard deviations are computed using 3 independent runs.

our experiments, we trained the RL2 agent for 25M (easy
modes) and 100M (regular modes) timesteps. Training more
did not increase the performance. More information on the
network architecture and hyperparameters can be found in
Appendix B and C, respectively.

4.2. Evaluation

Qualitative Pre-evaluation. Before running generalization
experiments, we trained the RL2 agent with 100,000 train-
ing levels and tested it on unseen levels to see if it can
achieve the optimal behavior, which consists of exploring
the level in the first episode, and then, after locating the
target, using this information to quickly reach it in the sec-
ond episode. We indeed observe successful learning of this
behavior. Examples of this type of optimal behavior are
depicted in Figure 2.2

Generalization Experiment I. We start our generalization
evaluation by looking at the effect of training set size on
generalization, as was done in Cobbe et al. (2019) for regular
RL algorithms. To investigate this, we constructed sets of
training levels, with 10 to 100,000 levels. We then trained
RL2 agents on each of these sets for 25M (for easy modes)

2Videos of the trained agents on additional levels can
be found at https://www.youtube.com/playlist?
list=PLcOHCuu_gh7nVISSFKtgT_JZ0iNiIbTqn.

and 100M (for regular modes) timesteps and tested them on
randomly sampled held-out levels. The results are shown in
the top row of Figure 3.

Our results show that small training sets can cause signifi-
cant overfitting in the meta-RL setting, just as in the regular
RL setting. Like regular RL algorithms, meta-RL algo-
rithms also require as many as 10,000 levels to close the
generalization gap. More importantly, however, we see that
there exists a large generalization gap for the recommended
200 (easy mode) and 500 (regular mode) training levels
(Cobbe et al., 2019) (see the vertical green dashed lines in
the top row of Fig. 3). In the Heist environments, this gap is
relatively lower only because the training score is also low.
This indicates that meta-RL algorithms fail to generalize in
the Procgen benchmark, showing strong signs of overfitting
instead.

Generalization Experiment II. Next, we investigate gen-
eralization on a higher level, by evaluating the effect of
having a training set composed of fixed difficulty levels.
This time, as the number of levels is not the main concern,
we constructed three sets of training levels, each containing
100,000 levels, where the first one contains easy levels, the
second one contains mixed difficulty levels and the last one
contains hard ones. The details of these sets are available in
Appendix A. We again trained RL2 agents on each of these

https://www.youtube.com/playlist?list=PLcOHCuu_gh7nVISSFKtgT_JZ0iNiIbTqn
https://www.youtube.com/playlist?list=PLcOHCuu_gh7nVISSFKtgT_JZ0iNiIbTqn
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sets for 25M (for easy mode) and 100M (for regular mode)
timesteps and tested them on held out levels with mixed
difficulty.

The results are depicted in the bottom row of Figure 3. We
find that while training on hard levels can prevent learning
from happening at all, training on easy/mixed levels can
have different effects depending on the game. In the Heist
environments, training only on easy levels can allow gener-
alization to unseen mixed levels. This also aligns with the
observations of Duan et al. (2016) that RL2 agents trained
on 5×5 mazes can often generalize to 9×9 ones. How-
ever, in the ModifiedCoinrun environments, this is not the
case, and training on mixed levels is strictly required for
generalization. We attribute this finding to the nature of the
environments. In the Heist environments, the agent is able to
randomly explore in the first episode without dying, whereas
in the ModifiedCoinrun environments, random exploration
can cause death, with no useful information being passed
to the second episode. This suggests that generalization
across different level difficulties is possible only in certain
environments and strong overfitting at a higher level can
occur in certain environments. Investigating more formally
what environment characteristics are helpful or detrimental
could aid the development of better algorithms.

5. Discussion and Future Work
The results of our experiments show that current meta-RL
algorithms can show strong overfitting, despite their explicit
goal of generalizing well. We see this behavior even in the
simplest settings (easy modes) of the Procgen environments.
This matches the recent findings of Yu et al. (2019), in which
they have found that current meta-RL algorithms can fail to
generalize even in the simplest settings of the Meta-World
benchmark. If our purpose is to create algorithms that can
actually generalize, rather than evaluating them on simple
tasks, such as different parametrizations of continuous con-
trol tasks or simple maze navigation tasks, we believe that
they must be evaluated on challenging environments like
Procgen or Meta-World, which can pose significant general-
ization challenges and can help differentiate different agents.
By doing so, we can develop algorithms that can achieve
the promise of meta-RL.

Another interesting observation is that the scalability of cur-
rent meta-RL algorithms to high dimensional tasks remains
a significant problem. Our experiments with a large selec-
tion of algorithms have shown that RL2 is the only algorithm
that was able to scale to the environments presented in this
study. With this, we also highlight the need for developing
algorithms with better scaling properties.

In future work, these experiments can be extended to the
other games in the Procgen benchmark and possibly to other

environments where task creation is easily achieved, result-
ing in more diverse and challenging benchmarks to evaluate
the generalization performance of meta-RL algorithms. An-
other possible future direction is to investigate the general-
ization performance of algorithms that are not referred to as
meta-RL algorithms, but nevertheless promise generaliza-
tion.
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A. Environment Details
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Figure A.1. Bird’s-eye view of some of the levels from the ModifiedCoinrun (Easy Mode) and Heist (Easy Mode) environments. The
difficulty increases from left to right. Different from the regular versions of these environments (see Figure 1), the background color,
agent appearance and wall themes do not change across levels.

ModifiedCoinrun. The ModifiedCoinrun environment is a modified version of the Coinrun environment (hard mode) where
the agent spawns on top of a block in the middle of the level, as opposed to always spawning from the far left. This is the
only difference from the original environment and it is modified in this way to test the agent’s ability to transfer knowledge
between episodes. The goal of the agent is again to reach the coin and get a reward of +10. The episode terminates if the
agent touches the enemies, lava or saws, or it is not able to get the coin within 1,000 timesteps.

The levels in easy and hard sets are created by setting the max difficulty parameter in the source code of Coinrun to 1
(min) and 3 (max), respectively.

ModifiedCoinrun (Easy Mode). The ModifiedCoinrun (Easy Mode) environment is a modified version of the Coinrun
environment (easy mode) where again the agent spawns on top a block in the middle of the level. The only difference
from the ModifiedCoinrun environment above is that it is created with the flag distribution mode=easy rather than
distribution mode=hard. This flag allows to create different levels where only the level layouts differs between
them (see the top row of Fig. A.1).

The levels in easy and hard sets are again created by setting the max difficulty parameter in the source code of Coinrun
to 1 (min) and 3 (max), respectively.

Heist. The Heist environment is just the original Heist environment with two minor modifications. To make it partially
observable and tractable, we create it with the distribution mode=memory flag and change the world dimension
(controlled by the world dim parameter) from 21 to 13, respectively. To goal of the agent is to again pick up the colored
keys, unlock the corresponding colored doors and reach the gem to get a reward of +10. The episode terminates after 1,000
timesteps.

The levels in easy and hard sets are created by setting the difficulty parameter in the source code of Heist to 1 (min)
and 4 (max), respectively.

Heist (Easy Mode). The Heist (Easy Mode) environment is an easier version of the above Heist environment where the
background color is set to a constant image and the world dimension is changed from 13 to 9 (see the bottom row of
Fig. A.1).

The levels in easy and hard sets are created by setting the difficulty parameter in the source code of Heist to 1 (min)
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and 2 (max), respectively.

B. Network Architecture
Following Cobbe et al. (2019), we use the IMPALA CNN architecture (Espeholt et al., 2018) for the visual feature extraction
part of our network. We then concatenate the output of the CNN with the vector containing the previous action (one-hoted),
previous reward and previous done signal, and pass it through a fully connected layer with 256 units. Finally, we pass this
256 dimensional vector through an LSTM (Hochreiter & Schmidhuber, 1997) with 256 units and the output of the LSTM is
then fed to two separate fully connected layers (with size 15 and 1) corresponding to the logits for the policy and the value
of the state. Except for the last layers, all layers have a ReLU nonlinearity.

C. Hyperparameters
The hyperparameters of the RL2 agent, which is built on top of PPO, is given in Table C.1.

Table C.1. Hyperparameters for the RL2 agent.
Learning rate 5e−4

Discount 0.99
GAE λ 0.99
KL coefficient 0.5
Target for KL divergence 0.01
Entropy coefficient 0.01
PPO clip parameter 0.2
Gradient clip 0.5
Max sequence length 2000
# of workers 8
# of environments per worker 16
# of episodes in a trial 2
# of SGD iterations 1
Batch size 16000
Value function loss coefficient 0.5


